no bug - Bumping Firefox l10n changesets r=release a=l10n-bump DONTBUILD CLOSED TREE
[gecko.git] / gfx / 2d / PathHelpers.cpp
blob66fce104b31f45ec0c23be9d4a625bbd08f1d6f3
1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
3 /* This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 #include "PathHelpers.h"
9 namespace mozilla {
10 namespace gfx {
12 UserDataKey sDisablePixelSnapping;
14 void AppendRectToPath(PathBuilder* aPathBuilder, const Rect& aRect,
15 bool aDrawClockwise) {
16 if (aDrawClockwise) {
17 aPathBuilder->MoveTo(aRect.TopLeft());
18 aPathBuilder->LineTo(aRect.TopRight());
19 aPathBuilder->LineTo(aRect.BottomRight());
20 aPathBuilder->LineTo(aRect.BottomLeft());
21 } else {
22 aPathBuilder->MoveTo(aRect.TopRight());
23 aPathBuilder->LineTo(aRect.TopLeft());
24 aPathBuilder->LineTo(aRect.BottomLeft());
25 aPathBuilder->LineTo(aRect.BottomRight());
27 aPathBuilder->Close();
30 void AppendRoundedRectToPath(PathBuilder* aPathBuilder, const Rect& aRect,
31 const RectCornerRadii& aRadii, bool aDrawClockwise,
32 const Maybe<Matrix>& aTransform) {
33 // For CW drawing, this looks like:
35 // ...******0** 1 C
36 // ****
37 // *** 2
38 // **
39 // *
40 // *
41 // 3
42 // *
43 // *
45 // Where 0, 1, 2, 3 are the control points of the Bezier curve for
46 // the corner, and C is the actual corner point.
48 // At the start of the loop, the current point is assumed to be
49 // the point adjacent to the top left corner on the top
50 // horizontal. Note that corner indices start at the top left and
51 // continue clockwise, whereas in our loop i = 0 refers to the top
52 // right corner.
54 // When going CCW, the control points are swapped, and the first
55 // corner that's drawn is the top left (along with the top segment).
57 // There is considerable latitude in how one chooses the four
58 // control points for a Bezier curve approximation to an ellipse.
59 // For the overall path to be continuous and show no corner at the
60 // endpoints of the arc, points 0 and 3 must be at the ends of the
61 // straight segments of the rectangle; points 0, 1, and C must be
62 // collinear; and points 3, 2, and C must also be collinear. This
63 // leaves only two free parameters: the ratio of the line segments
64 // 01 and 0C, and the ratio of the line segments 32 and 3C. See
65 // the following papers for extensive discussion of how to choose
66 // these ratios:
68 // Dokken, Tor, et al. "Good approximation of circles by
69 // curvature-continuous Bezier curves." Computer-Aided
70 // Geometric Design 7(1990) 33--41.
71 // Goldapp, Michael. "Approximation of circular arcs by cubic
72 // polynomials." Computer-Aided Geometric Design 8(1991) 227--238.
73 // Maisonobe, Luc. "Drawing an elliptical arc using polylines,
74 // quadratic, or cubic Bezier curves."
75 // http://www.spaceroots.org/documents/ellipse/elliptical-arc.pdf
77 // We follow the approach in section 2 of Goldapp (least-error,
78 // Hermite-type approximation) and make both ratios equal to
80 // 2 2 + n - sqrt(2n + 28)
81 // alpha = - * ---------------------
82 // 3 n - 4
84 // where n = 3( cbrt(sqrt(2)+1) - cbrt(sqrt(2)-1) ).
86 // This is the result of Goldapp's equation (10b) when the angle
87 // swept out by the arc is pi/2, and the parameter "a-bar" is the
88 // expression given immediately below equation (21).
90 // Using this value, the maximum radial error for a circle, as a
91 // fraction of the radius, is on the order of 0.2 x 10^-3.
92 // Neither Dokken nor Goldapp discusses error for a general
93 // ellipse; Maisonobe does, but his choice of control points
94 // follows different constraints, and Goldapp's expression for
95 // 'alpha' gives much smaller radial error, even for very flat
96 // ellipses, than Maisonobe's equivalent.
