Bug 1807268 - Fix verifyOpenAllInNewTabsOptionTest UI test r=ohorvath
[gecko.git] / mfbt / HashTable.h
blob9f3f42b40ec79ae00d4d38c613801204320d01f4
1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
3 /* This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 //---------------------------------------------------------------------------
8 // Overview
9 //---------------------------------------------------------------------------
11 // This file defines HashMap<Key, Value> and HashSet<T>, hash tables that are
12 // fast and have a nice API.
14 // Both hash tables have two optional template parameters.
16 // - HashPolicy. This defines the operations for hashing and matching keys. The
17 // default HashPolicy is appropriate when both of the following two
18 // conditions are true.
20 // - The key type stored in the table (|Key| for |HashMap<Key, Value>|, |T|
21 // for |HashSet<T>|) is an integer, pointer, UniquePtr, float, or double.
23 // - The type used for lookups (|Lookup|) is the same as the key type. This
24 // is usually the case, but not always.
26 // There is also a |CStringHasher| policy for |char*| keys. If your keys
27 // don't match any of the above cases, you must provide your own hash policy;
28 // see the "Hash Policy" section below.
30 // - AllocPolicy. This defines how allocations are done by the table.
32 // - |MallocAllocPolicy| is the default and is usually appropriate; note that
33 // operations (such as insertions) that might cause allocations are
34 // fallible and must be checked for OOM. These checks are enforced by the
35 // use of [[nodiscard]].
37 // - |InfallibleAllocPolicy| is another possibility; it allows the
38 // abovementioned OOM checks to be done with MOZ_ALWAYS_TRUE().
40 // Note that entry storage allocation is lazy, and not done until the first
41 // lookupForAdd(), put(), or putNew() is performed.
43 // See AllocPolicy.h for more details.
45 // Documentation on how to use HashMap and HashSet, including examples, is
46 // present within those classes. Search for "class HashMap" and "class
47 // HashSet".
49 // Both HashMap and HashSet are implemented on top of a third class, HashTable.
50 // You only need to look at HashTable if you want to understand the
51 // implementation.
53 // How does mozilla::HashTable (this file) compare with PLDHashTable (and its
54 // subclasses, such as nsTHashtable)?
56 // - mozilla::HashTable is a lot faster, largely because it uses templates
57 // throughout *and* inlines everything. PLDHashTable inlines operations much
58 // less aggressively, and also uses "virtual ops" for operations like hashing
59 // and matching entries that require function calls.
61 // - Correspondingly, mozilla::HashTable use is likely to increase executable
62 // size much more than PLDHashTable.
64 // - mozilla::HashTable has a nicer API, with a proper HashSet vs. HashMap
65 // distinction.
67 // - mozilla::HashTable requires more explicit OOM checking. As mentioned
68 // above, the use of |InfallibleAllocPolicy| can simplify things.
70 // - mozilla::HashTable has a default capacity on creation of 32 and a minimum
71 // capacity of 4. PLDHashTable has a default capacity on creation of 8 and a
72 // minimum capacity of 8.
74 #ifndef mozilla_HashTable_h
75 #define mozilla_HashTable_h
77 #include <utility>
78 #include <type_traits>
80 #include "mozilla/AllocPolicy.h"
81 #include "mozilla/Assertions.h"
82 #include "mozilla/Attributes.h"
83 #include "mozilla/Casting.h"
84 #include "mozilla/HashFunctions.h"
85 #include "mozilla/MathAlgorithms.h"
86 #include "mozilla/Maybe.h"
87 #include "mozilla/MemoryChecking.h"
88 #include "mozilla/MemoryReporting.h"
89 #include "mozilla/Opaque.h"
90 #include "mozilla/OperatorNewExtensions.h"
91 #include "mozilla/ReentrancyGuard.h"
92 #include "mozilla/UniquePtr.h"
93 #include "mozilla/WrappingOperations.h"
95 namespace mozilla {
97 template <class, class = void>
98 struct DefaultHasher;
100 template <class, class>
101 class HashMapEntry;
103 namespace detail {
105 template <typename T>
106 class HashTableEntry;
108 template <class T, class HashPolicy, class AllocPolicy>
109 class HashTable;
111 } // namespace detail
113 // The "generation" of a hash table is an opaque value indicating the state of
114 // modification of the hash table through its lifetime. If the generation of
115 // a hash table compares equal at times T1 and T2, then lookups in the hash
116 // table, pointers to (or into) hash table entries, etc. at time T1 are valid
117 // at time T2. If the generation compares unequal, these computations are all
118 // invalid and must be performed again to be used.
120 // Generations are meaningfully comparable only with respect to a single hash
121 // table. It's always nonsensical to compare the generation of distinct hash
122 // tables H1 and H2.
123 using Generation = Opaque<uint64_t>;
125 //---------------------------------------------------------------------------
126 // HashMap
127 //---------------------------------------------------------------------------
129 // HashMap is a fast hash-based map from keys to values.
131 // Template parameter requirements:
132 // - Key/Value: movable, destructible, assignable.
133 // - HashPolicy: see the "Hash Policy" section below.
134 // - AllocPolicy: see AllocPolicy.h.
136 // Note:
137 // - HashMap is not reentrant: Key/Value/HashPolicy/AllocPolicy members
138 // called by HashMap must not call back into the same HashMap object.
140 template <class Key, class Value, class HashPolicy = DefaultHasher<Key>,
141 class AllocPolicy = MallocAllocPolicy>
142 class HashMap {
143 // -- Implementation details -----------------------------------------------
145 // HashMap is not copyable or assignable.
146 HashMap(const HashMap& hm) = delete;
147 HashMap& operator=(const HashMap& hm) = delete;
149 using TableEntry = HashMapEntry<Key, Value>;
151 struct MapHashPolicy : HashPolicy {
152 using Base = HashPolicy;
153 using KeyType = Key;
155 static const Key& getKey(TableEntry& aEntry) { return aEntry.key(); }
157 static void setKey(TableEntry& aEntry, Key& aKey) {
158 HashPolicy::rekey(aEntry.mutableKey(), aKey);
162 using Impl = detail::HashTable<TableEntry, MapHashPolicy, AllocPolicy>;
163 Impl mImpl;
165 friend class Impl::Enum;
167 public:
168 using Lookup = typename HashPolicy::Lookup;
169 using Entry = TableEntry;
171 // -- Initialization -------------------------------------------------------
173 explicit HashMap(AllocPolicy aAllocPolicy = AllocPolicy(),
174 uint32_t aLen = Impl::sDefaultLen)
175 : mImpl(std::move(aAllocPolicy), aLen) {}
177 explicit HashMap(uint32_t aLen) : mImpl(AllocPolicy(), aLen) {}
179 // HashMap is movable.
180 HashMap(HashMap&& aRhs) = default;
181 HashMap& operator=(HashMap&& aRhs) = default;
183 // -- Status and sizing ----------------------------------------------------
185 // The map's current generation.
186 Generation generation() const { return mImpl.generation(); }
188 // Is the map empty?
189 bool empty() const { return mImpl.empty(); }
191 // Number of keys/values in the map.
192 uint32_t count() const { return mImpl.count(); }
194 // Number of key/value slots in the map. Note: resize will happen well before
195 // count() == capacity().
196 uint32_t capacity() const { return mImpl.capacity(); }
198 // The size of the map's entry storage, in bytes. If the keys/values contain
199 // pointers to other heap blocks, you must iterate over the map and measure
200 // them separately; hence the "shallow" prefix.
201 size_t shallowSizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const {
202 return mImpl.shallowSizeOfExcludingThis(aMallocSizeOf);
204 size_t shallowSizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const {
205 return aMallocSizeOf(this) +
206 mImpl.shallowSizeOfExcludingThis(aMallocSizeOf);
209 // Attempt to minimize the capacity(). If the table is empty, this will free
210 // the empty storage and upon regrowth it will be given the minimum capacity.
211 void compact() { mImpl.compact(); }
213 // Attempt to reserve enough space to fit at least |aLen| elements. This is
214 // total capacity, including elements already present. Does nothing if the
215 // map already has sufficient capacity.
216 [[nodiscard]] bool reserve(uint32_t aLen) { return mImpl.reserve(aLen); }
218 // -- Lookups --------------------------------------------------------------
220 // Does the map contain a key/value matching |aLookup|?
221 bool has(const Lookup& aLookup) const {
222 return mImpl.lookup(aLookup).found();
225 // Return a Ptr indicating whether a key/value matching |aLookup| is
226 // present in the map. E.g.:
228 // using HM = HashMap<int,char>;
229 // HM h;
230 // if (HM::Ptr p = h.lookup(3)) {
231 // assert(p->key() == 3);
232 // char val = p->value();
233 // }
235 using Ptr = typename Impl::Ptr;
236 MOZ_ALWAYS_INLINE Ptr lookup(const Lookup& aLookup) const {
237 return mImpl.lookup(aLookup);
240 // Like lookup(), but does not assert if two threads call it at the same
241 // time. Only use this method when none of the threads will modify the map.
242 MOZ_ALWAYS_INLINE Ptr readonlyThreadsafeLookup(const Lookup& aLookup) const {
243 return mImpl.readonlyThreadsafeLookup(aLookup);
246 // -- Insertions -----------------------------------------------------------
248 // Overwrite existing value with |aValue|, or add it if not present. Returns
249 // false on OOM.
250 template <typename KeyInput, typename ValueInput>
251 [[nodiscard]] bool put(KeyInput&& aKey, ValueInput&& aValue) {
252 return put(aKey, std::forward<KeyInput>(aKey),
253 std::forward<ValueInput>(aValue));
256 template <typename KeyInput, typename ValueInput>
257 [[nodiscard]] bool put(const Lookup& aLookup, KeyInput&& aKey,
258 ValueInput&& aValue) {
259 AddPtr p = lookupForAdd(aLookup);
260 if (p) {
261 p->value() = std::forward<ValueInput>(aValue);
262 return true;
264 return add(p, std::forward<KeyInput>(aKey),
265 std::forward<ValueInput>(aValue));
268 // Like put(), but slightly faster. Must only be used when the given key is
269 // not already present. (In debug builds, assertions check this.)
