Bug 932076 - Add check for MediaExtractor creation failure. r=doublec
[gecko.git] / mfbt / SHA1.cpp
blobf11b064ec7cb8c9b633227ac1fe98dd6793c61c8
1 /* This Source Code Form is subject to the terms of the Mozilla Public
2 * License, v. 2.0. If a copy of the MPL was not distributed with this
3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
5 #include "mozilla/Assertions.h"
6 #include "mozilla/Endian.h"
7 #include "mozilla/SHA1.h"
9 #include <string.h>
11 using mozilla::NativeEndian;
12 using mozilla::SHA1Sum;
14 static inline uint32_t
15 SHA_ROTL(uint32_t t, uint32_t n)
17 MOZ_ASSERT(n < 32);
18 return (t << n) | (t >> (32 - n));
21 static void
22 shaCompress(volatile unsigned* X, const uint32_t* datain);
24 #define SHA_F1(X, Y, Z) ((((Y) ^ (Z)) & (X)) ^ (Z))
25 #define SHA_F2(X, Y, Z) ((X) ^ (Y) ^ (Z))
26 #define SHA_F3(X, Y, Z) (((X) & (Y)) | ((Z) & ((X) | (Y))))
27 #define SHA_F4(X, Y, Z) ((X) ^ (Y) ^ (Z))
29 #define SHA_MIX(n, a, b, c) XW(n) = SHA_ROTL(XW(a) ^ XW(b) ^ XW(c) ^XW(n), 1)
31 SHA1Sum::SHA1Sum()
32 : size(0), mDone(false)
34 // Initialize H with constants from FIPS180-1.
35 H[0] = 0x67452301L;
36 H[1] = 0xefcdab89L;
37 H[2] = 0x98badcfeL;
38 H[3] = 0x10325476L;
39 H[4] = 0xc3d2e1f0L;
43 * Explanation of H array and index values:
45 * The context's H array is actually the concatenation of two arrays
46 * defined by SHA1, the H array of state variables (5 elements),
47 * and the W array of intermediate values, of which there are 16 elements.
48 * The W array starts at H[5], that is W[0] is H[5].
49 * Although these values are defined as 32-bit values, we use 64-bit
50 * variables to hold them because the AMD64 stores 64 bit values in
51 * memory MUCH faster than it stores any smaller values.
53 * Rather than passing the context structure to shaCompress, we pass
54 * this combined array of H and W values. We do not pass the address
55 * of the first element of this array, but rather pass the address of an
56 * element in the middle of the array, element X. Presently X[0] is H[11].
57 * So we pass the address of H[11] as the address of array X to shaCompress.
58 * Then shaCompress accesses the members of the array using positive AND
59 * negative indexes.
61 * Pictorially: (each element is 8 bytes)
62 * H | H0 H1 H2 H3 H4 W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 Wa Wb Wc Wd We Wf |
63 * X |-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 |
65 * The byte offset from X[0] to any member of H and W is always
66 * representable in a signed 8-bit value, which will be encoded
67 * as a single byte offset in the X86-64 instruction set.
68 * If we didn't pass the address of H[11], and instead passed the
69 * address of H[0], the offsets to elements H[16] and above would be
70 * greater than 127, not representable in a signed 8-bit value, and the
71 * x86-64 instruction set would encode every such offset as a 32-bit
72 * signed number in each instruction that accessed element H[16] or
73 * higher. This results in much bigger and slower code.
75 #define H2X 11 /* X[0] is H[11], and H[0] is X[-11] */
76 #define W2X 6 /* X[0] is W[6], and W[0] is X[-6] */
79 * SHA: Add data to context.
