Bug 1698238 return default dictionary from GetUserMediaRequest#getConstraints() if...
[gecko.git] / layout / style / nsStyleTransformMatrix.cpp
blobe191259a7e534aff81688706dba9b177e68f89ea
1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
3 /* This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 /*
8 * A class used for intermediate representations of the -moz-transform property.
9 */
11 #include "nsStyleTransformMatrix.h"
12 #include "nsLayoutUtils.h"
13 #include "nsPresContext.h"
14 #include "mozilla/MotionPathUtils.h"
15 #include "mozilla/ServoBindings.h"
16 #include "mozilla/StyleAnimationValue.h"
17 #include "mozilla/SVGUtils.h"
18 #include "gfxMatrix.h"
19 #include "gfxQuaternion.h"
21 using namespace mozilla;
22 using namespace mozilla::gfx;
24 namespace nsStyleTransformMatrix {
26 /* Note on floating point precision: The transform matrix is an array
27 * of single precision 'float's, and so are most of the input values
28 * we get from the style system, but intermediate calculations
29 * involving angles need to be done in 'double'.
32 // Define UNIFIED_CONTINUATIONS here and in nsDisplayList.cpp
33 // to have the transform property try
34 // to transform content with continuations as one unified block instead of
35 // several smaller ones. This is currently disabled because it doesn't work
36 // correctly, since when the frames are initially being reflowed, their
37 // continuations all compute their bounding rects independently of each other
38 // and consequently get the wrong value.
39 //#define UNIFIED_CONTINUATIONS
41 void TransformReferenceBox::EnsureDimensionsAreCached() {
42 if (mIsCached) {
43 return;
46 MOZ_ASSERT(mFrame);
48 mIsCached = true;
50 if (mFrame->HasAnyStateBits(NS_FRAME_SVG_LAYOUT)) {
51 if (mFrame->StyleDisplay()->mTransformBox == StyleGeometryBox::FillBox) {
52 // Percentages in transforms resolve against the SVG bbox, and the
53 // transform is relative to the top-left of the SVG bbox.
54 nsRect bboxInAppUnits = nsLayoutUtils::ComputeGeometryBox(
55 const_cast<nsIFrame*>(mFrame), StyleGeometryBox::FillBox);
56 // The mRect of an SVG nsIFrame is its user space bounds *including*
57 // stroke and markers, whereas bboxInAppUnits is its user space bounds
58 // including fill only. We need to note the offset of the reference box
59 // from the frame's mRect in mX/mY.
60 mX = bboxInAppUnits.x - mFrame->GetPosition().x;
61 mY = bboxInAppUnits.y - mFrame->GetPosition().y;
62 mWidth = bboxInAppUnits.width;
63 mHeight = bboxInAppUnits.height;
64 } else {
65 // The value 'border-box' is treated as 'view-box' for SVG content.
66 MOZ_ASSERT(
67 mFrame->StyleDisplay()->mTransformBox == StyleGeometryBox::ViewBox ||
68 mFrame->StyleDisplay()->mTransformBox ==
69 StyleGeometryBox::BorderBox,
70 "Unexpected value for 'transform-box'");
71 // Percentages in transforms resolve against the width/height of the
72 // nearest viewport (or its viewBox if one is applied), and the
73 // transform is relative to {0,0} in current user space.
74 mX = -mFrame->GetPosition().x;
75 mY = -mFrame->GetPosition().y;
76 Size contextSize = SVGUtils::GetContextSize(mFrame);
77 mWidth = nsPresContext::CSSPixelsToAppUnits(contextSize.width);
78 mHeight = nsPresContext::CSSPixelsToAppUnits(contextSize.height);
80 return;
83 // If UNIFIED_CONTINUATIONS is not defined, this is simply the frame's
84 // bounding rectangle, translated to the origin. Otherwise, it is the
85 // smallest rectangle containing a frame and all of its continuations. For
86 // example, if there is a <span> element with several continuations split
87 // over several lines, this function will return the rectangle containing all
88 // of those continuations.
90 nsRect rect;
92 #ifndef UNIFIED_CONTINUATIONS
93 rect = mFrame->GetRect();
94 #else
95 // Iterate the continuation list, unioning together the bounding rects:
96 for (const nsIFrame* currFrame = mFrame->FirstContinuation();
97 currFrame != nullptr; currFrame = currFrame->GetNextContinuation()) {
98 // Get the frame rect in local coordinates, then translate back to the
99 // original coordinates:
100 rect.UnionRect(
101 result, nsRect(currFrame->GetOffsetTo(mFrame), currFrame->GetSize()));
103 #endif
105 mX = 0;
106 mY = 0;
107 mWidth = rect.Width();
108 mHeight = rect.Height();
111 void TransformReferenceBox::Init(const nsRect& aDimensions) {
112 MOZ_ASSERT(!mFrame && !mIsCached);
114 mX = aDimensions.x;
115 mY = aDimensions.y;
116 mWidth = aDimensions.width;
117 mHeight = aDimensions.height;
118 mIsCached = true;
121 float ProcessTranslatePart(
122 const LengthPercentage& aValue, TransformReferenceBox* aRefBox,
123 TransformReferenceBox::DimensionGetter aDimensionGetter) {
124 return aValue.ResolveToCSSPixelsWith([&] {
125 return aRefBox && !aRefBox->IsEmpty()
126 ? CSSPixel::FromAppUnits((aRefBox->*aDimensionGetter)())
127 : CSSCoord(0);
132 * Helper functions to process all the transformation function types.
