4 * This file was part of the Independent JPEG Group's software:
5 * Copyright (C) 1991-1997, Thomas G. Lane.
6 * libjpeg-turbo Modifications:
7 * Copyright (C) 2009-2011, 2014-2016, 2018-2022, D. R. Commander.
8 * Copyright (C) 2015, Matthieu Darbois.
9 * Copyright (C) 2018, Matthias Räncker.
10 * Copyright (C) 2020, Arm Limited.
11 * For conditions of distribution and use, see the accompanying README.ijg
14 * This file contains Huffman entropy encoding routines.
16 * Much of the complexity here has to do with supporting output suspension.
17 * If the data destination module demands suspension, we want to be able to
18 * back up to the start of the current MCU. To do this, we copy state
19 * variables into local working storage, and update them back to the
20 * permanent JPEG objects only upon successful completion of an MCU.
22 * NOTE: All referenced figures are from
23 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
26 #define JPEG_INTERNALS
33 * NOTE: If USE_CLZ_INTRINSIC is defined, then clz/bsr instructions will be
34 * used for bit counting rather than the lookup table. This will reduce the
35 * memory footprint by 64k, which is important for some mobile applications
36 * that create many isolated instances of libjpeg-turbo (web browsers, for
37 * instance.) This may improve performance on some mobile platforms as well.
38 * This feature is enabled by default only on Arm processors, because some x86
39 * chips have a slow implementation of bsr, and the use of clz/bsr cannot be
40 * shown to have a significant performance impact even on the x86 chips that
41 * have a fast implementation of it. When building for Armv6, you can
42 * explicitly disable the use of clz/bsr by adding -mthumb to the compiler
43 * flags (this defines __thumb__).
46 /* NOTE: Both GCC and Clang define __GNUC__ */
47 #if (defined(__GNUC__) && (defined(__arm__) || defined(__aarch64__))) || \
48 defined(_M_ARM) || defined(_M_ARM64)
49 #if !defined(__thumb__) || defined(__thumb2__)
50 #define USE_CLZ_INTRINSIC
54 #ifdef USE_CLZ_INTRINSIC
55 #if defined(_MSC_VER) && !defined(__clang__)
56 #define JPEG_NBITS_NONZERO(x) (32 - _CountLeadingZeros(x))
58 #define JPEG_NBITS_NONZERO(x) (32 - __builtin_clz(x))
60 #define JPEG_NBITS(x) (x ? JPEG_NBITS_NONZERO(x) : 0)
62 #include "jpeg_nbits_table.h"
63 #define JPEG_NBITS(x) (jpeg_nbits_table[x])
64 #define JPEG_NBITS_NONZERO(x) JPEG_NBITS(x)
68 /* Expanded entropy encoder object for Huffman encoding.
70 * The savable_state subrecord contains fields that change within an MCU,
71 * but must not be updated permanently until we complete the MCU.
74 #if defined(__x86_64__) && defined(__ILP32__)
75 typedef unsigned long long bit_buf_type
;
77 typedef size_t bit_buf_type
;
80 /* NOTE: The more optimal Huffman encoding algorithm is only used by the
81 * intrinsics implementation of the Arm Neon SIMD extensions, which is why we
82 * retain the old Huffman encoder behavior when using the GAS implementation.
