Bug 1687945 [wpt PR 27273] - [resources] Fix conftest.py for pytest>6, a=testonly
[gecko.git] / mfbt / HashFunctions.h
blobb08f4d56d9ef3aff0dfb5f0ab0226d565ce0653c
1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
3 /* This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 /* Utilities for hashing. */
9 /*
10 * This file exports functions for hashing data down to a uint32_t (a.k.a.
11 * mozilla::HashNumber), including:
13 * - HashString Hash a char* or char16_t/wchar_t* of known or unknown
14 * length.
16 * - HashBytes Hash a byte array of known length.
18 * - HashGeneric Hash one or more values. Currently, we support uint32_t,
19 * types which can be implicitly cast to uint32_t, data
20 * pointers, and function pointers.
22 * - AddToHash Add one or more values to the given hash. This supports the
23 * same list of types as HashGeneric.
26 * You can chain these functions together to hash complex objects. For example:
28 * class ComplexObject
29 * {
30 * char* mStr;
31 * uint32_t mUint1, mUint2;
32 * void (*mCallbackFn)();
34 * public:
35 * HashNumber hash()
36 * {
37 * HashNumber hash = HashString(mStr);
38 * hash = AddToHash(hash, mUint1, mUint2);
39 * return AddToHash(hash, mCallbackFn);
40 * }
41 * };
43 * If you want to hash an nsAString or nsACString, use the HashString functions
44 * in nsHashKeys.h.
47 #ifndef mozilla_HashFunctions_h
48 #define mozilla_HashFunctions_h
50 #include "mozilla/Assertions.h"
51 #include "mozilla/Attributes.h"
52 #include "mozilla/Char16.h"
53 #include "mozilla/MathAlgorithms.h"
54 #include "mozilla/Types.h"
55 #include "mozilla/WrappingOperations.h"
57 #include <stdint.h>
58 #include <type_traits>
60 namespace mozilla {
62 using HashNumber = uint32_t;
63 static const uint32_t kHashNumberBits = 32;
65 /**
66 * The golden ratio as a 32-bit fixed-point value.
68 static const HashNumber kGoldenRatioU32 = 0x9E3779B9U;
71 * Given a raw hash code, h, return a number that can be used to select a hash
72 * bucket.
74 * This function aims to produce as uniform an output distribution as possible,
75 * especially in the most significant (leftmost) bits, even though the input
76 * distribution may be highly nonrandom, given the constraints that this must
77 * be deterministic and quick to compute.
79 * Since the leftmost bits of the result are best, the hash bucket index is
80 * computed by doing ScrambleHashCode(h) / (2^32/N) or the equivalent
81 * right-shift, not ScrambleHashCode(h) % N or the equivalent bit-mask.
83 * FIXME: OrderedHashTable uses a bit-mask; see bug 775896.
85 constexpr HashNumber ScrambleHashCode(HashNumber h) {
87 * Simply returning h would not cause any hash tables to produce wrong
88 * answers. But it can produce pathologically bad performance: The caller
89 * right-shifts the result, keeping only the highest bits. The high bits of
90 * hash codes are very often completely entropy-free. (So are the lowest
91 * bits.)
93 * So we use Fibonacci hashing, as described in Knuth, The Art of Computer
94 * Programming, 6.4. This mixes all the bits of the input hash code h.
96 * The value of goldenRatio is taken from the hex expansion of the golden
97 * ratio, which starts 1.9E3779B9.... This value is especially good if
98 * values with consecutive hash codes are stored in a hash table; see Knuth
99 * for details.
101 return mozilla::WrappingMultiply(h, kGoldenRatioU32);
104 namespace detail {
106 MOZ_NO_SANITIZE_UNSIGNED_OVERFLOW
107 constexpr HashNumber RotateLeft5(HashNumber aValue) {
108 return (aValue << 5) | (aValue >> 27);
111 constexpr HashNumber AddU32ToHash(HashNumber aHash, uint32_t aValue) {
113 * This is the meat of all our hash routines. This hash function is not
114 * particularly sophisticated, but it seems to work well for our mostly
115 * plain-text inputs. Implementation notes follow.