270 template <typename KeyInput, typename ValueInput>
271 [[nodiscard]] bool putNew(KeyInput&& aKey, ValueInput&& aValue) {
272 return mImpl.putNew(aKey, std::forward<KeyInput>(aKey),
273 std::forward<ValueInput>(aValue));
276 template <typename KeyInput, typename ValueInput>
277 [[nodiscard]] bool putNew(const Lookup& aLookup, KeyInput&& aKey,
278 ValueInput&& aValue) {
279 return mImpl.putNew(aLookup, std::forward<KeyInput>(aKey),
280 std::forward<ValueInput>(aValue));
283 // Like putNew(), but should be only used when the table is known to be big
284 // enough for the insertion, and hashing cannot fail. Typically this is used
285 // to populate an empty map with known-unique keys after reserving space with
286 // reserve(), e.g.
288 // using HM = HashMap<int,char>;
289 // HM h;
290 // if (!h.reserve(3)) {
291 // MOZ_CRASH("OOM");
292 // }
293 // h.putNewInfallible(1, 'a'); // unique key
294 // h.putNewInfallible(2, 'b'); // unique key
295 // h.putNewInfallible(3, 'c'); // unique key
297 template <typename KeyInput, typename ValueInput>
298 void putNewInfallible(KeyInput&& aKey, ValueInput&& aValue) {
299 mImpl.putNewInfallible(aKey, std::forward<KeyInput>(aKey),
300 std::forward<ValueInput>(aValue));
303 // Like |lookup(l)|, but on miss, |p = lookupForAdd(l)| allows efficient
304 // insertion of Key |k| (where |HashPolicy::match(k,l) == true|) using
305 // |add(p,k,v)|. After |add(p,k,v)|, |p| points to the new key/value. E.g.:
307 // using HM = HashMap<int,char>;
308 // HM h;
309 // HM::AddPtr p = h.lookupForAdd(3);
310 // if (!p) {
311 // if (!h.add(p, 3, 'a')) {
312 // return false;
313 // }
314 // }
315 // assert(p->key() == 3);
316 // char val = p->value();
318 // N.B. The caller must ensure that no mutating hash table operations occur
319 // between a pair of lookupForAdd() and add() calls. To avoid looking up the
320 // key a second time, the caller may use the more efficient relookupOrAdd()
321 // method. This method reuses part of the hashing computation to more
322 // efficiently insert the key if it has not been added. For example, a
323 // mutation-handling version of the previous example:
325 // HM::AddPtr p = h.lookupForAdd(3);
326 // if (!p) {
327 // call_that_may_mutate_h();
328 // if (!h.relookupOrAdd(p, 3, 'a')) {
329 // return false;
330 // }
331 // }
332 // assert(p->key() == 3);
333 // char val = p->value();
335 using AddPtr = typename Impl::AddPtr;
336 MOZ_ALWAYS_INLINE AddPtr lookupForAdd(const Lookup& aLookup) {
337 return mImpl.lookupForAdd(aLookup);
340 // Add a key/value. Returns false on OOM.
341 template <typename KeyInput, typename ValueInput>
342 [[nodiscard]] bool add(AddPtr& aPtr, KeyInput&& aKey, ValueInput&& aValue) {
343 return mImpl.add(aPtr, std::forward<KeyInput>(aKey),
344 std::forward<ValueInput>(aValue));
347 // See the comment above lookupForAdd() for details.
348 template <typename KeyInput, typename ValueInput>
349 [[nodiscard]] bool relookupOrAdd(AddPtr& aPtr, KeyInput&& aKey,
350 ValueInput&& aValue) {
351 return mImpl.relookupOrAdd(aPtr, aKey, std::forward<KeyInput>(aKey),
352 std::forward<ValueInput>(aValue));
355 // -- Removal --------------------------------------------------------------
357 // Lookup and remove the key/value matching |aLookup|, if present.
358 void remove(const Lookup& aLookup) {
359 if (Ptr p = lookup(aLookup)) {
360 remove(p);
364 // Remove a previously found key/value (assuming aPtr.found()). The map must
365 // not have been mutated in the interim.
366 void remove(Ptr aPtr) { mImpl.remove(aPtr); }
368 // Remove all keys/values without changing the capacity.
369 void clear() { mImpl.clear(); }
371 // Like clear() followed by compact().
372 void clearAndCompact() { mImpl.clearAndCompact(); }
374 // -- Rekeying -------------------------------------------------------------
376 // Infallibly rekey one entry, if necessary. Requires that template
377 // parameters Key and HashPolicy::Lookup are the same type.
378 void rekeyIfMoved(const Key& aOldKey, const Key& aNewKey) {
379 if (aOldKey != aNewKey) {
380 rekeyAs(aOldKey, aNewKey, aNewKey);
384 // Infallibly rekey one entry if present, and return whether that happened.
385 bool rekeyAs(const Lookup& aOldLookup, const Lookup& aNewLookup,
386 const Key& aNewKey) {
387 if (Ptr p = lookup(aOldLookup)) {
388 mImpl.rekeyAndMaybeRehash(p, aNewLookup, aNewKey);
389 return true;
391 return false;
394 // -- Iteration ------------------------------------------------------------
396 // |iter()| returns an Iterator:
398 // HashMap<int, char> h;
399 // for (auto iter = h.iter(); !iter.done(); iter.next()) {
400 // char c = iter.get().value();
401 // }
403 using Iterator = typename Impl::Iterator;
404 Iterator iter() const { return mImpl.iter(); }
406 // |modIter()| returns a ModIterator:
408 // HashMap<int, char> h;
409 // for (auto iter = h.modIter(); !iter.done(); iter.next()) {
410 // if (iter.get().value() == 'l') {
411 // iter.remove();
412 // }
413 // }
415 // Table resize may occur in ModIterator's destructor.
416 using ModIterator = typename Impl::ModIterator;
417 ModIterator modIter() { return mImpl.modIter(); }
419 // These are similar to Iterator/ModIterator/iter(), but use different
420 // terminology.
421 using Range = typename Impl::Range;
422 using Enum = typename Impl::Enum;
423 Range all() const { return mImpl.all(); }
426 //---------------------------------------------------------------------------
427 // HashSet
428 //---------------------------------------------------------------------------
430 // HashSet is a fast hash-based set of values.
432 // Template parameter requirements:
433 // - T: movable, destructible, assignable.
434 // - HashPolicy: see the "Hash Policy" section below.
435 // - AllocPolicy: see AllocPolicy.h
437 // Note:
438 // - HashSet is not reentrant: T/HashPolicy/AllocPolicy members called by
439 // HashSet must not call back into the same HashSet object.
441 template <class T, class HashPolicy = DefaultHasher<T>,
442 class AllocPolicy = MallocAllocPolicy>
443 class HashSet {
444 // -- Implementation details -----------------------------------------------
446 // HashSet is not copyable or assignable.
447 HashSet(const HashSet& hs) = delete;
448 HashSet& operator=(const HashSet& hs) = delete;
450 struct SetHashPolicy : HashPolicy {
451 using Base = HashPolicy;
452 using KeyType = T;
454 static const KeyType& getKey(const T& aT) { return aT; }
456 static void setKey(T& aT, KeyType& aKey) { HashPolicy::rekey(aT, aKey); }
459 using Impl = detail::HashTable<const T, SetHashPolicy, AllocPolicy>;
460 Impl mImpl;
462 friend class Impl::Enum;
464 public:
465 using Lookup = typename HashPolicy::Lookup;
466 using Entry = T;
468 // -- Initialization -------------------------------------------------------
470 explicit HashSet(AllocPolicy aAllocPolicy = AllocPolicy(),
471 uint32_t aLen = Impl::sDefaultLen)
472 : mImpl(std::move(aAllocPolicy), aLen) {}
474 explicit HashSet(uint32_t aLen) : mImpl(AllocPolicy(), aLen) {}
476 // HashSet is movable.
477 HashSet(HashSet&& aRhs) = default;
478 HashSet& operator=(HashSet&& aRhs) = default;
480 // -- Status and sizing ----------------------------------------------------
482 // The set's current generation.
483 Generation generation() const { return mImpl.generation(); }
485 // Is the set empty?
486 bool empty() const { return mImpl.empty(); }
488 // Number of elements in the set.
489 uint32_t count() const { return mImpl.count(); }
491 // Number of element slots in the set. Note: resize will happen well before
492 // count() == capacity().
493 uint32_t capacity() const { return mImpl.capacity(); }
495 // The size of the set's entry storage, in bytes. If the elements contain
496 // pointers to other heap blocks, you must iterate over the set and measure
497 // them separately; hence the "shallow" prefix.
498 size_t shallowSizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const {
499 return mImpl.shallowSizeOfExcludingThis(aMallocSizeOf);
501 size_t shallowSizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const {
502 return aMallocSizeOf(this) +
503 mImpl.shallowSizeOfExcludingThis(aMallocSizeOf);
506 // Attempt to minimize the capacity(). If the table is empty, this will free
507 // the empty storage and upon regrowth it will be given the minimum capacity.
508 void compact() { mImpl.compact(); }
510 // Attempt to reserve enough space to fit at least |aLen| elements. This is
511 // total capacity, including elements already present. Does nothing if the
512 // map already has sufficient capacity.
513 [[nodiscard]] bool reserve(uint32_t aLen) { return mImpl.reserve(aLen); }
515 // -- Lookups --------------------------------------------------------------
517 // Does the set contain an element matching |aLookup|?
518 bool has(const Lookup& aLookup) const {
519 return mImpl.lookup(aLookup).found();
522 // Return a Ptr indicating whether an element matching |aLookup| is present
523 // in the set. E.g.:
525 // using HS = HashSet<int>;
526 // HS h;
527 // if (HS::Ptr p = h.lookup(3)) {
528 // assert(*p == 3); // p acts like a pointer to int
529 // }
531 using Ptr = typename Impl::Ptr;
532 MOZ_ALWAYS_INLINE Ptr lookup(const Lookup& aLookup) const {
533 return mImpl.lookup(aLookup);
536 // Like lookup(), but does not assert if two threads call it at the same
537 // time. Only use this method when none of the threads will modify the set.
538 MOZ_ALWAYS_INLINE Ptr readonlyThreadsafeLookup(const Lookup& aLookup) const {
539 return mImpl.readonlyThreadsafeLookup(aLookup);
542 // -- Insertions -----------------------------------------------------------
544 // Add |aU| if it is not present already. Returns false on OOM.
545 template <typename U>
546 [[nodiscard]] bool put(U&& aU) {
547 AddPtr p = lookupForAdd(aU);
548 return p ? true : add(p, std::forward<U>(aU));
551 // Like put(), but slightly faster. Must only be used when the given element
552 // is not already present. (In debug builds, assertions check this.)
