2 /* @(#)e_exp.c 1.6 04/04/22 */
4 * ====================================================
5 * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
10 * ====================================================
13 //#include <sys/cdefs.h>
14 //__FBSDID("$FreeBSD$");
17 * Returns the exponential of x.
20 * 1. Argument reduction:
21 * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
22 * Given x, find r and integer k such that
24 * x = k*ln2 + r, |r| <= 0.5*ln2.
26 * Here r will be represented as r = hi-lo for better
29 * 2. Approximation of exp(r) by a special rational function on
30 * the interval [0,0.34658]:
32 * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
33 * We use a special Remes algorithm on [0,0.34658] to generate
34 * a polynomial of degree 5 to approximate R. The maximum error
35 * of this polynomial approximation is bounded by 2**-59. In
37 * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
38 * (where z=r*r, and the values of P1 to P5 are listed below)
41 * | 2.0+P1*z+...+P5*z - R(z) | <= 2
43 * The computation of exp(r) thus becomes
45 * exp(r) = 1 + -------
48 * = 1 + r + ----------- (for better accuracy)
52 * R1(r) = r - (P1*r + P2*r + ... + P5*r ).
54 * 3. Scale back to obtain exp(x):
55 * From step 1, we have
56 * exp(x) = 2^k * exp(r)
59 * exp(INF) is INF, exp(NaN) is NaN;
61 * for finite argument, only exp(0)=1 is exact.
64 * according to an error analysis, the error is always less than
65 * 1 ulp (unit in the last place).
69 * if x > 7.09782712893383973096e+02 then exp(x) overflow
70 * if x < -7.45133219101941108420e+02 then exp(x) underflow
73 * The hexadecimal values are the intended ones for the following
74 * constants. The decimal values may be used, provided that the
75 * compiler will convert from decimal to binary accurately enough
76 * to produce the hexadecimal values shown.
81 #include "math_private.h"
85 halF
[2] = {0.5,-0.5,},
86 o_threshold
= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
87 u_threshold
= -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */
88 ln2HI
[2] ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
89 -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
90 ln2LO
[2] ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
91 -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
92 invln2
= 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
93 P1
= 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
94 P2
= -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
95 P3
= 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
96 P4
= -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
97 P5
= 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
99 static const double E
= 2.7182818284590452354; /* e */
101 static volatile double
103 twom1000
= 9.33263618503218878990e-302; /* 2**-1000=0x01700000,0*/
106 __ieee754_exp(double x
) /* default IEEE double exp */
108 double y
,hi
=0.0,lo
=0.0,c
,t
,twopk
;
113 xsb
= (hx
>>31)&1; /* sign bit of x */
114 hx
&= 0x7fffffff; /* high word of |x| */
116 /* filter out non-finite argument */
117 if(hx
>= 0x40862E42) { /* if |x|>=709.78... */
121 if(((hx
&0xfffff)|lx
)!=0)
122 return x
+x
; /* NaN */
123 else return (xsb
==0)? x
:0.0; /* exp(+-inf)={inf,0} */
125 if(x
> o_threshold
) return huge
*huge
; /* overflow */
126 if(x
< u_threshold
) return twom1000
*twom1000
; /* underflow */
129 /* argument reduction */
130 if(hx
> 0x3fd62e42) { /* if |x| > 0.5 ln2 */
131 if(hx
< 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
132 if (x
== 1.0) return E
;
133 hi
= x
-ln2HI
[xsb
]; lo
=ln2LO
[xsb
]; k
= 1-xsb
-xsb
;
135 k
= (int)(invln2
*x
+halF
[xsb
]);
137 hi
= x
- t
*ln2HI
[0]; /* t*ln2HI is exact here */
140 STRICT_ASSIGN(double, x
, hi
- lo
);
142 else if(hx
< 0x3e300000) { /* when |x|<2**-28 */
143 if(huge
+x
>one
) return one
+x
;/* trigger inexact */
147 /* x is now in primary range */
150 INSERT_WORDS(twopk
,((u_int32_t
)(0x3ff+k
))<<20, 0);
152 INSERT_WORDS(twopk
,((u_int32_t
)(0x3ff+(k
+1000)))<<20, 0);
153 c
= x
- t
*(P1
+t
*(P2
+t
*(P3
+t
*(P4
+t
*P5
))));
154 if(k
==0) return one
-((x
*c
)/(c
-2.0)-x
);
155 else y
= one
-((lo
-(x
*c
)/(2.0-c
))-hi
);
158 double const_0x1p1023
= pow(2, 1023);
159 return y
*2.0*const_0x1p1023
;
163 return y
*twopk
*twom1000
;