Bug 1601406 [wpt PR 20618] - Advertise DocumentPolicy & Network Err when receive...
[gecko.git] / mfbt / CheckedInt.h
blob4e8f13a41e34d59ae5e03185ef918662e674c3a4
1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
3 /* This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 /* Provides checked integers, detecting integer overflow and divide-by-0. */
9 #ifndef mozilla_CheckedInt_h
10 #define mozilla_CheckedInt_h
12 #include <stdint.h>
13 #include "mozilla/Assertions.h"
14 #include "mozilla/Attributes.h"
15 #include "mozilla/IntegerTypeTraits.h"
16 #include <limits>
18 #define MOZILLA_CHECKEDINT_COMPARABLE_VERSION(major, minor, patch) \
19 (major << 16 | minor << 8 | patch)
21 // Probe for builtin math overflow support. Disabled for 32-bit builds for now
22 // since "gcc -m32" claims to support these but its implementation is buggy.
23 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82274
24 // Also disabled for clang before version 7 (resp. Xcode clang 10.0.1): while
25 // clang 5 and 6 have a working __builtin_add_overflow, it is not constexpr.
26 #if defined(HAVE_64BIT_BUILD)
27 # if defined(__has_builtin) && \
28 (!defined(__clang_major__) || \
29 (!defined(__apple_build_version__) && __clang_major__ >= 7) || \
30 (defined(__apple_build_version__) && \
31 MOZILLA_CHECKEDINT_COMPARABLE_VERSION( \
32 __clang_major__, __clang_minor__, __clang_patchlevel__) >= \
33 MOZILLA_CHECKEDINT_COMPARABLE_VERSION(10, 0, 1)))
34 # define MOZ_HAS_BUILTIN_OP_OVERFLOW (__has_builtin(__builtin_add_overflow))
35 # elif defined(__GNUC__)
36 // (clang also defines __GNUC__ but it supports __has_builtin since at least
37 // v3.1 (released in 2012) so it won't get here.)
38 # define MOZ_HAS_BUILTIN_OP_OVERFLOW (__GNUC__ >= 5)
39 # else
40 # define MOZ_HAS_BUILTIN_OP_OVERFLOW (0)
41 # endif
42 #else
43 # define MOZ_HAS_BUILTIN_OP_OVERFLOW (0)
44 #endif
46 #undef MOZILLA_CHECKEDINT_COMPARABLE_VERSION
48 namespace mozilla {
50 template <typename T>
51 class CheckedInt;
53 namespace detail {
56 * Step 1: manually record supported types
58 * What's nontrivial here is that there are different families of integer
59 * types: basic integer types and stdint types. It is merrily undefined which
60 * types from one family may be just typedefs for a type from another family.
62 * For example, on GCC 4.6, aside from the basic integer types, the only other
63 * type that isn't just a typedef for some of them, is int8_t.
66 struct UnsupportedType {};
68 template <typename IntegerType>
69 struct IsSupportedPass2 {
70 static const bool value = false;
73 template <typename IntegerType>
74 struct IsSupported {
75 static const bool value = IsSupportedPass2<IntegerType>::value;
78 template <>
79 struct IsSupported<int8_t> {
80 static const bool value = true;
83 template <>
84 struct IsSupported<uint8_t> {
85 static const bool value = true;
88 template <>
89 struct IsSupported<int16_t> {
90 static const bool value = true;
93 template <>
94 struct IsSupported<uint16_t> {
95 static const bool value = true;
98 template <>
99 struct IsSupported<int32_t> {
100 static const bool value = true;
103 template <>
104 struct IsSupported<uint32_t> {
105 static const bool value = true;
108 template <>
109 struct IsSupported<int64_t> {
110 static const bool value = true;
113 template <>
114 struct IsSupported<uint64_t> {
115 static const bool value = true;
118 template <>
119 struct IsSupportedPass2<char> {
120 static const bool value = true;
123 template <>
124 struct IsSupportedPass2<signed char> {
125 static const bool value = true;
128 template <>
129 struct IsSupportedPass2<unsigned char> {
130 static const bool value = true;
133 template <>
134 struct IsSupportedPass2<short> {
135 static const bool value = true;
138 template <>
139 struct IsSupportedPass2<unsigned short> {
140 static const bool value = true;
143 template <>
144 struct IsSupportedPass2<int> {
145 static const bool value = true;
148 template <>
149 struct IsSupportedPass2<unsigned int> {
150 static const bool value = true;
153 template <>
154 struct IsSupportedPass2<long> {
155 static const bool value = true;
158 template <>
159 struct IsSupportedPass2<unsigned long> {
160 static const bool value = true;
163 template <>
164 struct IsSupportedPass2<long long> {
165 static const bool value = true;
168 template <>
169 struct IsSupportedPass2<unsigned long long> {
170 static const bool value = true;
174 * Step 2: Implement the actual validity checks.
