Bumping manifests a=b2g-bump
[gecko.git] / mfbt / double-conversion / double-conversion.h
blob957575cfb8fd582107ae7b4c542b6d8d2ce5fc25
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 #ifndef DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_
29 #define DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_
31 #include "mozilla/Types.h"
32 #include "utils.h"
34 namespace double_conversion {
36 class DoubleToStringConverter {
37 public:
38 // When calling ToFixed with a double > 10^kMaxFixedDigitsBeforePoint
39 // or a requested_digits parameter > kMaxFixedDigitsAfterPoint then the
40 // function returns false.
41 static const int kMaxFixedDigitsBeforePoint = 60;
42 static const int kMaxFixedDigitsAfterPoint = 60;
44 // When calling ToExponential with a requested_digits
45 // parameter > kMaxExponentialDigits then the function returns false.
46 static const int kMaxExponentialDigits = 120;
48 // When calling ToPrecision with a requested_digits
49 // parameter < kMinPrecisionDigits or requested_digits > kMaxPrecisionDigits
50 // then the function returns false.
51 static const int kMinPrecisionDigits = 1;
52 static const int kMaxPrecisionDigits = 120;
54 enum Flags {
55 NO_FLAGS = 0,
56 EMIT_POSITIVE_EXPONENT_SIGN = 1,
57 EMIT_TRAILING_DECIMAL_POINT = 2,
58 EMIT_TRAILING_ZERO_AFTER_POINT = 4,
59 UNIQUE_ZERO = 8
62 // Flags should be a bit-or combination of the possible Flags-enum.
63 // - NO_FLAGS: no special flags.
64 // - EMIT_POSITIVE_EXPONENT_SIGN: when the number is converted into exponent
65 // form, emits a '+' for positive exponents. Example: 1.2e+2.
66 // - EMIT_TRAILING_DECIMAL_POINT: when the input number is an integer and is
67 // converted into decimal format then a trailing decimal point is appended.
68 // Example: 2345.0 is converted to "2345.".
69 // - EMIT_TRAILING_ZERO_AFTER_POINT: in addition to a trailing decimal point
70 // emits a trailing '0'-character. This flag requires the
71 // EXMIT_TRAILING_DECIMAL_POINT flag.
72 // Example: 2345.0 is converted to "2345.0".
73 // - UNIQUE_ZERO: "-0.0" is converted to "0.0".
75 // Infinity symbol and nan_symbol provide the string representation for these
76 // special values. If the string is NULL and the special value is encountered
77 // then the conversion functions return false.
79 // The exponent_character is used in exponential representations. It is
80 // usually 'e' or 'E'.
82 // When converting to the shortest representation the converter will
83 // represent input numbers in decimal format if they are in the interval
84 // [10^decimal_in_shortest_low; 10^decimal_in_shortest_high[
85 // (lower boundary included, greater boundary excluded).
86 // Example: with decimal_in_shortest_low = -6 and
87 // decimal_in_shortest_high = 21:
88 // ToShortest(0.000001) -> "0.000001"
89 // ToShortest(0.0000001) -> "1e-7"
90 // ToShortest(111111111111111111111.0) -> "111111111111111110000"
91 // ToShortest(100000000000000000000.0) -> "100000000000000000000"
92 // ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21"
94 // When converting to precision mode the converter may add
95 // max_leading_padding_zeroes before returning the number in exponential
96 // format.
97 // Example with max_leading_padding_zeroes_in_precision_mode = 6.
98 // ToPrecision(0.0000012345, 2) -> "0.0000012"
99 // ToPrecision(0.00000012345, 2) -> "1.2e-7"
100 // Similarily the converter may add up to
101 // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid
102 // returning an exponential representation. A zero added by the
103 // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit.
104 // Examples for max_trailing_padding_zeroes_in_precision_mode = 1:
105 // ToPrecision(230.0, 2) -> "230"
106 // ToPrecision(230.0, 2) -> "230." with EMIT_TRAILING_DECIMAL_POINT.
107 // ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT.