84 #if defined(WITH_SIMD) && !(defined(__arm__) || defined(__aarch64__) || \
85 defined(_M_ARM) || defined(_M_ARM64))
86 typedef unsigned long long simd_bit_buf_type
;
88 typedef bit_buf_type simd_bit_buf_type
;
91 #if (defined(SIZEOF_SIZE_T) && SIZEOF_SIZE_T == 8) || defined(_WIN64) || \
92 (defined(__x86_64__) && defined(__ILP32__))
93 #define BIT_BUF_SIZE 64
94 #elif (defined(SIZEOF_SIZE_T) && SIZEOF_SIZE_T == 4) || defined(_WIN32)
95 #define BIT_BUF_SIZE 32
97 #error Cannot determine word size
99 #define SIMD_BIT_BUF_SIZE (sizeof(simd_bit_buf_type) * 8)
104 simd_bit_buf_type simd
;
105 } put_buffer
; /* current bit accumulation buffer */
106 int free_bits
; /* # of bits available in it */
107 /* (Neon GAS: # of bits now in it) */
108 int last_dc_val
[MAX_COMPS_IN_SCAN
]; /* last DC coef for each component */
112 struct jpeg_entropy_encoder pub
; /* public fields */
114 savable_state saved
; /* Bit buffer & DC state at start of MCU */
116 /* These fields are NOT loaded into local working state. */
117 unsigned int restarts_to_go
; /* MCUs left in this restart interval */
118 int next_restart_num
; /* next restart number to write (0-7) */
120 /* Pointers to derived tables (these workspaces have image lifespan) */
121 c_derived_tbl
*dc_derived_tbls
[NUM_HUFF_TBLS
];
122 c_derived_tbl
*ac_derived_tbls
[NUM_HUFF_TBLS
];
124 #ifdef ENTROPY_OPT_SUPPORTED /* Statistics tables for optimization */
125 long *dc_count_ptrs
[NUM_HUFF_TBLS
];
126 long *ac_count_ptrs
[NUM_HUFF_TBLS
];
130 } huff_entropy_encoder
;
132 typedef huff_entropy_encoder
*huff_entropy_ptr
;
134 /* Working state while writing an MCU.
135 * This struct contains all the fields that are needed by subroutines.
139 JOCTET
*next_output_byte
; /* => next byte to write in buffer */
140 size_t free_in_buffer
; /* # of byte spaces remaining in buffer */
141 savable_state cur
; /* Current bit buffer & DC state */
142 j_compress_ptr cinfo
; /* dump_buffer needs access to this */
147 /* Forward declarations */
148 METHODDEF(boolean
) encode_mcu_huff(j_compress_ptr cinfo
, JBLOCKROW
*MCU_data
);
149 METHODDEF(void) finish_pass_huff(j_compress_ptr cinfo
);
150 #ifdef ENTROPY_OPT_SUPPORTED
151 METHODDEF(boolean
) encode_mcu_gather(j_compress_ptr cinfo
,
152 JBLOCKROW
*MCU_data
);
153 METHODDEF(void) finish_pass_gather(j_compress_ptr cinfo
);
158 * Initialize for a Huffman-compressed scan.
159 * If gather_statistics is TRUE, we do not output anything during the scan,
160 * just count the Huffman symbols used and generate Huffman code tables.
164 start_pass_huff(j_compress_ptr cinfo
, boolean gather_statistics
)
166 huff_entropy_ptr entropy
= (huff_entropy_ptr
)cinfo
->entropy
;
167 int ci
, dctbl
, actbl
;
168 jpeg_component_info
*compptr
;
170 if (gather_statistics
) {
171 #ifdef ENTROPY_OPT_SUPPORTED
172 entropy
->pub
.encode_mcu
= encode_mcu_gather
;
173 entropy
->pub
.finish_pass
= finish_pass_gather
;
175 ERREXIT(cinfo
, JERR_NOT_COMPILED
);
178 entropy
->pub
.encode_mcu
= encode_mcu_huff
;
179 entropy
->pub
.finish_pass
= finish_pass_huff
;
182 entropy
->simd
= jsimd_can_huff_encode_one_block();
184 for (ci
= 0; ci
< cinfo
->comps_in_scan
; ci
++) {
185 compptr
= cinfo
->cur_comp_info
[ci
];
186 dctbl
= compptr
->dc_tbl_no
;
187 actbl
= compptr
->ac_tbl_no
;
188 if (gather_statistics
) {
189 #ifdef ENTROPY_OPT_SUPPORTED
