Bug 1847098 - Report library version from filename at crash r=gsvelto
[gecko.git] / toolkit / crashreporter / breakpad-client / linux / minidump_writer / linux_dumper.cc
blobef055833977abb804bd20716a1e1135000986bcc
1 // Copyright (c) 2010, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 // linux_dumper.cc: Implement google_breakpad::LinuxDumper.
31 // See linux_dumper.h for details.
33 // This code deals with the mechanics of getting information about a crashed
34 // process. Since this code may run in a compromised address space, the same
35 // rules apply as detailed at the top of minidump_writer.h: no libc calls and
36 // use the alternative allocator.
38 #include "linux/minidump_writer/linux_dumper.h"
40 #include <assert.h>
41 #include <elf.h>
42 #include <fcntl.h>
43 #include <limits.h>
44 #include <stddef.h>
45 #include <string.h>
47 #include "linux/minidump_writer/line_reader.h"
48 #include "common/linux/elfutils.h"
49 #include "common/linux/file_id.h"
50 #include "common/linux/linux_libc_support.h"
51 #include "common/linux/memory_mapped_file.h"
52 #include "common/linux/safe_readlink.h"
53 #include "google_breakpad/common/minidump_exception_linux.h"
54 #include "third_party/lss/linux_syscall_support.h"
56 #if defined(__ANDROID__)
58 // Android packed relocations definitions are not yet available from the
59 // NDK header files, so we have to provide them manually here.
60 #ifndef DT_LOOS
61 #define DT_LOOS 0x6000000d
62 #endif
63 #ifndef DT_ANDROID_REL
64 static const int DT_ANDROID_REL = DT_LOOS + 2;
65 #endif
66 #ifndef DT_ANDROID_RELA
67 static const int DT_ANDROID_RELA = DT_LOOS + 4;
68 #endif
70 #endif // __ANDROID __
72 static const char kMappedFileUnsafePrefix[] = "/dev/";
73 static const char kDeletedSuffix[] = " (deleted)";
74 static const char kReservedFlags[] = " ---p";
75 static const char kMozillaIpcPrefix[] = "org.mozilla.ipc.";
77 inline static bool IsMappedFileOpenUnsafe(
78 const google_breakpad::MappingInfo& mapping) {
79 // It is unsafe to attempt to open a mapped file that lives under /dev,
80 // because the semantics of the open may be driver-specific so we'd risk
81 // hanging the crash dumper. And a file in /dev/ almost certainly has no
82 // ELF file identifier anyways.
83 return my_strncmp(mapping.name,
84 kMappedFileUnsafePrefix,
85 sizeof(kMappedFileUnsafePrefix) - 1) == 0;
88 namespace google_breakpad {
90 namespace {
92 bool MappingContainsAddress(const MappingInfo& mapping, uintptr_t address) {
93 return mapping.system_mapping_info.start_addr <= address &&
94 address < mapping.system_mapping_info.end_addr;
97 #if defined(__CHROMEOS__)
99 // Recover memory mappings before writing dump on ChromeOS
101 // On Linux, breakpad relies on /proc/[pid]/maps to associate symbols from
102 // addresses. ChromeOS' hugepage implementation replaces some segments with
103 // anonymous private pages, which is a restriction of current implementation
104 // in Linux kernel at the time of writing. Thus, breakpad can no longer
105 // symbolize addresses from those text segments replaced with hugepages.
107 // This postprocess tries to recover the mappings. Because hugepages are always
108 // inserted in between some .text sections, it tries to infer the names and
109 // offsets of the segments, by looking at segments immediately precede and
110 // succeed them.
112 // For example, a text segment before hugepage optimization
113 // 02001000-03002000 r-xp /opt/google/chrome/chrome
115 // can be broken into
116 // 02001000-02200000 r-xp /opt/google/chrome/chrome
117 // 02200000-03000000 r-xp
118 // 03000000-03002000 r-xp /opt/google/chrome/chrome
120 // For more details, see:
121 // crbug.com/628040 ChromeOS' use of hugepages confuses crash symbolization
123 // Copied from CrOS' hugepage implementation, which is unlikely to change.
124 // The hugepage size is 2M.
125 const unsigned int kHpageShift = 21;
126 const size_t kHpageSize = (1 << kHpageShift);
127 const size_t kHpageMask = (~(kHpageSize - 1));
129 // Find and merge anonymous r-xp segments with surrounding named segments.
130 // There are two cases:
132 // Case 1: curr, next
133 // curr is anonymous
134 // curr is r-xp
135 // curr.size >= 2M
136 // curr.size is a multiple of 2M.
137 // next is backed by some file.
138 // curr and next are contiguous.
139 // offset(next) == sizeof(curr)
140 void TryRecoverMappings(MappingInfo *curr, MappingInfo *next) {
141 // Merged segments are marked with size = 0.