108 DoubleToStringConverter(int flags,
109 const char* infinity_symbol,
110 const char* nan_symbol,
111 char exponent_character,
112 int decimal_in_shortest_low,
113 int decimal_in_shortest_high,
114 int max_leading_padding_zeroes_in_precision_mode,
115 int max_trailing_padding_zeroes_in_precision_mode)
116 : flags_(flags),
117 infinity_symbol_(infinity_symbol),
118 nan_symbol_(nan_symbol),
119 exponent_character_(exponent_character),
120 decimal_in_shortest_low_(decimal_in_shortest_low),
121 decimal_in_shortest_high_(decimal_in_shortest_high),
122 max_leading_padding_zeroes_in_precision_mode_(
123 max_leading_padding_zeroes_in_precision_mode),
124 max_trailing_padding_zeroes_in_precision_mode_(
125 max_trailing_padding_zeroes_in_precision_mode) {
126 // When 'trailing zero after the point' is set, then 'trailing point'
127 // must be set too.
128 ASSERT(((flags & EMIT_TRAILING_DECIMAL_POINT) != 0) ||
129 !((flags & EMIT_TRAILING_ZERO_AFTER_POINT) != 0));
132 // Returns a converter following the EcmaScript specification.
133 static MFBT_API const DoubleToStringConverter& EcmaScriptConverter();
135 // Computes the shortest string of digits that correctly represent the input
136 // number. Depending on decimal_in_shortest_low and decimal_in_shortest_high
137 // (see constructor) it then either returns a decimal representation, or an
138 // exponential representation.
139 // Example with decimal_in_shortest_low = -6,
140 // decimal_in_shortest_high = 21,
141 // EMIT_POSITIVE_EXPONENT_SIGN activated, and
142 // EMIT_TRAILING_DECIMAL_POINT deactived:
143 // ToShortest(0.000001) -> "0.000001"
144 // ToShortest(0.0000001) -> "1e-7"
145 // ToShortest(111111111111111111111.0) -> "111111111111111110000"
146 // ToShortest(100000000000000000000.0) -> "100000000000000000000"
147 // ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21"
149 // Note: the conversion may round the output if the returned string
150 // is accurate enough to uniquely identify the input-number.
151 // For example the most precise representation of the double 9e59 equals
152 // "899999999999999918767229449717619953810131273674690656206848", but
153 // the converter will return the shorter (but still correct) "9e59".
155 // Returns true if the conversion succeeds. The conversion always succeeds
156 // except when the input value is special and no infinity_symbol or
157 // nan_symbol has been given to the constructor.
158 bool ToShortest(double value, StringBuilder* result_builder) const {
159 return ToShortestIeeeNumber(value, result_builder, SHORTEST);
162 // Same as ToShortest, but for single-precision floats.
163 bool ToShortestSingle(float value, StringBuilder* result_builder) const {
164 return ToShortestIeeeNumber(value, result_builder, SHORTEST_SINGLE);
168 // Computes a decimal representation with a fixed number of digits after the
169 // decimal point. The last emitted digit is rounded.
171 // Examples:
172 // ToFixed(3.12, 1) -> "3.1"
173 // ToFixed(3.1415, 3) -> "3.142"
174 // ToFixed(1234.56789, 4) -> "1234.5679"
175 // ToFixed(1.23, 5) -> "1.23000"
176 // ToFixed(0.1, 4) -> "0.1000"
177 // ToFixed(1e30, 2) -> "1000000000000000019884624838656.00"
178 // ToFixed(0.1, 30) -> "0.100000000000000005551115123126"
179 // ToFixed(0.1, 17) -> "0.10000000000000001"
181 // If requested_digits equals 0, then the tail of the result depends on
182 // the EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT.
183 // Examples, for requested_digits == 0,
184 // let EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT be
185 // - false and false: then 123.45 -> 123
186 // 0.678 -> 1
187 // - true and false: then 123.45 -> 123.
188 // 0.678 -> 1.
189 // - true and true: then 123.45 -> 123.0
190 // 0.678 -> 1.0
192 // Returns true if the conversion succeeds. The conversion always succeeds
193 // except for the following cases:
194 // - the input value is special and no infinity_symbol or nan_symbol has
195 // been provided to the constructor,
196 // - 'value' > 10^kMaxFixedDigitsBeforePoint, or
197 // - 'requested_digits' > kMaxFixedDigitsAfterPoint.