190 /* Check for invalid table indexes */
191 /* (make_c_derived_tbl does this in the other path) */
192 if (dctbl
< 0 || dctbl
>= NUM_HUFF_TBLS
)
193 ERREXIT1(cinfo
, JERR_NO_HUFF_TABLE
, dctbl
);
194 if (actbl
< 0 || actbl
>= NUM_HUFF_TBLS
)
195 ERREXIT1(cinfo
, JERR_NO_HUFF_TABLE
, actbl
);
196 /* Allocate and zero the statistics tables */
197 /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
198 if (entropy
->dc_count_ptrs
[dctbl
] == NULL
)
199 entropy
->dc_count_ptrs
[dctbl
] = (long *)
200 (*cinfo
->mem
->alloc_small
) ((j_common_ptr
)cinfo
, JPOOL_IMAGE
,
202 memset(entropy
->dc_count_ptrs
[dctbl
], 0, 257 * sizeof(long));
203 if (entropy
->ac_count_ptrs
[actbl
] == NULL
)
204 entropy
->ac_count_ptrs
[actbl
] = (long *)
205 (*cinfo
->mem
->alloc_small
) ((j_common_ptr
)cinfo
, JPOOL_IMAGE
,
207 memset(entropy
->ac_count_ptrs
[actbl
], 0, 257 * sizeof(long));
210 /* Compute derived values for Huffman tables */
211 /* We may do this more than once for a table, but it's not expensive */
212 jpeg_make_c_derived_tbl(cinfo
, TRUE
, dctbl
,
213 &entropy
->dc_derived_tbls
[dctbl
]);
214 jpeg_make_c_derived_tbl(cinfo
, FALSE
, actbl
,
215 &entropy
->ac_derived_tbls
[actbl
]);
217 /* Initialize DC predictions to 0 */
218 entropy
->saved
.last_dc_val
[ci
] = 0;
221 /* Initialize bit buffer to empty */
223 entropy
->saved
.put_buffer
.simd
= 0;
224 #if defined(__aarch64__) && !defined(NEON_INTRINSICS)
225 entropy
->saved
.free_bits
= 0;
227 entropy
->saved
.free_bits
= SIMD_BIT_BUF_SIZE
;
230 entropy
->saved
.put_buffer
.c
= 0;
231 entropy
->saved
.free_bits
= BIT_BUF_SIZE
;
234 /* Initialize restart stuff */
235 entropy
->restarts_to_go
= cinfo
->restart_interval
;
236 entropy
->next_restart_num
= 0;
241 * Compute the derived values for a Huffman table.
242 * This routine also performs some validation checks on the table.
244 * Note this is also used by jcphuff.c.
248 jpeg_make_c_derived_tbl(j_compress_ptr cinfo
, boolean isDC
, int tblno
,
249 c_derived_tbl
**pdtbl
)
253 int p
, i
, l
, lastp
, si
, maxsymbol
;
255 unsigned int huffcode
[257];
258 /* Note that huffsize[] and huffcode[] are filled in code-length order,
259 * paralleling the order of the symbols themselves in htbl->huffval[].
262 /* Find the input Huffman table */
263 if (tblno
< 0 || tblno
>= NUM_HUFF_TBLS
)
264 ERREXIT1(cinfo
, JERR_NO_HUFF_TABLE
, tblno
);
266 isDC
? cinfo
->dc_huff_tbl_ptrs
[tblno
] : cinfo
->ac_huff_tbl_ptrs
[tblno
];
268 ERREXIT1(cinfo
, JERR_NO_HUFF_TABLE
, tblno
);
270 /* Allocate a workspace if we haven't already done so. */
272 *pdtbl
= (c_derived_tbl
*)
273 (*cinfo
->mem
->alloc_small
) ((j_common_ptr
)cinfo
, JPOOL_IMAGE
,
274 sizeof(c_derived_tbl
));
277 /* Figure C.1: make table of Huffman code length for each symbol */
280 for (l
= 1; l
<= 16; l
++) {
281 i
= (int)htbl
->bits
[l
];
282 if (i
< 0 || p
+ i
> 256) /* protect against table overrun */
283 ERREXIT(cinfo
, JERR_BAD_HUFF_TABLE
);
285 huffsize
[p
++] = (char)l
;
290 /* Figure C.2: generate the codes themselves */
291 /* We also validate that the counts represent a legal Huffman code tree. */
296 while (huffsize
[p
]) {
297 while (((int)huffsize
[p
]) == si
) {
298 huffcode
[p
++] = code
;
301 /* code is now 1 more than the last code used for codelength si; but
302 * it must still fit in si bits, since no code is allowed to be all ones.