176 * Ideas taken from IntegerLib, code different.
179 template <typename IntegerType, size_t Size = sizeof(IntegerType)>
180 struct TwiceBiggerType {
181 typedef typename detail::StdintTypeForSizeAndSignedness<
182 sizeof(IntegerType) * 2, IsSigned<IntegerType>::value>::Type Type;
185 template <typename IntegerType>
186 struct TwiceBiggerType<IntegerType, 8> {
187 typedef UnsupportedType Type;
190 template <typename T>
191 constexpr bool HasSignBit(T aX) {
192 // In C++, right bit shifts on negative values is undefined by the standard.
193 // Notice that signed-to-unsigned conversions are always well-defined in the
194 // standard, as the value congruent modulo 2**n as expected. By contrast,
195 // unsigned-to-signed is only well-defined if the value is representable.
196 return bool(typename MakeUnsigned<T>::Type(aX) >>
197 PositionOfSignBit<T>::value);
200 // Bitwise ops may return a larger type, so it's good to use this inline
201 // helper guaranteeing that the result is really of type T.
202 template <typename T>
203 constexpr T BinaryComplement(T aX) {
204 return ~aX;
207 template <typename T, typename U, bool IsTSigned = IsSigned<T>::value,
208 bool IsUSigned = IsSigned<U>::value>
209 struct DoesRangeContainRange {};
211 template <typename T, typename U, bool Signedness>
212 struct DoesRangeContainRange<T, U, Signedness, Signedness> {
213 static const bool value = sizeof(T) >= sizeof(U);
216 template <typename T, typename U>
217 struct DoesRangeContainRange<T, U, true, false> {
218 static const bool value = sizeof(T) > sizeof(U);
221 template <typename T, typename U>
222 struct DoesRangeContainRange<T, U, false, true> {
223 static const bool value = false;
226 template <typename T, typename U, bool IsTSigned = IsSigned<T>::value,
227 bool IsUSigned = IsSigned<U>::value,
228 bool DoesTRangeContainURange = DoesRangeContainRange<T, U>::value>
229 struct IsInRangeImpl {};
231 template <typename T, typename U, bool IsTSigned, bool IsUSigned>
232 struct IsInRangeImpl<T, U, IsTSigned, IsUSigned, true> {
233 static constexpr bool run(U) { return true; }
236 template <typename T, typename U>
237 struct IsInRangeImpl<T, U, true, true, false> {
238 static constexpr bool run(U aX) {
239 return aX <= std::numeric_limits<T>::max() &&
240 aX >= std::numeric_limits<T>::min();
244 template <typename T, typename U>
245 struct IsInRangeImpl<T, U, false, false, false> {
246 static constexpr bool run(U aX) {
247 return aX <= std::numeric_limits<T>::max();
251 template <typename T, typename U>
252 struct IsInRangeImpl<T, U, true, false, false> {
253 static constexpr bool run(U aX) {
254 return sizeof(T) > sizeof(U) || aX <= U(std::numeric_limits<T>::max());
258 template <typename T, typename U>
259 struct IsInRangeImpl<T, U, false, true, false> {
260 static constexpr bool run(U aX) {
261 return sizeof(T) >= sizeof(U)
262 ? aX >= 0
263 : aX >= 0 && aX <= U(std::numeric_limits<T>::max());
267 template <typename T, typename U>
268 constexpr bool IsInRange(U aX) {
269 return IsInRangeImpl<T, U>::run(aX);
272 template <typename T>
273 constexpr bool IsAddValid(T aX, T aY) {
274 #if MOZ_HAS_BUILTIN_OP_OVERFLOW
275 T dummy;
276 return !__builtin_add_overflow(aX, aY, &dummy);
277 #else
278 // Addition is valid if the sign of aX+aY is equal to either that of aX or
279 // that of aY. Since the value of aX+aY is undefined if we have a signed
280 // type, we compute it using the unsigned type of the same size. Beware!