134 * These take a matrix parameter to accumulate the current matrix.
137 /* Helper function to process a matrix entry. */
138 static void ProcessMatrix(Matrix4x4& aMatrix,
139 const StyleTransformOperation& aOp) {
140 const auto& matrix = aOp.AsMatrix();
141 gfxMatrix result;
143 result._11 = matrix.a;
144 result._12 = matrix.b;
145 result._21 = matrix.c;
146 result._22 = matrix.d;
147 result._31 = matrix.e;
148 result._32 = matrix.f;
150 aMatrix = result * aMatrix;
153 static void ProcessMatrix3D(Matrix4x4& aMatrix,
154 const StyleTransformOperation& aOp) {
155 Matrix4x4 temp;
157 const auto& matrix = aOp.AsMatrix3D();
159 temp._11 = matrix.m11;
160 temp._12 = matrix.m12;
161 temp._13 = matrix.m13;
162 temp._14 = matrix.m14;
163 temp._21 = matrix.m21;
164 temp._22 = matrix.m22;
165 temp._23 = matrix.m23;
166 temp._24 = matrix.m24;
167 temp._31 = matrix.m31;
168 temp._32 = matrix.m32;
169 temp._33 = matrix.m33;
170 temp._34 = matrix.m34;
172 temp._41 = matrix.m41;
173 temp._42 = matrix.m42;
174 temp._43 = matrix.m43;
175 temp._44 = matrix.m44;
177 aMatrix = temp * aMatrix;
180 // For accumulation for transform functions, |aOne| corresponds to |aB| and
181 // |aTwo| corresponds to |aA| for StyleAnimationValue::Accumulate().
182 class Accumulate {
183 public:
184 template <typename T>
185 static T operate(const T& aOne, const T& aTwo, double aCoeff) {
186 return aOne + aTwo * aCoeff;
189 static Point4D operateForPerspective(const Point4D& aOne, const Point4D& aTwo,
190 double aCoeff) {
191 return (aOne - Point4D(0, 0, 0, 1)) +
192 (aTwo - Point4D(0, 0, 0, 1)) * aCoeff + Point4D(0, 0, 0, 1);
194 static Point3D operateForScale(const Point3D& aOne, const Point3D& aTwo,
195 double aCoeff) {
196 // For scale, the identify element is 1, see AddTransformScale in
197 // StyleAnimationValue.cpp.
198 return (aOne - Point3D(1, 1, 1)) + (aTwo - Point3D(1, 1, 1)) * aCoeff +
199 Point3D(1, 1, 1);
202 static Matrix4x4 operateForRotate(const gfxQuaternion& aOne,
203 const gfxQuaternion& aTwo, double aCoeff) {
204 if (aCoeff == 0.0) {
205 return aOne.ToMatrix();
208 double theta = acos(mozilla::clamped(aTwo.w, -1.0, 1.0));
209 double scale = (theta != 0.0) ? 1.0 / sin(theta) : 0.0;
210 theta *= aCoeff;
211 scale *= sin(theta);
213 gfxQuaternion result = gfxQuaternion(scale * aTwo.x, scale * aTwo.y,
214 scale * aTwo.z, cos(theta)) *
215 aOne;
216 return result.ToMatrix();
219 static Matrix4x4 operateForFallback(const Matrix4x4& aMatrix1,
220 const Matrix4x4& aMatrix2,
221 double aProgress) {
222 return aMatrix1;
225 static Matrix4x4 operateByServo(const Matrix4x4& aMatrix1,
226 const Matrix4x4& aMatrix2, double aCount) {
227 Matrix4x4 result;
228 Servo_MatrixTransform_Operate(MatrixTransformOperator::Accumulate,
229 &aMatrix1.components, &aMatrix2.components,
230 aCount, &result.components);
231 return result;
235 class Interpolate {
236 public:
237 template <typename T>
238 static T operate(const T& aOne, const T& aTwo, double aCoeff) {
239 return aOne + (aTwo - aOne) * aCoeff;
242 static Point4D operateForPerspective(const Point4D& aOne, const Point4D& aTwo,
243 double aCoeff) {
244 return aOne + (aTwo - aOne) * aCoeff;
247 static Point3D operateForScale(const Point3D& aOne, const Point3D& aTwo,
248 double aCoeff) {
249 return aOne + (aTwo - aOne) * aCoeff;
252 static Matrix4x4 operateForRotate(const gfxQuaternion& aOne,
253 const gfxQuaternion& aTwo, double aCoeff) {
254 return aOne.Slerp(aTwo, aCoeff).ToMatrix();
257 static Matrix4x4 operateForFallback(const Matrix4x4& aMatrix1,
258 const Matrix4x4& aMatrix2,
259 double aProgress) {
260 return aProgress < 0.5 ? aMatrix1 : aMatrix2;