98 // For the various corners and for each axis, the sign of this
99 // constant changes, or it might be 0 -- it's multiplied by the
100 // appropriate multiplier from the list before using.
102 const Float alpha = Float(0.55191497064665766025);
104 typedef struct {
105 Float a, b;
106 } twoFloats;
108 twoFloats cwCornerMults[4] = {{-1, 0}, // cc == clockwise
109 {0, -1},
110 {+1, 0},
111 {0, +1}};
112 twoFloats ccwCornerMults[4] = {{+1, 0}, // ccw == counter-clockwise
113 {0, -1},
114 {-1, 0},
115 {0, +1}};
117 twoFloats* cornerMults = aDrawClockwise ? cwCornerMults : ccwCornerMults;
119 Point cornerCoords[] = {aRect.TopLeft(), aRect.TopRight(),
120 aRect.BottomRight(), aRect.BottomLeft()};
122 Point pc, p0, p1, p2, p3;
124 if (aDrawClockwise) {
125 Point pt(aRect.X() + aRadii[eCornerTopLeft].width, aRect.Y());
126 if (aTransform) {
127 pt = aTransform->TransformPoint(pt);
129 aPathBuilder->MoveTo(pt);
130 } else {
131 Point pt(aRect.X() + aRect.Width() - aRadii[eCornerTopRight].width,
132 aRect.Y());
133 if (aTransform) {
134 pt = aTransform->TransformPoint(pt);
136 aPathBuilder->MoveTo(pt);
139 for (int i = 0; i < 4; ++i) {
140 // the corner index -- either 1 2 3 0 (cw) or 0 3 2 1 (ccw)
141 int c = aDrawClockwise ? ((i + 1) % 4) : ((4 - i) % 4);
143 // i+2 and i+3 respectively. These are used to index into the corner
144 // multiplier table, and were deduced by calculating out the long form
145 // of each corner and finding a pattern in the signs and values.
146 int i2 = (i + 2) % 4;
147 int i3 = (i + 3) % 4;
149 pc = cornerCoords[c];
151 if (aRadii[c].width > 0.0 && aRadii[c].height > 0.0) {
152 p0.x = pc.x + cornerMults[i].a * aRadii[c].width;
153 p0.y = pc.y + cornerMults[i].b * aRadii[c].height;
155 p3.x = pc.x + cornerMults[i3].a * aRadii[c].width;
156 p3.y = pc.y + cornerMults[i3].b * aRadii[c].height;
158 p1.x = p0.x + alpha * cornerMults[i2].a * aRadii[c].width;
159 p1.y = p0.y + alpha * cornerMults[i2].b * aRadii[c].height;
161 p2.x = p3.x - alpha * cornerMults[i3].a * aRadii[c].width;
162 p2.y = p3.y - alpha * cornerMults[i3].b * aRadii[c].height;
164 if (aTransform.isNothing()) {
165 aPathBuilder->LineTo(p0);
166 aPathBuilder->BezierTo(p1, p2, p3);
167 } else {
168 const Matrix& transform = *aTransform;
169 aPathBuilder->LineTo(transform.TransformPoint(p0));
170 aPathBuilder->BezierTo(transform.TransformPoint(p1),
171 transform.TransformPoint(p2),
172 transform.TransformPoint(p3));
174 } else {
175 if (aTransform.isNothing()) {
176 aPathBuilder->LineTo(pc);
177 } else {
178 aPathBuilder->LineTo(aTransform->TransformPoint(pc));
183 aPathBuilder->Close();
186 void AppendEllipseToPath(PathBuilder* aPathBuilder, const Point& aCenter,
187 const Size& aDimensions) {
188 Size halfDim = aDimensions / 2.f;
189 Rect rect(aCenter - Point(halfDim.width, halfDim.height), aDimensions);
190 RectCornerRadii radii(halfDim.width, halfDim.height);
192 AppendRoundedRectToPath(aPathBuilder, rect, radii);