553 template <typename U>
554 [[nodiscard]] bool putNew(U&& aU) {
555 return mImpl.putNew(aU, std::forward<U>(aU));
558 // Like the other putNew(), but for when |Lookup| is different to |T|.
559 template <typename U>
560 [[nodiscard]] bool putNew(const Lookup& aLookup, U&& aU) {
561 return mImpl.putNew(aLookup, std::forward<U>(aU));
564 // Like putNew(), but should be only used when the table is known to be big
565 // enough for the insertion, and hashing cannot fail. Typically this is used
566 // to populate an empty set with known-unique elements after reserving space
567 // with reserve(), e.g.
569 // using HS = HashMap<int>;
570 // HS h;
571 // if (!h.reserve(3)) {
572 // MOZ_CRASH("OOM");
573 // }
574 // h.putNewInfallible(1); // unique element
575 // h.putNewInfallible(2); // unique element
576 // h.putNewInfallible(3); // unique element
578 template <typename U>
579 void putNewInfallible(const Lookup& aLookup, U&& aU) {
580 mImpl.putNewInfallible(aLookup, std::forward<U>(aU));
583 // Like |lookup(l)|, but on miss, |p = lookupForAdd(l)| allows efficient
584 // insertion of T value |t| (where |HashPolicy::match(t,l) == true|) using
585 // |add(p,t)|. After |add(p,t)|, |p| points to the new element. E.g.:
587 // using HS = HashSet<int>;
588 // HS h;
589 // HS::AddPtr p = h.lookupForAdd(3);
590 // if (!p) {
591 // if (!h.add(p, 3)) {
592 // return false;
593 // }
594 // }
595 // assert(*p == 3); // p acts like a pointer to int
597 // N.B. The caller must ensure that no mutating hash table operations occur
598 // between a pair of lookupForAdd() and add() calls. To avoid looking up the
599 // key a second time, the caller may use the more efficient relookupOrAdd()
600 // method. This method reuses part of the hashing computation to more
601 // efficiently insert the key if it has not been added. For example, a
602 // mutation-handling version of the previous example:
604 // HS::AddPtr p = h.lookupForAdd(3);
605 // if (!p) {
606 // call_that_may_mutate_h();
607 // if (!h.relookupOrAdd(p, 3, 3)) {
608 // return false;
609 // }
610 // }
611 // assert(*p == 3);
613 // Note that relookupOrAdd(p,l,t) performs Lookup using |l| and adds the
614 // entry |t|, where the caller ensures match(l,t).
615 using AddPtr = typename Impl::AddPtr;
616 MOZ_ALWAYS_INLINE AddPtr lookupForAdd(const Lookup& aLookup) {
617 return mImpl.lookupForAdd(aLookup);
620 // Add an element. Returns false on OOM.
621 template <typename U>
622 [[nodiscard]] bool add(AddPtr& aPtr, U&& aU) {
623 return mImpl.add(aPtr, std::forward<U>(aU));
626 // See the comment above lookupForAdd() for details.
627 template <typename U>
628 [[nodiscard]] bool relookupOrAdd(AddPtr& aPtr, const Lookup& aLookup,
629 U&& aU) {
630 return mImpl.relookupOrAdd(aPtr, aLookup, std::forward<U>(aU));
633 // -- Removal --------------------------------------------------------------
635 // Lookup and remove the element matching |aLookup|, if present.
636 void remove(const Lookup& aLookup) {
637 if (Ptr p = lookup(aLookup)) {
638 remove(p);
642 // Remove a previously found element (assuming aPtr.found()). The set must
643 // not have been mutated in the interim.
644 void remove(Ptr aPtr) { mImpl.remove(aPtr); }
646 // Remove all keys/values without changing the capacity.
647 void clear() { mImpl.clear(); }
649 // Like clear() followed by compact().
650 void clearAndCompact() { mImpl.clearAndCompact(); }
652 // -- Rekeying -------------------------------------------------------------
654 // Infallibly rekey one entry, if present. Requires that template parameters
655 // T and HashPolicy::Lookup are the same type.
656 void rekeyIfMoved(const Lookup& aOldValue, const T& aNewValue) {
657 if (aOldValue != aNewValue) {
658 rekeyAs(aOldValue, aNewValue, aNewValue);
662 // Infallibly rekey one entry if present, and return whether that happened.
663 bool rekeyAs(const Lookup& aOldLookup, const Lookup& aNewLookup,
664 const T& aNewValue) {
665 if (Ptr p = lookup(aOldLookup)) {
666 mImpl.rekeyAndMaybeRehash(p, aNewLookup, aNewValue);
667 return true;
669 return false;
672 // Infallibly replace the current key at |aPtr| with an equivalent key.
673 // Specifically, both HashPolicy::hash and HashPolicy::match must return
674 // identical results for the new and old key when applied against all
675 // possible matching values.
676 void replaceKey(Ptr aPtr, const Lookup& aLookup, const T& aNewValue) {
677 MOZ_ASSERT(aPtr.found());
678 MOZ_ASSERT(*aPtr != aNewValue);
679 MOZ_ASSERT(HashPolicy::match(*aPtr, aLookup));
680 MOZ_ASSERT(HashPolicy::match(aNewValue, aLookup));
681 const_cast<T&>(*aPtr) = aNewValue;
682 MOZ_ASSERT(*lookup(aLookup) == aNewValue);
684 void replaceKey(Ptr aPtr, const T& aNewValue) {
685 replaceKey(aPtr, aNewValue, aNewValue);
688 // -- Iteration ------------------------------------------------------------
690 // |iter()| returns an Iterator:
692 // HashSet<int> h;
693 // for (auto iter = h.iter(); !iter.done(); iter.next()) {
694 // int i = iter.get();
695 // }
697 using Iterator = typename Impl::Iterator;
698 Iterator iter() const { return mImpl.iter(); }
700 // |modIter()| returns a ModIterator:
702 // HashSet<int> h;
703 // for (auto iter = h.modIter(); !iter.done(); iter.next()) {
704 // if (iter.get() == 42) {
705 // iter.remove();
706 // }
707 // }
709 // Table resize may occur in ModIterator's destructor.
710 using ModIterator = typename Impl::ModIterator;
711 ModIterator modIter() { return mImpl.modIter(); }
713 // These are similar to Iterator/ModIterator/iter(), but use different
714 // terminology.
715 using Range = typename Impl::Range;
716 using Enum = typename Impl::Enum;
717 Range all() const { return mImpl.all(); }
720 //---------------------------------------------------------------------------
721 // Hash Policy
722 //---------------------------------------------------------------------------
724 // A hash policy |HP| for a hash table with key-type |Key| must provide:
726 // - a type |HP::Lookup| to use to lookup table entries;
728 // - a static member function |HP::hash| that hashes lookup values:
730 // static mozilla::HashNumber hash(const Lookup&);
732 // - a static member function |HP::match| that tests equality of key and
733 // lookup values:
735 // static bool match(const Key& aKey, const Lookup& aLookup);
737 // |aKey| and |aLookup| can have different hash numbers, only when a
738 // collision happens with |prepareHash| operation, which is less frequent.
739 // Thus, |HP::match| shouldn't assume the hash equality in the comparison,
740 // even if the hash numbers are almost always same between them.
742 // Normally, Lookup = Key. In general, though, different values and types of
743 // values can be used to lookup and store. If a Lookup value |l| is not equal
744 // to the added Key value |k|, the user must ensure that |HP::match(k,l)| is
745 // true. E.g.:
747 // mozilla::HashSet<Key, HP>::AddPtr p = h.lookup(l);
748 // if (!p) {
749 // assert(HP::match(k, l)); // must hold
750 // h.add(p, k);
751 // }
753 // A pointer hashing policy that uses HashGeneric() to create good hashes for
754 // pointers. Note that we don't shift out the lowest k bits because we don't
755 // want to assume anything about the alignment of the pointers.
756 template <typename Key>
757 struct PointerHasher {
758 using Lookup = Key;
760 static HashNumber hash(const Lookup& aLookup) { return HashGeneric(aLookup); }
762 static bool match(const Key& aKey, const Lookup& aLookup) {
763 return aKey == aLookup;
766 static void rekey(Key& aKey, const Key& aNewKey) { aKey = aNewKey; }
769 // The default hash policy, which only works with integers.
770 template <class Key, typename>
771 struct DefaultHasher {
772 using Lookup = Key;
774 static HashNumber hash(const Lookup& aLookup) {
775 // Just convert the integer to a HashNumber and use that as is. (This
776 // discards the high 32-bits of 64-bit integers!) ScrambleHashCode() is
777 // subsequently called on the value to improve the distribution.
778 return aLookup;
781 static bool match(const Key& aKey, const Lookup& aLookup) {
782 // Use builtin or overloaded operator==.
783 return aKey == aLookup;
786 static void rekey(Key& aKey, const Key& aNewKey) { aKey = aNewKey; }
789 // A DefaultHasher specialization for enums.
790 template <class T>
791 struct DefaultHasher<T, std::enable_if_t<std::is_enum_v<T>>> {
792 using Key = T;
793 using Lookup = Key;
795 static HashNumber hash(const Lookup& aLookup) { return HashGeneric(aLookup); }
797 static bool match(const Key& aKey, const Lookup& aLookup) {
798 // Use builtin or overloaded operator==.
799 return aKey == static_cast<Key>(aLookup);
802 static void rekey(Key& aKey, const Key& aNewKey) { aKey = aNewKey; }
805 // A DefaultHasher specialization for pointers.
806 template <class T>
807 struct DefaultHasher<T*> : PointerHasher<T*> {};
809 // A DefaultHasher specialization for mozilla::UniquePtr.
810 template <class T, class D>
811 struct DefaultHasher<UniquePtr<T, D>> {
812 using Key = UniquePtr<T, D>;
813 using Lookup = Key;
814 using PtrHasher = PointerHasher<T*>;
816 static HashNumber hash(const Lookup& aLookup) {
817 return PtrHasher::hash(aLookup.get());
820 static bool match(const Key& aKey, const Lookup& aLookup) {
821 return PtrHasher::match(aKey.get(), aLookup.get());
824 static void rekey(UniquePtr<T, D>& aKey, UniquePtr<T, D>&& aNewKey) {
825 aKey = std::move(aNewKey);
829 // A DefaultHasher specialization for doubles.