263 static Matrix4x4 operateByServo(const Matrix4x4& aMatrix1,
264 const Matrix4x4& aMatrix2, double aProgress) {
265 Matrix4x4 result;
266 Servo_MatrixTransform_Operate(MatrixTransformOperator::Interpolate,
267 &aMatrix1.components, &aMatrix2.components,
268 aProgress, &result.components);
269 return result;
273 template <typename Operator>
274 static void ProcessMatrixOperator(Matrix4x4& aMatrix,
275 const StyleTransform& aFrom,
276 const StyleTransform& aTo, float aProgress,
277 TransformReferenceBox& aRefBox) {
278 float appUnitPerCSSPixel = AppUnitsPerCSSPixel();
279 Matrix4x4 matrix1 = ReadTransforms(aFrom, aRefBox, appUnitPerCSSPixel);
280 Matrix4x4 matrix2 = ReadTransforms(aTo, aRefBox, appUnitPerCSSPixel);
281 aMatrix = Operator::operateByServo(matrix1, matrix2, aProgress) * aMatrix;
284 /* Helper function to process two matrices that we need to interpolate between
286 void ProcessInterpolateMatrix(Matrix4x4& aMatrix,
287 const StyleTransformOperation& aOp,
288 TransformReferenceBox& aRefBox) {
289 const auto& args = aOp.AsInterpolateMatrix();
290 ProcessMatrixOperator<Interpolate>(aMatrix, args.from_list, args.to_list,
291 args.progress._0, aRefBox);
294 void ProcessAccumulateMatrix(Matrix4x4& aMatrix,
295 const StyleTransformOperation& aOp,
296 TransformReferenceBox& aRefBox) {
297 const auto& args = aOp.AsAccumulateMatrix();
298 ProcessMatrixOperator<Accumulate>(aMatrix, args.from_list, args.to_list,
299 args.count, aRefBox);
302 /* Helper function to process a translatex function. */
303 static void ProcessTranslateX(Matrix4x4& aMatrix,
304 const LengthPercentage& aLength,
305 TransformReferenceBox& aRefBox) {
306 Point3D temp;
307 temp.x =
308 ProcessTranslatePart(aLength, &aRefBox, &TransformReferenceBox::Width);
309 aMatrix.PreTranslate(temp);
312 /* Helper function to process a translatey function. */
313 static void ProcessTranslateY(Matrix4x4& aMatrix,
314 const LengthPercentage& aLength,
315 TransformReferenceBox& aRefBox) {
316 Point3D temp;
317 temp.y =
318 ProcessTranslatePart(aLength, &aRefBox, &TransformReferenceBox::Height);
319 aMatrix.PreTranslate(temp);
322 static void ProcessTranslateZ(Matrix4x4& aMatrix, const Length& aLength) {
323 Point3D temp;
324 temp.z = aLength.ToCSSPixels();
325 aMatrix.PreTranslate(temp);
328 /* Helper function to process a translate function. */
329 static void ProcessTranslate(Matrix4x4& aMatrix, const LengthPercentage& aX,
330 const LengthPercentage& aY,
331 TransformReferenceBox& aRefBox) {
332 Point3D temp;
333 temp.x = ProcessTranslatePart(aX, &aRefBox, &TransformReferenceBox::Width);
334 temp.y = ProcessTranslatePart(aY, &aRefBox, &TransformReferenceBox::Height);
335 aMatrix.PreTranslate(temp);
338 static void ProcessTranslate3D(Matrix4x4& aMatrix, const LengthPercentage& aX,
339 const LengthPercentage& aY, const Length& aZ,
340 TransformReferenceBox& aRefBox) {
341 Point3D temp;
343 temp.x = ProcessTranslatePart(aX, &aRefBox, &TransformReferenceBox::Width);
344 temp.y = ProcessTranslatePart(aY, &aRefBox, &TransformReferenceBox::Height);
345 temp.z = aZ.ToCSSPixels();
347 aMatrix.PreTranslate(temp);
350 /* Helper function to set up a scale matrix. */
351 static void ProcessScaleHelper(Matrix4x4& aMatrix, float aXScale, float aYScale,
352 float aZScale) {
353 aMatrix.PreScale(aXScale, aYScale, aZScale);
356 static void ProcessScale3D(Matrix4x4& aMatrix,
357 const StyleTransformOperation& aOp) {
358 const auto& scale = aOp.AsScale3D();
359 ProcessScaleHelper(aMatrix, scale._0, scale._1, scale._2);
362 /* Helper function that, given a set of angles, constructs the appropriate
363 * skew matrix.