142 if (curr->size == 0 || next->size == 0)
143 return;
145 if (curr->size >= kHpageSize &&
146 curr->exec &&
147 (curr->size & kHpageMask) == curr->size &&
148 (curr->start_addr & kHpageMask) == curr->start_addr &&
149 curr->name[0] == '\0' &&
150 next->name[0] != '\0' &&
151 curr->start_addr + curr->size == next->start_addr &&
152 curr->size == next->offset) {
154 // matched
155 my_strlcpy(curr->name, next->name, NAME_MAX);
156 if (next->exec) {
157 // (curr, next)
158 curr->size += next->size;
159 next->size = 0;
164 // Case 2: prev, curr, next
165 // curr is anonymous
166 // curr is r-xp
167 // curr.size >= 2M
168 // curr.size is a multiple of 2M.
169 // next and prev are backed by the same file.
170 // prev, curr and next are contiguous.
171 // offset(next) == offset(prev) + sizeof(prev) + sizeof(curr)
172 void TryRecoverMappings(MappingInfo *prev, MappingInfo *curr,
173 MappingInfo *next) {
174 // Merged segments are marked with size = 0.
175 if (prev->size == 0 || curr->size == 0 || next->size == 0)
176 return;
178 if (curr->size >= kHpageSize &&
179 curr->exec &&
180 (curr->size & kHpageMask) == curr->size &&
181 (curr->start_addr & kHpageMask) == curr->start_addr &&
182 curr->name[0] == '\0' &&
183 next->name[0] != '\0' &&
184 curr->start_addr + curr->size == next->start_addr &&
185 prev->start_addr + prev->size == curr->start_addr &&
186 my_strncmp(prev->name, next->name, NAME_MAX) == 0 &&
187 next->offset == prev->offset + prev->size + curr->size) {
189 // matched
190 my_strlcpy(curr->name, prev->name, NAME_MAX);
191 if (prev->exec) {
192 curr->offset = prev->offset;
193 curr->start_addr = prev->start_addr;
194 if (next->exec) {
195 // (prev, curr, next)
196 curr->size += prev->size + next->size;
197 prev->size = 0;
198 next->size = 0;
199 } else {
200 // (prev, curr), next
201 curr->size += prev->size;
202 prev->size = 0;
204 } else {
205 curr->offset = prev->offset + prev->size;
206 if (next->exec) {
207 // prev, (curr, next)
208 curr->size += next->size;
209 next->size = 0;
210 } else {
211 // prev, curr, next
217 // mappings_ is sorted excepted for the first entry.
218 // This function tries to merge segemnts into the first entry,
219 // then check for other sorted entries.
220 // See LinuxDumper::EnumerateMappings().
221 void CrOSPostProcessMappings(wasteful_vector<MappingInfo*>& mappings) {
222 // Find the candidate "next" to first segment, which is the only one that
223 // could be out-of-order.
224 size_t l = 1;
225 size_t r = mappings.size();
226 size_t next = mappings.size();
227 while (l < r) {
228 int m = (l + r) / 2;
229 if (mappings[m]->start_addr > mappings[0]->start_addr)
230 r = next = m;
231 else
232 l = m + 1;
235 // Shows the range that contains the entry point is
236 // [first_start_addr, first_end_addr)
237 size_t first_start_addr = mappings[0]->start_addr;
238 size_t first_end_addr = mappings[0]->start_addr + mappings[0]->size;
240 // Put the out-of-order segment in order.
241 std::rotate(mappings.begin(), mappings.begin() + 1, mappings.begin() + next);
243 // Iterate through normal, sorted cases.
244 // Normal case 1.
245 for (size_t i = 0; i < mappings.size() - 1; i++)
246 TryRecoverMappings(mappings[i], mappings[i + 1]);
248 // Normal case 2.
249 for (size_t i = 0; i < mappings.size() - 2; i++)
250 TryRecoverMappings(mappings[i], mappings[i + 1], mappings[i + 2]);
252 // Collect merged (size == 0) segments.
253 size_t f, e;
254 for (f = e = 0; e < mappings.size(); e++)
255 if (mappings[e]->size > 0)
256 mappings[f++] = mappings[e];
257 mappings.resize(f);
259 // The entry point is in the first mapping. We want to find the location
260 // of the entry point after merging segment. To do this, we want to find
261 // the mapping that covers the first mapping from the original mapping list.
262 // If the mapping is not in the beginning, we move it to the begining via
263 // a right rotate by using reverse iterators.
264 for (l = 0; l < mappings.size(); l++) {
265 if (mappings[l]->start_addr <= first_start_addr
266 && (mappings[l]->start_addr + mappings[l]->size >= first_end_addr))
267 break;
269 if (l > 0) {
270 r = mappings.size();
271 std::rotate(mappings.rbegin() + r - l - 1, mappings.rbegin() + r - l,
272 mappings.rend());
276 #endif // __CHROMEOS__
278 } // namespace
280 // All interesting auvx entry types are below AT_SYSINFO_EHDR
281 #define AT_MAX AT_SYSINFO_EHDR
283 LinuxDumper::LinuxDumper(pid_t pid, const char* root_prefix)
284 : pid_(pid),
285 root_prefix_(root_prefix),
286 crash_address_(0),
287 crash_signal_(0),
288 crash_signal_code_(0),
289 crash_thread_(pid),
290 threads_(&allocator_, 8),
291 mappings_(&allocator_),
292 auxv_(&allocator_, AT_MAX + 1) {
293 assert(root_prefix_ && my_strlen(root_prefix_) < PATH_MAX);
294 // The passed-in size to the constructor (above) is only a hint.