830 template <>
831 struct DefaultHasher<double> {
832 using Key = double;
833 using Lookup = Key;
835 static HashNumber hash(const Lookup& aLookup) {
836 // Just xor the high bits with the low bits, and then treat the bits of the
837 // result as a uint32_t.
838 static_assert(sizeof(HashNumber) == 4,
839 "subsequent code assumes a four-byte hash");
840 uint64_t u = BitwiseCast<uint64_t>(aLookup);
841 return HashNumber(u ^ (u >> 32));
844 static bool match(const Key& aKey, const Lookup& aLookup) {
845 return BitwiseCast<uint64_t>(aKey) == BitwiseCast<uint64_t>(aLookup);
849 // A DefaultHasher specialization for floats.
850 template <>
851 struct DefaultHasher<float> {
852 using Key = float;
853 using Lookup = Key;
855 static HashNumber hash(const Lookup& aLookup) {
856 // Just use the value as if its bits form an integer. ScrambleHashCode() is
857 // subsequently called on the value to improve the distribution.
858 static_assert(sizeof(HashNumber) == 4,
859 "subsequent code assumes a four-byte hash");
860 return HashNumber(BitwiseCast<uint32_t>(aLookup));
863 static bool match(const Key& aKey, const Lookup& aLookup) {
864 return BitwiseCast<uint32_t>(aKey) == BitwiseCast<uint32_t>(aLookup);
868 // A hash policy for C strings.
869 struct CStringHasher {
870 using Key = const char*;
871 using Lookup = const char*;
873 static HashNumber hash(const Lookup& aLookup) { return HashString(aLookup); }
875 static bool match(const Key& aKey, const Lookup& aLookup) {
876 return strcmp(aKey, aLookup) == 0;
880 //---------------------------------------------------------------------------
881 // Fallible Hashing Interface
882 //---------------------------------------------------------------------------
884 // Most of the time generating a hash code is infallible, but sometimes it is
885 // necessary to generate hash codes on demand in a way that can fail. Specialize
886 // this class for your own hash policy to provide fallible hashing.
888 // This is used by MovableCellHasher to handle the fact that generating a unique
889 // ID for cell pointer may fail due to OOM.
891 // The default implementations of these methods delegate to the usual HashPolicy
892 // implementation and always succeed.
893 template <typename HashPolicy>
894 struct FallibleHashMethods {
895 // Return true if a hashcode is already available for its argument, and
896 // sets |aHashOut|. Once this succeeds for a specific argument it
897 // must continue to do so.
899 // Return false if a hashcode is not already available. This implies that any
900 // lookup must fail, as the hash code would have to have been successfully
901 // created on insertion.
902 template <typename Lookup>
903 static bool maybeGetHash(Lookup&& aLookup, HashNumber* aHashOut) {
904 *aHashOut = HashPolicy::hash(aLookup);
905 return true;
908 // Fallible method to ensure a hashcode exists for its argument and create one
909 // if not. Sets |aHashOut| to the hashcode and retuns true on success. Returns
910 // false on error, e.g. out of memory.
911 template <typename Lookup>
912 static bool ensureHash(Lookup&& aLookup, HashNumber* aHashOut) {
913 *aHashOut = HashPolicy::hash(aLookup);
914 return true;
918 template <typename HashPolicy, typename Lookup>
919 static bool MaybeGetHash(Lookup&& aLookup, HashNumber* aHashOut) {
920 return FallibleHashMethods<typename HashPolicy::Base>::maybeGetHash(
921 std::forward<Lookup>(aLookup), aHashOut);
924 template <typename HashPolicy, typename Lookup>
925 static bool EnsureHash(Lookup&& aLookup, HashNumber* aHashOut) {
926 return FallibleHashMethods<typename HashPolicy::Base>::ensureHash(
927 std::forward<Lookup>(aLookup), aHashOut);
930 //---------------------------------------------------------------------------
931 // Implementation Details (HashMapEntry, HashTableEntry, HashTable)
932 //---------------------------------------------------------------------------
934 // Both HashMap and HashSet are implemented by a single HashTable that is even
935 // more heavily parameterized than the other two. This leaves HashTable gnarly
936 // and extremely coupled to HashMap and HashSet; thus code should not use
937 // HashTable directly.
939 template <class Key, class Value>
940 class HashMapEntry {
941 Key key_;
942 Value value_;
944 template <class, class, class>
945 friend class detail::HashTable;
946 template <class>
947 friend class detail::HashTableEntry;
948 template <class, class, class, class>
949 friend class HashMap;
951 public:
952 template <typename KeyInput, typename ValueInput>
953 HashMapEntry(KeyInput&& aKey, ValueInput&& aValue)
954 : key_(std::forward<KeyInput>(aKey)),
955 value_(std::forward<ValueInput>(aValue)) {}
957 HashMapEntry(HashMapEntry&& aRhs) = default;
958 HashMapEntry& operator=(HashMapEntry&& aRhs) = default;
960 using KeyType = Key;
961 using ValueType = Value;
963 const Key& key() const { return key_; }
965 // Use this method with caution! If the key is changed such that its hash
966 // value also changes, the map will be left in an invalid state.
967 Key& mutableKey() { return key_; }
969 const Value& value() const { return value_; }
970 Value& value() { return value_; }
972 private:
973 HashMapEntry(const HashMapEntry&) = delete;
974 void operator=(const HashMapEntry&) = delete;
977 namespace detail {
979 template <class T, class HashPolicy, class AllocPolicy>
980 class HashTable;
982 template <typename T>
983 class EntrySlot;
985 template <typename T>
986 class HashTableEntry {
987 private:
988 using NonConstT = std::remove_const_t<T>;
990 // Instead of having a hash table entry store that looks like this:
992 // +--------+--------+--------+--------+
993 // | entry0 | entry1 | .... | entryN |
994 // +--------+--------+--------+--------+
996 // where the entries contained their cached hash code, we're going to lay out
997 // the entry store thusly:
999 // +-------+-------+-------+-------+--------+--------+--------+--------+
1000 // | hash0 | hash1 | ... | hashN | entry0 | entry1 | .... | entryN |
1001 // +-------+-------+-------+-------+--------+--------+--------+--------+
1003 // with all the cached hashes prior to the actual entries themselves.
1005 // We do this because implementing the first strategy requires us to make
1006 // HashTableEntry look roughly like:
1008 // template <typename T>
1009 // class HashTableEntry {
1010 // HashNumber mKeyHash;
1011 // T mValue;
1012 // };
1014 // The problem with this setup is that, depending on the layout of `T`, there
1015 // may be platform ABI-mandated padding between `mKeyHash` and the first
1016 // member of `T`. This ABI-mandated padding is wasted space, and can be
1017 // surprisingly common, e.g. when `T` is a single pointer on 64-bit platforms.
1018 // In such cases, we're throwing away a quarter of our entry store on padding,
1019 // which is undesirable.
1021 // The second layout above, namely:
1023 // +-------+-------+-------+-------+--------+--------+--------+--------+
1024 // | hash0 | hash1 | ... | hashN | entry0 | entry1 | .... | entryN |
1025 // +-------+-------+-------+-------+--------+--------+--------+--------+
1027 // means there is no wasted space between the hashes themselves, and no wasted
1028 // space between the entries themselves. However, we would also like there to
1029 // be no gap between the last hash and the first entry. The memory allocator
1030 // guarantees the alignment of the start of the hashes. The use of a
1031 // power-of-two capacity of at least 4 guarantees that the alignment of the
1032 // *end* of the hash array is no less than the alignment of the start.
1033 // Finally, the static_asserts here guarantee that the entries themselves
1034 // don't need to be any more aligned than the alignment of the entry store
1035 // itself.
1037 // This assertion is safe for 32-bit builds because on both Windows and Linux
1038 // (including Android), the minimum alignment for allocations larger than 8
1039 // bytes is 8 bytes, and the actual data for entries in our entry store is
1040 // guaranteed to have that alignment as well, thanks to the power-of-two
1041 // number of cached hash values stored prior to the entry data.
1043 // The allocation policy must allocate a table with at least this much
1044 // alignment.
1045 static constexpr size_t kMinimumAlignment = 8;
1047 static_assert(alignof(HashNumber) <= kMinimumAlignment,
1048 "[N*2 hashes, N*2 T values] allocation's alignment must be "
1049 "enough to align each hash");
1050 static_assert(alignof(NonConstT) <= 2 * sizeof(HashNumber),
1051 "subsequent N*2 T values must not require more than an even "
1052 "number of HashNumbers provides");
1054 static const HashNumber sFreeKey = 0;
1055 static const HashNumber sRemovedKey = 1;
1056 static const HashNumber sCollisionBit = 1;
1058 alignas(NonConstT) unsigned char mValueData[sizeof(NonConstT)];
1060 private:
1061 template <class, class, class>
1062 friend class HashTable;
1063 template <typename>
1064 friend class EntrySlot;
1066 // Some versions of GCC treat it as a -Wstrict-aliasing violation (ergo a
1067 // -Werror compile error) to reinterpret_cast<> |mValueData| to |T*|, even
1068 // through |void*|. Placing the latter cast in these separate functions
1069 // breaks the chain such that affected GCC versions no longer warn/error.
1070 void* rawValuePtr() { return mValueData; }
1072 static bool isLiveHash(HashNumber hash) { return hash > sRemovedKey; }
1074 HashTableEntry(const HashTableEntry&) = delete;
1075 void operator=(const HashTableEntry&) = delete;
1077 NonConstT* valuePtr() { return reinterpret_cast<NonConstT*>(rawValuePtr()); }
1079 void destroyStoredT() {
1080 NonConstT* ptr = valuePtr();
1081 ptr->~T();
1082 MOZ_MAKE_MEM_UNDEFINED(ptr, sizeof(*ptr));
1085 public:
1086 HashTableEntry() = default;
1088 ~HashTableEntry() { MOZ_MAKE_MEM_UNDEFINED(this, sizeof(*this)); }
1090 void destroy() { destroyStoredT(); }
1092 void swap(HashTableEntry* aOther, bool aIsLive) {
1093 // This allows types to use Argument-Dependent-Lookup, and thus use a custom
1094 // std::swap, which is needed by types like JS::Heap and such.