304 if (((JLONG
)code
) >= (((JLONG
)1) << si
))
305 ERREXIT(cinfo
, JERR_BAD_HUFF_TABLE
);
310 /* Figure C.3: generate encoding tables */
311 /* These are code and size indexed by symbol value */
313 /* Set all codeless symbols to have code length 0;
314 * this lets us detect duplicate VAL entries here, and later
315 * allows emit_bits to detect any attempt to emit such symbols.
317 memset(dtbl
->ehufco
, 0, sizeof(dtbl
->ehufco
));
318 memset(dtbl
->ehufsi
, 0, sizeof(dtbl
->ehufsi
));
320 /* This is also a convenient place to check for out-of-range
321 * and duplicated VAL entries. We allow 0..255 for AC symbols
322 * but only 0..15 for DC. (We could constrain them further
323 * based on data depth and mode, but this seems enough.)
325 maxsymbol
= isDC
? 15 : 255;
327 for (p
= 0; p
< lastp
; p
++) {
328 i
= htbl
->huffval
[p
];
329 if (i
< 0 || i
> maxsymbol
|| dtbl
->ehufsi
[i
])
330 ERREXIT(cinfo
, JERR_BAD_HUFF_TABLE
);
331 dtbl
->ehufco
[i
] = huffcode
[p
];
332 dtbl
->ehufsi
[i
] = huffsize
[p
];
337 /* Outputting bytes to the file */
339 /* Emit a byte, taking 'action' if must suspend. */
340 #define emit_byte(state, val, action) { \
341 *(state)->next_output_byte++ = (JOCTET)(val); \
342 if (--(state)->free_in_buffer == 0) \
343 if (!dump_buffer(state)) \
349 dump_buffer(working_state
*state
)
350 /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
352 struct jpeg_destination_mgr
*dest
= state
->cinfo
->dest
;
354 if (!(*dest
->empty_output_buffer
) (state
->cinfo
))
356 /* After a successful buffer dump, must reset buffer pointers */
357 state
->next_output_byte
= dest
->next_output_byte
;
358 state
->free_in_buffer
= dest
->free_in_buffer
;
363 /* Outputting bits to the file */
365 /* Output byte b and, speculatively, an additional 0 byte. 0xFF must be
366 * encoded as 0xFF 0x00, so the output buffer pointer is advanced by 2 if the
367 * byte is 0xFF. Otherwise, the output buffer pointer is advanced by 1, and
368 * the speculative 0 byte will be overwritten by the next byte.
370 #define EMIT_BYTE(b) { \
371 buffer[0] = (JOCTET)(b); \
373 buffer -= -2 + ((JOCTET)(b) < 0xFF); \
376 /* Output the entire bit buffer. If there are no 0xFF bytes in it, then write
377 * directly to the output buffer. Otherwise, use the EMIT_BYTE() macro to
378 * encode 0xFF as 0xFF 0x00.
