Bug 1499346 [wpt PR 13540] - Use a common blank reference for wpt/css., a=testonly
[gecko.git] / mfbt / HashFunctions.h
blob4a1a7fc5a8239af6301bd04b713811b861ced5d0
1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
3 /* This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 /* Utilities for hashing. */
9 /*
10 * This file exports functions for hashing data down to a uint32_t (a.k.a.
11 * mozilla::HashNumber), including:
13 * - HashString Hash a char* or char16_t/wchar_t* of known or unknown
14 * length.
16 * - HashBytes Hash a byte array of known length.
18 * - HashGeneric Hash one or more values. Currently, we support uint32_t,
19 * types which can be implicitly cast to uint32_t, data
20 * pointers, and function pointers.
22 * - AddToHash Add one or more values to the given hash. This supports the
23 * same list of types as HashGeneric.
26 * You can chain these functions together to hash complex objects. For example:
28 * class ComplexObject
29 * {
30 * char* mStr;
31 * uint32_t mUint1, mUint2;
32 * void (*mCallbackFn)();
34 * public:
35 * HashNumber hash()
36 * {
37 * HashNumber hash = HashString(mStr);
38 * hash = AddToHash(hash, mUint1, mUint2);
39 * return AddToHash(hash, mCallbackFn);
40 * }
41 * };
43 * If you want to hash an nsAString or nsACString, use the HashString functions
44 * in nsHashKeys.h.
47 #ifndef mozilla_HashFunctions_h
48 #define mozilla_HashFunctions_h
50 #include "mozilla/Assertions.h"
51 #include "mozilla/Attributes.h"
52 #include "mozilla/Char16.h"
53 #include "mozilla/MathAlgorithms.h"
54 #include "mozilla/Types.h"
55 #include "mozilla/WrappingOperations.h"
57 #include <stdint.h>
59 namespace mozilla {
61 using HashNumber = uint32_t;
62 static const uint32_t kHashNumberBits = 32;
64 /**
65 * The golden ratio as a 32-bit fixed-point value.
67 static const HashNumber kGoldenRatioU32 = 0x9E3779B9U;
70 * Given a raw hash code, h, return a number that can be used to select a hash
71 * bucket.
73 * This function aims to produce as uniform an output distribution as possible,
74 * especially in the most significant (leftmost) bits, even though the input
75 * distribution may be highly nonrandom, given the constraints that this must
76 * be deterministic and quick to compute.
78 * Since the leftmost bits of the result are best, the hash bucket index is
79 * computed by doing ScrambleHashCode(h) / (2^32/N) or the equivalent
80 * right-shift, not ScrambleHashCode(h) % N or the equivalent bit-mask.
82 * FIXME: OrderedHashTable uses a bit-mask; see bug 775896.
84 constexpr HashNumber
85 ScrambleHashCode(HashNumber h)
88 * Simply returning h would not cause any hash tables to produce wrong
89 * answers. But it can produce pathologically bad performance: The caller
90 * right-shifts the result, keeping only the highest bits. The high bits of
91 * hash codes are very often completely entropy-free. (So are the lowest
92 * bits.)
94 * So we use Fibonacci hashing, as described in Knuth, The Art of Computer
95 * Programming, 6.4. This mixes all the bits of the input hash code h.
97 * The value of goldenRatio is taken from the hex expansion of the golden
98 * ratio, which starts 1.9E3779B9.... This value is especially good if
99 * values with consecutive hash codes are stored in a hash table; see Knuth
100 * for details.
102 return mozilla::WrappingMultiply(h, kGoldenRatioU32);
105 namespace detail {
107 MOZ_NO_SANITIZE_UNSIGNED_OVERFLOW
108 constexpr HashNumber
109 RotateLeft5(HashNumber aValue)
111 return (aValue << 5) | (aValue >> 27);
114 constexpr HashNumber
115 AddU32ToHash(HashNumber aHash, uint32_t aValue)
118 * This is the meat of all our hash routines. This hash function is not
119 * particularly sophisticated, but it seems to work well for our mostly
120 * plain-text inputs. Implementation notes follow.
122 * Our use of the golden ratio here is arbitrary; we could pick almost any
123 * number which:
125 * * is odd (because otherwise, all our hash values will be even)
127 * * has a reasonably-even mix of 1's and 0's (consider the extreme case
128 * where we multiply by 0x3 or 0xeffffff -- this will not produce good
129 * mixing across all bits of the hash).
131 * The rotation length of 5 is also arbitrary, although an odd number is again
132 * preferable so our hash explores the whole universe of possible rotations.
134 * Finally, we multiply by the golden ratio *after* xor'ing, not before.
135 * Otherwise, if |aHash| is 0 (as it often is for the beginning of a
136 * message), the expression
138 * mozilla::WrappingMultiply(kGoldenRatioU32, RotateLeft5(aHash))
139 * |xor|
140 * aValue
142 * evaluates to |aValue|.