1095 using std::swap;
1097 if (this == aOther) {
1098 return;
1100 if (aIsLive) {
1101 swap(*valuePtr(), *aOther->valuePtr());
1102 } else {
1103 *aOther->valuePtr() = std::move(*valuePtr());
1104 destroy();
1108 T& get() { return *valuePtr(); }
1110 NonConstT& getMutable() { return *valuePtr(); }
1113 // A slot represents a cached hash value and its associated entry stored
1114 // in the hash table. These two things are not stored in contiguous memory.
1115 template <class T>
1116 class EntrySlot {
1117 using NonConstT = std::remove_const_t<T>;
1119 using Entry = HashTableEntry<T>;
1121 Entry* mEntry;
1122 HashNumber* mKeyHash;
1124 template <class, class, class>
1125 friend class HashTable;
1127 EntrySlot(Entry* aEntry, HashNumber* aKeyHash)
1128 : mEntry(aEntry), mKeyHash(aKeyHash) {}
1130 public:
1131 static bool isLiveHash(HashNumber hash) { return hash > Entry::sRemovedKey; }
1133 EntrySlot(const EntrySlot&) = default;
1134 EntrySlot(EntrySlot&& aOther) = default;
1136 EntrySlot& operator=(const EntrySlot&) = default;
1137 EntrySlot& operator=(EntrySlot&&) = default;
1139 bool operator==(const EntrySlot& aRhs) const { return mEntry == aRhs.mEntry; }
1141 bool operator<(const EntrySlot& aRhs) const { return mEntry < aRhs.mEntry; }
1143 EntrySlot& operator++() {
1144 ++mEntry;
1145 ++mKeyHash;
1146 return *this;
1149 void destroy() { mEntry->destroy(); }
1151 void swap(EntrySlot& aOther) {
1152 mEntry->swap(aOther.mEntry, aOther.isLive());
1153 std::swap(*mKeyHash, *aOther.mKeyHash);
1156 T& get() const { return mEntry->get(); }
1158 NonConstT& getMutable() { return mEntry->getMutable(); }
1160 bool isFree() const { return *mKeyHash == Entry::sFreeKey; }
1162 void clearLive() {
1163 MOZ_ASSERT(isLive());
1164 *mKeyHash = Entry::sFreeKey;
1165 mEntry->destroyStoredT();
1168 void clear() {
1169 if (isLive()) {
1170 mEntry->destroyStoredT();
1172 MOZ_MAKE_MEM_UNDEFINED(mEntry, sizeof(*mEntry));
1173 *mKeyHash = Entry::sFreeKey;
1176 bool isRemoved() const { return *mKeyHash == Entry::sRemovedKey; }
1178 void removeLive() {
1179 MOZ_ASSERT(isLive());
1180 *mKeyHash = Entry::sRemovedKey;
1181 mEntry->destroyStoredT();
1184 bool isLive() const { return isLiveHash(*mKeyHash); }
1186 void setCollision() {
1187 MOZ_ASSERT(isLive());
1188 *mKeyHash |= Entry::sCollisionBit;
1190 void unsetCollision() { *mKeyHash &= ~Entry::sCollisionBit; }
1191 bool hasCollision() const { return *mKeyHash & Entry::sCollisionBit; }
1192 bool matchHash(HashNumber hn) {
1193 return (*mKeyHash & ~Entry::sCollisionBit) == hn;
1195 HashNumber getKeyHash() const { return *mKeyHash & ~Entry::sCollisionBit; }
1197 template <typename... Args>
1198 void setLive(HashNumber aHashNumber, Args&&... aArgs) {
1199 MOZ_ASSERT(!isLive());
1200 *mKeyHash = aHashNumber;
1201 new (KnownNotNull, mEntry->valuePtr()) T(std::forward<Args>(aArgs)...);
1202 MOZ_ASSERT(isLive());
1205 Entry* toEntry() const { return mEntry; }
1208 template <class T, class HashPolicy, class AllocPolicy>
1209 class HashTable : private AllocPolicy {
1210 friend class mozilla::ReentrancyGuard;
1212 using NonConstT = std::remove_const_t<T>;
1213 using Key = typename HashPolicy::KeyType;
1214 using Lookup = typename HashPolicy::Lookup;
1216 public:
1217 using Entry = HashTableEntry<T>;
1218 using Slot = EntrySlot<T>;
1220 template <typename F>
1221 static void forEachSlot(char* aTable, uint32_t aCapacity, F&& f) {
1222 auto hashes = reinterpret_cast<HashNumber*>(aTable);
1223 auto entries = reinterpret_cast<Entry*>(&hashes[aCapacity]);
1224 Slot slot(entries, hashes);
1225 for (size_t i = 0; i < size_t(aCapacity); ++i) {
1226 f(slot);
1227 ++slot;
1231 // A nullable pointer to a hash table element. A Ptr |p| can be tested
1232 // either explicitly |if (p.found()) p->...| or using boolean conversion
1233 // |if (p) p->...|. Ptr objects must not be used after any mutating hash
1234 // table operations unless |generation()| is tested.
1235 class Ptr {
1236 friend class HashTable;
1238 Slot mSlot;
1239 #ifdef DEBUG
1240 const HashTable* mTable;
1241 Generation mGeneration;
1242 #endif
1244 protected:
1245 Ptr(Slot aSlot, const HashTable& aTable)
1246 : mSlot(aSlot)
1247 #ifdef DEBUG
1249 mTable(&aTable),
1250 mGeneration(aTable.generation())
1251 #endif
1255 // This constructor is used only by AddPtr() within lookupForAdd().
1256 explicit Ptr(const HashTable& aTable)
1257 : mSlot(nullptr, nullptr)
1258 #ifdef DEBUG
1260 mTable(&aTable),
1261 mGeneration(aTable.generation())
1262 #endif
1266 bool isValid() const { return !!mSlot.toEntry(); }
1268 public:
1269 Ptr()
1270 : mSlot(nullptr, nullptr)
1271 #ifdef DEBUG
1273 mTable(nullptr),
1274 mGeneration(0)
1275 #endif
1279 bool found() const {
1280 if (!isValid()) {
1281 return false;
1283 #ifdef DEBUG
1284 MOZ_ASSERT(mGeneration == mTable->generation());
1285 #endif
1286 return mSlot.isLive();
1289 explicit operator bool() const { return found(); }
1291 bool operator==(const Ptr& aRhs) const {
1292 MOZ_ASSERT(found() && aRhs.found());
1293 return mSlot == aRhs.mSlot;
1296 bool operator!=(const Ptr& aRhs) const {
1297 #ifdef DEBUG
1298 MOZ_ASSERT(mGeneration == mTable->generation());
1299 #endif
1300 return !(*this == aRhs);
1303 T& operator*() const {
1304 #ifdef DEBUG
1305 MOZ_ASSERT(found());
1306 MOZ_ASSERT(mGeneration == mTable->generation());
1307 #endif
1308 return mSlot.get();
1311 T* operator->() const {
1312 #ifdef DEBUG
1313 MOZ_ASSERT(found());
1314 MOZ_ASSERT(mGeneration == mTable->generation());
1315 #endif
1316 return &mSlot.get();
1320 // A Ptr that can be used to add a key after a failed lookup.
1321 class AddPtr : public Ptr {
1322 friend class HashTable;
1324 HashNumber mKeyHash;
1325 #ifdef DEBUG
1326 uint64_t mMutationCount;
1327 #endif
1329 AddPtr(Slot aSlot, const HashTable& aTable, HashNumber aHashNumber)
1330 : Ptr(aSlot, aTable),
1331 mKeyHash(aHashNumber)
1332 #ifdef DEBUG
1334 mMutationCount(aTable.mMutationCount)
1335 #endif
1339 // This constructor is used when lookupForAdd() is performed on a table
1340 // lacking entry storage; it leaves mSlot null but initializes everything
1341 // else.
1342 AddPtr(const HashTable& aTable, HashNumber aHashNumber)
1343 : Ptr(aTable),
1344 mKeyHash(aHashNumber)
1345 #ifdef DEBUG
1347 mMutationCount(aTable.mMutationCount)
1348 #endif
1350 MOZ_ASSERT(isLive());
1353 bool isLive() const { return isLiveHash(mKeyHash); }
1355 public:
1356 AddPtr() : mKeyHash(0) {}
1359 // A hash table iterator that (mostly) doesn't allow table modifications.
1360 // As with Ptr/AddPtr, Iterator objects must not be used after any mutating
1361 // hash table operation unless the |generation()| is tested.
1362 class Iterator {
1363 void moveToNextLiveEntry() {
1364 while (++mCur < mEnd && !mCur.isLive()) {
1365 continue;
1369 protected:
1370 friend class HashTable;
1372 explicit Iterator(const HashTable& aTable)
1373 : mCur(aTable.slotForIndex(0)),
1374 mEnd(aTable.slotForIndex(aTable.capacity()))
1375 #ifdef DEBUG
1377 mTable(aTable),
1378 mMutationCount(aTable.mMutationCount),
1379 mGeneration(aTable.generation()),
1380 mValidEntry(true)
1381 #endif
1383 if (!done() && !mCur.isLive()) {
1384 moveToNextLiveEntry();
1388 Slot mCur;
1389 Slot mEnd;
1390 #ifdef DEBUG
1391 const HashTable& mTable;
1392 uint64_t mMutationCount;
1393 Generation mGeneration;
1394 bool mValidEntry;
1395 #endif
1397 public:
1398 bool done() const {
1399 MOZ_ASSERT(mGeneration == mTable.generation());
1400 MOZ_ASSERT(mMutationCount == mTable.mMutationCount);
1401 return mCur == mEnd;
1404 T& get() const {
1405 MOZ_ASSERT(!done());
1406 MOZ_ASSERT(mValidEntry);
1407 MOZ_ASSERT(mGeneration == mTable.generation());
1408 MOZ_ASSERT(mMutationCount == mTable.mMutationCount);
1409 return mCur.get();
1412 void next() {
1413 MOZ_ASSERT(!done());
1414 MOZ_ASSERT(mGeneration == mTable.generation());
1415 MOZ_ASSERT(mMutationCount == mTable.mMutationCount);
1416 moveToNextLiveEntry();
1417 #ifdef DEBUG
1418 mValidEntry = true;
1419 #endif
1423 // A hash table iterator that permits modification, removal and rekeying.
1424 // Since rehashing when elements were removed during enumeration would be
1425 // bad, it is postponed until the ModIterator is destructed. Since the
1426 // ModIterator's destructor touches the hash table, the user must ensure
1427 // that the hash table is still alive when the destructor runs.