117 * Our use of the golden ratio here is arbitrary; we could pick almost any
118 * number which:
120 * * is odd (because otherwise, all our hash values will be even)
122 * * has a reasonably-even mix of 1's and 0's (consider the extreme case
123 * where we multiply by 0x3 or 0xeffffff -- this will not produce good
124 * mixing across all bits of the hash).
126 * The rotation length of 5 is also arbitrary, although an odd number is again
127 * preferable so our hash explores the whole universe of possible rotations.
129 * Finally, we multiply by the golden ratio *after* xor'ing, not before.
130 * Otherwise, if |aHash| is 0 (as it often is for the beginning of a
131 * message), the expression
133 * mozilla::WrappingMultiply(kGoldenRatioU32, RotateLeft5(aHash))
134 * |xor|
135 * aValue
137 * evaluates to |aValue|.
139 * (Number-theoretic aside: Because any odd number |m| is relatively prime to
140 * our modulus (2**32), the list
142 * [x * m (mod 2**32) for 0 <= x < 2**32]
144 * has no duplicate elements. This means that multiplying by |m| does not
145 * cause us to skip any possible hash values.
147 * It's also nice if |m| has large-ish order mod 2**32 -- that is, if the
148 * smallest k such that m**k == 1 (mod 2**32) is large -- so we can safely
149 * multiply our hash value by |m| a few times without negating the
150 * multiplicative effect. Our golden ratio constant has order 2**29, which is
151 * more than enough for our purposes.)
153 return mozilla::WrappingMultiply(kGoldenRatioU32,
154 RotateLeft5(aHash) ^ aValue);
158 * AddUintptrToHash takes sizeof(uintptr_t) as a template parameter.
160 template <size_t PtrSize>
161 constexpr HashNumber AddUintptrToHash(HashNumber aHash, uintptr_t aValue) {
162 return AddU32ToHash(aHash, static_cast<uint32_t>(aValue));
165 template <>
166 inline HashNumber AddUintptrToHash<8>(HashNumber aHash, uintptr_t aValue) {
167 uint32_t v1 = static_cast<uint32_t>(aValue);
168 uint32_t v2 = static_cast<uint32_t>(static_cast<uint64_t>(aValue) >> 32);
169 return AddU32ToHash(AddU32ToHash(aHash, v1), v2);
172 } /* namespace detail */
175 * AddToHash takes a hash and some values and returns a new hash based on the
176 * inputs.
178 * Currently, we support hashing uint32_t's, values which we can implicitly
179 * convert to uint32_t, data pointers, and function pointers.
181 template <typename T, bool TypeIsNotIntegral = !std::is_integral_v<T>,
182 bool TypeIsNotEnum = !std::is_enum_v<T>,
183 std::enable_if_t<TypeIsNotIntegral && TypeIsNotEnum, int> = 0>
184 MOZ_MUST_USE inline HashNumber AddToHash(HashNumber aHash, T aA) {
186 * Try to convert |A| to uint32_t implicitly. If this works, great. If not,
187 * we'll error out.
189 return detail::AddU32ToHash(aHash, aA);
192 template <typename A>
193 MOZ_MUST_USE inline HashNumber AddToHash(HashNumber aHash, A* aA) {
195 * You might think this function should just take a void*. But then we'd only
196 * catch data pointers and couldn't handle function pointers.
199 static_assert(sizeof(aA) == sizeof(uintptr_t), "Strange pointer!");
201 return detail::AddUintptrToHash<sizeof(uintptr_t)>(aHash, uintptr_t(aA));
204 // We use AddUintptrToHash() for hashing all integral types. 8-byte integral
205 // types are treated the same as 64-bit pointers, and smaller integral types are
206 // first implicitly converted to 32 bits and then passed to AddUintptrToHash()
207 // to be hashed.