295 // Must call .resize() to do actual initialization of the elements.
296 auxv_.resize(AT_MAX + 1);
299 LinuxDumper::~LinuxDumper() {
302 bool LinuxDumper::Init() {
303 return ReadAuxv() && EnumerateThreads() && EnumerateMappings();
306 bool LinuxDumper::LateInit() {
307 #if defined(__ANDROID__)
308 LatePostprocessMappings();
309 #endif
311 #if defined(__CHROMEOS__)
312 CrOSPostProcessMappings(mappings_);
313 #endif
315 return true;
318 bool
319 LinuxDumper::ElfFileIdentifierForMapping(const MappingInfo& mapping,
320 bool member,
321 unsigned int mapping_id,
322 wasteful_vector<uint8_t>& identifier) {
323 assert(!member || mapping_id < mappings_.size());
324 if (IsMappedFileOpenUnsafe(mapping))
325 return false;
327 // Special-case linux-gate because it's not a real file.
328 if (my_strcmp(mapping.name, kLinuxGateLibraryName) == 0) {
329 void* linux_gate = NULL;
330 if (pid_ == sys_getpid()) {
331 linux_gate = reinterpret_cast<void*>(mapping.start_addr);
332 } else {
333 linux_gate = allocator_.Alloc(mapping.size);
334 CopyFromProcess(linux_gate, pid_,
335 reinterpret_cast<const void*>(mapping.start_addr),
336 mapping.size);
338 return FileID::ElfFileIdentifierFromMappedFile(linux_gate, identifier);
341 char filename[PATH_MAX];
342 if (!GetMappingAbsolutePath(mapping, filename))
343 return false;
344 bool filename_modified = HandleDeletedFileInMapping(filename);
346 MemoryMappedFile mapped_file(filename, mapping.offset);
347 if (!mapped_file.data() || mapped_file.size() < SELFMAG)
348 return false;
350 bool success =
351 FileID::ElfFileIdentifierFromMappedFile(mapped_file.data(), identifier);
352 if (success && member && filename_modified) {
353 mappings_[mapping_id]->name[my_strlen(mapping.name) -
354 sizeof(kDeletedSuffix) + 1] = '\0';
357 return success;
360 void LinuxDumper::SetCrashInfoFromSigInfo(const siginfo_t& siginfo) {
361 set_crash_address(reinterpret_cast<uintptr_t>(siginfo.si_addr));
362 set_crash_signal(siginfo.si_signo);
363 set_crash_signal_code(siginfo.si_code);
366 const char* LinuxDumper::GetCrashSignalString() const {
367 switch (static_cast<unsigned int>(crash_signal_)) {
368 case MD_EXCEPTION_CODE_LIN_SIGHUP:
369 return "SIGHUP";
370 case MD_EXCEPTION_CODE_LIN_SIGINT:
371 return "SIGINT";
372 case MD_EXCEPTION_CODE_LIN_SIGQUIT:
373 return "SIGQUIT";
374 case MD_EXCEPTION_CODE_LIN_SIGILL:
375 return "SIGILL";
376 case MD_EXCEPTION_CODE_LIN_SIGTRAP:
377 return "SIGTRAP";
378 case MD_EXCEPTION_CODE_LIN_SIGABRT:
379 return "SIGABRT";
380 case MD_EXCEPTION_CODE_LIN_SIGBUS:
381 return "SIGBUS";
382 case MD_EXCEPTION_CODE_LIN_SIGFPE:
383 return "SIGFPE";
384 case MD_EXCEPTION_CODE_LIN_SIGKILL:
385 return "SIGKILL";
386 case MD_EXCEPTION_CODE_LIN_SIGUSR1:
387 return "SIGUSR1";
388 case MD_EXCEPTION_CODE_LIN_SIGSEGV:
389 return "SIGSEGV";
390 case MD_EXCEPTION_CODE_LIN_SIGUSR2:
391 return "SIGUSR2";
392 case MD_EXCEPTION_CODE_LIN_SIGPIPE:
393 return "SIGPIPE";
394 case MD_EXCEPTION_CODE_LIN_SIGALRM:
395 return "SIGALRM";
396 case MD_EXCEPTION_CODE_LIN_SIGTERM:
397 return "SIGTERM";
398 case MD_EXCEPTION_CODE_LIN_SIGSTKFLT:
399 return "SIGSTKFLT";
400 case MD_EXCEPTION_CODE_LIN_SIGCHLD:
401 return "SIGCHLD";
402 case MD_EXCEPTION_CODE_LIN_SIGCONT:
403 return "SIGCONT";
404 case MD_EXCEPTION_CODE_LIN_SIGSTOP:
405 return "SIGSTOP";
406 case MD_EXCEPTION_CODE_LIN_SIGTSTP:
407 return "SIGTSTP";
408 case MD_EXCEPTION_CODE_LIN_SIGTTIN:
409 return "SIGTTIN";
