1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 #include "fixed-dtoa.h"
33 namespace double_conversion
{
35 // Represents a 128bit type. This class should be replaced by a native type on
36 // platforms that support 128bit integers.
39 UInt128() : high_bits_(0), low_bits_(0) { }
40 UInt128(uint64_t high
, uint64_t low
) : high_bits_(high
), low_bits_(low
) { }
42 void Multiply(uint32_t multiplicand
) {
45 accumulator
= (low_bits_
& kMask32
) * multiplicand
;
46 uint32_t part
= static_cast<uint32_t>(accumulator
& kMask32
);
48 accumulator
= accumulator
+ (low_bits_
>> 32) * multiplicand
;
49 low_bits_
= (accumulator
<< 32) + part
;
51 accumulator
= accumulator
+ (high_bits_
& kMask32
) * multiplicand
;
52 part
= static_cast<uint32_t>(accumulator
& kMask32
);
54 accumulator
= accumulator
+ (high_bits_
>> 32) * multiplicand
;
55 high_bits_
= (accumulator
<< 32) + part
;
56 ASSERT((accumulator
>> 32) == 0);
59 void Shift(int shift_amount
) {
60 ASSERT(-64 <= shift_amount
&& shift_amount
<= 64);
61 if (shift_amount
== 0) {
63 } else if (shift_amount
== -64) {
64 high_bits_
= low_bits_
;
66 } else if (shift_amount
== 64) {
67 low_bits_
= high_bits_
;
69 } else if (shift_amount
<= 0) {
70 high_bits_
<<= -shift_amount
;
71 high_bits_
+= low_bits_
>> (64 + shift_amount
);
72 low_bits_
<<= -shift_amount
;
74 low_bits_
>>= shift_amount
;
75 low_bits_
+= high_bits_
<< (64 - shift_amount
);
76 high_bits_
>>= shift_amount
;
80 // Modifies *this to *this MOD (2^power).
81 // Returns *this DIV (2^power).
82 int DivModPowerOf2(int power
) {
84 int result
= static_cast<int>(high_bits_
>> (power
- 64));
85 high_bits_
-= static_cast<uint64_t>(result
) << (power
- 64);
88 uint64_t part_low
= low_bits_
>> power
;
89 uint64_t part_high
= high_bits_
<< (64 - power
);
90 int result
= static_cast<int>(part_low
+ part_high
);
92 low_bits_
-= part_low
<< power
;
98 return high_bits_
== 0 && low_bits_
== 0;
101 int BitAt(int position
) {
102 if (position
>= 64) {
103 return static_cast<int>(high_bits_
>> (position
- 64)) & 1;
105 return static_cast<int>(low_bits_
>> position
) & 1;
110 static const uint64_t kMask32
= 0xFFFFFFFF;
111 // Value == (high_bits_ << 64) + low_bits_
117 static const int kDoubleSignificandSize
= 53; // Includes the hidden bit.
120 static void FillDigits32FixedLength(uint32_t number
, int requested_length
,
121 Vector
<char> buffer
, int* length
) {
122 for (int i
= requested_length
- 1; i
>= 0; --i
) {
123 buffer
[(*length
) + i
] = '0' + number
% 10;
126 *length
+= requested_length
;
130 static void FillDigits32(uint32_t number
, Vector
<char> buffer
, int* length
) {
131 int number_length
= 0;
132 // We fill the digits in reverse order and exchange them afterwards.
133 while (number
!= 0) {
134 int digit
= number
% 10;
136 buffer
[(*length
) + number_length
] = '0' + digit
;
139 // Exchange the digits.
141 int j
= *length
+ number_length
- 1;
143 char tmp
= buffer
[i
];
144 buffer
[i
] = buffer
[j
];
149 *length
+= number_length
;
153 static void FillDigits64FixedLength(uint64_t number
, int requested_length
,
154 Vector
<char> buffer
, int* length
) {
155 const uint32_t kTen7
= 10000000;
156 // For efficiency cut the number into 3 uint32_t parts, and print those.
157 uint32_t part2
= static_cast<uint32_t>(number
% kTen7
);
159 uint32_t part1
= static_cast<uint32_t>(number
% kTen7
);
160 uint32_t part0
= static_cast<uint32_t>(number
/ kTen7
);
162 FillDigits32FixedLength(part0
, 3, buffer
, length
);
163 FillDigits32FixedLength(part1
, 7, buffer
, length
);
164 FillDigits32FixedLength(part2
, 7, buffer
, length
);
168 static void FillDigits64(uint64_t number
, Vector
<char> buffer
, int* length
) {
169 const uint32_t kTen7
= 10000000;
170 // For efficiency cut the number into 3 uint32_t parts, and print those.