144 * (Number-theoretic aside: Because any odd number |m| is relatively prime to
145 * our modulus (2**32), the list
147 * [x * m (mod 2**32) for 0 <= x < 2**32]
149 * has no duplicate elements. This means that multiplying by |m| does not
150 * cause us to skip any possible hash values.
152 * It's also nice if |m| has large-ish order mod 2**32 -- that is, if the
153 * smallest k such that m**k == 1 (mod 2**32) is large -- so we can safely
154 * multiply our hash value by |m| a few times without negating the
155 * multiplicative effect. Our golden ratio constant has order 2**29, which is
156 * more than enough for our purposes.)
158 return mozilla::WrappingMultiply(kGoldenRatioU32,
159 RotateLeft5(aHash) ^ aValue);
163 * AddUintptrToHash takes sizeof(uintptr_t) as a template parameter.
165 template<size_t PtrSize>
166 constexpr HashNumber
167 AddUintptrToHash(HashNumber aHash, uintptr_t aValue)
169 return AddU32ToHash(aHash, static_cast<uint32_t>(aValue));
172 template<>
173 inline HashNumber
174 AddUintptrToHash<8>(HashNumber aHash, uintptr_t aValue)
176 uint32_t v1 = static_cast<uint32_t>(aValue);
177 uint32_t v2 = static_cast<uint32_t>(static_cast<uint64_t>(aValue) >> 32);
178 return AddU32ToHash(AddU32ToHash(aHash, v1), v2);
181 } /* namespace detail */
184 * AddToHash takes a hash and some values and returns a new hash based on the
185 * inputs.
187 * Currently, we support hashing uint32_t's, values which we can implicitly
188 * convert to uint32_t, data pointers, and function pointers.
190 template<typename T,
191 bool TypeIsNotIntegral = !mozilla::IsIntegral<T>::value,
192 typename U = typename mozilla::EnableIf<TypeIsNotIntegral>::Type>
193 MOZ_MUST_USE inline HashNumber
194 AddToHash(HashNumber aHash, T aA)
197 * Try to convert |A| to uint32_t implicitly. If this works, great. If not,
198 * we'll error out.
200 return detail::AddU32ToHash(aHash, aA);
203 template<typename A>
204 MOZ_MUST_USE inline HashNumber
205 AddToHash(HashNumber aHash, A* aA)
208 * You might think this function should just take a void*. But then we'd only
209 * catch data pointers and couldn't handle function pointers.
212 static_assert(sizeof(aA) == sizeof(uintptr_t), "Strange pointer!");
214 return detail::AddUintptrToHash<sizeof(uintptr_t)>(aHash, uintptr_t(aA));
217 // We use AddUintptrToHash() for hashing all integral types. 8-byte integral types
218 // are treated the same as 64-bit pointers, and smaller integral types are first
219 // implicitly converted to 32 bits and then passed to AddUintptrToHash() to be hashed.
220 template<typename T,
221 typename U = typename mozilla::EnableIf<mozilla::IsIntegral<T>::value>::Type>
222 MOZ_MUST_USE constexpr HashNumber
223 AddToHash(HashNumber aHash, T aA)
225 return detail::AddUintptrToHash<sizeof(T)>(aHash, aA);
228 template<typename A, typename... Args>
229 MOZ_MUST_USE HashNumber
230 AddToHash(HashNumber aHash, A aArg, Args... aArgs)
232 return AddToHash(AddToHash(aHash, aArg), aArgs...);
236 * The HashGeneric class of functions let you hash one or more values.
238 * If you want to hash together two values x and y, calling HashGeneric(x, y) is
239 * much better than calling AddToHash(x, y), because AddToHash(x, y) assumes
240 * that x has already been hashed.
242 template<typename... Args>
243 MOZ_MUST_USE inline HashNumber
244 HashGeneric(Args... aArgs)
246 return AddToHash(0, aArgs...);
249 namespace detail {
251 template<typename T>
252 constexpr HashNumber
253 HashUntilZero(const T* aStr)
255 HashNumber hash = 0;
256 for (; T c = *aStr; aStr++) {
257 hash = AddToHash(hash, c);
259 return hash;
262 template<typename T>
263 HashNumber
264 HashKnownLength(const T* aStr, size_t aLength)
266 HashNumber hash = 0;
267 for (size_t i = 0; i < aLength; i++) {
268 hash = AddToHash(hash, aStr[i]);
270 return hash;
273 } /* namespace detail */
276 * The HashString overloads below do just what you'd expect.
278 * If you have the string's length, you might as well call the overload which
279 * includes the length. It may be marginally faster.