1428 class ModIterator : public Iterator {
1429 friend class HashTable;
1431 HashTable& mTable;
1432 bool mRekeyed;
1433 bool mRemoved;
1435 // ModIterator is movable but not copyable.
1436 ModIterator(const ModIterator&) = delete;
1437 void operator=(const ModIterator&) = delete;
1439 protected:
1440 explicit ModIterator(HashTable& aTable)
1441 : Iterator(aTable), mTable(aTable), mRekeyed(false), mRemoved(false) {}
1443 public:
1444 MOZ_IMPLICIT ModIterator(ModIterator&& aOther)
1445 : Iterator(aOther),
1446 mTable(aOther.mTable),
1447 mRekeyed(aOther.mRekeyed),
1448 mRemoved(aOther.mRemoved) {
1449 aOther.mRekeyed = false;
1450 aOther.mRemoved = false;
1453 // Removes the current element from the table, leaving |get()|
1454 // invalid until the next call to |next()|.
1455 void remove() {
1456 mTable.remove(this->mCur);
1457 mRemoved = true;
1458 #ifdef DEBUG
1459 this->mValidEntry = false;
1460 this->mMutationCount = mTable.mMutationCount;
1461 #endif
1464 NonConstT& getMutable() {
1465 MOZ_ASSERT(!this->done());
1466 MOZ_ASSERT(this->mValidEntry);
1467 MOZ_ASSERT(this->mGeneration == this->Iterator::mTable.generation());
1468 MOZ_ASSERT(this->mMutationCount == this->Iterator::mTable.mMutationCount);
1469 return this->mCur.getMutable();
1472 // Removes the current element and re-inserts it into the table with
1473 // a new key at the new Lookup position. |get()| is invalid after
1474 // this operation until the next call to |next()|.
1475 void rekey(const Lookup& l, const Key& k) {
1476 MOZ_ASSERT(&k != &HashPolicy::getKey(this->mCur.get()));
1477 Ptr p(this->mCur, mTable);
1478 mTable.rekeyWithoutRehash(p, l, k);
1479 mRekeyed = true;
1480 #ifdef DEBUG
1481 this->mValidEntry = false;
1482 this->mMutationCount = mTable.mMutationCount;
1483 #endif
1486 void rekey(const Key& k) { rekey(k, k); }
1488 // Potentially rehashes the table.
1489 ~ModIterator() {
1490 if (mRekeyed) {
1491 mTable.mGen++;
1492 mTable.infallibleRehashIfOverloaded();
1495 if (mRemoved) {
1496 mTable.compact();
1501 // Range is similar to Iterator, but uses different terminology.
1502 class Range {
1503 friend class HashTable;
1505 Iterator mIter;
1507 protected:
1508 explicit Range(const HashTable& table) : mIter(table) {}
1510 public:
1511 bool empty() const { return mIter.done(); }
1513 T& front() const { return mIter.get(); }
1515 void popFront() { return mIter.next(); }
1518 // Enum is similar to ModIterator, but uses different terminology.
1519 class Enum {
1520 ModIterator mIter;
1522 // Enum is movable but not copyable.
1523 Enum(const Enum&) = delete;
1524 void operator=(const Enum&) = delete;
1526 public:
1527 template <class Map>
1528 explicit Enum(Map& map) : mIter(map.mImpl) {}
1530 MOZ_IMPLICIT Enum(Enum&& other) : mIter(std::move(other.mIter)) {}
1532 bool empty() const { return mIter.done(); }
1534 T& front() const { return mIter.get(); }
1536 void popFront() { return mIter.next(); }
1538 void removeFront() { mIter.remove(); }
1540 NonConstT& mutableFront() { return mIter.getMutable(); }
1542 void rekeyFront(const Lookup& aLookup, const Key& aKey) {
1543 mIter.rekey(aLookup, aKey);
1546 void rekeyFront(const Key& aKey) { mIter.rekey(aKey); }
1549 // HashTable is movable
1550 HashTable(HashTable&& aRhs) : AllocPolicy(std::move(aRhs)) { moveFrom(aRhs); }
1551 HashTable& operator=(HashTable&& aRhs) {
1552 MOZ_ASSERT(this != &aRhs, "self-move assignment is prohibited");
1553 if (mTable) {
1554 destroyTable(*this, mTable, capacity());
1556 AllocPolicy::operator=(std::move(aRhs));
1557 moveFrom(aRhs);
1558 return *this;
1561 private:
1562 void moveFrom(HashTable& aRhs) {
1563 mGen = aRhs.mGen;
1564 mHashShift = aRhs.mHashShift;
1565 mTable = aRhs.mTable;
1566 mEntryCount = aRhs.mEntryCount;
1567 mRemovedCount = aRhs.mRemovedCount;
1568 #ifdef DEBUG
1569 mMutationCount = aRhs.mMutationCount;
1570 mEntered = aRhs.mEntered;
1571 #endif
1572 aRhs.mTable = nullptr;
1573 aRhs.clearAndCompact();
1576 // HashTable is not copyable or assignable
1577 HashTable(const HashTable&) = delete;
1578 void operator=(const HashTable&) = delete;
1580 static const uint32_t CAP_BITS = 30;
1582 public:
1583 uint64_t mGen : 56; // entry storage generation number
1584 uint64_t mHashShift : 8; // multiplicative hash shift
1585 char* mTable; // entry storage
1586 uint32_t mEntryCount; // number of entries in mTable
1587 uint32_t mRemovedCount; // removed entry sentinels in mTable
1589 #ifdef DEBUG
1590 uint64_t mMutationCount;
1591 mutable bool mEntered;
1592 #endif
1594 // The default initial capacity is 32 (enough to hold 16 elements), but it
1595 // can be as low as 4.
1596 static const uint32_t sDefaultLen = 16;
1597 static const uint32_t sMinCapacity = 4;
1598 // See the comments in HashTableEntry about this value.
1599 static_assert(sMinCapacity >= 4, "too-small sMinCapacity breaks assumptions");
1600 static const uint32_t sMaxInit = 1u << (CAP_BITS - 1);
1601 static const uint32_t sMaxCapacity = 1u << CAP_BITS;
1603 // Hash-table alpha is conceptually a fraction, but to avoid floating-point
1604 // math we implement it as a ratio of integers.
1605 static const uint8_t sAlphaDenominator = 4;
1606 static const uint8_t sMinAlphaNumerator = 1; // min alpha: 1/4
1607 static const uint8_t sMaxAlphaNumerator = 3; // max alpha: 3/4
1609 static const HashNumber sFreeKey = Entry::sFreeKey;
1610 static const HashNumber sRemovedKey = Entry::sRemovedKey;
1611 static const HashNumber sCollisionBit = Entry::sCollisionBit;
1613 static uint32_t bestCapacity(uint32_t aLen) {
1614 static_assert(
1615 (sMaxInit * sAlphaDenominator) / sAlphaDenominator == sMaxInit,
1616 "multiplication in numerator below could overflow");
1617 static_assert(
1618 sMaxInit * sAlphaDenominator <= UINT32_MAX - sMaxAlphaNumerator,
1619 "numerator calculation below could potentially overflow");
1621 // Callers should ensure this is true.
1622 MOZ_ASSERT(aLen <= sMaxInit);
1624 // Compute the smallest capacity allowing |aLen| elements to be
1625 // inserted without rehashing: ceil(aLen / max-alpha). (Ceiling
1626 // integral division: <http://stackoverflow.com/a/2745086>.)
1627 uint32_t capacity = (aLen * sAlphaDenominator + sMaxAlphaNumerator - 1) /
1628 sMaxAlphaNumerator;
1629 capacity = (capacity < sMinCapacity) ? sMinCapacity : RoundUpPow2(capacity);
1631 MOZ_ASSERT(capacity >= aLen);
1632 MOZ_ASSERT(capacity <= sMaxCapacity);
1634 return capacity;
1637 static uint32_t hashShift(uint32_t aLen) {
1638 // Reject all lengths whose initial computed capacity would exceed
1639 // sMaxCapacity. Round that maximum aLen down to the nearest power of two
1640 // for speedier code.
1641 if (MOZ_UNLIKELY(aLen > sMaxInit)) {
1642 MOZ_CRASH("initial length is too large");
1645 return kHashNumberBits - mozilla::CeilingLog2(bestCapacity(aLen));
1648 static bool isLiveHash(HashNumber aHash) { return Entry::isLiveHash(aHash); }
1650 static HashNumber prepareHash(HashNumber aInputHash) {
1651 HashNumber keyHash = ScrambleHashCode(aInputHash);
1653 // Avoid reserved hash codes.
1654 if (!isLiveHash(keyHash)) {
1655 keyHash -= (sRemovedKey + 1);
1657 return keyHash & ~sCollisionBit;
1660 enum FailureBehavior { DontReportFailure = false, ReportFailure = true };
1662 // Fake a struct that we're going to alloc. See the comments in
1663 // HashTableEntry about how the table is laid out, and why it's safe.