198 // The last two conditions imply that the result will never contain more than
199 // 1 + kMaxFixedDigitsBeforePoint + 1 + kMaxFixedDigitsAfterPoint characters
200 // (one additional character for the sign, and one for the decimal point).
201 MFBT_API bool ToFixed(double value,
202 int requested_digits,
203 StringBuilder* result_builder) const;
205 // Computes a representation in exponential format with requested_digits
206 // after the decimal point. The last emitted digit is rounded.
207 // If requested_digits equals -1, then the shortest exponential representation
208 // is computed.
210 // Examples with EMIT_POSITIVE_EXPONENT_SIGN deactivated, and
211 // exponent_character set to 'e'.
212 // ToExponential(3.12, 1) -> "3.1e0"
213 // ToExponential(5.0, 3) -> "5.000e0"
214 // ToExponential(0.001, 2) -> "1.00e-3"
215 // ToExponential(3.1415, -1) -> "3.1415e0"
216 // ToExponential(3.1415, 4) -> "3.1415e0"
217 // ToExponential(3.1415, 3) -> "3.142e0"
218 // ToExponential(123456789000000, 3) -> "1.235e14"
219 // ToExponential(1000000000000000019884624838656.0, -1) -> "1e30"
220 // ToExponential(1000000000000000019884624838656.0, 32) ->
221 // "1.00000000000000001988462483865600e30"
222 // ToExponential(1234, 0) -> "1e3"
224 // Returns true if the conversion succeeds. The conversion always succeeds
225 // except for the following cases:
226 // - the input value is special and no infinity_symbol or nan_symbol has
227 // been provided to the constructor,
228 // - 'requested_digits' > kMaxExponentialDigits.
229 // The last condition implies that the result will never contain more than
230 // kMaxExponentialDigits + 8 characters (the sign, the digit before the
231 // decimal point, the decimal point, the exponent character, the
232 // exponent's sign, and at most 3 exponent digits).
233 MFBT_API bool ToExponential(double value,
234 int requested_digits,
235 StringBuilder* result_builder) const;
237 // Computes 'precision' leading digits of the given 'value' and returns them
238 // either in exponential or decimal format, depending on
239 // max_{leading|trailing}_padding_zeroes_in_precision_mode (given to the
240 // constructor).
241 // The last computed digit is rounded.
243 // Example with max_leading_padding_zeroes_in_precision_mode = 6.
244 // ToPrecision(0.0000012345, 2) -> "0.0000012"
245 // ToPrecision(0.00000012345, 2) -> "1.2e-7"
246 // Similarily the converter may add up to
247 // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid
248 // returning an exponential representation. A zero added by the
249 // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit.
250 // Examples for max_trailing_padding_zeroes_in_precision_mode = 1:
251 // ToPrecision(230.0, 2) -> "230"
252 // ToPrecision(230.0, 2) -> "230." with EMIT_TRAILING_DECIMAL_POINT.
253 // ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT.
254 // Examples for max_trailing_padding_zeroes_in_precision_mode = 3, and no
255 // EMIT_TRAILING_ZERO_AFTER_POINT:
256 // ToPrecision(123450.0, 6) -> "123450"
257 // ToPrecision(123450.0, 5) -> "123450"
258 // ToPrecision(123450.0, 4) -> "123500"
259 // ToPrecision(123450.0, 3) -> "123000"
260 // ToPrecision(123450.0, 2) -> "1.2e5"
262 // Returns true if the conversion succeeds. The conversion always succeeds
263 // except for the following cases:
264 // - the input value is special and no infinity_symbol or nan_symbol has
265 // been provided to the constructor,
266 // - precision < kMinPericisionDigits
267 // - precision > kMaxPrecisionDigits
268 // The last condition implies that the result will never contain more than
269 // kMaxPrecisionDigits + 7 characters (the sign, the decimal point, the
270 // exponent character, the exponent's sign, and at most 3 exponent digits).