380 #if BIT_BUF_SIZE == 64
383 if (put_buffer & 0x8080808080808080 & ~(put_buffer + 0x0101010101010101)) { \
384 EMIT_BYTE(put_buffer >> 56) \
385 EMIT_BYTE(put_buffer >> 48) \
386 EMIT_BYTE(put_buffer >> 40) \
387 EMIT_BYTE(put_buffer >> 32) \
388 EMIT_BYTE(put_buffer >> 24) \
389 EMIT_BYTE(put_buffer >> 16) \
390 EMIT_BYTE(put_buffer >> 8) \
391 EMIT_BYTE(put_buffer ) \
393 buffer[0] = (JOCTET)(put_buffer >> 56); \
394 buffer[1] = (JOCTET)(put_buffer >> 48); \
395 buffer[2] = (JOCTET)(put_buffer >> 40); \
396 buffer[3] = (JOCTET)(put_buffer >> 32); \
397 buffer[4] = (JOCTET)(put_buffer >> 24); \
398 buffer[5] = (JOCTET)(put_buffer >> 16); \
399 buffer[6] = (JOCTET)(put_buffer >> 8); \
400 buffer[7] = (JOCTET)(put_buffer); \
408 if (put_buffer & 0x80808080 & ~(put_buffer + 0x01010101)) { \
409 EMIT_BYTE(put_buffer >> 24) \
410 EMIT_BYTE(put_buffer >> 16) \
411 EMIT_BYTE(put_buffer >> 8) \
412 EMIT_BYTE(put_buffer ) \
414 buffer[0] = (JOCTET)(put_buffer >> 24); \
415 buffer[1] = (JOCTET)(put_buffer >> 16); \
416 buffer[2] = (JOCTET)(put_buffer >> 8); \
417 buffer[3] = (JOCTET)(put_buffer); \
424 /* Fill the bit buffer to capacity with the leading bits from code, then output
425 * the bit buffer and put the remaining bits from code into the bit buffer.
427 #define PUT_AND_FLUSH(code, size) { \
428 put_buffer = (put_buffer << (size + free_bits)) | (code >> -free_bits); \
430 free_bits += BIT_BUF_SIZE; \
434 /* Insert code into the bit buffer and output the bit buffer if needed.
435 * NOTE: We can't flush with free_bits == 0, since the left shift in
436 * PUT_AND_FLUSH() would have undefined behavior.
438 #define PUT_BITS(code, size) { \
441 PUT_AND_FLUSH(code, size) \
443 put_buffer = (put_buffer << size) | code; \
446 #define PUT_CODE(code, size) { \
447 temp &= (((JLONG)1) << nbits) - 1; \
448 temp |= code << nbits; \
450 PUT_BITS(temp, nbits) \
454 /* Although it is exceedingly rare, it is possible for a Huffman-encoded
455 * coefficient block to be larger than the 128-byte unencoded block. For each
456 * of the 64 coefficients, PUT_BITS is invoked twice, and each invocation can
457 * theoretically store 16 bits (for a maximum of 2048 bits or 256 bytes per
458 * encoded block.) If, for instance, one artificially sets the AC
459 * coefficients to alternating values of 32767 and -32768 (using the JPEG
460 * scanning order-- 1, 8, 16, etc.), then this will produce an encoded block
461 * larger than 200 bytes.
