Bug 1700051: part 46) Const-qualify `mozInlineSpellStatus::mAnchorRange`. r=smaug
[gecko.git] / gfx / src / TiledRegion.cpp
blob32c19f56b673e100be17402b21d6bf3e96684d6b
1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
3 /* This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 #include "TiledRegion.h"
9 #include <algorithm>
11 #include "mozilla/fallible.h"
13 namespace mozilla {
14 namespace gfx {
16 static const int32_t kTileSize = 256;
17 static const size_t kMaxTiles = 1000;
19 /**
20 * TiledRegionImpl stores an array of non-empty rectangles (pixman_box32_ts) to
21 * represent the region. Each rectangle is contained in a single tile;
22 * rectangles never cross tile boundaries. The rectangles are sorted by their
23 * tile's origin in top-to-bottom, left-to-right order.
24 * (Note that this can mean that a rectangle r1 can come before another
25 * rectangle r2 even if r2.y1 < r1.y1, as long as the two rects are in the same
26 * row of tiles and r1.x1 < r2.x1.)
27 * Empty tiles take up no space in the array - there is no rectangle stored for
28 * them. As a result, any algorithm that needs to deal with empty tiles will
29 * iterate through the mRects array and compare the positions of two
30 * consecutive rects to figure out whether there are any empty tiles between
31 * them.
34 static pixman_box32_t IntersectionOfNonEmptyBoxes(const pixman_box32_t& aBox1,
35 const pixman_box32_t& aBox2) {
36 return pixman_box32_t{
37 std::max(aBox1.x1, aBox2.x1), std::max(aBox1.y1, aBox2.y1),
38 std::min(aBox1.x2, aBox2.x2), std::min(aBox1.y2, aBox2.y2)};
41 // A TileIterator points to a specific tile inside a certain tile range, or to
42 // the end of the tile range. Advancing a TileIterator will move to the next
43 // tile inside the range (or to the range end). The next tile is either the
44 // tile to the right of the current one, or the first tile of the next tile
45 // row if the current tile is already the last tile in the row.
46 class TileIterator {
47 public:
48 TileIterator(const pixman_box32_t& aTileBounds, const IntPoint& aPosition)
49 : mTileBounds(aTileBounds), mPos(aPosition) {}
51 bool operator!=(const TileIterator& aOther) { return mPos != aOther.mPos; }
52 bool operator==(const TileIterator& aOther) { return mPos == aOther.mPos; }
54 IntPoint operator*() const { return mPos; }
56 const TileIterator& operator++() {
57 mPos.x += kTileSize;
58 if (mPos.x >= mTileBounds.x2) {
59 mPos.x = mTileBounds.x1;
60 mPos.y += kTileSize;
62 return *this;
65 TileIterator& operator=(const IntPoint& aPosition) {
66 mPos = aPosition;
67 return *this;
70 bool IsBeforeTileContainingPoint(const IntPoint& aPoint) const {
71 return (mPos.y + kTileSize) <= aPoint.y ||
72 (mPos.y <= aPoint.y && (mPos.x + kTileSize) <= aPoint.x);
75 bool IsAtTileContainingPoint(const IntPoint& aPoint) const {
76 return mPos.y <= aPoint.y && aPoint.y < (mPos.y + kTileSize) &&
77 mPos.x <= aPoint.x && aPoint.x < (mPos.x + kTileSize);
80 pixman_box32_t IntersectionWith(const pixman_box32_t& aRect) const {
81 pixman_box32_t tile = {mPos.x, mPos.y, mPos.x + kTileSize,
82 mPos.y + kTileSize};
83 return IntersectionOfNonEmptyBoxes(tile, aRect);
86 private:
87 const pixman_box32_t& mTileBounds;
88 IntPoint mPos;
91 // A TileRange describes a range of tiles contained inside a certain tile
92 // bounds (which is a rectangle that includes all tiles that you're
93 // interested in). The tile range can start and end at any point inside a
94 // tile row.
95 // The tile range end is described by the tile that starts at the bottom
96 // left corner of the tile bounds, i.e. the first tile under the tile
97 // bounds.