281 // These bitwise operations can return a larger integer type, if T was a
282 // small type like int8_t, so we explicitly cast to T.
284 typename MakeUnsigned<T>::Type ux = aX;
285 typename MakeUnsigned<T>::Type uy = aY;
286 typename MakeUnsigned<T>::Type result = ux + uy;
287 return IsSigned<T>::value
288 ? HasSignBit(BinaryComplement(T((result ^ aX) & (result ^ aY))))
289 : BinaryComplement(aX) >= aY;
290 #endif
293 template <typename T>
294 constexpr bool IsSubValid(T aX, T aY) {
295 #if MOZ_HAS_BUILTIN_OP_OVERFLOW
296 T dummy;
297 return !__builtin_sub_overflow(aX, aY, &dummy);
298 #else
299 // Subtraction is valid if either aX and aY have same sign, or aX-aY and aX
300 // have same sign. Since the value of aX-aY is undefined if we have a signed
301 // type, we compute it using the unsigned type of the same size.
302 typename MakeUnsigned<T>::Type ux = aX;
303 typename MakeUnsigned<T>::Type uy = aY;
304 typename MakeUnsigned<T>::Type result = ux - uy;
306 return IsSigned<T>::value
307 ? HasSignBit(BinaryComplement(T((result ^ aX) & (aX ^ aY))))
308 : aX >= aY;
309 #endif
312 template <typename T, bool IsTSigned = IsSigned<T>::value,
313 bool TwiceBiggerTypeIsSupported =
314 IsSupported<typename TwiceBiggerType<T>::Type>::value>
315 struct IsMulValidImpl {};
317 template <typename T, bool IsTSigned>
318 struct IsMulValidImpl<T, IsTSigned, true> {
319 static constexpr bool run(T aX, T aY) {
320 typedef typename TwiceBiggerType<T>::Type TwiceBiggerType;
321 TwiceBiggerType product = TwiceBiggerType(aX) * TwiceBiggerType(aY);
322 return IsInRange<T>(product);
326 template <typename T>
327 struct IsMulValidImpl<T, true, false> {
328 static constexpr bool run(T aX, T aY) {
329 const T max = std::numeric_limits<T>::max();
330 const T min = std::numeric_limits<T>::min();
332 if (aX == 0 || aY == 0) {
333 return true;
335 if (aX > 0) {
336 return aY > 0 ? aX <= max / aY : aY >= min / aX;
339 // If we reach this point, we know that aX < 0.
340 return aY > 0 ? aX >= min / aY : aY >= max / aX;
344 template <typename T>
345 struct IsMulValidImpl<T, false, false> {
346 static constexpr bool run(T aX, T aY) {
347 return aY == 0 || aX <= std::numeric_limits<T>::max() / aY;
351 template <typename T>
352 inline bool IsMulValid(T aX, T aY) {
353 #if MOZ_HAS_BUILTIN_OP_OVERFLOW
354 T dummy;
355 return !__builtin_mul_overflow(aX, aY, &dummy);
356 #else
357 return IsMulValidImpl<T>::run(aX, aY);
358 #endif
361 template <typename T>
362 constexpr bool IsDivValid(T aX, T aY) {
363 // Keep in mind that in the signed case, min/-1 is invalid because
364 // abs(min)>max.
365 return aY != 0 && !(IsSigned<T>::value &&
366 aX == std::numeric_limits<T>::min() && aY == T(-1));
369 template <typename T, bool IsTSigned = IsSigned<T>::value>
370 struct IsModValidImpl;
372 template <typename T>
373 constexpr bool IsModValid(T aX, T aY) {
374 return IsModValidImpl<T>::run(aX, aY);
378 * Mod is pretty simple.