463 #define BUFSIZE (DCTSIZE2 * 8)
465 #define LOAD_BUFFER() { \
466 if (state->free_in_buffer < BUFSIZE) { \
470 buffer = state->next_output_byte; \
473 #define STORE_BUFFER() { \
475 size_t bytes, bytestocopy; \
476 bytes = buffer - _buffer; \
478 while (bytes > 0) { \
479 bytestocopy = MIN(bytes, state->free_in_buffer); \
480 memcpy(state->next_output_byte, buffer, bytestocopy); \
481 state->next_output_byte += bytestocopy; \
482 buffer += bytestocopy; \
483 state->free_in_buffer -= bytestocopy; \
484 if (state->free_in_buffer == 0) \
485 if (!dump_buffer(state)) return FALSE; \
486 bytes -= bytestocopy; \
489 state->free_in_buffer -= (buffer - state->next_output_byte); \
490 state->next_output_byte = buffer; \
496 flush_bits(working_state
*state
)
498 JOCTET _buffer
[BUFSIZE
], *buffer
, temp
;
499 simd_bit_buf_type put_buffer
; int put_bits
;
503 #if defined(__aarch64__) && !defined(NEON_INTRINSICS)
504 put_bits
= state
->cur
.free_bits
;
506 put_bits
= SIMD_BIT_BUF_SIZE
- state
->cur
.free_bits
;
508 put_buffer
= state
->cur
.put_buffer
.simd
;
510 put_bits
= BIT_BUF_SIZE
- state
->cur
.free_bits
;
511 put_buffer
= state
->cur
.put_buffer
.c
;
516 while (put_bits
>= 8) {
518 temp
= (JOCTET
)(put_buffer
>> put_bits
);
522 /* fill partial byte with ones */
523 temp
= (JOCTET
)((put_buffer
<< (8 - put_bits
)) | (0xFF >> put_bits
));
527 if (state
->simd
) { /* and reset bit buffer to empty */
528 state
->cur
.put_buffer
.simd
= 0;
529 #if defined(__aarch64__) && !defined(NEON_INTRINSICS)
530 state
->cur
.free_bits
= 0;
532 state
->cur
.free_bits
= SIMD_BIT_BUF_SIZE
;
535 state
->cur
.put_buffer
.c
= 0;
536 state
->cur
.free_bits
= BIT_BUF_SIZE
;
544 /* Encode a single block's worth of coefficients */
547 encode_one_block_simd(working_state
*state
, JCOEFPTR block
, int last_dc_val
,
548 c_derived_tbl
*dctbl
, c_derived_tbl
*actbl
)
550 JOCTET _buffer
[BUFSIZE
], *buffer
;
555 buffer
= jsimd_huff_encode_one_block(state
, buffer
, block
, last_dc_val
,
564 encode_one_block(working_state
*state
, JCOEFPTR block
, int last_dc_val
,
565 c_derived_tbl
*dctbl
, c_derived_tbl
*actbl
)
567 int temp
, nbits
, free_bits
;
568 bit_buf_type put_buffer
;
569 JOCTET _buffer
[BUFSIZE
], *buffer
;
572 free_bits
= state
->cur
.free_bits
;
573 put_buffer
= state
->cur
.put_buffer
.c
;
576 /* Encode the DC coefficient difference per section F.1.2.1 */
578 temp
= block
[0] - last_dc_val
;
580 /* This is a well-known technique for obtaining the absolute value without a
581 * branch. It is derived from an assembly language technique presented in
582 * "How to Optimize for the Pentium Processors", Copyright (c) 1996, 1997 by
583 * Agner Fog. This code assumes we are on a two's complement machine.
585 nbits
= temp
>> (CHAR_BIT
* sizeof(int) - 1);
589 /* Find the number of bits needed for the magnitude of the coefficient */
590 nbits
= JPEG_NBITS(nbits
);
592 /* Emit the Huffman-coded symbol for the number of bits.
593 * Emit that number of bits of the value, if positive,
594 * or the complement of its magnitude, if negative.
596 PUT_CODE(dctbl
->ehufco
[nbits
], dctbl
->ehufsi
[nbits
])
598 /* Encode the AC coefficients per section F.1.2.2 */
601 int r
= 0; /* r = run length of zeros */
603 /* Manually unroll the k loop to eliminate the counter variable. This
604 * improves performance greatly on systems with a limited number of
605 * registers (such as x86.)