81 void
82 SHA1Sum::update(const void* dataIn, uint32_t len)
84 MOZ_ASSERT(!mDone, "SHA1Sum can only be used to compute a single hash.");
86 const uint8_t* data = static_cast<const uint8_t*>(dataIn);
88 if (len == 0)
89 return;
91 /* Accumulate the byte count. */
92 unsigned int lenB = static_cast<unsigned int>(size) & 63U;
94 size += len;
96 /* Read the data into W and process blocks as they get full. */
97 unsigned int togo;
98 if (lenB > 0) {
99 togo = 64U - lenB;
100 if (len < togo)
101 togo = len;
102 memcpy(u.b + lenB, data, togo);
103 len -= togo;
104 data += togo;
105 lenB = (lenB + togo) & 63U;
106 if (!lenB)
107 shaCompress(&H[H2X], u.w);
110 while (len >= 64U) {
111 len -= 64U;
112 shaCompress(&H[H2X], reinterpret_cast<const uint32_t*>(data));
113 data += 64U;
116 if (len > 0)
117 memcpy(u.b, data, len);
122 * SHA: Generate hash value
124 void
125 SHA1Sum::finish(SHA1Sum::Hash& hashOut)
127 MOZ_ASSERT(!mDone, "SHA1Sum can only be used to compute a single hash.");
129 uint64_t size2 = size;
130 uint32_t lenB = uint32_t(size2) & 63;
132 static const uint8_t bulk_pad[64] =
133 { 0x80,0,0,0,0,0,0,0,0,0,
134 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
135 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 };
137 /* Pad with a binary 1 (e.g. 0x80), then zeroes, then length in bits. */
138 update(bulk_pad, (((55 + 64) - lenB) & 63) + 1);
139 MOZ_ASSERT((uint32_t(size) & 63) == 56);
141 /* Convert size from bytes to bits. */
142 size2 <<= 3;
143 u.w[14] = NativeEndian::swapToBigEndian(uint32_t(size2 >> 32));
144 u.w[15] = NativeEndian::swapToBigEndian(uint32_t(size2));
145 shaCompress(&H[H2X], u.w);
147 /* Output hash. */
148 u.w[0] = NativeEndian::swapToBigEndian(H[0]);
149 u.w[1] = NativeEndian::swapToBigEndian(H[1]);
150 u.w[2] = NativeEndian::swapToBigEndian(H[2]);
151 u.w[3] = NativeEndian::swapToBigEndian(H[3]);
152 u.w[4] = NativeEndian::swapToBigEndian(H[4]);
153 memcpy(hashOut, u.w, 20);
154 mDone = true;
158 * SHA: Compression function, unrolled.
160 * Some operations in shaCompress are done as 5 groups of 16 operations.
161 * Others are done as 4 groups of 20 operations.
162 * The code below shows that structure.
164 * The functions that compute the new values of the 5 state variables
165 * A-E are done in 4 groups of 20 operations (or you may also think
166 * of them as being done in 16 groups of 5 operations). They are
167 * done by the SHA_RNDx macros below, in the right column.
169 * The functions that set the 16 values of the W array are done in
170 * 5 groups of 16 operations. The first group is done by the
171 * LOAD macros below, the latter 4 groups are done by SHA_MIX below,
172 * in the left column.
174 * gcc's optimizer observes that each member of the W array is assigned
175 * a value 5 times in this code. It reduces the number of store
176 * operations done to the W array in the context (that is, in the X array)
177 * by creating a W array on the stack, and storing the W values there for
178 * the first 4 groups of operations on W, and storing the values in the
179 * context's W array only in the fifth group. This is undesirable.
180 * It is MUCH bigger code than simply using the context's W array, because
181 * all the offsets to the W array in the stack are 32-bit signed offsets,
182 * and it is no faster than storing the values in the context's W array.
184 * The original code for sha_fast.c prevented this creation of a separate
185 * W array in the stack by creating a W array of 80 members, each of
186 * whose elements is assigned only once. It also separated the computations
187 * of the W array values and the computations of the values for the 5
188 * state variables into two separate passes, W's, then A-E's so that the
189 * second pass could be done all in registers (except for accessing the W
190 * array) on machines with fewer registers. The method is suboptimal
191 * for machines with enough registers to do it all in one pass, and it
192 * necessitates using many instructions with 32-bit offsets.
194 * This code eliminates the separate W array on the stack by a completely
195 * different means: by declaring the X array volatile. This prevents
196 * the optimizer from trying to reduce the use of the X array by the
197 * creation of a MORE expensive W array on the stack. The result is
198 * that all instructions use signed 8-bit offsets and not 32-bit offsets.
200 * The combination of this code and the -O3 optimizer flag on GCC 3.4.3
201 * results in code that is 3 times faster than the previous NSS sha_fast
202 * code on AMD64.