365 static void ProcessSkewHelper(Matrix4x4& aMatrix, const StyleAngle& aXAngle,
366 const StyleAngle& aYAngle) {
367 aMatrix.SkewXY(aXAngle.ToRadians(), aYAngle.ToRadians());
370 static void ProcessRotate3D(Matrix4x4& aMatrix, float aX, float aY, float aZ,
371 const StyleAngle& aAngle) {
372 Matrix4x4 temp;
373 temp.SetRotateAxisAngle(aX, aY, aZ, aAngle.ToRadians());
374 aMatrix = temp * aMatrix;
377 static void ProcessPerspective(Matrix4x4& aMatrix, const Length& aLength) {
378 float depth = aLength.ToCSSPixels();
379 ApplyPerspectiveToMatrix(aMatrix, depth);
382 static void MatrixForTransformFunction(Matrix4x4& aMatrix,
383 const StyleTransformOperation& aOp,
384 TransformReferenceBox& aRefBox) {
385 /* Get the keyword for the transform. */
386 switch (aOp.tag) {
387 case StyleTransformOperation::Tag::TranslateX:
388 ProcessTranslateX(aMatrix, aOp.AsTranslateX(), aRefBox);
389 break;
390 case StyleTransformOperation::Tag::TranslateY:
391 ProcessTranslateY(aMatrix, aOp.AsTranslateY(), aRefBox);
392 break;
393 case StyleTransformOperation::Tag::TranslateZ:
394 ProcessTranslateZ(aMatrix, aOp.AsTranslateZ());
395 break;
396 case StyleTransformOperation::Tag::Translate:
397 ProcessTranslate(aMatrix, aOp.AsTranslate()._0, aOp.AsTranslate()._1,
398 aRefBox);
399 break;
400 case StyleTransformOperation::Tag::Translate3D:
401 return ProcessTranslate3D(aMatrix, aOp.AsTranslate3D()._0,
402 aOp.AsTranslate3D()._1, aOp.AsTranslate3D()._2,
403 aRefBox);
404 break;
405 case StyleTransformOperation::Tag::ScaleX:
406 ProcessScaleHelper(aMatrix, aOp.AsScaleX(), 1.0f, 1.0f);
407 break;
408 case StyleTransformOperation::Tag::ScaleY:
409 ProcessScaleHelper(aMatrix, 1.0f, aOp.AsScaleY(), 1.0f);
410 break;
411 case StyleTransformOperation::Tag::ScaleZ:
412 ProcessScaleHelper(aMatrix, 1.0f, 1.0f, aOp.AsScaleZ());
413 break;
414 case StyleTransformOperation::Tag::Scale:
415 ProcessScaleHelper(aMatrix, aOp.AsScale()._0, aOp.AsScale()._1, 1.0f);
416 break;
417 case StyleTransformOperation::Tag::Scale3D:
418 ProcessScale3D(aMatrix, aOp);
419 break;
420 case StyleTransformOperation::Tag::SkewX:
421 ProcessSkewHelper(aMatrix, aOp.AsSkewX(), StyleAngle::Zero());
422 break;
423 case StyleTransformOperation::Tag::SkewY:
424 ProcessSkewHelper(aMatrix, StyleAngle::Zero(), aOp.AsSkewY());
425 break;
426 case StyleTransformOperation::Tag::Skew:
427 ProcessSkewHelper(aMatrix, aOp.AsSkew()._0, aOp.AsSkew()._1);
428 break;
429 case StyleTransformOperation::Tag::RotateX:
430 aMatrix.RotateX(aOp.AsRotateX().ToRadians());
431 break;
432 case StyleTransformOperation::Tag::RotateY:
433 aMatrix.RotateY(aOp.AsRotateY().ToRadians());
434 break;
435 case StyleTransformOperation::Tag::RotateZ:
436 aMatrix.RotateZ(aOp.AsRotateZ().ToRadians());
437 break;
438 case StyleTransformOperation::Tag::Rotate:
439 aMatrix.RotateZ(aOp.AsRotate().ToRadians());
440 break;
441 case StyleTransformOperation::Tag::Rotate3D:
442 ProcessRotate3D(aMatrix, aOp.AsRotate3D()._0, aOp.AsRotate3D()._1,
443 aOp.AsRotate3D()._2, aOp.AsRotate3D()._3);
444 break;
445 case StyleTransformOperation::Tag::Matrix:
446 ProcessMatrix(aMatrix, aOp);
447 break;
448 case StyleTransformOperation::Tag::Matrix3D:
449 ProcessMatrix3D(aMatrix, aOp);
450 break;