195 bool SnapLineToDevicePixelsForStroking(Point& aP1, Point& aP2,
196 const DrawTarget& aDrawTarget,
197 Float aLineWidth) {
198 Matrix mat = aDrawTarget.GetTransform();
199 if (mat.HasNonTranslation()) {
200 return false;
202 if (aP1.x != aP2.x && aP1.y != aP2.y) {
203 return false; // not a horizontal or vertical line
205 Point p1 = aP1 + mat.GetTranslation(); // into device space
206 Point p2 = aP2 + mat.GetTranslation();
207 p1.Round();
208 p2.Round();
209 p1 -= mat.GetTranslation(); // back into user space
210 p2 -= mat.GetTranslation();
212 aP1 = p1;
213 aP2 = p2;
215 bool lineWidthIsOdd = (int(aLineWidth) % 2) == 1;
216 if (lineWidthIsOdd) {
217 if (aP1.x == aP2.x) {
218 // snap vertical line, adding 0.5 to align it to be mid-pixel:
219 aP1 += Point(0.5, 0);
220 aP2 += Point(0.5, 0);
221 } else {
222 // snap horizontal line, adding 0.5 to align it to be mid-pixel:
223 aP1 += Point(0, 0.5);
224 aP2 += Point(0, 0.5);
227 return true;
230 void StrokeSnappedEdgesOfRect(const Rect& aRect, DrawTarget& aDrawTarget,
231 const ColorPattern& aColor,
232 const StrokeOptions& aStrokeOptions) {
233 if (aRect.IsEmpty()) {
234 return;
237 Point p1 = aRect.TopLeft();
238 Point p2 = aRect.BottomLeft();
239 SnapLineToDevicePixelsForStroking(p1, p2, aDrawTarget,
240 aStrokeOptions.mLineWidth);
241 aDrawTarget.StrokeLine(p1, p2, aColor, aStrokeOptions);
243 p1 = aRect.BottomLeft();
244 p2 = aRect.BottomRight();
245 SnapLineToDevicePixelsForStroking(p1, p2, aDrawTarget,
246 aStrokeOptions.mLineWidth);
247 aDrawTarget.StrokeLine(p1, p2, aColor, aStrokeOptions);
249 p1 = aRect.TopLeft();
250 p2 = aRect.TopRight();
251 SnapLineToDevicePixelsForStroking(p1, p2, aDrawTarget,
252 aStrokeOptions.mLineWidth);
253 aDrawTarget.StrokeLine(p1, p2, aColor, aStrokeOptions);
255 p1 = aRect.TopRight();
256 p2 = aRect.BottomRight();
257 SnapLineToDevicePixelsForStroking(p1, p2, aDrawTarget,
258 aStrokeOptions.mLineWidth);
259 aDrawTarget.StrokeLine(p1, p2, aColor, aStrokeOptions);
262 // The logic for this comes from _cairo_stroke_style_max_distance_from_path
263 Margin MaxStrokeExtents(const StrokeOptions& aStrokeOptions,
264 const Matrix& aTransform) {
265 double styleExpansionFactor = 0.5f;
267 if (aStrokeOptions.mLineCap == CapStyle::SQUARE) {
268 styleExpansionFactor = M_SQRT1_2;
271 if (aStrokeOptions.mLineJoin == JoinStyle::MITER &&
272 styleExpansionFactor < M_SQRT2 * aStrokeOptions.mMiterLimit) {
273 styleExpansionFactor = M_SQRT2 * aStrokeOptions.mMiterLimit;
276 styleExpansionFactor *= aStrokeOptions.mLineWidth;
278 double dx = styleExpansionFactor * hypot(aTransform._11, aTransform._21);
279 double dy = styleExpansionFactor * hypot(aTransform._22, aTransform._12);
281 // Even if the stroke only partially covers a pixel, it must still render to
282 // full pixels. Round up to compensate for this.
283 dx = ceil(dx);
284 dy = ceil(dy);
286 return Margin(dy, dx, dy, dx);
289 } // namespace gfx
290 } // namespace mozilla