410 case MD_EXCEPTION_CODE_LIN_SIGTTOU:
411 return "SIGTTOU";
412 case MD_EXCEPTION_CODE_LIN_SIGURG:
413 return "SIGURG";
414 case MD_EXCEPTION_CODE_LIN_SIGXCPU:
415 return "SIGXCPU";
416 case MD_EXCEPTION_CODE_LIN_SIGXFSZ:
417 return "SIGXFSZ";
418 case MD_EXCEPTION_CODE_LIN_SIGVTALRM:
419 return "SIGVTALRM";
420 case MD_EXCEPTION_CODE_LIN_SIGPROF:
421 return "SIGPROF";
422 case MD_EXCEPTION_CODE_LIN_SIGWINCH:
423 return "SIGWINCH";
424 case MD_EXCEPTION_CODE_LIN_SIGIO:
425 return "SIGIO";
426 case MD_EXCEPTION_CODE_LIN_SIGPWR:
427 return "SIGPWR";
428 case MD_EXCEPTION_CODE_LIN_SIGSYS:
429 return "SIGSYS";
430 case MD_EXCEPTION_CODE_LIN_DUMP_REQUESTED:
431 return "DUMP_REQUESTED";
432 default:
433 return "UNKNOWN";
437 bool LinuxDumper::GetMappingAbsolutePath(const MappingInfo& mapping,
438 char path[PATH_MAX]) const {
439 return my_strlcpy(path, root_prefix_, PATH_MAX) < PATH_MAX &&
440 my_strlcat(path, mapping.name, PATH_MAX) < PATH_MAX;
443 namespace {
444 // Find the shared object name (SONAME) by examining the ELF information
445 // for |mapping|. If the SONAME is found copy it into the passed buffer
446 // |soname| and return true. The size of the buffer is |soname_size|.
447 // The SONAME will be truncated if it is too long to fit in the buffer.
448 bool ElfFileSoName(const LinuxDumper& dumper,
449 const MappingInfo& mapping, char* soname, size_t soname_size) {
450 if (IsMappedFileOpenUnsafe(mapping)) {
451 // Not safe
452 return false;
455 char filename[PATH_MAX];
456 if (!dumper.GetMappingAbsolutePath(mapping, filename))
457 return false;
459 MemoryMappedFile mapped_file(filename, mapping.offset);
460 if (!mapped_file.data() || mapped_file.size() < SELFMAG) {
461 // mmap failed
462 return false;
465 return ElfFileSoNameFromMappedFile(mapped_file.data(), soname, soname_size);
468 } // namespace
471 void LinuxDumper::GetMappingEffectiveNamePathAndVersion(const MappingInfo& mapping,
472 char* file_path,
473 size_t file_path_size,
474 char* file_name,
475 size_t file_name_size,
476 uint32_t* version) {
477 my_strlcpy(file_path, mapping.name, file_path_size);
479 // Tools such as minidump_stackwalk use the name of the module to look up
480 // symbols produced by dump_syms. dump_syms will prefer to use a module's
481 // DT_SONAME as the module name, if one exists, and will fall back to the
482 // filesystem name of the module.
484 // Just use the filesystem name if no SONAME is present.
485 if (!ElfFileSoName(*this, mapping, file_name, file_name_size)) {
486 // file_path := /path/to/libname.so
487 // file_name := libname.so
488 const char* basename = my_strrchr(file_path, '/');
489 basename = basename == NULL ? file_path : (basename + 1);
490 my_strlcpy(file_name, basename, file_name_size);
491 if (version) {
492 ElfFileSoVersion(mapping.name, version);
494 return;
497 if (mapping.exec && mapping.offset != 0) {
498 // If an executable is mapped from a non-zero offset, this is likely because
499 // the executable was loaded directly from inside an archive file (e.g., an
500 // apk on Android).
501 // In this case, we append the file_name to the mapped archive path:
502 // file_name := libname.so
503 // file_path := /path/to/ARCHIVE.APK/libname.so
504 if (my_strlen(file_path) + 1 + my_strlen(file_name) < file_path_size) {
505 my_strlcat(file_path, "/", file_path_size);
506 my_strlcat(file_path, file_name, file_path_size);
508 } else {
509 // Otherwise, replace the basename with the SONAME.