379 * For now, let's just use the ANSI C definition:
380 * If aX or aY are negative, the results are implementation defined.
381 * Consider these invalid.
382 * Undefined for aY=0.
383 * The result will never exceed either aX or aY.
385 * Checking that aX>=0 is a warning when T is unsigned.
388 template <typename T>
389 struct IsModValidImpl<T, false> {
390 static constexpr bool run(T aX, T aY) { return aY >= 1; }
393 template <typename T>
394 struct IsModValidImpl<T, true> {
395 static constexpr bool run(T aX, T aY) {
396 if (aX < 0) {
397 return false;
399 return aY >= 1;
403 template <typename T, bool IsSigned = IsSigned<T>::value>
404 struct NegateImpl;
406 template <typename T>
407 struct NegateImpl<T, false> {
408 static constexpr CheckedInt<T> negate(const CheckedInt<T>& aVal) {
409 // Handle negation separately for signed/unsigned, for simpler code and to
410 // avoid an MSVC warning negating an unsigned value.
411 return CheckedInt<T>(0, aVal.isValid() && aVal.mValue == 0);
415 template <typename T>
416 struct NegateImpl<T, true> {
417 static constexpr CheckedInt<T> negate(const CheckedInt<T>& aVal) {
418 // Watch out for the min-value, which (with twos-complement) can't be
419 // negated as -min-value is then (max-value + 1).
420 if (!aVal.isValid() || aVal.mValue == std::numeric_limits<T>::min()) {
421 return CheckedInt<T>(aVal.mValue, false);
423 return CheckedInt<T>(-aVal.mValue, true);
427 } // namespace detail
430 * Step 3: Now define the CheckedInt class.
434 * @class CheckedInt
435 * @brief Integer wrapper class checking for integer overflow and other errors
436 * @param T the integer type to wrap. Can be any type among the following:
437 * - any basic integer type such as |int|
438 * - any stdint type such as |int8_t|
440 * This class implements guarded integer arithmetic. Do a computation, check
441 * that isValid() returns true, you then have a guarantee that no problem, such
442 * as integer overflow, happened during this computation, and you can call
443 * value() to get the plain integer value.
445 * The arithmetic operators in this class are guaranteed not to raise a signal
446 * (e.g. in case of a division by zero).
448 * For example, suppose that you want to implement a function that computes
449 * (aX+aY)/aZ, that doesn't crash if aZ==0, and that reports on error (divide by
450 * zero or integer overflow). You could code it as follows:
451 @code
452 bool computeXPlusYOverZ(int aX, int aY, int aZ, int* aResult)
454 CheckedInt<int> checkedResult = (CheckedInt<int>(aX) + aY) / aZ;
455 if (checkedResult.isValid()) {
456 *aResult = checkedResult.value();
457 return true;
458 } else {
459 return false;
462 @endcode
464 * Implicit conversion from plain integers to checked integers is allowed. The
465 * plain integer is checked to be in range before being casted to the
466 * destination type. This means that the following lines all compile, and the
467 * resulting CheckedInts are correctly detected as valid or invalid:
468 * @code
469 // 1 is of type int, is found to be in range for uint8_t, x is valid
470 CheckedInt<uint8_t> x(1);
471 // -1 is of type int, is found not to be in range for uint8_t, x is invalid
472 CheckedInt<uint8_t> x(-1);
473 // -1 is of type int, is found to be in range for int8_t, x is valid
474 CheckedInt<int8_t> x(-1);
475 // 1000 is of type int16_t, is found not to be in range for int8_t,
476 // x is invalid
477 CheckedInt<int8_t> x(int16_t(1000));
478 // 3123456789 is of type uint32_t, is found not to be in range for int32_t,
479 // x is invalid
480 CheckedInt<int32_t> x(uint32_t(3123456789));
481 * @endcode
482 * Implicit conversion from
483 * checked integers to plain integers is not allowed. As shown in the
484 * above example, to get the value of a checked integer as a normal integer,
485 * call value().