98 class TileRange {
99 public:
100 // aTileBounds, aStart and aEnd need to be aligned with the tile grid.
101 TileRange(const pixman_box32_t& aTileBounds, const IntPoint& aStart,
102 const IntPoint& aEnd)
103 : mTileBounds(aTileBounds), mStart(aStart), mEnd(aEnd) {}
104 // aTileBounds needs to be aligned with the tile grid.
105 explicit TileRange(const pixman_box32_t& aTileBounds)
106 : mTileBounds(aTileBounds),
107 mStart(mTileBounds.x1, mTileBounds.y1),
108 mEnd(mTileBounds.x1, mTileBounds.y2) {}
110 TileIterator Begin() const { return TileIterator(mTileBounds, mStart); }
111 TileIterator End() const { return TileIterator(mTileBounds, mEnd); }
113 // The number of tiles in this tile range.
114 size_t Length() const {
115 if (mEnd.y == mStart.y) {
116 return (mEnd.x - mStart.x) / kTileSize;
118 int64_t numberOfFullRows =
119 (((int64_t)mEnd.y - (int64_t)mStart.y) / kTileSize) - 1;
120 int64_t tilesInFirstRow =
121 ((int64_t)mTileBounds.x2 - (int64_t)mStart.x) / kTileSize;
122 int64_t tilesInLastRow =
123 ((int64_t)mEnd.x - (int64_t)mTileBounds.x1) / kTileSize;
124 int64_t tilesInFullRow =
125 ((int64_t)mTileBounds.x2 - (int64_t)mTileBounds.x1) / kTileSize;
126 int64_t total =
127 tilesInFirstRow + (tilesInFullRow * numberOfFullRows) + tilesInLastRow;
128 MOZ_ASSERT(total > 0);
129 // On 32bit systems the total may be larger than what fits in a size_t (4
130 // bytes), so clamp it to size_t's max value in that case.
131 return static_cast<uint64_t>(total) >=
132 static_cast<uint64_t>(std::numeric_limits<size_t>::max())
133 ? std::numeric_limits<size_t>::max()
134 : static_cast<size_t>(total);
137 // If aTileOrigin does not describe a tile inside our tile bounds, move it
138 // to the next tile that you'd encounter by "advancing" a tile iterator
139 // inside these tile bounds. If aTileOrigin is after the last tile inside
140 // our tile bounds, move it to the range end tile.
141 // The result of this method is a valid end tile for a tile range with our
142 // tile bounds.
143 IntPoint MoveIntoBounds(const IntPoint& aTileOrigin) const {
144 IntPoint p = aTileOrigin;
145 if (p.x < mTileBounds.x1) {
146 p.x = mTileBounds.x1;
147 } else if (p.x >= mTileBounds.x2) {
148 p.x = mTileBounds.x1;
149 p.y += kTileSize;
151 if (p.y < mTileBounds.y1) {
152 p.y = mTileBounds.y1;
153 p.x = mTileBounds.x1;
154 } else if (p.y >= mTileBounds.y2) {
155 // There's only one valid state after the end of the tile range, and
156 // that's the bottom left point of the tile bounds.
157 p.x = mTileBounds.x1;
158 p.y = mTileBounds.y2;
160 return p;
163 private:
164 const pixman_box32_t& mTileBounds;
165 const IntPoint mStart;
166 const IntPoint mEnd;
169 static IntPoint TileContainingPoint(const IntPoint& aPoint) {
170 return IntPoint(RoundDownToMultiple(aPoint.x, kTileSize),
171 RoundDownToMultiple(aPoint.y, kTileSize));
174 enum class IterationAction : uint8_t { CONTINUE, STOP };
176 enum class IterationEndReason : uint8_t { NOT_STOPPED, STOPPED };
178 template <typename HandleEmptyTilesFunction,
179 typename HandleNonEmptyTileFunction, typename RectArrayT>
180 IterationEndReason ProcessIntersectedTiles(
181 const pixman_box32_t& aRect, RectArrayT& aRectArray,
182 HandleEmptyTilesFunction aHandleEmptyTiles,
183 HandleNonEmptyTileFunction aHandleNonEmptyTile) {
184 pixman_box32_t tileBounds = {RoundDownToMultiple(aRect.x1, kTileSize),
185 RoundDownToMultiple(aRect.y1, kTileSize),
186 RoundUpToMultiple(aRect.x2, kTileSize),
187 RoundUpToMultiple(aRect.y2, kTileSize)};
188 if (tileBounds.x2 < tileBounds.x1 || tileBounds.y2 < tileBounds.y1) {
189 // RoundUpToMultiple probably overflowed. Bail out.