607 #define kloop(jpeg_natural_order_of_k) { \
608 if ((temp = block[jpeg_natural_order_of_k]) == 0) { \
611 /* Branch-less absolute value, bitwise complement, etc., same as above */ \
612 nbits = temp >> (CHAR_BIT * sizeof(int) - 1); \
615 nbits = JPEG_NBITS_NONZERO(nbits); \
616 /* if run length > 15, must emit special run-length-16 codes (0xF0) */ \
617 while (r >= 16 * 16) { \
619 PUT_BITS(actbl->ehufco[0xf0], actbl->ehufsi[0xf0]) \
621 /* Emit Huffman symbol for run length / number of bits */ \
623 PUT_CODE(actbl->ehufco[r], actbl->ehufsi[r]) \
628 /* One iteration for each value in jpeg_natural_order[] */
629 kloop(1); kloop(8); kloop(16); kloop(9); kloop(2); kloop(3);
630 kloop(10); kloop(17); kloop(24); kloop(32); kloop(25); kloop(18);
631 kloop(11); kloop(4); kloop(5); kloop(12); kloop(19); kloop(26);
632 kloop(33); kloop(40); kloop(48); kloop(41); kloop(34); kloop(27);
633 kloop(20); kloop(13); kloop(6); kloop(7); kloop(14); kloop(21);
634 kloop(28); kloop(35); kloop(42); kloop(49); kloop(56); kloop(57);
635 kloop(50); kloop(43); kloop(36); kloop(29); kloop(22); kloop(15);
636 kloop(23); kloop(30); kloop(37); kloop(44); kloop(51); kloop(58);
637 kloop(59); kloop(52); kloop(45); kloop(38); kloop(31); kloop(39);
638 kloop(46); kloop(53); kloop(60); kloop(61); kloop(54); kloop(47);
639 kloop(55); kloop(62); kloop(63);
641 /* If the last coef(s) were zero, emit an end-of-block code */
643 PUT_BITS(actbl
->ehufco
[0], actbl
->ehufsi
[0])
647 state
->cur
.put_buffer
.c
= put_buffer
;
648 state
->cur
.free_bits
= free_bits
;
656 * Emit a restart marker & resynchronize predictions.
660 emit_restart(working_state
*state
, int restart_num
)
664 if (!flush_bits(state
))
667 emit_byte(state
, 0xFF, return FALSE
);
668 emit_byte(state
, JPEG_RST0
+ restart_num
, return FALSE
);
670 /* Re-initialize DC predictions to 0 */
671 for (ci
= 0; ci
< state
->cinfo
->comps_in_scan
; ci
++)
672 state
->cur
.last_dc_val
[ci
] = 0;
674 /* The restart counter is not updated until we successfully write the MCU. */
681 * Encode and output one MCU's worth of Huffman-compressed coefficients.
685 encode_mcu_huff(j_compress_ptr cinfo
, JBLOCKROW
*MCU_data
)
687 huff_entropy_ptr entropy
= (huff_entropy_ptr
)cinfo
->entropy
;
690 jpeg_component_info
*compptr
;
692 /* Load up working state */
693 state
.next_output_byte
= cinfo
->dest
->next_output_byte
;
694 state
.free_in_buffer
= cinfo
->dest
->free_in_buffer
;
695 state
.cur
= entropy
->saved
;
697 state
.simd
= entropy
->simd
;
699 /* Emit restart marker if needed */
700 if (cinfo
->restart_interval
) {
701 if (entropy
->restarts_to_go
== 0)
702 if (!emit_restart(&state
, entropy
->next_restart_num
))
706 /* Encode the MCU data blocks */
708 for (blkn
= 0; blkn
< cinfo
->blocks_in_MCU
; blkn
++) {
709 ci
= cinfo
->MCU_membership
[blkn
];
710 compptr
= cinfo
->cur_comp_info
[ci
];
711 if (!encode_one_block_simd(&state
,
712 MCU_data
[blkn
][0], state
.cur
.last_dc_val
[ci
],
713 entropy
->dc_derived_tbls
[compptr
->dc_tbl_no
],
714 entropy
->ac_derived_tbls
[compptr
->ac_tbl_no
]))
716 /* Update last_dc_val */
717 state
.cur
.last_dc_val
[ci
] = MCU_data
[blkn
][0][0];
720 for (blkn
= 0; blkn
< cinfo
->blocks_in_MCU
; blkn
++) {
721 ci
= cinfo
->MCU_membership
[blkn
];
722 compptr
= cinfo
->cur_comp_info
[ci
];
723 if (!encode_one_block(&state
,
724 MCU_data
[blkn
][0], state
.cur
.last_dc_val
[ci
],
725 entropy
->dc_derived_tbls
[compptr
->dc_tbl_no
],
726 entropy
->ac_derived_tbls
[compptr
->ac_tbl_no
]))
728 /* Update last_dc_val */
729 state
.cur
.last_dc_val
[ci
] = MCU_data
[blkn
][0][0];
733 /* Completed MCU, so update state */
734 cinfo
->dest
->next_output_byte
= state
.next_output_byte
;
735 cinfo
->dest
->free_in_buffer
= state
.free_in_buffer
;
736 entropy
->saved
= state
.cur
;
738 /* Update restart-interval state too */
739 if (cinfo
->restart_interval
) {
740 if (entropy
->restarts_to_go
== 0) {
741 entropy
->restarts_to_go
= cinfo
->restart_interval
;
742 entropy
->next_restart_num
++;
743 entropy
->next_restart_num
&= 7;
745 entropy
->restarts_to_go
--;
753 * Finish up at the end of a Huffman-compressed scan.