171 uint32_t part2
= static_cast<uint32_t>(number
% kTen7
);
173 uint32_t part1
= static_cast<uint32_t>(number
% kTen7
);
174 uint32_t part0
= static_cast<uint32_t>(number
/ kTen7
);
177 FillDigits32(part0
, buffer
, length
);
178 FillDigits32FixedLength(part1
, 7, buffer
, length
);
179 FillDigits32FixedLength(part2
, 7, buffer
, length
);
180 } else if (part1
!= 0) {
181 FillDigits32(part1
, buffer
, length
);
182 FillDigits32FixedLength(part2
, 7, buffer
, length
);
184 FillDigits32(part2
, buffer
, length
);
189 static void RoundUp(Vector
<char> buffer
, int* length
, int* decimal_point
) {
190 // An empty buffer represents 0.
197 // Round the last digit until we either have a digit that was not '9' or until
198 // we reached the first digit.
199 buffer
[(*length
) - 1]++;
200 for (int i
= (*length
) - 1; i
> 0; --i
) {
201 if (buffer
[i
] != '0' + 10) {
207 // If the first digit is now '0' + 10, we would need to set it to '0' and add
208 // a '1' in front. However we reach the first digit only if all following
209 // digits had been '9' before rounding up. Now all trailing digits are '0' and
210 // we simply switch the first digit to '1' and update the decimal-point
211 // (indicating that the point is now one digit to the right).
212 if (buffer
[0] == '0' + 10) {
219 // The given fractionals number represents a fixed-point number with binary
220 // point at bit (-exponent).
222 // -128 <= exponent <= 0.
223 // 0 <= fractionals * 2^exponent < 1
224 // The buffer holds the result.
225 // The function will round its result. During the rounding-process digits not
226 // generated by this function might be updated, and the decimal-point variable
227 // might be updated. If this function generates the digits 99 and the buffer
228 // already contained "199" (thus yielding a buffer of "19999") then a
229 // rounding-up will change the contents of the buffer to "20000".
230 static void FillFractionals(uint64_t fractionals
, int exponent
,
231 int fractional_count
, Vector
<char> buffer
,
232 int* length
, int* decimal_point
) {
233 ASSERT(-128 <= exponent
&& exponent
<= 0);
234 // 'fractionals' is a fixed-point number, with binary point at bit
235 // (-exponent). Inside the function the non-converted remainder of fractionals
236 // is a fixed-point number, with binary point at bit 'point'.
237 if (-exponent
<= 64) {
238 // One 64 bit number is sufficient.
239 ASSERT(fractionals
>> 56 == 0);
240 int point
= -exponent
;
241 for (int i
= 0; i
< fractional_count
; ++i
) {
242 if (fractionals
== 0) break;
243 // Instead of multiplying by 10 we multiply by 5 and adjust the point
244 // location. This way the fractionals variable will not overflow.
245 // Invariant at the beginning of the loop: fractionals < 2^point.
246 // Initially we have: point <= 64 and fractionals < 2^56
247 // After each iteration the point is decremented by one.
248 // Note that 5^3 = 125 < 128 = 2^7.
249 // Therefore three iterations of this loop will not overflow fractionals
250 // (even without the subtraction at the end of the loop body). At this
251 // time point will satisfy point <= 61 and therefore fractionals < 2^point
252 // and any further multiplication of fractionals by 5 will not overflow.
255 int digit
= static_cast<int>(fractionals
>> point
);
256 buffer
[*length
] = '0' + digit
;
258 fractionals
-= static_cast<uint64_t>(digit
) << point
;
260 // If the first bit after the point is set we have to round up.
261 if (((fractionals
>> (point
- 1)) & 1) == 1) {
262 RoundUp(buffer
, length
, decimal_point
);
264 } else { // We need 128 bits.
265 ASSERT(64 < -exponent
&& -exponent
<= 128);
266 UInt128 fractionals128
= UInt128(fractionals
, 0);
267 fractionals128
.Shift(-exponent
- 64);
269 for (int i
= 0; i
< fractional_count
; ++i
) {
270 if (fractionals128
.IsZero()) break;
271 // As before: instead of multiplying by 10 we multiply by 5 and adjust the
273 // This multiplication will not overflow for the same reasons as before.
274 fractionals128
.Multiply(5);
276 int digit
= fractionals128
.DivModPowerOf2(point
);
277 buffer
[*length
] = '0' + digit
;
280 if (fractionals128
.BitAt(point
- 1) == 1) {
281 RoundUp(buffer
, length
, decimal_point
);
287 // Removes leading and trailing zeros.
288 // If leading zeros are removed then the decimal point position is adjusted.