487 * Arithmetic operations between checked and plain integers is allowed; the
488 * result type is the type of the checked integer.
490 * Checked integers of different types cannot be used in the same arithmetic
491 * expression.
493 * There are convenience typedefs for all stdint types, of the following form
494 * (these are just 2 examples):
495 @code
496 typedef CheckedInt<int32_t> CheckedInt32;
497 typedef CheckedInt<uint16_t> CheckedUint16;
498 @endcode
500 template <typename T>
501 class CheckedInt {
502 protected:
503 T mValue;
504 bool mIsValid;
506 template <typename U>
507 constexpr CheckedInt(U aValue, bool aIsValid)
508 : mValue(aValue), mIsValid(aIsValid) {
509 static_assert(
510 detail::IsSupported<T>::value && detail::IsSupported<U>::value,
511 "This type is not supported by CheckedInt");
514 friend struct detail::NegateImpl<T>;
516 public:
518 * Constructs a checked integer with given @a value. The checked integer is
519 * initialized as valid or invalid depending on whether the @a value
520 * is in range.
522 * This constructor is not explicit. Instead, the type of its argument is a
523 * separate template parameter, ensuring that no conversion is performed
524 * before this constructor is actually called. As explained in the above
525 * documentation for class CheckedInt, this constructor checks that its
526 * argument is valid.
528 template <typename U>
529 MOZ_IMPLICIT MOZ_NO_ARITHMETIC_EXPR_IN_ARGUMENT constexpr CheckedInt(U aValue)
530 : mValue(T(aValue)), mIsValid(detail::IsInRange<T>(aValue)) {
531 static_assert(
532 detail::IsSupported<T>::value && detail::IsSupported<U>::value,
533 "This type is not supported by CheckedInt");
536 template <typename U>
537 friend class CheckedInt;
539 template <typename U>
540 constexpr CheckedInt<U> toChecked() const {
541 CheckedInt<U> ret(mValue);
542 ret.mIsValid = ret.mIsValid && mIsValid;
543 return ret;
546 /** Constructs a valid checked integer with initial value 0 */
547 constexpr CheckedInt() : mValue(0), mIsValid(true) {
548 static_assert(detail::IsSupported<T>::value,
549 "This type is not supported by CheckedInt");
552 /** @returns the actual value */
553 constexpr T value() const {
554 MOZ_DIAGNOSTIC_ASSERT(
555 mIsValid,
556 "Invalid checked integer (division by zero or integer overflow)");
557 return mValue;
561 * @returns true if the checked integer is valid, i.e. is not the result
562 * of an invalid operation or of an operation involving an invalid checked
563 * integer
565 constexpr bool isValid() const { return mIsValid; }
567 template <typename U>
568 friend constexpr CheckedInt<U> operator+(const CheckedInt<U>& aLhs,
569 const CheckedInt<U>& aRhs);
570 template <typename U>
571 constexpr CheckedInt& operator+=(U aRhs);
572 constexpr CheckedInt& operator+=(const CheckedInt<T>& aRhs);
574 template <typename U>
575 friend constexpr CheckedInt<U> operator-(const CheckedInt<U>& aLhs,
576 const CheckedInt<U>& aRhs);
577 template <typename U>
578 constexpr CheckedInt& operator-=(U aRhs);
579 constexpr CheckedInt& operator-=(const CheckedInt<T>& aRhs);
581 template <typename U>
582 friend constexpr CheckedInt<U> operator*(const CheckedInt<U>& aLhs,
583 const CheckedInt<U>& aRhs);
584 template <typename U>
585 constexpr CheckedInt& operator*=(U aRhs);
586 constexpr CheckedInt& operator*=(const CheckedInt<T>& aRhs);
588 template <typename U>
589 friend constexpr CheckedInt<U> operator/(const CheckedInt<U>& aLhs,
590 const CheckedInt<U>& aRhs);
591 template <typename U>
592 constexpr CheckedInt& operator/=(U aRhs);
593 constexpr CheckedInt& operator/=(const CheckedInt<T>& aRhs);
595 template <typename U>
596 friend constexpr CheckedInt<U> operator%(const CheckedInt<U>& aLhs,
597 const CheckedInt<U>& aRhs);
598 template <typename U>
599 constexpr CheckedInt& operator%=(U aRhs);
600 constexpr CheckedInt& operator%=(const CheckedInt<T>& aRhs);
602 constexpr CheckedInt operator-() const {
603 return detail::NegateImpl<T>::negate(*this);
607 * @returns true if the left and right hand sides are valid
608 * and have the same value.