271 MFBT_API bool ToPrecision(double value,
272 int precision,
273 bool* used_exponential_notation,
274 StringBuilder* result_builder) const;
276 enum DtoaMode {
277 // Produce the shortest correct representation.
278 // For example the output of 0.299999999999999988897 is (the less accurate
279 // but correct) 0.3.
280 SHORTEST,
281 // Same as SHORTEST, but for single-precision floats.
282 SHORTEST_SINGLE,
283 // Produce a fixed number of digits after the decimal point.
284 // For instance fixed(0.1, 4) becomes 0.1000
285 // If the input number is big, the output will be big.
286 FIXED,
287 // Fixed number of digits (independent of the decimal point).
288 PRECISION
291 // The maximal number of digits that are needed to emit a double in base 10.
292 // A higher precision can be achieved by using more digits, but the shortest
293 // accurate representation of any double will never use more digits than
294 // kBase10MaximalLength.
295 // Note that DoubleToAscii null-terminates its input. So the given buffer
296 // should be at least kBase10MaximalLength + 1 characters long.
297 static const MFBT_DATA int kBase10MaximalLength = 17;
299 // Converts the given double 'v' to ascii. 'v' must not be NaN, +Infinity, or
300 // -Infinity. In SHORTEST_SINGLE-mode this restriction also applies to 'v'
301 // after it has been casted to a single-precision float. That is, in this
302 // mode static_cast<float>(v) must not be NaN, +Infinity or -Infinity.
304 // The result should be interpreted as buffer * 10^(point-length).
306 // The output depends on the given mode:
307 // - SHORTEST: produce the least amount of digits for which the internal
308 // identity requirement is still satisfied. If the digits are printed
309 // (together with the correct exponent) then reading this number will give
310 // 'v' again. The buffer will choose the representation that is closest to
311 // 'v'. If there are two at the same distance, than the one farther away
312 // from 0 is chosen (halfway cases - ending with 5 - are rounded up).
313 // In this mode the 'requested_digits' parameter is ignored.
314 // - SHORTEST_SINGLE: same as SHORTEST but with single-precision.
315 // - FIXED: produces digits necessary to print a given number with
316 // 'requested_digits' digits after the decimal point. The produced digits
317 // might be too short in which case the caller has to fill the remainder
318 // with '0's.
319 // Example: toFixed(0.001, 5) is allowed to return buffer="1", point=-2.
320 // Halfway cases are rounded towards +/-Infinity (away from 0). The call
321 // toFixed(0.15, 2) thus returns buffer="2", point=0.
322 // The returned buffer may contain digits that would be truncated from the
323 // shortest representation of the input.
324 // - PRECISION: produces 'requested_digits' where the first digit is not '0'.
325 // Even though the length of produced digits usually equals
326 // 'requested_digits', the function is allowed to return fewer digits, in
327 // which case the caller has to fill the missing digits with '0's.
328 // Halfway cases are again rounded away from 0.
329 // DoubleToAscii expects the given buffer to be big enough to hold all
330 // digits and a terminating null-character. In SHORTEST-mode it expects a
331 // buffer of at least kBase10MaximalLength + 1. In all other modes the
332 // requested_digits parameter and the padding-zeroes limit the size of the
333 // output. Don't forget the decimal point, the exponent character and the
334 // terminating null-character when computing the maximal output size.
335 // The given length is only used in debug mode to ensure the buffer is big
336 // enough.
337 static MFBT_API void DoubleToAscii(double v,
338 DtoaMode mode,
339 int requested_digits,
340 char* buffer,
341 int buffer_length,
342 bool* sign,
343 int* length,
344 int* point);
346 private:
347 // Implementation for ToShortest and ToShortestSingle.
348 MFBT_API bool ToShortestIeeeNumber(double value,
349 StringBuilder* result_builder,
350 DtoaMode mode) const;
352 // If the value is a special value (NaN or Infinity) constructs the
353 // corresponding string using the configured infinity/nan-symbol.
354 // If either of them is NULL or the value is not special then the
355 // function returns false.
356 MFBT_API bool HandleSpecialValues(double value, StringBuilder* result_builder) const;
357 // Constructs an exponential representation (i.e. 1.234e56).
358 // The given exponent assumes a decimal point after the first decimal digit.