289 static void TrimZeros(Vector
<char> buffer
, int* length
, int* decimal_point
) {
290 while (*length
> 0 && buffer
[(*length
) - 1] == '0') {
293 int first_non_zero
= 0;
294 while (first_non_zero
< *length
&& buffer
[first_non_zero
] == '0') {
297 if (first_non_zero
!= 0) {
298 for (int i
= first_non_zero
; i
< *length
; ++i
) {
299 buffer
[i
- first_non_zero
] = buffer
[i
];
301 *length
-= first_non_zero
;
302 *decimal_point
-= first_non_zero
;
307 bool FastFixedDtoa(double v
,
308 int fractional_count
,
311 int* decimal_point
) {
312 const uint32_t kMaxUInt32
= 0xFFFFFFFF;
313 uint64_t significand
= Double(v
).Significand();
314 int exponent
= Double(v
).Exponent();
315 // v = significand * 2^exponent (with significand a 53bit integer).
316 // If the exponent is larger than 20 (i.e. we may have a 73bit number) then we
317 // don't know how to compute the representation. 2^73 ~= 9.5*10^21.
318 // If necessary this limit could probably be increased, but we don't need
320 if (exponent
> 20) return false;
321 if (fractional_count
> 20) return false;
323 // At most kDoubleSignificandSize bits of the significand are non-zero.
324 // Given a 64 bit integer we have 11 0s followed by 53 potentially non-zero
325 // bits: 0..11*..0xxx..53*..xx
326 if (exponent
+ kDoubleSignificandSize
> 64) {
327 // The exponent must be > 11.
329 // We know that v = significand * 2^exponent.
330 // And the exponent > 11.
331 // We simplify the task by dividing v by 10^17.
332 // The quotient delivers the first digits, and the remainder fits into a 64
334 // Dividing by 10^17 is equivalent to dividing by 5^17*2^17.
335 const uint64_t kFive17
= UINT64_2PART_C(0xB1, A2BC2EC5
); // 5^17
336 uint64_t divisor
= kFive17
;
337 int divisor_power
= 17;
338 uint64_t dividend
= significand
;
341 // Let v = f * 2^e with f == significand and e == exponent.
342 // Then need q (quotient) and r (remainder) as follows:
344 // f * 2^e = q * 10^17 + r
345 // f * 2^e = q * 5^17 * 2^17 + r
347 // f * 2^(e-17) = q * 5^17 + r/2^17
349 // f = q * 5^17 * 2^(17-e) + r/2^e
350 if (exponent
> divisor_power
) {
351 // We only allow exponents of up to 20 and therefore (17 - e) <= 3
352 dividend
<<= exponent
- divisor_power
;
353 quotient
= static_cast<uint32_t>(dividend
/ divisor
);
354 remainder
= (dividend
% divisor
) << divisor_power
;
356 divisor
<<= divisor_power
- exponent
;
357 quotient
= static_cast<uint32_t>(dividend
/ divisor
);
358 remainder
= (dividend
% divisor
) << exponent
;
360 FillDigits32(quotient
, buffer
, length
);
361 FillDigits64FixedLength(remainder
, divisor_power
, buffer
, length
);
362 *decimal_point
= *length
;
363 } else if (exponent
>= 0) {
364 // 0 <= exponent <= 11
365 significand
<<= exponent
;
366 FillDigits64(significand
, buffer
, length
);
367 *decimal_point
= *length
;
368 } else if (exponent
> -kDoubleSignificandSize
) {
369 // We have to cut the number.
370 uint64_t integrals
= significand
>> -exponent
;
371 uint64_t fractionals
= significand
- (integrals
<< -exponent
);
372 if (integrals
> kMaxUInt32
) {
373 FillDigits64(integrals
, buffer
, length
);
375 FillDigits32(static_cast<uint32_t>(integrals
), buffer
, length
);
377 *decimal_point
= *length
;
378 FillFractionals(fractionals
, exponent
, fractional_count
,
379 buffer
, length
, decimal_point
);
380 } else if (exponent
< -128) {
381 // This configuration (with at most 20 digits) means that all digits must be
383 ASSERT(fractional_count
<= 20);
386 *decimal_point
= -fractional_count
;
389 FillFractionals(significand
, exponent
, fractional_count
,
390 buffer
, length
, decimal_point
);
392 TrimZeros(buffer
, length
, decimal_point
);
393 buffer
[*length
] = '\0';
394 if ((*length
) == 0) {
395 // The string is empty and the decimal_point thus has no importance. Mimick
396 // Gay's dtoa and and set it to -fractional_count.
397 *decimal_point
= -fractional_count
;
402 } // namespace double_conversion