1664 struct FakeSlot {
1665 unsigned char c[sizeof(HashNumber) + sizeof(typename Entry::NonConstT)];
1668 static char* createTable(AllocPolicy& aAllocPolicy, uint32_t aCapacity,
1669 FailureBehavior aReportFailure = ReportFailure) {
1670 FakeSlot* fake =
1671 aReportFailure
1672 ? aAllocPolicy.template pod_malloc<FakeSlot>(aCapacity)
1673 : aAllocPolicy.template maybe_pod_malloc<FakeSlot>(aCapacity);
1675 MOZ_ASSERT((reinterpret_cast<uintptr_t>(fake) % Entry::kMinimumAlignment) ==
1678 char* table = reinterpret_cast<char*>(fake);
1679 if (table) {
1680 forEachSlot(table, aCapacity, [&](Slot& slot) {
1681 *slot.mKeyHash = sFreeKey;
1682 new (KnownNotNull, slot.toEntry()) Entry();
1685 return table;
1688 static void destroyTable(AllocPolicy& aAllocPolicy, char* aOldTable,
1689 uint32_t aCapacity) {
1690 forEachSlot(aOldTable, aCapacity, [&](const Slot& slot) {
1691 if (slot.isLive()) {
1692 slot.toEntry()->destroyStoredT();
1695 freeTable(aAllocPolicy, aOldTable, aCapacity);
1698 static void freeTable(AllocPolicy& aAllocPolicy, char* aOldTable,
1699 uint32_t aCapacity) {
1700 FakeSlot* fake = reinterpret_cast<FakeSlot*>(aOldTable);
1701 aAllocPolicy.free_(fake, aCapacity);
1704 public:
1705 HashTable(AllocPolicy aAllocPolicy, uint32_t aLen)
1706 : AllocPolicy(std::move(aAllocPolicy)),
1707 mGen(0),
1708 mHashShift(hashShift(aLen)),
1709 mTable(nullptr),
1710 mEntryCount(0),
1711 mRemovedCount(0)
1712 #ifdef DEBUG
1714 mMutationCount(0),
1715 mEntered(false)
1716 #endif
1720 explicit HashTable(AllocPolicy aAllocPolicy)
1721 : HashTable(aAllocPolicy, sDefaultLen) {}
1723 ~HashTable() {
1724 if (mTable) {
1725 destroyTable(*this, mTable, capacity());
1729 private:
1730 HashNumber hash1(HashNumber aHash0) const { return aHash0 >> mHashShift; }
1732 struct DoubleHash {
1733 HashNumber mHash2;
1734 HashNumber mSizeMask;
1737 DoubleHash hash2(HashNumber aCurKeyHash) const {
1738 uint32_t sizeLog2 = kHashNumberBits - mHashShift;
1739 DoubleHash dh = {((aCurKeyHash << sizeLog2) >> mHashShift) | 1,
1740 (HashNumber(1) << sizeLog2) - 1};
1741 return dh;
1744 static HashNumber applyDoubleHash(HashNumber aHash1,
1745 const DoubleHash& aDoubleHash) {
1746 return WrappingSubtract(aHash1, aDoubleHash.mHash2) & aDoubleHash.mSizeMask;
1749 static MOZ_ALWAYS_INLINE bool match(T& aEntry, const Lookup& aLookup) {
1750 return HashPolicy::match(HashPolicy::getKey(aEntry), aLookup);
1753 enum LookupReason { ForNonAdd, ForAdd };
1755 Slot slotForIndex(HashNumber aIndex) const {
1756 auto hashes = reinterpret_cast<HashNumber*>(mTable);
1757 auto entries = reinterpret_cast<Entry*>(&hashes[capacity()]);
1758 return Slot(&entries[aIndex], &hashes[aIndex]);
1761 // Warning: in order for readonlyThreadsafeLookup() to be safe this
1762 // function must not modify the table in any way when Reason==ForNonAdd.
1763 template <LookupReason Reason>
1764 MOZ_ALWAYS_INLINE Slot lookup(const Lookup& aLookup,
1765 HashNumber aKeyHash) const {
1766 MOZ_ASSERT(isLiveHash(aKeyHash));
1767 MOZ_ASSERT(!(aKeyHash & sCollisionBit));
1768 MOZ_ASSERT(mTable);
1770 // Compute the primary hash address.
1771 HashNumber h1 = hash1(aKeyHash);
1772 Slot slot = slotForIndex(h1);
1774 // Miss: return space for a new entry.
1775 if (slot.isFree()) {
1776 return slot;
1779 // Hit: return entry.
1780 if (slot.matchHash(aKeyHash) && match(slot.get(), aLookup)) {
1781 return slot;
1784 // Collision: double hash.
1785 DoubleHash dh = hash2(aKeyHash);
1787 // Save the first removed entry pointer so we can recycle later.
1788 Maybe<Slot> firstRemoved;
1790 while (true) {
1791 if (Reason == ForAdd && !firstRemoved) {
1792 if (MOZ_UNLIKELY(slot.isRemoved())) {
1793 firstRemoved.emplace(slot);
1794 } else {
1795 slot.setCollision();
1799 h1 = applyDoubleHash(h1, dh);
1801 slot = slotForIndex(h1);
1802 if (slot.isFree()) {
1803 return firstRemoved.refOr(slot);
1806 if (slot.matchHash(aKeyHash) && match(slot.get(), aLookup)) {
1807 return slot;
1812 // This is a copy of lookup() hardcoded to the assumptions:
1813 // 1. the lookup is for an add;
1814 // 2. the key, whose |keyHash| has been passed, is not in the table.
1815 Slot findNonLiveSlot(HashNumber aKeyHash) {
1816 MOZ_ASSERT(!(aKeyHash & sCollisionBit));
1817 MOZ_ASSERT(mTable);
1819 // We assume 'aKeyHash' has already been distributed.
1821 // Compute the primary hash address.
1822 HashNumber h1 = hash1(aKeyHash);
1823 Slot slot = slotForIndex(h1);
1825 // Miss: return space for a new entry.
1826 if (!slot.isLive()) {
1827 return slot;
1830 // Collision: double hash.
1831 DoubleHash dh = hash2(aKeyHash);
1833 while (true) {
1834 slot.setCollision();
1836 h1 = applyDoubleHash(h1, dh);
1838 slot = slotForIndex(h1);
1839 if (!slot.isLive()) {
1840 return slot;
1845 enum RebuildStatus { NotOverloaded, Rehashed, RehashFailed };
1847 RebuildStatus changeTableSize(
1848 uint32_t newCapacity, FailureBehavior aReportFailure = ReportFailure) {
1849 MOZ_ASSERT(IsPowerOfTwo(newCapacity));
1850 MOZ_ASSERT(!!mTable == !!capacity());
1852 // Look, but don't touch, until we succeed in getting new entry store.
1853 char* oldTable = mTable;
1854 uint32_t oldCapacity = capacity();
1855 uint32_t newLog2 = mozilla::CeilingLog2(newCapacity);
1857 if (MOZ_UNLIKELY(newCapacity > sMaxCapacity)) {
1858 if (aReportFailure) {
1859 this->reportAllocOverflow();
1861 return RehashFailed;
1864 char* newTable = createTable(*this, newCapacity, aReportFailure);
1865 if (!newTable) {
1866 return RehashFailed;
1869 // We can't fail from here on, so update table parameters.
1870 mHashShift = kHashNumberBits - newLog2;
1871 mRemovedCount = 0;
1872 mGen++;
1873 mTable = newTable;
1875 // Copy only live entries, leaving removed ones behind.
1876 forEachSlot(oldTable, oldCapacity, [&](Slot& slot) {
1877 if (slot.isLive()) {
1878 HashNumber hn = slot.getKeyHash();
1879 findNonLiveSlot(hn).setLive(
1880 hn, std::move(const_cast<typename Entry::NonConstT&>(slot.get())));
1883 slot.clear();
1886 // All entries have been destroyed, no need to destroyTable.
1887 freeTable(*this, oldTable, oldCapacity);
1888 return Rehashed;
1891 RebuildStatus rehashIfOverloaded(
1892 FailureBehavior aReportFailure = ReportFailure) {
1893 static_assert(sMaxCapacity <= UINT32_MAX / sMaxAlphaNumerator,
1894 "multiplication below could overflow");
1896 // Note: if capacity() is zero, this will always succeed, which is
1897 // what we want.
1898 bool overloaded = mEntryCount + mRemovedCount >=
1899 capacity() * sMaxAlphaNumerator / sAlphaDenominator;
1901 if (!overloaded) {
1902 return NotOverloaded;
1905 // Succeed if a quarter or more of all entries are removed. Note that this
1906 // always succeeds if capacity() == 0 (i.e. entry storage has not been
1907 // allocated), which is what we want, because it means changeTableSize()
1908 // will allocate the requested capacity rather than doubling it.
1909 bool manyRemoved = mRemovedCount >= (capacity() >> 2);
1910 uint32_t newCapacity = manyRemoved ? rawCapacity() : rawCapacity() * 2;
1911 return changeTableSize(newCapacity, aReportFailure);
1914 void infallibleRehashIfOverloaded() {
1915 if (rehashIfOverloaded(DontReportFailure) == RehashFailed) {
1916 rehashTableInPlace();
1920 void remove(Slot& aSlot) {
1921 MOZ_ASSERT(mTable);
1923 if (aSlot.hasCollision()) {
1924 aSlot.removeLive();
1925 mRemovedCount++;
1926 } else {
1927 aSlot.clearLive();
1929 mEntryCount--;
1930 #ifdef DEBUG
1931 mMutationCount++;
1932 #endif
1935 void shrinkIfUnderloaded() {
1936 static_assert(sMaxCapacity <= UINT32_MAX / sMinAlphaNumerator,
1937 "multiplication below could overflow");
1938 bool underloaded =
1939 capacity() > sMinCapacity &&
1940 mEntryCount <= capacity() * sMinAlphaNumerator / sAlphaDenominator;
1942 if (underloaded) {
1943 (void)changeTableSize(capacity() / 2, DontReportFailure);
1947 // This is identical to changeTableSize(currentSize), but without requiring
1948 // a second table. We do this by recycling the collision bits to tell us if
1949 // the element is already inserted or still waiting to be inserted. Since
1950 // already-inserted elements win any conflicts, we get the same table as we
1951 // would have gotten through random insertion order.
1952 void rehashTableInPlace() {
1953 mRemovedCount = 0;
1954 mGen++;
1955 forEachSlot(mTable, capacity(), [&](Slot& slot) { slot.unsetCollision(); });
1956 for (uint32_t i = 0; i < capacity();) {
1957 Slot src = slotForIndex(i);
1959 if (!src.isLive() || src.hasCollision()) {
1960 ++i;
1961 continue;
1964 HashNumber keyHash = src.getKeyHash();
1965 HashNumber h1 = hash1(keyHash);
1966 DoubleHash dh = hash2(keyHash);
1967 Slot tgt = slotForIndex(h1);
1968 while (true) {
1969 if (!tgt.hasCollision()) {
1970 src.swap(tgt);
1971 tgt.setCollision();
1972 break;
1975 h1 = applyDoubleHash(h1, dh);
1976 tgt = slotForIndex(h1);
1980 // TODO: this algorithm leaves collision bits on *all* elements, even if
1981 // they are on no collision path. We have the option of setting the
1982 // collision bits correctly on a subsequent pass or skipping the rehash
1983 // unless we are totally filled with tombstones: benchmark to find out
1984 // which approach is best.
1987 // Prefer to use putNewInfallible; this function does not check
1988 // invariants.