610 * Note that these semantics are the reason why we don't offer
611 * a operator!=. Indeed, we'd want to have a!=b be equivalent to !(a==b)
612 * but that would mean that whenever a or b is invalid, a!=b
613 * is always true, which would be very confusing.
615 * For similar reasons, operators <, >, <=, >= would be very tricky to
616 * specify, so we just avoid offering them.
618 * Notice that these == semantics are made more reasonable by these facts:
619 * 1. a==b implies equality at the raw data level
620 * (the converse is false, as a==b is never true among invalids)
621 * 2. This is similar to the behavior of IEEE floats, where a==b
622 * means that a and b have the same value *and* neither is NaN.
624 constexpr bool operator==(const CheckedInt& aOther) const {
625 return mIsValid && aOther.mIsValid && mValue == aOther.mValue;
628 /** prefix ++ */
629 constexpr CheckedInt& operator++() {
630 *this += 1;
631 return *this;
634 /** postfix ++ */
635 constexpr CheckedInt operator++(int) {
636 CheckedInt tmp = *this;
637 *this += 1;
638 return tmp;
641 /** prefix -- */
642 constexpr CheckedInt& operator--() {
643 *this -= 1;
644 return *this;
647 /** postfix -- */
648 constexpr CheckedInt operator--(int) {
649 CheckedInt tmp = *this;
650 *this -= 1;
651 return tmp;
654 private:
656 * The !=, <, <=, >, >= operators are disabled:
657 * see the comment on operator==.
659 template <typename U>
660 bool operator!=(U aOther) const = delete;
661 template <typename U>
662 bool operator<(U aOther) const = delete;
663 template <typename U>
664 bool operator<=(U aOther) const = delete;
665 template <typename U>
666 bool operator>(U aOther) const = delete;
667 template <typename U>
668 bool operator>=(U aOther) const = delete;
671 #define MOZ_CHECKEDINT_BASIC_BINARY_OPERATOR(NAME, OP) \
672 template <typename T> \
673 constexpr CheckedInt<T> operator OP(const CheckedInt<T>& aLhs, \
674 const CheckedInt<T>& aRhs) { \
675 if (!detail::Is##NAME##Valid(aLhs.mValue, aRhs.mValue)) { \
676 return CheckedInt<T>(0, false); \
678 return CheckedInt<T>(aLhs.mValue OP aRhs.mValue, \
679 aLhs.mIsValid && aRhs.mIsValid); \
682 #if MOZ_HAS_BUILTIN_OP_OVERFLOW
683 # define MOZ_CHECKEDINT_BASIC_BINARY_OPERATOR2(NAME, OP, FUN) \
684 template <typename T> \
685 constexpr CheckedInt<T> operator OP(const CheckedInt<T>& aLhs, \
686 const CheckedInt<T>& aRhs) { \
687 auto result = T{}; \
688 if (FUN(aLhs.mValue, aRhs.mValue, &result)) { \
689 return CheckedInt<T>(0, false); \
691 return CheckedInt<T>(result, aLhs.mIsValid && aRhs.mIsValid); \
693 MOZ_CHECKEDINT_BASIC_BINARY_OPERATOR2(Add, +, __builtin_add_overflow)
694 MOZ_CHECKEDINT_BASIC_BINARY_OPERATOR2(Sub, -, __builtin_sub_overflow)
695 MOZ_CHECKEDINT_BASIC_BINARY_OPERATOR2(Mul, *, __builtin_mul_overflow)
696 # undef MOZ_CHECKEDINT_BASIC_BINARY_OPERATOR2
697 #else
698 MOZ_CHECKEDINT_BASIC_BINARY_OPERATOR(Add, +)
699 MOZ_CHECKEDINT_BASIC_BINARY_OPERATOR(Sub, -)
700 MOZ_CHECKEDINT_BASIC_BINARY_OPERATOR(Mul, *)
701 #endif
703 MOZ_CHECKEDINT_BASIC_BINARY_OPERATOR(Div, /)
704 MOZ_CHECKEDINT_BASIC_BINARY_OPERATOR(Mod, %)