451 case StyleTransformOperation::Tag::InterpolateMatrix:
452 ProcessInterpolateMatrix(aMatrix, aOp, aRefBox);
453 break;
454 case StyleTransformOperation::Tag::AccumulateMatrix:
455 ProcessAccumulateMatrix(aMatrix, aOp, aRefBox);
456 break;
457 case StyleTransformOperation::Tag::Perspective:
458 ProcessPerspective(aMatrix, aOp.AsPerspective());
459 break;
460 default:
461 MOZ_ASSERT_UNREACHABLE("Unknown transform function!");
465 Matrix4x4 ReadTransforms(const StyleTransform& aTransform,
466 TransformReferenceBox& aRefBox,
467 float aAppUnitsPerMatrixUnit) {
468 Matrix4x4 result;
470 for (const StyleTransformOperation& op : aTransform.Operations()) {
471 MatrixForTransformFunction(result, op, aRefBox);
474 float scale = float(AppUnitsPerCSSPixel()) / aAppUnitsPerMatrixUnit;
475 result.PreScale(1 / scale, 1 / scale, 1 / scale);
476 result.PostScale(scale, scale, scale);
478 return result;
481 static void ProcessTranslate(Matrix4x4& aMatrix,
482 const StyleTranslate& aTranslate,
483 TransformReferenceBox& aRefBox) {
484 switch (aTranslate.tag) {
485 case StyleTranslate::Tag::None:
486 return;
487 case StyleTranslate::Tag::Translate:
488 return ProcessTranslate3D(aMatrix, aTranslate.AsTranslate()._0,
489 aTranslate.AsTranslate()._1,
490 aTranslate.AsTranslate()._2, aRefBox);
491 default:
492 MOZ_ASSERT_UNREACHABLE("Huh?");
496 static void ProcessRotate(Matrix4x4& aMatrix, const StyleRotate& aRotate) {
497 switch (aRotate.tag) {
498 case StyleRotate::Tag::None:
499 return;
500 case StyleRotate::Tag::Rotate:
501 aMatrix.RotateZ(aRotate.AsRotate().ToRadians());
502 return;
503 case StyleRotate::Tag::Rotate3D:
504 return ProcessRotate3D(aMatrix, aRotate.AsRotate3D()._0,
505 aRotate.AsRotate3D()._1, aRotate.AsRotate3D()._2,
506 aRotate.AsRotate3D()._3);
507 default:
508 MOZ_ASSERT_UNREACHABLE("Huh?");
512 static void ProcessScale(Matrix4x4& aMatrix, const StyleScale& aScale) {
513 switch (aScale.tag) {
514 case StyleScale::Tag::None:
515 return;
516 case StyleScale::Tag::Scale:
517 return ProcessScaleHelper(aMatrix, aScale.AsScale()._0,
518 aScale.AsScale()._1, aScale.AsScale()._2);
519 default:
520 MOZ_ASSERT_UNREACHABLE("Huh?");
524 Matrix4x4 ReadTransforms(const StyleTranslate& aTranslate,
525 const StyleRotate& aRotate, const StyleScale& aScale,
526 const Maybe<ResolvedMotionPathData>& aMotion,
527 const StyleTransform& aTransform,
528 TransformReferenceBox& aRefBox,
529 float aAppUnitsPerMatrixUnit) {
530 Matrix4x4 result;
532 ProcessTranslate(result, aTranslate, aRefBox);
533 ProcessRotate(result, aRotate);
534 ProcessScale(result, aScale);
536 if (aMotion.isSome()) {
537 // Create the equivalent translate and rotate function, according to the
538 // order in spec. We combine the translate and then the rotate.
539 // https://drafts.fxtf.org/motion-1/#calculating-path-transform
541 // Besides, we have to shift the object by the delta between anchor-point
542 // and transform-origin, to make sure we rotate the object according to
543 // anchor-point.
544 result.PreTranslate(aMotion->mTranslate.x + aMotion->mShift.x,
545 aMotion->mTranslate.y + aMotion->mShift.y, 0.0);
546 if (aMotion->mRotate != 0.0) {
547 result.RotateZ(aMotion->mRotate);
549 // Shift the origin back to transform-origin.