359 MFBT_API void CreateExponentialRepresentation(const char* decimal_digits,
360 int length,
361 int exponent,
362 StringBuilder* result_builder) const;
363 // Creates a decimal representation (i.e 1234.5678).
364 MFBT_API void CreateDecimalRepresentation(const char* decimal_digits,
365 int length,
366 int decimal_point,
367 int digits_after_point,
368 StringBuilder* result_builder) const;
370 const int flags_;
371 const char* const infinity_symbol_;
372 const char* const nan_symbol_;
373 const char exponent_character_;
374 const int decimal_in_shortest_low_;
375 const int decimal_in_shortest_high_;
376 const int max_leading_padding_zeroes_in_precision_mode_;
377 const int max_trailing_padding_zeroes_in_precision_mode_;
379 DISALLOW_IMPLICIT_CONSTRUCTORS(DoubleToStringConverter);
383 class StringToDoubleConverter {
384 public:
385 // Enumeration for allowing octals and ignoring junk when converting
386 // strings to numbers.
387 enum Flags {
388 NO_FLAGS = 0,
389 ALLOW_HEX = 1,
390 ALLOW_OCTALS = 2,
391 ALLOW_TRAILING_JUNK = 4,
392 ALLOW_LEADING_SPACES = 8,
393 ALLOW_TRAILING_SPACES = 16,
394 ALLOW_SPACES_AFTER_SIGN = 32
397 // Flags should be a bit-or combination of the possible Flags-enum.
398 // - NO_FLAGS: no special flags.
399 // - ALLOW_HEX: recognizes the prefix "0x". Hex numbers may only be integers.
400 // Ex: StringToDouble("0x1234") -> 4660.0
401 // In StringToDouble("0x1234.56") the characters ".56" are trailing
402 // junk. The result of the call is hence dependent on
403 // the ALLOW_TRAILING_JUNK flag and/or the junk value.
404 // With this flag "0x" is a junk-string. Even with ALLOW_TRAILING_JUNK,
405 // the string will not be parsed as "0" followed by junk.
407 // - ALLOW_OCTALS: recognizes the prefix "0" for octals:
408 // If a sequence of octal digits starts with '0', then the number is
409 // read as octal integer. Octal numbers may only be integers.
410 // Ex: StringToDouble("01234") -> 668.0
411 // StringToDouble("012349") -> 12349.0 // Not a sequence of octal
412 // // digits.
413 // In StringToDouble("01234.56") the characters ".56" are trailing
414 // junk. The result of the call is hence dependent on
415 // the ALLOW_TRAILING_JUNK flag and/or the junk value.
416 // In StringToDouble("01234e56") the characters "e56" are trailing
417 // junk, too.
418 // - ALLOW_TRAILING_JUNK: ignore trailing characters that are not part of
419 // a double literal.
420 // - ALLOW_LEADING_SPACES: skip over leading spaces.
421 // - ALLOW_TRAILING_SPACES: ignore trailing spaces.
422 // - ALLOW_SPACES_AFTER_SIGN: ignore spaces after the sign.
423 // Ex: StringToDouble("- 123.2") -> -123.2.
424 // StringToDouble("+ 123.2") -> 123.2
426 // empty_string_value is returned when an empty string is given as input.
427 // If ALLOW_LEADING_SPACES or ALLOW_TRAILING_SPACES are set, then a string
428 // containing only spaces is converted to the 'empty_string_value', too.
430 // junk_string_value is returned when
431 // a) ALLOW_TRAILING_JUNK is not set, and a junk character (a character not
432 // part of a double-literal) is found.
433 // b) ALLOW_TRAILING_JUNK is set, but the string does not start with a
434 // double literal.
436 // infinity_symbol and nan_symbol are strings that are used to detect
437 // inputs that represent infinity and NaN. They can be null, in which case
438 // they are ignored.
439 // The conversion routine first reads any possible signs. Then it compares the
440 // following character of the input-string with the first character of
441 // the infinity, and nan-symbol. If either matches, the function assumes, that
442 // a match has been found, and expects the following input characters to match
443 // the remaining characters of the special-value symbol.