208 template <typename T, std::enable_if_t<std::is_integral_v<T>, int> = 0>
209 MOZ_MUST_USE constexpr HashNumber AddToHash(HashNumber aHash, T aA) {
210 return detail::AddUintptrToHash<sizeof(T)>(aHash, aA);
213 template <typename T, std::enable_if_t<std::is_enum_v<T>, int> = 0>
214 MOZ_MUST_USE constexpr HashNumber AddToHash(HashNumber aHash, T aA) {
215 // Hash using AddUintptrToHash with the underlying type of the enum type
216 using UnderlyingType = typename std::underlying_type<T>::type;
217 return detail::AddUintptrToHash<sizeof(UnderlyingType)>(
218 aHash, static_cast<UnderlyingType>(aA));
221 template <typename A, typename... Args>
222 MOZ_MUST_USE HashNumber AddToHash(HashNumber aHash, A aArg, Args... aArgs) {
223 return AddToHash(AddToHash(aHash, aArg), aArgs...);
227 * The HashGeneric class of functions let you hash one or more values.
229 * If you want to hash together two values x and y, calling HashGeneric(x, y) is
230 * much better than calling AddToHash(x, y), because AddToHash(x, y) assumes
231 * that x has already been hashed.
233 template <typename... Args>
234 MOZ_MUST_USE inline HashNumber HashGeneric(Args... aArgs) {
235 return AddToHash(0, aArgs...);
239 * Hash successive |*aIter| until |!*aIter|, i.e. til null-termination.
241 * This function is *not* named HashString like the non-template overloads
242 * below. Some users define HashString overloads and pass inexactly-matching
243 * values to them -- but an inexactly-matching value would match this overload
244 * instead! We follow the general rule and don't mix and match template and
245 * regular overloads to avoid this.
247 * If you have the string's length, call HashStringKnownLength: it may be
248 * marginally faster.
250 template <typename Iterator>
251 MOZ_MUST_USE constexpr HashNumber HashStringUntilZero(Iterator aIter) {
252 HashNumber hash = 0;
253 for (; auto c = *aIter; ++aIter) {
254 hash = AddToHash(hash, c);
256 return hash;
260 * Hash successive |aIter[i]| up to |i == aLength|.
262 template <typename Iterator>
263 MOZ_MUST_USE constexpr HashNumber HashStringKnownLength(Iterator aIter,
264 size_t aLength) {
265 HashNumber hash = 0;
266 for (size_t i = 0; i < aLength; i++) {
267 hash = AddToHash(hash, aIter[i]);
269 return hash;
273 * The HashString overloads below do just what you'd expect.
275 * These functions are non-template functions so that users can 1) overload them
276 * with their own types 2) in a way that allows implicit conversions to happen.
278 MOZ_MUST_USE inline HashNumber HashString(const char* aStr) {
279 // Use the |const unsigned char*| version of the above so that all ordinary
280 // character data hashes identically.
281 return HashStringUntilZero(reinterpret_cast<const unsigned char*>(aStr));
284 MOZ_MUST_USE inline HashNumber HashString(const char* aStr, size_t aLength) {
285 // Delegate to the |const unsigned char*| version of the above to share
286 // template instantiations.
287 return HashStringKnownLength(reinterpret_cast<const unsigned char*>(aStr),
288 aLength);
291 MOZ_MUST_USE
292 inline HashNumber HashString(const unsigned char* aStr, size_t aLength) {
293 return HashStringKnownLength(aStr, aLength);
296 MOZ_MUST_USE constexpr HashNumber HashString(const char16_t* aStr) {
297 return HashStringUntilZero(aStr);
300 MOZ_MUST_USE inline HashNumber HashString(const char16_t* aStr,
301 size_t aLength) {
302 return HashStringKnownLength(aStr, aLength);
306 * HashString overloads for |wchar_t| on platforms where it isn't |char16_t|.