550 result.PreTranslate(-aMotion->mShift.x, -aMotion->mShift.y, 0.0);
553 for (const StyleTransformOperation& op : aTransform.Operations()) {
554 MatrixForTransformFunction(result, op, aRefBox);
557 float scale = float(AppUnitsPerCSSPixel()) / aAppUnitsPerMatrixUnit;
558 result.PreScale(1 / scale, 1 / scale, 1 / scale);
559 result.PostScale(scale, scale, scale);
561 return result;
564 mozilla::CSSPoint Convert2DPosition(const mozilla::LengthPercentage& aX,
565 const mozilla::LengthPercentage& aY,
566 const CSSSize& aSize) {
567 return {
568 aX.ResolveToCSSPixels(aSize.width),
569 aY.ResolveToCSSPixels(aSize.height),
573 CSSPoint Convert2DPosition(const LengthPercentage& aX,
574 const LengthPercentage& aY,
575 TransformReferenceBox& aRefBox) {
576 return {
577 aX.ResolveToCSSPixelsWith(
578 [&] { return CSSPixel::FromAppUnits(aRefBox.Width()); }),
579 aY.ResolveToCSSPixelsWith(
580 [&] { return CSSPixel::FromAppUnits(aRefBox.Height()); }),
584 Point Convert2DPosition(const LengthPercentage& aX, const LengthPercentage& aY,
585 TransformReferenceBox& aRefBox,
586 int32_t aAppUnitsPerPixel) {
587 float scale = mozilla::AppUnitsPerCSSPixel() / float(aAppUnitsPerPixel);
588 CSSPoint p = Convert2DPosition(aX, aY, aRefBox);
589 return {p.x * scale, p.y * scale};
593 * The relevant section of the transitions specification:
594 * http://dev.w3.org/csswg/css3-transitions/#animation-of-property-types-
595 * defers all of the details to the 2-D and 3-D transforms specifications.
596 * For the 2-D transforms specification (all that's relevant for us, right
597 * now), the relevant section is:
598 * http://dev.w3.org/csswg/css3-2d-transforms/#animation
599 * This, in turn, refers to the unmatrix program in Graphics Gems,
600 * available from http://tog.acm.org/resources/GraphicsGems/ , and in
601 * particular as the file GraphicsGems/gemsii/unmatrix.c
602 * in http://tog.acm.org/resources/GraphicsGems/AllGems.tar.gz
604 * The unmatrix reference is for general 3-D transform matrices (any of the
605 * 16 components can have any value).
607 * For CSS 2-D transforms, we have a 2-D matrix with the bottom row constant:
609 * [ A C E ]
610 * [ B D F ]
611 * [ 0 0 1 ]
613 * For that case, I believe the algorithm in unmatrix reduces to:
615 * (1) If A * D - B * C == 0, the matrix is singular. Fail.
617 * (2) Set translation components (Tx and Ty) to the translation parts of
618 * the matrix (E and F) and then ignore them for the rest of the time.
619 * (For us, E and F each actually consist of three constants: a
620 * length, a multiplier for the width, and a multiplier for the
621 * height. This actually requires its own decomposition, but I'll
622 * keep that separate.)
624 * (3) Let the X scale (Sx) be sqrt(A^2 + B^2). Then divide both A and B
625 * by it.
627 * (4) Let the XY shear (K) be A * C + B * D. From C, subtract A times
628 * the XY shear. From D, subtract B times the XY shear.
630 * (5) Let the Y scale (Sy) be sqrt(C^2 + D^2). Divide C, D, and the XY
631 * shear (K) by it.
633 * (6) At this point, A * D - B * C is either 1 or -1. If it is -1,
634 * negate the XY shear (K), the X scale (Sx), and A, B, C, and D.
635 * (Alternatively, we could negate the XY shear (K) and the Y scale
636 * (Sy).)
638 * (7) Let the rotation be R = atan2(B, A).
640 * Then the resulting decomposed transformation is:
642 * translate(Tx, Ty) rotate(R) skewX(atan(K)) scale(Sx, Sy)
644 * An interesting result of this is that all of the simple transform
645 * functions (i.e., all functions other than matrix()), in isolation,
646 * decompose back to themselves except for:
647 * 'skewY(φ)', which is 'matrix(1, tan(φ), 0, 1, 0, 0)', which decomposes
648 * to 'rotate(φ) skewX(φ) scale(sec(φ), cos(φ))' since (ignoring the
649 * alternate sign possibilities that would get fixed in step 6):
650 * In step 3, the X scale factor is sqrt(1+tan²(φ)) = sqrt(sec²(φ)) =
651 * sec(φ). Thus, after step 3, A = 1/sec(φ) = cos(φ) and B = tan(φ) / sec(φ) =
652 * sin(φ). In step 4, the XY shear is sin(φ). Thus, after step 4, C =
653 * -cos(φ)sin(φ) and D = 1 - sin²(φ) = cos²(φ). Thus, in step 5, the Y scale is
654 * sqrt(cos²(φ)(sin²(φ) + cos²(φ)) = cos(φ). Thus, after step 5, C = -sin(φ), D
655 * = cos(φ), and the XY shear is tan(φ). Thus, in step 6, A * D - B * C =
656 * cos²(φ) + sin²(φ) = 1. In step 7, the rotation is thus φ.