204 static void
205 shaCompress(volatile unsigned *X, const uint32_t *inbuf)
207 unsigned A, B, C, D, E;
209 #define XH(n) X[n - H2X]
210 #define XW(n) X[n - W2X]
212 #define K0 0x5a827999L
213 #define K1 0x6ed9eba1L
214 #define K2 0x8f1bbcdcL
215 #define K3 0xca62c1d6L
217 #define SHA_RND1(a, b, c, d, e, n) \
218 a = SHA_ROTL(b, 5) + SHA_F1(c, d, e) + a + XW(n) + K0; c = SHA_ROTL(c, 30)
219 #define SHA_RND2(a, b, c, d, e, n) \
220 a = SHA_ROTL(b, 5) + SHA_F2(c, d, e) + a + XW(n) + K1; c = SHA_ROTL(c, 30)
221 #define SHA_RND3(a, b, c, d, e, n) \
222 a = SHA_ROTL(b, 5) + SHA_F3(c, d, e) + a + XW(n) + K2; c = SHA_ROTL(c, 30)
223 #define SHA_RND4(a, b, c, d, e, n) \
224 a = SHA_ROTL(b ,5) + SHA_F4(c, d, e) + a + XW(n) + K3; c = SHA_ROTL(c, 30)
226 #define LOAD(n) XW(n) = NativeEndian::swapToBigEndian(inbuf[n])
228 A = XH(0);
229 B = XH(1);
230 C = XH(2);
231 D = XH(3);
232 E = XH(4);
234 LOAD(0); SHA_RND1(E,A,B,C,D, 0);
235 LOAD(1); SHA_RND1(D,E,A,B,C, 1);
236 LOAD(2); SHA_RND1(C,D,E,A,B, 2);
237 LOAD(3); SHA_RND1(B,C,D,E,A, 3);
238 LOAD(4); SHA_RND1(A,B,C,D,E, 4);
239 LOAD(5); SHA_RND1(E,A,B,C,D, 5);
240 LOAD(6); SHA_RND1(D,E,A,B,C, 6);
241 LOAD(7); SHA_RND1(C,D,E,A,B, 7);
242 LOAD(8); SHA_RND1(B,C,D,E,A, 8);
243 LOAD(9); SHA_RND1(A,B,C,D,E, 9);
244 LOAD(10); SHA_RND1(E,A,B,C,D,10);
245 LOAD(11); SHA_RND1(D,E,A,B,C,11);
246 LOAD(12); SHA_RND1(C,D,E,A,B,12);
247 LOAD(13); SHA_RND1(B,C,D,E,A,13);
248 LOAD(14); SHA_RND1(A,B,C,D,E,14);
249 LOAD(15); SHA_RND1(E,A,B,C,D,15);
251 SHA_MIX( 0, 13, 8, 2); SHA_RND1(D,E,A,B,C, 0);
252 SHA_MIX( 1, 14, 9, 3); SHA_RND1(C,D,E,A,B, 1);
253 SHA_MIX( 2, 15, 10, 4); SHA_RND1(B,C,D,E,A, 2);
254 SHA_MIX( 3, 0, 11, 5); SHA_RND1(A,B,C,D,E, 3);
256 SHA_MIX( 4, 1, 12, 6); SHA_RND2(E,A,B,C,D, 4);
257 SHA_MIX( 5, 2, 13, 7); SHA_RND2(D,E,A,B,C, 5);
258 SHA_MIX( 6, 3, 14, 8); SHA_RND2(C,D,E,A,B, 6);
259 SHA_MIX( 7, 4, 15, 9); SHA_RND2(B,C,D,E,A, 7);
260 SHA_MIX( 8, 5, 0, 10); SHA_RND2(A,B,C,D,E, 8);
261 SHA_MIX( 9, 6, 1, 11); SHA_RND2(E,A,B,C,D, 9);
262 SHA_MIX(10, 7, 2, 12); SHA_RND2(D,E,A,B,C,10);
263 SHA_MIX(11, 8, 3, 13); SHA_RND2(C,D,E,A,B,11);
264 SHA_MIX(12, 9, 4, 14); SHA_RND2(B,C,D,E,A,12);
265 SHA_MIX(13, 10, 5, 15); SHA_RND2(A,B,C,D,E,13);
266 SHA_MIX(14, 11, 6, 0); SHA_RND2(E,A,B,C,D,14);
267 SHA_MIX(15, 12, 7, 1); SHA_RND2(D,E,A,B,C,15);
269 SHA_MIX( 0, 13, 8, 2); SHA_RND2(C,D,E,A,B, 0);
270 SHA_MIX( 1, 14, 9, 3); SHA_RND2(B,C,D,E,A, 1);