510 char* basename = const_cast<char*>(my_strrchr(file_path, '/'));
511 if (basename) {
512 my_strlcpy(basename + 1, file_name,
513 file_path_size - my_strlen(file_path) +
514 my_strlen(basename + 1));
515 } else {
516 my_strlcpy(file_path, file_name, file_path_size);
520 if (version) {
521 ElfFileSoVersion(mapping.name, version);
525 bool LinuxDumper::ReadAuxv() {
526 char auxv_path[NAME_MAX];
527 if (!BuildProcPath(auxv_path, pid_, "auxv")) {
528 return false;
531 int fd = sys_open(auxv_path, O_RDONLY, 0);
532 if (fd < 0) {
533 return false;
536 elf_aux_entry one_aux_entry;
537 bool res = false;
538 while (sys_read(fd,
539 &one_aux_entry,
540 sizeof(elf_aux_entry)) == sizeof(elf_aux_entry) &&
541 one_aux_entry.a_type != AT_NULL) {
542 if (one_aux_entry.a_type <= AT_MAX) {
543 auxv_[one_aux_entry.a_type] = one_aux_entry.a_un.a_val;
544 res = true;
547 sys_close(fd);
548 return res;
551 bool LinuxDumper::IsIPCSharedMemorySegment(const char* name) {
552 if (my_strstr(name, kMozillaIpcPrefix) &&
553 my_strstr(name, kDeletedSuffix)) {
554 return true;
557 return false;
560 bool LinuxDumper::EnumerateMappings() {
561 char maps_path[NAME_MAX];
562 if (!BuildProcPath(maps_path, pid_, "maps"))
563 return false;
565 // linux_gate_loc is the beginning of the kernel's mapping of
566 // linux-gate.so in the process. It doesn't actually show up in the
567 // maps list as a filename, but it can be found using the AT_SYSINFO_EHDR
568 // aux vector entry, which gives the information necessary to special
569 // case its entry when creating the list of mappings.
570 // See http://www.trilithium.com/johan/2005/08/linux-gate/ for more
571 // information.
572 const void* linux_gate_loc =
573 reinterpret_cast<void *>(auxv_[AT_SYSINFO_EHDR]);
574 // Although the initial executable is usually the first mapping, it's not
575 // guaranteed (see http://crosbug.com/25355); therefore, try to use the
576 // actual entry point to find the mapping.
577 const void* entry_point_loc = reinterpret_cast<void *>(auxv_[AT_ENTRY]);
579 const int fd = sys_open(maps_path, O_RDONLY, 0);
580 if (fd < 0)
581 return false;
582 LineReader* const line_reader = new(allocator_) LineReader(fd);
584 const char* line;
585 unsigned line_len;
586 while (line_reader->GetNextLine(&line, &line_len)) {
587 uintptr_t start_addr, end_addr, offset;
589 const char* i1 = my_read_hex_ptr(&start_addr, line);
590 if (*i1 == '-') {
591 const char* i2 = my_read_hex_ptr(&end_addr, i1 + 1);
592 if (*i2 == ' ') {
593 bool exec = (*(i2 + 3) == 'x');
594 const char* i3 = my_read_hex_ptr(&offset, i2 + 6 /* skip ' rwxp ' */);
595 if (*i3 == ' ') {
596 const char* name = NULL;
597 // Only copy name if the name is a valid path name, or if
598 // it's the VDSO image.
599 if (((name = my_strchr(line, '/')) == NULL) &&
600 linux_gate_loc &&
601 reinterpret_cast<void*>(start_addr) == linux_gate_loc) {
602 name = kLinuxGateLibraryName;
603 offset = 0;
605 // Skip shared memory segments used for IPC
606 if (name && IsIPCSharedMemorySegment(name)) {
607 line_reader->PopLine(line_len);
608 continue;
610 // Merge adjacent mappings into one module, assuming they're a single
611 // library mapped by the dynamic linker.
612 if (name && !mappings_.empty()) {
613 MappingInfo* module = mappings_.back();
614 if ((start_addr == module->start_addr + module->size) &&
615 (my_strlen(name) == my_strlen(module->name)) &&
616 (my_strncmp(name, module->name, my_strlen(name)) == 0)) {
617 module->system_mapping_info.end_addr = end_addr;
618 module->size = end_addr - module->start_addr;
619 module->exec |= exec;
620 line_reader->PopLine(line_len);
621 continue;
624 // Also merge mappings that result from address ranges that the
625 // linker reserved but which a loaded library did not use. These
626 // appear as an anonymous private mapping with no access flags set
627 // and which directly follow an executable mapping.
628 if (!name && !mappings_.empty()) {
629 MappingInfo* module = mappings_.back();
630 uintptr_t module_end_addr = module->start_addr + module->size;
631 if ((start_addr == module_end_addr) &&
632 module->exec &&
633 module->name[0] == '/' &&
634 ((offset == 0) || (offset == module_end_addr)) &&
635 my_strncmp(i2, kReservedFlags,
636 sizeof(kReservedFlags) - 1) == 0) {
637 module->size = end_addr - module->start_addr;
638 line_reader->PopLine(line_len);
639 continue;
642 MappingInfo* const module = new(allocator_) MappingInfo;
643 mappings_.push_back(module);
644 my_memset(module, 0, sizeof(MappingInfo));
645 module->system_mapping_info.start_addr = start_addr;
646 module->system_mapping_info.end_addr = end_addr;
647 module->start_addr = start_addr;
648 module->size = end_addr - start_addr;
649 module->offset = offset;
650 module->exec = exec;
651 if (name != NULL) {
652 const unsigned l = my_strlen(name);
653 if (l < sizeof(module->name))
654 my_memcpy(module->name, name, l);
659 line_reader->PopLine(line_len);
662 if (entry_point_loc) {
663 for (size_t i = 0; i < mappings_.size(); ++i) {
664 MappingInfo* module = mappings_[i];
666 // If this module contains the entry-point, and it's not already the first
667 // one, then we need to make it be first. This is because the minidump
668 // format assumes the first module is the one that corresponds to the main
669 // executable (as codified in
670 // processor/minidump.cc:MinidumpModuleList::GetMainModule()).