1989 template <typename... Args>
1990 void putNewInfallibleInternal(HashNumber aKeyHash, Args&&... aArgs) {
1991 MOZ_ASSERT(mTable);
1993 Slot slot = findNonLiveSlot(aKeyHash);
1995 if (slot.isRemoved()) {
1996 mRemovedCount--;
1997 aKeyHash |= sCollisionBit;
2000 slot.setLive(aKeyHash, std::forward<Args>(aArgs)...);
2001 mEntryCount++;
2002 #ifdef DEBUG
2003 mMutationCount++;
2004 #endif
2007 public:
2008 void clear() {
2009 forEachSlot(mTable, capacity(), [&](Slot& slot) { slot.clear(); });
2010 mRemovedCount = 0;
2011 mEntryCount = 0;
2012 #ifdef DEBUG
2013 mMutationCount++;
2014 #endif
2017 // Resize the table down to the smallest capacity that doesn't overload the
2018 // table. Since we call shrinkIfUnderloaded() on every remove, you only need
2019 // to call this after a bulk removal of items done without calling remove().
2020 void compact() {
2021 if (empty()) {
2022 // Free the entry storage.
2023 freeTable(*this, mTable, capacity());
2024 mGen++;
2025 mHashShift = hashShift(0); // gives minimum capacity on regrowth
2026 mTable = nullptr;
2027 mRemovedCount = 0;
2028 return;
2031 uint32_t bestCapacity = this->bestCapacity(mEntryCount);
2032 MOZ_ASSERT(bestCapacity <= capacity());
2034 if (bestCapacity < capacity()) {
2035 (void)changeTableSize(bestCapacity, DontReportFailure);
2039 void clearAndCompact() {
2040 clear();
2041 compact();
2044 [[nodiscard]] bool reserve(uint32_t aLen) {
2045 if (aLen == 0) {
2046 return true;
2049 if (MOZ_UNLIKELY(aLen > sMaxInit)) {
2050 this->reportAllocOverflow();
2051 return false;
2054 uint32_t bestCapacity = this->bestCapacity(aLen);
2055 if (bestCapacity <= capacity()) {
2056 return true; // Capacity is already sufficient.
2059 RebuildStatus status = changeTableSize(bestCapacity, ReportFailure);
2060 MOZ_ASSERT(status != NotOverloaded);
2061 return status != RehashFailed;
2064 Iterator iter() const { return Iterator(*this); }
2066 ModIterator modIter() { return ModIterator(*this); }
2068 Range all() const { return Range(*this); }
2070 bool empty() const { return mEntryCount == 0; }
2072 uint32_t count() const { return mEntryCount; }
2074 uint32_t rawCapacity() const { return 1u << (kHashNumberBits - mHashShift); }
2076 uint32_t capacity() const { return mTable ? rawCapacity() : 0; }
2078 Generation generation() const { return Generation(mGen); }
2080 size_t shallowSizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const {
2081 return aMallocSizeOf(mTable);
2084 size_t shallowSizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const {
2085 return aMallocSizeOf(this) + shallowSizeOfExcludingThis(aMallocSizeOf);
2088 MOZ_ALWAYS_INLINE Ptr readonlyThreadsafeLookup(const Lookup& aLookup) const {
2089 if (empty()) {
2090 return Ptr();
2093 HashNumber inputHash;
2094 if (!MaybeGetHash<HashPolicy>(aLookup, &inputHash)) {
2095 return Ptr();
2098 HashNumber keyHash = prepareHash(inputHash);
2099 return Ptr(lookup<ForNonAdd>(aLookup, keyHash), *this);
2102 MOZ_ALWAYS_INLINE Ptr lookup(const Lookup& aLookup) const {
2103 ReentrancyGuard g(*this);
2104 return readonlyThreadsafeLookup(aLookup);
2107 MOZ_ALWAYS_INLINE AddPtr lookupForAdd(const Lookup& aLookup) {
2108 ReentrancyGuard g(*this);
2110 HashNumber inputHash;
2111 if (!EnsureHash<HashPolicy>(aLookup, &inputHash)) {
2112 return AddPtr();
2115 HashNumber keyHash = prepareHash(inputHash);
2117 if (!mTable) {
2118 return AddPtr(*this, keyHash);
2121 // Directly call the constructor in the return statement to avoid
2122 // excess copying when building with Visual Studio 2017.
2123 // See bug 1385181.
2124 return AddPtr(lookup<ForAdd>(aLookup, keyHash), *this, keyHash);
2127 template <typename... Args>
2128 [[nodiscard]] bool add(AddPtr& aPtr, Args&&... aArgs) {
2129 ReentrancyGuard g(*this);
2130 MOZ_ASSERT_IF(aPtr.isValid(), mTable);
2131 MOZ_ASSERT_IF(aPtr.isValid(), aPtr.mTable == this);
2132 MOZ_ASSERT(!aPtr.found());
2133 MOZ_ASSERT(!(aPtr.mKeyHash & sCollisionBit));
2135 // Check for error from ensureHash() here.
2136 if (!aPtr.isLive()) {
2137 return false;
2140 MOZ_ASSERT(aPtr.mGeneration == generation());
2141 #ifdef DEBUG
2142 MOZ_ASSERT(aPtr.mMutationCount == mMutationCount);
2143 #endif
2145 if (!aPtr.isValid()) {
2146 MOZ_ASSERT(!mTable && mEntryCount == 0);
2147 uint32_t newCapacity = rawCapacity();
2148 RebuildStatus status = changeTableSize(newCapacity, ReportFailure);
2149 MOZ_ASSERT(status != NotOverloaded);
2150 if (status == RehashFailed) {
2151 return false;
2153 aPtr.mSlot = findNonLiveSlot(aPtr.mKeyHash);
2155 } else if (aPtr.mSlot.isRemoved()) {
2156 // Changing an entry from removed to live does not affect whether we are
2157 // overloaded and can be handled separately.
2158 if (!this->checkSimulatedOOM()) {
2159 return false;
2161 mRemovedCount--;
2162 aPtr.mKeyHash |= sCollisionBit;
2164 } else {
2165 // Preserve the validity of |aPtr.mSlot|.
2166 RebuildStatus status = rehashIfOverloaded();
2167 if (status == RehashFailed) {
2168 return false;
2170 if (status == NotOverloaded && !this->checkSimulatedOOM()) {
2171 return false;
2173 if (status == Rehashed) {
2174 aPtr.mSlot = findNonLiveSlot(aPtr.mKeyHash);
2178 aPtr.mSlot.setLive(aPtr.mKeyHash, std::forward<Args>(aArgs)...);
2179 mEntryCount++;
2180 #ifdef DEBUG
2181 mMutationCount++;
2182 aPtr.mGeneration = generation();
2183 aPtr.mMutationCount = mMutationCount;
2184 #endif
2185 return true;
2188 // Note: |aLookup| may reference pieces of arguments in |aArgs|, so this
2189 // function must take care not to use |aLookup| after moving |aArgs|.
2190 template <typename... Args>
2191 void putNewInfallible(const Lookup& aLookup, Args&&... aArgs) {
2192 MOZ_ASSERT(!lookup(aLookup).found());
2193 ReentrancyGuard g(*this);
2194 HashNumber keyHash = prepareHash(HashPolicy::hash(aLookup));
2195 putNewInfallibleInternal(keyHash, std::forward<Args>(aArgs)...);
2198 // Note: |aLookup| may alias arguments in |aArgs|, so this function must take
2199 // care not to use |aLookup| after moving |aArgs|.
2200 template <typename... Args>
2201 [[nodiscard]] bool putNew(const Lookup& aLookup, Args&&... aArgs) {
2202 MOZ_ASSERT(!lookup(aLookup).found());
2203 ReentrancyGuard g(*this);
2204 if (!this->checkSimulatedOOM()) {
2205 return false;
2207 HashNumber inputHash;
2208 if (!EnsureHash<HashPolicy>(aLookup, &inputHash)) {
2209 return false;
2211 HashNumber keyHash = prepareHash(inputHash);
2212 if (rehashIfOverloaded() == RehashFailed) {
2213 return false;
2215 putNewInfallibleInternal(keyHash, std::forward<Args>(aArgs)...);
2216 return true;
2219 // Note: |aLookup| may be a reference pieces of arguments in |aArgs|, so this
2220 // function must take care not to use |aLookup| after moving |aArgs|.
2221 template <typename... Args>
2222 [[nodiscard]] bool relookupOrAdd(AddPtr& aPtr, const Lookup& aLookup,
2223 Args&&... aArgs) {
2224 // Check for error from ensureHash() here.
2225 if (!aPtr.isLive()) {
2226 return false;
2228 #ifdef DEBUG
2229 aPtr.mGeneration = generation();
2230 aPtr.mMutationCount = mMutationCount;
2231 #endif
2232 if (mTable) {
2233 ReentrancyGuard g(*this);
2234 // Check that aLookup has not been destroyed.
2235 MOZ_ASSERT(prepareHash(HashPolicy::hash(aLookup)) == aPtr.mKeyHash);
2236 aPtr.mSlot = lookup<ForAdd>(aLookup, aPtr.mKeyHash);
2237 if (aPtr.found()) {
2238 return true;
2240 } else {
2241 // Clear aPtr so it's invalid; add() will allocate storage and redo the
2242 // lookup.
2243 aPtr.mSlot = Slot(nullptr, nullptr);
2245 return add(aPtr, std::forward<Args>(aArgs)...);
2248 void remove(Ptr aPtr) {
2249 MOZ_ASSERT(mTable);
2250 ReentrancyGuard g(*this);
2251 MOZ_ASSERT(aPtr.found());
2252 MOZ_ASSERT(aPtr.mGeneration == generation());
2253 remove(aPtr.mSlot);
2254 shrinkIfUnderloaded();
2257 void rekeyWithoutRehash(Ptr aPtr, const Lookup& aLookup, const Key& aKey) {
2258 MOZ_ASSERT(mTable);
2259 ReentrancyGuard g(*this);
2260 MOZ_ASSERT(aPtr.found());
2261 MOZ_ASSERT(aPtr.mGeneration == generation());
2262 typename HashTableEntry<T>::NonConstT t(std::move(*aPtr));
2263 HashPolicy::setKey(t, const_cast<Key&>(aKey));
2264 remove(aPtr.mSlot);
2265 HashNumber keyHash = prepareHash(HashPolicy::hash(aLookup));
2266 putNewInfallibleInternal(keyHash, std::move(t));
2269 void rekeyAndMaybeRehash(Ptr aPtr, const Lookup& aLookup, const Key& aKey) {
2270 rekeyWithoutRehash(aPtr, aLookup, aKey);
2271 infallibleRehashIfOverloaded();
2275 } // namespace detail
2276 } // namespace mozilla
2278 #endif /* mozilla_HashTable_h */