444 // This means that the following restrictions apply to special-value symbols:
445 // - they must not start with signs ('+', or '-'),
446 // - they must not have the same first character.
447 // - they must not start with digits.
449 // Examples:
450 // flags = ALLOW_HEX | ALLOW_TRAILING_JUNK,
451 // empty_string_value = 0.0,
452 // junk_string_value = NaN,
453 // infinity_symbol = "infinity",
454 // nan_symbol = "nan":
455 // StringToDouble("0x1234") -> 4660.0.
456 // StringToDouble("0x1234K") -> 4660.0.
457 // StringToDouble("") -> 0.0 // empty_string_value.
458 // StringToDouble(" ") -> NaN // junk_string_value.
459 // StringToDouble(" 1") -> NaN // junk_string_value.
460 // StringToDouble("0x") -> NaN // junk_string_value.
461 // StringToDouble("-123.45") -> -123.45.
462 // StringToDouble("--123.45") -> NaN // junk_string_value.
463 // StringToDouble("123e45") -> 123e45.
464 // StringToDouble("123E45") -> 123e45.
465 // StringToDouble("123e+45") -> 123e45.
466 // StringToDouble("123E-45") -> 123e-45.
467 // StringToDouble("123e") -> 123.0 // trailing junk ignored.
468 // StringToDouble("123e-") -> 123.0 // trailing junk ignored.
469 // StringToDouble("+NaN") -> NaN // NaN string literal.
470 // StringToDouble("-infinity") -> -inf. // infinity literal.
471 // StringToDouble("Infinity") -> NaN // junk_string_value.
473 // flags = ALLOW_OCTAL | ALLOW_LEADING_SPACES,
474 // empty_string_value = 0.0,
475 // junk_string_value = NaN,
476 // infinity_symbol = NULL,
477 // nan_symbol = NULL:
478 // StringToDouble("0x1234") -> NaN // junk_string_value.
479 // StringToDouble("01234") -> 668.0.
480 // StringToDouble("") -> 0.0 // empty_string_value.
481 // StringToDouble(" ") -> 0.0 // empty_string_value.
482 // StringToDouble(" 1") -> 1.0
483 // StringToDouble("0x") -> NaN // junk_string_value.
484 // StringToDouble("0123e45") -> NaN // junk_string_value.
485 // StringToDouble("01239E45") -> 1239e45.
486 // StringToDouble("-infinity") -> NaN // junk_string_value.
487 // StringToDouble("NaN") -> NaN // junk_string_value.
488 StringToDoubleConverter(int flags,
489 double empty_string_value,
490 double junk_string_value,
491 const char* infinity_symbol,
492 const char* nan_symbol)
493 : flags_(flags),
494 empty_string_value_(empty_string_value),
495 junk_string_value_(junk_string_value),
496 infinity_symbol_(infinity_symbol),
497 nan_symbol_(nan_symbol) {
500 // Performs the conversion.
501 // The output parameter 'processed_characters_count' is set to the number
502 // of characters that have been processed to read the number.
503 // Spaces than are processed with ALLOW_{LEADING|TRAILING}_SPACES are included
504 // in the 'processed_characters_count'. Trailing junk is never included.
505 double StringToDouble(const char* buffer,
506 int length,
507 int* processed_characters_count) const {
508 return StringToIeee(buffer, length, processed_characters_count, true);
511 // Same as StringToDouble but reads a float.
512 // Note that this is not equivalent to static_cast<float>(StringToDouble(...))
513 // due to potential double-rounding.
514 float StringToFloat(const char* buffer,
515 int length,
516 int* processed_characters_count) const {
517 return static_cast<float>(StringToIeee(buffer, length,
518 processed_characters_count, false));
521 private:
522 const int flags_;
523 const double empty_string_value_;
524 const double junk_string_value_;
525 const char* const infinity_symbol_;
526 const char* const nan_symbol_;
528 double StringToIeee(const char* buffer,
529 int length,
530 int* processed_characters_count,
531 bool read_as_double) const;
533 DISALLOW_IMPLICIT_CONSTRUCTORS(StringToDoubleConverter);
536 } // namespace double_conversion
538 #endif // DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_