308 template <typename WCharT, typename = typename std::enable_if<
309 std::is_same<WCharT, wchar_t>::value &&
310 !std::is_same<wchar_t, char16_t>::value>::type>
311 MOZ_MUST_USE inline HashNumber HashString(const WCharT* aStr) {
312 return HashStringUntilZero(aStr);
315 template <typename WCharT, typename = typename std::enable_if<
316 std::is_same<WCharT, wchar_t>::value &&
317 !std::is_same<wchar_t, char16_t>::value>::type>
318 MOZ_MUST_USE inline HashNumber HashString(const WCharT* aStr, size_t aLength) {
319 return HashStringKnownLength(aStr, aLength);
323 * Hash some number of bytes.
325 * This hash walks word-by-word, rather than byte-by-byte, so you won't get the
326 * same result out of HashBytes as you would out of HashString.
328 MOZ_MUST_USE extern MFBT_API HashNumber HashBytes(const void* bytes,
329 size_t aLength);
332 * A pseudorandom function mapping 32-bit integers to 32-bit integers.
334 * This is for when you're feeding private data (like pointer values or credit
335 * card numbers) to a non-crypto hash function (like HashBytes) and then using
336 * the hash code for something that untrusted parties could observe (like a JS
337 * Map). Plug in a HashCodeScrambler before that last step to avoid leaking the
338 * private data.
340 * By itself, this does not prevent hash-flooding DoS attacks, because an
341 * attacker can still generate many values with exactly equal hash codes by
342 * attacking the non-crypto hash function alone. Equal hash codes will, of
343 * course, still be equal however much you scramble them.
345 * The algorithm is SipHash-1-3. See <https://131002.net/siphash/>.
347 class HashCodeScrambler {
348 struct SipHasher;
350 uint64_t mK0, mK1;
352 public:
353 /** Creates a new scrambler with the given 128-bit key. */
354 constexpr HashCodeScrambler(uint64_t aK0, uint64_t aK1)
355 : mK0(aK0), mK1(aK1) {}
358 * Scramble a hash code. Always produces the same result for the same
359 * combination of key and hash code.
361 HashNumber scramble(HashNumber aHashCode) const {
362 SipHasher hasher(mK0, mK1);
363 return HashNumber(hasher.sipHash(aHashCode));
366 private:
367 struct SipHasher {
368 SipHasher(uint64_t aK0, uint64_t aK1) {
369 // 1. Initialization.
370 mV0 = aK0 ^ UINT64_C(0x736f6d6570736575);
371 mV1 = aK1 ^ UINT64_C(0x646f72616e646f6d);
372 mV2 = aK0 ^ UINT64_C(0x6c7967656e657261);
373 mV3 = aK1 ^ UINT64_C(0x7465646279746573);
376 uint64_t sipHash(uint64_t aM) {
377 // 2. Compression.
378 mV3 ^= aM;
379 sipRound();
380 mV0 ^= aM;
382 // 3. Finalization.
383 mV2 ^= 0xff;
384 for (int i = 0; i < 3; i++) sipRound();
385 return mV0 ^ mV1 ^ mV2 ^ mV3;
388 void sipRound() {
389 mV0 = WrappingAdd(mV0, mV1);
390 mV1 = RotateLeft(mV1, 13);
391 mV1 ^= mV0;
392 mV0 = RotateLeft(mV0, 32);
393 mV2 = WrappingAdd(mV2, mV3);
394 mV3 = RotateLeft(mV3, 16);
395 mV3 ^= mV2;
396 mV0 = WrappingAdd(mV0, mV3);
397 mV3 = RotateLeft(mV3, 21);
398 mV3 ^= mV0;
399 mV2 = WrappingAdd(mV2, mV1);
400 mV1 = RotateLeft(mV1, 17);
401 mV1 ^= mV2;
402 mV2 = RotateLeft(mV2, 32);
405 uint64_t mV0, mV1, mV2, mV3;
409 } /* namespace mozilla */
411 #endif /* mozilla_HashFunctions_h */