658 * skew(θ, φ), which is matrix(1, tan(φ), tan(θ), 1, 0, 0), which decomposes
659 * to 'rotate(φ) skewX(θ + φ) scale(sec(φ), cos(φ))' since (ignoring
660 * the alternate sign possibilities that would get fixed in step 6):
661 * In step 3, the X scale factor is sqrt(1+tan²(φ)) = sqrt(sec²(φ)) =
662 * sec(φ). Thus, after step 3, A = 1/sec(φ) = cos(φ) and B = tan(φ) / sec(φ) =
663 * sin(φ). In step 4, the XY shear is cos(φ)tan(θ) + sin(φ). Thus, after step 4,
664 * C = tan(θ) - cos(φ)(cos(φ)tan(θ) + sin(φ)) = tan(θ)sin²(φ) - cos(φ)sin(φ)
665 * D = 1 - sin(φ)(cos(φ)tan(θ) + sin(φ)) = cos²(φ) - sin(φ)cos(φ)tan(θ)
666 * Thus, in step 5, the Y scale is sqrt(C² + D²) =
667 * sqrt(tan²(θ)(sin⁴(φ) + sin²(φ)cos²(φ)) -
668 * 2 tan(θ)(sin³(φ)cos(φ) + sin(φ)cos³(φ)) +
669 * (sin²(φ)cos²(φ) + cos⁴(φ))) =
670 * sqrt(tan²(θ)sin²(φ) - 2 tan(θ)sin(φ)cos(φ) + cos²(φ)) =
671 * cos(φ) - tan(θ)sin(φ) (taking the negative of the obvious solution so
672 * we avoid flipping in step 6).
673 * After step 5, C = -sin(φ) and D = cos(φ), and the XY shear is
674 * (cos(φ)tan(θ) + sin(φ)) / (cos(φ) - tan(θ)sin(φ)) =
675 * (dividing both numerator and denominator by cos(φ))
676 * (tan(θ) + tan(φ)) / (1 - tan(θ)tan(φ)) = tan(θ + φ).
677 * (See http://en.wikipedia.org/wiki/List_of_trigonometric_identities .)
678 * Thus, in step 6, A * D - B * C = cos²(φ) + sin²(φ) = 1.
679 * In step 7, the rotation is thus φ.
681 * To check this result, we can multiply things back together:
683 * [ cos(φ) -sin(φ) ] [ 1 tan(θ + φ) ] [ sec(φ) 0 ]
684 * [ sin(φ) cos(φ) ] [ 0 1 ] [ 0 cos(φ) ]
686 * [ cos(φ) cos(φ)tan(θ + φ) - sin(φ) ] [ sec(φ) 0 ]
687 * [ sin(φ) sin(φ)tan(θ + φ) + cos(φ) ] [ 0 cos(φ) ]
689 * but since tan(θ + φ) = (tan(θ) + tan(φ)) / (1 - tan(θ)tan(φ)),
690 * cos(φ)tan(θ + φ) - sin(φ)
691 * = cos(φ)(tan(θ) + tan(φ)) - sin(φ) + sin(φ)tan(θ)tan(φ)
692 * = cos(φ)tan(θ) + sin(φ) - sin(φ) + sin(φ)tan(θ)tan(φ)
693 * = cos(φ)tan(θ) + sin(φ)tan(θ)tan(φ)
694 * = tan(θ) (cos(φ) + sin(φ)tan(φ))
695 * = tan(θ) sec(φ) (cos²(φ) + sin²(φ))
696 * = tan(θ) sec(φ)
697 * and
698 * sin(φ)tan(θ + φ) + cos(φ)
699 * = sin(φ)(tan(θ) + tan(φ)) + cos(φ) - cos(φ)tan(θ)tan(φ)
700 * = tan(θ) (sin(φ) - sin(φ)) + sin(φ)tan(φ) + cos(φ)
701 * = sec(φ) (sin²(φ) + cos²(φ))
702 * = sec(φ)
703 * so the above is:
704 * [ cos(φ) tan(θ) sec(φ) ] [ sec(φ) 0 ]
705 * [ sin(φ) sec(φ) ] [ 0 cos(φ) ]
707 * [ 1 tan(θ) ]
708 * [ tan(φ) 1 ]
712 * Decompose2DMatrix implements the above decomposition algorithm.