671 if ((entry_point_loc >= reinterpret_cast<void*>(module->start_addr)) &&
672 (entry_point_loc <
673 reinterpret_cast<void*>(module->start_addr + module->size))) {
674 for (size_t j = i; j > 0; j--)
675 mappings_[j] = mappings_[j - 1];
676 mappings_[0] = module;
677 break;
682 sys_close(fd);
684 return !mappings_.empty();
687 #if defined(__ANDROID__)
689 bool LinuxDumper::GetLoadedElfHeader(uintptr_t start_addr, ElfW(Ehdr)* ehdr) {
690 CopyFromProcess(ehdr, pid_,
691 reinterpret_cast<const void*>(start_addr),
692 sizeof(*ehdr));
693 return my_memcmp(&ehdr->e_ident, ELFMAG, SELFMAG) == 0;
696 void LinuxDumper::ParseLoadedElfProgramHeaders(ElfW(Ehdr)* ehdr,
697 uintptr_t start_addr,
698 uintptr_t* min_vaddr_ptr,
699 uintptr_t* dyn_vaddr_ptr,
700 size_t* dyn_count_ptr) {
701 uintptr_t phdr_addr = start_addr + ehdr->e_phoff;
703 const uintptr_t max_addr = UINTPTR_MAX;
704 uintptr_t min_vaddr = max_addr;
705 uintptr_t dyn_vaddr = 0;
706 size_t dyn_count = 0;
708 for (size_t i = 0; i < ehdr->e_phnum; ++i) {
709 ElfW(Phdr) phdr;
710 CopyFromProcess(&phdr, pid_,
711 reinterpret_cast<const void*>(phdr_addr),
712 sizeof(phdr));
713 if (phdr.p_type == PT_LOAD && phdr.p_vaddr < min_vaddr) {
714 min_vaddr = phdr.p_vaddr;
716 if (phdr.p_type == PT_DYNAMIC) {
717 dyn_vaddr = phdr.p_vaddr;
718 dyn_count = phdr.p_memsz / sizeof(ElfW(Dyn));
720 phdr_addr += sizeof(phdr);
723 *min_vaddr_ptr = min_vaddr;
724 *dyn_vaddr_ptr = dyn_vaddr;
725 *dyn_count_ptr = dyn_count;
728 bool LinuxDumper::HasAndroidPackedRelocations(uintptr_t load_bias,
729 uintptr_t dyn_vaddr,
730 size_t dyn_count) {
731 uintptr_t dyn_addr = load_bias + dyn_vaddr;
732 for (size_t i = 0; i < dyn_count; ++i) {
733 ElfW(Dyn) dyn;
734 CopyFromProcess(&dyn, pid_,
735 reinterpret_cast<const void*>(dyn_addr),
736 sizeof(dyn));
737 if (dyn.d_tag == DT_ANDROID_REL || dyn.d_tag == DT_ANDROID_RELA) {
738 return true;
740 dyn_addr += sizeof(dyn);
742 return false;
745 uintptr_t LinuxDumper::GetEffectiveLoadBias(ElfW(Ehdr)* ehdr,
746 uintptr_t start_addr) {
747 uintptr_t min_vaddr = 0;
748 uintptr_t dyn_vaddr = 0;
749 size_t dyn_count = 0;
750 ParseLoadedElfProgramHeaders(ehdr, start_addr,
751 &min_vaddr, &dyn_vaddr, &dyn_count);
752 // If |min_vaddr| is non-zero and we find Android packed relocation tags,
753 // return the effective load bias.
754 if (min_vaddr != 0) {
755 const uintptr_t load_bias = start_addr - min_vaddr;
756 if (HasAndroidPackedRelocations(load_bias, dyn_vaddr, dyn_count)) {
757 return load_bias;
760 // Either |min_vaddr| is zero, or it is non-zero but we did not find the
761 // expected Android packed relocations tags.
762 return start_addr;
765 void LinuxDumper::LatePostprocessMappings() {
766 for (size_t i = 0; i < mappings_.size(); ++i) {
767 // Only consider exec mappings that indicate a file path was mapped, and
768 // where the ELF header indicates a mapped shared library.