190 return IterationEndReason::STOPPED;
193 TileRange tileRange(tileBounds);
194 TileIterator rangeEnd = tileRange.End();
196 // tileIterator points to the next tile in tileRange, or to rangeEnd if we're
197 // done.
198 TileIterator tileIterator = tileRange.Begin();
200 // We iterate over the rectangle array. Depending on the position of the
201 // rectangle we encounter, we may need to advance tileIterator by zero, one,
202 // or more tiles:
203 // - Zero if the rectangle we encountered is outside the tiles that
204 // intersect aRect.
205 // - One if the rectangle is in the exact tile that we're interested in next
206 // (i.e. the tile that tileIterator points at).
207 // - More than one if the encountered rectangle is in a tile that's further
208 // to the right or to the bottom than tileIterator. In that case there is
209 // at least one empty tile between the last rectangle we encountered and
210 // the current one.
211 for (size_t i = 0; i < aRectArray.Length() && tileIterator != rangeEnd; i++) {
212 MOZ_ASSERT(aRectArray[i].x1 < aRectArray[i].x2 &&
213 aRectArray[i].y1 < aRectArray[i].y2,
214 "empty rect");
215 IntPoint rectOrigin(aRectArray[i].x1, aRectArray[i].y1);
216 if (tileIterator.IsBeforeTileContainingPoint(rectOrigin)) {
217 IntPoint tileOrigin = TileContainingPoint(rectOrigin);
218 IntPoint afterEmptyTiles = tileRange.MoveIntoBounds(tileOrigin);
219 TileRange emptyTiles(tileBounds, *tileIterator, afterEmptyTiles);
220 if (aHandleEmptyTiles(aRectArray, i, emptyTiles) ==
221 IterationAction::STOP) {
222 return IterationEndReason::STOPPED;
224 tileIterator = afterEmptyTiles;
225 if (tileIterator == rangeEnd) {
226 return IterationEndReason::NOT_STOPPED;
229 if (tileIterator.IsAtTileContainingPoint(rectOrigin)) {
230 pixman_box32_t rectIntersection = tileIterator.IntersectionWith(aRect);
231 if (aHandleNonEmptyTile(aRectArray, i, rectIntersection) ==
232 IterationAction::STOP) {
233 return IterationEndReason::STOPPED;
235 ++tileIterator;
239 if (tileIterator != rangeEnd) {
240 // We've looked at all of our existing rectangles but haven't covered all
241 // of the tiles that we're interested in yet. So we need to deal with the
242 // remaining tiles now.
243 size_t endIndex = aRectArray.Length();
244 TileRange emptyTiles(tileBounds, *tileIterator, *rangeEnd);
245 if (aHandleEmptyTiles(aRectArray, endIndex, emptyTiles) ==
246 IterationAction::STOP) {
247 return IterationEndReason::STOPPED;
250 return IterationEndReason::NOT_STOPPED;
253 static pixman_box32_t UnionBoundsOfNonEmptyBoxes(const pixman_box32_t& aBox1,
254 const pixman_box32_t& aBox2) {
255 return {std::min(aBox1.x1, aBox2.x1), std::min(aBox1.y1, aBox2.y1),
256 std::max(aBox1.x2, aBox2.x2), std::max(aBox1.y2, aBox2.y2)};
259 // Returns true when adding the rectangle was successful, and false if
260 // allocation failed.
261 // When this returns false, our internal state might not be consistent and we
262 // need to be cleared.
263 bool TiledRegionImpl::AddRect(const pixman_box32_t& aRect) {
264 // We are adding a rectangle that can span multiple tiles.
265 // For each empty tile that aRect intersects, we need to add the intersection
266 // of aRect with that tile to mRects, respecting the order of mRects.