715 bool Decompose2DMatrix(const Matrix& aMatrix, Point3D& aScale,
716 ShearArray& aShear, gfxQuaternion& aRotate,
717 Point3D& aTranslate) {
718 float A = aMatrix._11, B = aMatrix._12, C = aMatrix._21, D = aMatrix._22;
719 if (A * D == B * C) {
720 // singular matrix
721 return false;
724 float scaleX = sqrt(A * A + B * B);
725 A /= scaleX;
726 B /= scaleX;
728 float XYshear = A * C + B * D;
729 C -= A * XYshear;
730 D -= B * XYshear;
732 float scaleY = sqrt(C * C + D * D);
733 C /= scaleY;
734 D /= scaleY;
735 XYshear /= scaleY;
737 float determinant = A * D - B * C;
738 // Determinant should now be 1 or -1.
739 if (0.99 > Abs(determinant) || Abs(determinant) > 1.01) {
740 return false;
743 if (determinant < 0) {
744 A = -A;
745 B = -B;
746 C = -C;
747 D = -D;
748 XYshear = -XYshear;
749 scaleX = -scaleX;
752 float rotate = atan2f(B, A);
753 aRotate = gfxQuaternion(0, 0, sin(rotate / 2), cos(rotate / 2));
754 aShear[ShearType::XY] = XYshear;
755 aScale.x = scaleX;
756 aScale.y = scaleY;
757 aTranslate.x = aMatrix._31;
758 aTranslate.y = aMatrix._32;
759 return true;
763 * Implementation of the unmatrix algorithm, specified by:
765 * http://dev.w3.org/csswg/css3-2d-transforms/#unmatrix
767 * This, in turn, refers to the unmatrix program in Graphics Gems,
768 * available from http://tog.acm.org/resources/GraphicsGems/ , and in
769 * particular as the file GraphicsGems/gemsii/unmatrix.c
770 * in http://tog.acm.org/resources/GraphicsGems/AllGems.tar.gz
772 bool Decompose3DMatrix(const Matrix4x4& aMatrix, Point3D& aScale,
773 ShearArray& aShear, gfxQuaternion& aRotate,
774 Point3D& aTranslate, Point4D& aPerspective) {
775 Matrix4x4 local = aMatrix;
777 if (local[3][3] == 0) {
778 return false;
781 /* Normalize the matrix */
782 local.Normalize();
785 * perspective is used to solve for perspective, but it also provides
786 * an easy way to test for singularity of the upper 3x3 component.
788 Matrix4x4 perspective = local;
789 Point4D empty(0, 0, 0, 1);
790 perspective.SetTransposedVector(3, empty);
792 if (perspective.Determinant() == 0.0) {
793 return false;
796 /* First, isolate perspective. */
797 if (local[0][3] != 0 || local[1][3] != 0 || local[2][3] != 0) {
798 /* aPerspective is the right hand side of the equation. */
799 aPerspective = local.TransposedVector(3);
802 * Solve the equation by inverting perspective and multiplying
803 * aPerspective by the inverse.
805 perspective.Invert();
806 aPerspective = perspective.TransposeTransform4D(aPerspective);
808 /* Clear the perspective partition */
809 local.SetTransposedVector(3, empty);
810 } else {
811 aPerspective = Point4D(0, 0, 0, 1);
814 /* Next take care of translation */
815 for (int i = 0; i < 3; i++) {
816 aTranslate[i] = local[3][i];
817 local[3][i] = 0;
820 /* Now get scale and shear. */
822 /* Compute X scale factor and normalize first row. */
823 aScale.x = local[0].Length();
824 local[0] /= aScale.x;
826 /* Compute XY shear factor and make 2nd local orthogonal to 1st. */
827 aShear[ShearType::XY] = local[0].DotProduct(local[1]);
828 local[1] -= local[0] * aShear[ShearType::XY];
830 /* Now, compute Y scale and normalize 2nd local. */
831 aScale.y = local[1].Length();
832 local[1] /= aScale.y;
833 aShear[ShearType::XY] /= aScale.y;
835 /* Compute XZ and YZ shears, make 3rd local orthogonal */
836 aShear[ShearType::XZ] = local[0].DotProduct(local[2]);
837 local[2] -= local[0] * aShear[ShearType::XZ];
838 aShear[ShearType::YZ] = local[1].DotProduct(local[2]);
839 local[2] -= local[1] * aShear[ShearType::YZ];
841 /* Next, get Z scale and normalize 3rd local. */
842 aScale.z = local[2].Length();
843 local[2] /= aScale.z;
845 aShear[ShearType::XZ] /= aScale.z;
846 aShear[ShearType::YZ] /= aScale.z;
849 * At this point, the matrix (in locals) is orthonormal.
850 * Check for a coordinate system flip. If the determinant
851 * is -1, then negate the matrix and the scaling factors.
853 if (local[0].DotProduct(local[1].CrossProduct(local[2])) < 0) {
854 aScale *= -1;
855 for (int i = 0; i < 3; i++) {
856 local[i] *= -1;
860 /* Now, get the rotations out */
861 aRotate = gfxQuaternion(local);
863 return true;
866 } // namespace nsStyleTransformMatrix