769 MappingInfo* mapping = mappings_[i];
770 if (!(mapping->exec && mapping->name[0] == '/')) {
771 continue;
773 ElfW(Ehdr) ehdr;
774 if (!GetLoadedElfHeader(mapping->start_addr, &ehdr)) {
775 continue;
777 if (ehdr.e_type == ET_DYN) {
778 // Compute the effective load bias for this mapped library, and update
779 // the mapping to hold that rather than |start_addr|, at the same time
780 // adjusting |size| to account for the change in |start_addr|. Where
781 // the library does not contain Android packed relocations,
782 // GetEffectiveLoadBias() returns |start_addr| and the mapping entry
783 // is not changed.
784 const uintptr_t load_bias = GetEffectiveLoadBias(&ehdr,
785 mapping->start_addr);
786 mapping->size += mapping->start_addr - load_bias;
787 mapping->start_addr = load_bias;
792 #endif // __ANDROID__
794 // Get information about the stack, given the stack pointer. We don't try to
795 // walk the stack since we might not have all the information needed to do
796 // unwind. So we just grab, up to, 32k of stack.
797 bool LinuxDumper::GetStackInfo(const void** stack, size_t* stack_len,
798 uintptr_t int_stack_pointer) {
799 // Move the stack pointer to the bottom of the page that it's in.
800 const uintptr_t page_size = getpagesize();
802 uint8_t* const stack_pointer =
803 reinterpret_cast<uint8_t*>(int_stack_pointer & ~(page_size - 1));
805 // The number of bytes of stack which we try to capture.
806 static const ptrdiff_t kStackToCapture = 32 * 1024;
808 const MappingInfo* mapping = FindMapping(stack_pointer);
809 if (!mapping)
810 return false;
811 const ptrdiff_t offset = stack_pointer -
812 reinterpret_cast<uint8_t*>(mapping->start_addr);
813 const ptrdiff_t distance_to_end =
814 static_cast<ptrdiff_t>(mapping->size) - offset;
815 *stack_len = distance_to_end > kStackToCapture ?
816 kStackToCapture : distance_to_end;
817 *stack = stack_pointer;
818 return true;
821 void LinuxDumper::SanitizeStackCopy(uint8_t* stack_copy, size_t stack_len,
822 uintptr_t stack_pointer,
823 uintptr_t sp_offset) {
824 // We optimize the search for containing mappings in three ways:
825 // 1) We expect that pointers into the stack mapping will be common, so
826 // we cache that address range.
827 // 2) The last referenced mapping is a reasonable predictor for the next
828 // referenced mapping, so we test that first.
829 // 3) We precompute a bitfield based upon bits 32:32-n of the start and
830 // stop addresses, and use that to short circuit any values that can
831 // not be pointers. (n=11)
832 const uintptr_t defaced =
833 #if defined(__LP64__)
834 0x0defaced0defaced;
835 #else
836 0x0defaced;
837 #endif
838 // the bitfield length is 2^test_bits long.
839 const unsigned int test_bits = 11;
840 // byte length of the corresponding array.
841 const unsigned int array_size = 1 << (test_bits - 3);
842 const unsigned int array_mask = array_size - 1;
843 // The amount to right shift pointers by. This captures the top bits
844 // on 32 bit architectures. On 64 bit architectures this would be
845 // uninformative so we take the same range of bits.
846 const unsigned int shift = 32 - 11;
847 const MappingInfo* last_hit_mapping = nullptr;
848 const MappingInfo* hit_mapping = nullptr;
849 const MappingInfo* stack_mapping = FindMappingNoBias(stack_pointer);
850 // The magnitude below which integers are considered to be to be
851 // 'small', and not constitute a PII risk. These are included to
852 // avoid eliding useful register values.
853 const ssize_t small_int_magnitude = 4096;
855 char could_hit_mapping[array_size];
856 my_memset(could_hit_mapping, 0, array_size);
858 // Initialize the bitfield such that if the (pointer >> shift)'th
859 // bit, modulo the bitfield size, is not set then there does not
860 // exist a mapping in mappings_ that would contain that pointer.
861 for (size_t i = 0; i < mappings_.size(); ++i) {
862 if (!mappings_[i]->exec) continue;
863 // For each mapping, work out the (unmodulo'ed) range of bits to
864 // set.
865 uintptr_t start = mappings_[i]->start_addr;
866 uintptr_t end = start + mappings_[i]->size;
867 start >>= shift;
868 end >>= shift;
869 for (size_t bit = start; bit <= end; ++bit) {
870 // Set each bit in the range, applying the modulus.
871 could_hit_mapping[(bit >> 3) & array_mask] |= 1 << (bit & 7);
875 // Zero memory that is below the current stack pointer.
876 const uintptr_t offset =
877 (sp_offset + sizeof(uintptr_t) - 1) & ~(sizeof(uintptr_t) - 1);
878 if (offset) {
879 my_memset(stack_copy, 0, offset);
882 // Apply sanitization to each complete pointer-aligned word in the
883 // stack.