267 // For each tile that already has a rectangle, we need to enlarge that
268 // existing rectangle to include the intersection of aRect with the tile.
269 return ProcessIntersectedTiles(
270 aRect, mRects,
271 [&aRect](nsTArray<pixman_box32_t>& rects, size_t& rectIndex,
272 TileRange emptyTiles) {
273 CheckedInt<size_t> newLength(rects.Length());
274 newLength += emptyTiles.Length();
275 if (!newLength.isValid() || newLength.value() >= kMaxTiles ||
276 !rects.InsertElementsAt(rectIndex, emptyTiles.Length(),
277 fallible)) {
278 return IterationAction::STOP;
280 for (TileIterator tileIt = emptyTiles.Begin();
281 tileIt != emptyTiles.End(); ++tileIt, ++rectIndex) {
282 rects[rectIndex] = tileIt.IntersectionWith(aRect);
284 return IterationAction::CONTINUE;
286 [](nsTArray<pixman_box32_t>& rects, size_t rectIndex,
287 const pixman_box32_t& rectIntersectionWithTile) {
288 rects[rectIndex] = UnionBoundsOfNonEmptyBoxes(
289 rects[rectIndex], rectIntersectionWithTile);
290 return IterationAction::CONTINUE;
291 }) == IterationEndReason::NOT_STOPPED;
294 static bool NonEmptyBoxesIntersect(const pixman_box32_t& aBox1,
295 const pixman_box32_t& aBox2) {
296 return aBox1.x1 < aBox2.x2 && aBox2.x1 < aBox1.x2 && aBox1.y1 < aBox2.y2 &&
297 aBox2.y1 < aBox1.y2;
300 bool TiledRegionImpl::Intersects(const pixman_box32_t& aRect) const {
301 // aRect intersects this region if it intersects any of our rectangles.
302 return ProcessIntersectedTiles(
303 aRect, mRects,
304 [](const nsTArray<pixman_box32_t>& rects, size_t& rectIndex,
305 TileRange emptyTiles) {
306 // Ignore empty tiles and keep on iterating.
307 return IterationAction::CONTINUE;
309 [](const nsTArray<pixman_box32_t>& rects, size_t rectIndex,
310 const pixman_box32_t& rectIntersectionWithTile) {
311 if (NonEmptyBoxesIntersect(rects[rectIndex],
312 rectIntersectionWithTile)) {
313 // Found an intersecting rectangle, so aRect intersects this
314 // region.
315 return IterationAction::STOP;
317 return IterationAction::CONTINUE;
318 }) == IterationEndReason::STOPPED;
321 static bool NonEmptyBoxContainsNonEmptyBox(const pixman_box32_t& aBox1,
322 const pixman_box32_t& aBox2) {
323 return aBox1.x1 <= aBox2.x1 && aBox2.x2 <= aBox1.x2 && aBox1.y1 <= aBox2.y1 &&
324 aBox2.y2 <= aBox1.y2;
327 bool TiledRegionImpl::Contains(const pixman_box32_t& aRect) const {
328 // aRect is contained in this region if aRect does not intersect any empty
329 // tiles and, for each non-empty tile, if the intersection of aRect with that
330 // tile is contained in the existing rectangle we have in that tile.
331 return ProcessIntersectedTiles(
332 aRect, mRects,
333 [](const nsTArray<pixman_box32_t>& rects, size_t& rectIndex,
334 TileRange emptyTiles) {
335 // Found an empty tile that intersects aRect, so aRect is not
336 // contained in this region.
337 return IterationAction::STOP;
339 [](const nsTArray<pixman_box32_t>& rects, size_t rectIndex,
340 const pixman_box32_t& rectIntersectionWithTile) {
341 if (!NonEmptyBoxContainsNonEmptyBox(rects[rectIndex],
342 rectIntersectionWithTile)) {
343 // Our existing rectangle in this tile does not cover the part
344 // of aRect that intersects this tile, so aRect is not
345 // contained in this region.
346 return IterationAction::STOP;
348 return IterationAction::CONTINUE;
349 }) == IterationEndReason::NOT_STOPPED;
352 } // namespace gfx
353 } // namespace mozilla