281 MOZ_MUST_USE inline HashNumber
282 HashString(const char* aStr)
284 return detail::HashUntilZero(reinterpret_cast<const unsigned char*>(aStr));
287 MOZ_MUST_USE inline HashNumber
288 HashString(const char* aStr, size_t aLength)
290 return detail::HashKnownLength(reinterpret_cast<const unsigned char*>(aStr), aLength);
293 MOZ_MUST_USE
294 inline HashNumber
295 HashString(const unsigned char* aStr, size_t aLength)
297 return detail::HashKnownLength(aStr, aLength);
300 // You may need to use the
301 // MOZ_{PUSH,POP}_DISABLE_INTEGRAL_CONSTANT_OVERFLOW_WARNING macros if you use
302 // this function. See the comment on those macros' definitions for more detail.
303 MOZ_MUST_USE constexpr HashNumber
304 HashString(const char16_t* aStr)
306 return detail::HashUntilZero(aStr);
309 MOZ_MUST_USE inline HashNumber
310 HashString(const char16_t* aStr, size_t aLength)
312 return detail::HashKnownLength(aStr, aLength);
316 * On Windows, wchar_t is not the same as char16_t, even though it's
317 * the same width!
319 #ifdef WIN32
320 MOZ_MUST_USE inline HashNumber
321 HashString(const wchar_t* aStr)
323 return detail::HashUntilZero(aStr);
326 MOZ_MUST_USE inline HashNumber
327 HashString(const wchar_t* aStr, size_t aLength)
329 return detail::HashKnownLength(aStr, aLength);
331 #endif
334 * Hash some number of bytes.
336 * This hash walks word-by-word, rather than byte-by-byte, so you won't get the
337 * same result out of HashBytes as you would out of HashString.
339 MOZ_MUST_USE extern MFBT_API HashNumber
340 HashBytes(const void* bytes, size_t aLength);
343 * A pseudorandom function mapping 32-bit integers to 32-bit integers.
345 * This is for when you're feeding private data (like pointer values or credit
346 * card numbers) to a non-crypto hash function (like HashBytes) and then using
347 * the hash code for something that untrusted parties could observe (like a JS
348 * Map). Plug in a HashCodeScrambler before that last step to avoid leaking the
349 * private data.
351 * By itself, this does not prevent hash-flooding DoS attacks, because an
352 * attacker can still generate many values with exactly equal hash codes by
353 * attacking the non-crypto hash function alone. Equal hash codes will, of
354 * course, still be equal however much you scramble them.
356 * The algorithm is SipHash-1-3. See <https://131002.net/siphash/>.
358 class HashCodeScrambler
360 struct SipHasher;
362 uint64_t mK0, mK1;
364 public:
365 /** Creates a new scrambler with the given 128-bit key. */
366 constexpr HashCodeScrambler(uint64_t aK0, uint64_t aK1) : mK0(aK0), mK1(aK1) {}
369 * Scramble a hash code. Always produces the same result for the same
370 * combination of key and hash code.
372 HashNumber scramble(HashNumber aHashCode) const
374 SipHasher hasher(mK0, mK1);
375 return HashNumber(hasher.sipHash(aHashCode));
378 private:
379 struct SipHasher
381 SipHasher(uint64_t aK0, uint64_t aK1)
383 // 1. Initialization.
384 mV0 = aK0 ^ UINT64_C(0x736f6d6570736575);
385 mV1 = aK1 ^ UINT64_C(0x646f72616e646f6d);
386 mV2 = aK0 ^ UINT64_C(0x6c7967656e657261);
387 mV3 = aK1 ^ UINT64_C(0x7465646279746573);
390 uint64_t sipHash(uint64_t aM)
392 // 2. Compression.
393 mV3 ^= aM;
394 sipRound();
395 mV0 ^= aM;
397 // 3. Finalization.
398 mV2 ^= 0xff;
399 for (int i = 0; i < 3; i++)
400 sipRound();
401 return mV0 ^ mV1 ^ mV2 ^ mV3;
404 void sipRound()
406 mV0 = WrappingAdd(mV0, mV1);
407 mV1 = RotateLeft(mV1, 13);
408 mV1 ^= mV0;
409 mV0 = RotateLeft(mV0, 32);
410 mV2 = WrappingAdd(mV2, mV3);
411 mV3 = RotateLeft(mV3, 16);
412 mV3 ^= mV2;
413 mV0 = WrappingAdd(mV0, mV3);
414 mV3 = RotateLeft(mV3, 21);
415 mV3 ^= mV0;
416 mV2 = WrappingAdd(mV2, mV1);
417 mV1 = RotateLeft(mV1, 17);
418 mV1 ^= mV2;
419 mV2 = RotateLeft(mV2, 32);
422 uint64_t mV0, mV1, mV2, mV3;
426 } /* namespace mozilla */
428 #endif /* mozilla_HashFunctions_h */