884 uint8_t* sp;
885 for (sp = stack_copy + offset;
886 sp <= stack_copy + stack_len - sizeof(uintptr_t);
887 sp += sizeof(uintptr_t)) {
888 uintptr_t addr;
889 my_memcpy(&addr, sp, sizeof(uintptr_t));
890 if (static_cast<intptr_t>(addr) <= small_int_magnitude &&
891 static_cast<intptr_t>(addr) >= -small_int_magnitude) {
892 continue;
894 if (stack_mapping && MappingContainsAddress(*stack_mapping, addr)) {
895 continue;
897 if (last_hit_mapping && MappingContainsAddress(*last_hit_mapping, addr)) {
898 continue;
900 uintptr_t test = addr >> shift;
901 if (could_hit_mapping[(test >> 3) & array_mask] & (1 << (test & 7)) &&
902 (hit_mapping = FindMappingNoBias(addr)) != nullptr &&
903 hit_mapping->exec) {
904 last_hit_mapping = hit_mapping;
905 continue;
907 my_memcpy(sp, &defaced, sizeof(uintptr_t));
909 // Zero any partial word at the top of the stack, if alignment is
910 // such that that is required.
911 if (sp < stack_copy + stack_len) {
912 my_memset(sp, 0, stack_copy + stack_len - sp);
916 bool LinuxDumper::StackHasPointerToMapping(const uint8_t* stack_copy,
917 size_t stack_len,
918 uintptr_t sp_offset,
919 const MappingInfo& mapping) {
920 // Loop over all stack words that would have been on the stack in
921 // the target process (i.e. are word aligned, and at addresses >=
922 // the stack pointer). Regardless of the alignment of |stack_copy|,
923 // the memory starting at |stack_copy| + |offset| represents an
924 // aligned word in the target process.
925 const uintptr_t low_addr = mapping.system_mapping_info.start_addr;
926 const uintptr_t high_addr = mapping.system_mapping_info.end_addr;
927 const uintptr_t offset =
928 (sp_offset + sizeof(uintptr_t) - 1) & ~(sizeof(uintptr_t) - 1);
930 for (const uint8_t* sp = stack_copy + offset;
931 sp <= stack_copy + stack_len - sizeof(uintptr_t);
932 sp += sizeof(uintptr_t)) {
933 uintptr_t addr;
934 my_memcpy(&addr, sp, sizeof(uintptr_t));
935 if (low_addr <= addr && addr <= high_addr)
936 return true;
938 return false;
941 // Find the mapping which the given memory address falls in.
942 const MappingInfo* LinuxDumper::FindMapping(const void* address) const {
943 const uintptr_t addr = (uintptr_t) address;
945 for (size_t i = 0; i < mappings_.size(); ++i) {
946 const uintptr_t start = static_cast<uintptr_t>(mappings_[i]->start_addr);
947 if (addr >= start && addr - start < mappings_[i]->size)
948 return mappings_[i];
951 return NULL;
954 // Find the mapping which the given memory address falls in. Uses the
955 // unadjusted mapping address range from the kernel, rather than the
956 // biased range.
957 const MappingInfo* LinuxDumper::FindMappingNoBias(uintptr_t address) const {
958 for (size_t i = 0; i < mappings_.size(); ++i) {
959 if (address >= mappings_[i]->system_mapping_info.start_addr &&
960 address < mappings_[i]->system_mapping_info.end_addr) {
961 return mappings_[i];
964 return NULL;
967 bool LinuxDumper::HandleDeletedFileInMapping(char* path) const {
968 static const size_t kDeletedSuffixLen = sizeof(kDeletedSuffix) - 1;
970 // Check for ' (deleted)' in |path|.
971 // |path| has to be at least as long as "/x (deleted)".
972 const size_t path_len = my_strlen(path);
973 if (path_len < kDeletedSuffixLen + 2)
974 return false;
975 if (my_strncmp(path + path_len - kDeletedSuffixLen, kDeletedSuffix,
976 kDeletedSuffixLen) != 0) {
977 return false;
980 // Check |path| against the /proc/pid/exe 'symlink'.
981 char exe_link[NAME_MAX];
982 if (!BuildProcPath(exe_link, pid_, "exe"))
983 return false;
984 MappingInfo new_mapping = {0};
985 if (!SafeReadLink(exe_link, new_mapping.name))
986 return false;
987 char new_path[PATH_MAX];
988 if (!GetMappingAbsolutePath(new_mapping, new_path))
989 return false;
990 if (my_strcmp(path, new_path) != 0)
991 return false;
993 // Check to see if someone actually named their executable 'foo (deleted)'.
994 struct kernel_stat exe_stat;
995 struct kernel_stat new_path_stat;
996 if (sys_stat(exe_link, &exe_stat) == 0 &&
997 sys_stat(new_path, &new_path_stat) == 0 &&
998 exe_stat.st_dev == new_path_stat.st_dev &&
999 exe_stat.st_ino == new_path_stat.st_ino) {
1000 return false;
1003 my_memcpy(path, exe_link, NAME_MAX);
1004 return true;
1007 } // namespace google_breakpad