705 #undef MOZ_CHECKEDINT_BASIC_BINARY_OPERATOR
707 // Implement castToCheckedInt<T>(x), making sure that
708 // - it allows x to be either a CheckedInt<T> or any integer type
709 // that can be casted to T
710 // - if x is already a CheckedInt<T>, we just return a reference to it,
711 // instead of copying it (optimization)
713 namespace detail {
715 template <typename T, typename U>
716 struct CastToCheckedIntImpl {
717 typedef CheckedInt<T> ReturnType;
718 static constexpr CheckedInt<T> run(U aU) { return aU; }
721 template <typename T>
722 struct CastToCheckedIntImpl<T, CheckedInt<T> > {
723 typedef const CheckedInt<T>& ReturnType;
724 static constexpr const CheckedInt<T>& run(const CheckedInt<T>& aU) {
725 return aU;
729 } // namespace detail
731 template <typename T, typename U>
732 constexpr typename detail::CastToCheckedIntImpl<T, U>::ReturnType
733 castToCheckedInt(U aU) {
734 static_assert(detail::IsSupported<T>::value && detail::IsSupported<U>::value,
735 "This type is not supported by CheckedInt");
736 return detail::CastToCheckedIntImpl<T, U>::run(aU);
739 #define MOZ_CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(OP, COMPOUND_OP) \
740 template <typename T> \
741 template <typename U> \
742 constexpr CheckedInt<T>& CheckedInt<T>::operator COMPOUND_OP(U aRhs) { \
743 *this = *this OP castToCheckedInt<T>(aRhs); \
744 return *this; \
746 template <typename T> \
747 constexpr CheckedInt<T>& CheckedInt<T>::operator COMPOUND_OP( \
748 const CheckedInt<T>& aRhs) { \
749 *this = *this OP aRhs; \
750 return *this; \
752 template <typename T, typename U> \
753 constexpr CheckedInt<T> operator OP(const CheckedInt<T>& aLhs, U aRhs) { \
754 return aLhs OP castToCheckedInt<T>(aRhs); \
756 template <typename T, typename U> \
757 constexpr CheckedInt<T> operator OP(U aLhs, const CheckedInt<T>& aRhs) { \
758 return castToCheckedInt<T>(aLhs) OP aRhs; \
761 MOZ_CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(+, +=)
762 MOZ_CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(*, *=)
763 MOZ_CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(-, -=)
764 MOZ_CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(/, /=)
765 MOZ_CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(%, %=)
767 #undef MOZ_CHECKEDINT_CONVENIENCE_BINARY_OPERATORS
769 template <typename T, typename U>
770 inline bool operator==(const CheckedInt<T>& aLhs, U aRhs) {
771 return aLhs == castToCheckedInt<T>(aRhs);
774 template <typename T, typename U>
775 inline bool operator==(U aLhs, const CheckedInt<T>& aRhs) {
776 return castToCheckedInt<T>(aLhs) == aRhs;
779 // Convenience typedefs.
780 typedef CheckedInt<int8_t> CheckedInt8;
781 typedef CheckedInt<uint8_t> CheckedUint8;
782 typedef CheckedInt<int16_t> CheckedInt16;
783 typedef CheckedInt<uint16_t> CheckedUint16;
784 typedef CheckedInt<int32_t> CheckedInt32;
785 typedef CheckedInt<uint32_t> CheckedUint32;
786 typedef CheckedInt<int64_t> CheckedInt64;
787 typedef CheckedInt<uint64_t> CheckedUint64;
789 } // namespace mozilla
791 #endif /* mozilla_CheckedInt_h */