271 SHA_MIX( 2, 15, 10, 4); SHA_RND2(A,B,C,D,E, 2);
272 SHA_MIX( 3, 0, 11, 5); SHA_RND2(E,A,B,C,D, 3);
273 SHA_MIX( 4, 1, 12, 6); SHA_RND2(D,E,A,B,C, 4);
274 SHA_MIX( 5, 2, 13, 7); SHA_RND2(C,D,E,A,B, 5);
275 SHA_MIX( 6, 3, 14, 8); SHA_RND2(B,C,D,E,A, 6);
276 SHA_MIX( 7, 4, 15, 9); SHA_RND2(A,B,C,D,E, 7);
278 SHA_MIX( 8, 5, 0, 10); SHA_RND3(E,A,B,C,D, 8);
279 SHA_MIX( 9, 6, 1, 11); SHA_RND3(D,E,A,B,C, 9);
280 SHA_MIX(10, 7, 2, 12); SHA_RND3(C,D,E,A,B,10);
281 SHA_MIX(11, 8, 3, 13); SHA_RND3(B,C,D,E,A,11);
282 SHA_MIX(12, 9, 4, 14); SHA_RND3(A,B,C,D,E,12);
283 SHA_MIX(13, 10, 5, 15); SHA_RND3(E,A,B,C,D,13);
284 SHA_MIX(14, 11, 6, 0); SHA_RND3(D,E,A,B,C,14);
285 SHA_MIX(15, 12, 7, 1); SHA_RND3(C,D,E,A,B,15);
287 SHA_MIX( 0, 13, 8, 2); SHA_RND3(B,C,D,E,A, 0);
288 SHA_MIX( 1, 14, 9, 3); SHA_RND3(A,B,C,D,E, 1);
289 SHA_MIX( 2, 15, 10, 4); SHA_RND3(E,A,B,C,D, 2);
290 SHA_MIX( 3, 0, 11, 5); SHA_RND3(D,E,A,B,C, 3);
291 SHA_MIX( 4, 1, 12, 6); SHA_RND3(C,D,E,A,B, 4);
292 SHA_MIX( 5, 2, 13, 7); SHA_RND3(B,C,D,E,A, 5);
293 SHA_MIX( 6, 3, 14, 8); SHA_RND3(A,B,C,D,E, 6);
294 SHA_MIX( 7, 4, 15, 9); SHA_RND3(E,A,B,C,D, 7);
295 SHA_MIX( 8, 5, 0, 10); SHA_RND3(D,E,A,B,C, 8);
296 SHA_MIX( 9, 6, 1, 11); SHA_RND3(C,D,E,A,B, 9);
297 SHA_MIX(10, 7, 2, 12); SHA_RND3(B,C,D,E,A,10);
298 SHA_MIX(11, 8, 3, 13); SHA_RND3(A,B,C,D,E,11);
300 SHA_MIX(12, 9, 4, 14); SHA_RND4(E,A,B,C,D,12);
301 SHA_MIX(13, 10, 5, 15); SHA_RND4(D,E,A,B,C,13);
302 SHA_MIX(14, 11, 6, 0); SHA_RND4(C,D,E,A,B,14);
303 SHA_MIX(15, 12, 7, 1); SHA_RND4(B,C,D,E,A,15);
305 SHA_MIX( 0, 13, 8, 2); SHA_RND4(A,B,C,D,E, 0);
306 SHA_MIX( 1, 14, 9, 3); SHA_RND4(E,A,B,C,D, 1);
307 SHA_MIX( 2, 15, 10, 4); SHA_RND4(D,E,A,B,C, 2);
308 SHA_MIX( 3, 0, 11, 5); SHA_RND4(C,D,E,A,B, 3);
309 SHA_MIX( 4, 1, 12, 6); SHA_RND4(B,C,D,E,A, 4);
310 SHA_MIX( 5, 2, 13, 7); SHA_RND4(A,B,C,D,E, 5);
311 SHA_MIX( 6, 3, 14, 8); SHA_RND4(E,A,B,C,D, 6);
312 SHA_MIX( 7, 4, 15, 9); SHA_RND4(D,E,A,B,C, 7);
313 SHA_MIX( 8, 5, 0, 10); SHA_RND4(C,D,E,A,B, 8);
314 SHA_MIX( 9, 6, 1, 11); SHA_RND4(B,C,D,E,A, 9);
315 SHA_MIX(10, 7, 2, 12); SHA_RND4(A,B,C,D,E,10);
316 SHA_MIX(11, 8, 3, 13); SHA_RND4(E,A,B,C,D,11);
317 SHA_MIX(12, 9, 4, 14); SHA_RND4(D,E,A,B,C,12);
318 SHA_MIX(13, 10, 5, 15); SHA_RND4(C,D,E,A,B,13);
319 SHA_MIX(14, 11, 6, 0); SHA_RND4(B,C,D,E,A,14);
320 SHA_MIX(15, 12, 7, 1); SHA_RND4(A,B,C,D,E,15);
322 XH(0) += A;
323 XH(1) += B;
324 XH(2) += C;
325 XH(3) += D;
326 XH(4) += E;