757 finish_pass_huff(j_compress_ptr cinfo
)
759 huff_entropy_ptr entropy
= (huff_entropy_ptr
)cinfo
->entropy
;
762 /* Load up working state ... flush_bits needs it */
763 state
.next_output_byte
= cinfo
->dest
->next_output_byte
;
764 state
.free_in_buffer
= cinfo
->dest
->free_in_buffer
;
765 state
.cur
= entropy
->saved
;
767 state
.simd
= entropy
->simd
;
769 /* Flush out the last data */
770 if (!flush_bits(&state
))
771 ERREXIT(cinfo
, JERR_CANT_SUSPEND
);
774 cinfo
->dest
->next_output_byte
= state
.next_output_byte
;
775 cinfo
->dest
->free_in_buffer
= state
.free_in_buffer
;
776 entropy
->saved
= state
.cur
;
781 * Huffman coding optimization.
783 * We first scan the supplied data and count the number of uses of each symbol
784 * that is to be Huffman-coded. (This process MUST agree with the code above.)
785 * Then we build a Huffman coding tree for the observed counts.
786 * Symbols which are not needed at all for the particular image are not
787 * assigned any code, which saves space in the DHT marker as well as in
788 * the compressed data.
791 #ifdef ENTROPY_OPT_SUPPORTED
794 /* Process a single block's worth of coefficients */
797 htest_one_block(j_compress_ptr cinfo
, JCOEFPTR block
, int last_dc_val
,
798 long dc_counts
[], long ac_counts
[])
804 /* Encode the DC coefficient difference per section F.1.2.1 */
806 temp
= block
[0] - last_dc_val
;
810 /* Find the number of bits needed for the magnitude of the coefficient */
816 /* Check for out-of-range coefficient values.
817 * Since we're encoding a difference, the range limit is twice as much.
819 if (nbits
> MAX_COEF_BITS
+ 1)
820 ERREXIT(cinfo
, JERR_BAD_DCT_COEF
);
822 /* Count the Huffman symbol for the number of bits */
825 /* Encode the AC coefficients per section F.1.2.2 */
827 r
= 0; /* r = run length of zeros */
829 for (k
= 1; k
< DCTSIZE2
; k
++) {
830 if ((temp
= block
[jpeg_natural_order
[k
]]) == 0) {
833 /* if run length > 15, must emit special run-length-16 codes (0xF0) */
839 /* Find the number of bits needed for the magnitude of the coefficient */
843 /* Find the number of bits needed for the magnitude of the coefficient */
844 nbits
= 1; /* there must be at least one 1 bit */
847 /* Check for out-of-range coefficient values */
848 if (nbits
> MAX_COEF_BITS
)
849 ERREXIT(cinfo
, JERR_BAD_DCT_COEF
);
851 /* Count Huffman symbol for run length / number of bits */
852 ac_counts
[(r
<< 4) + nbits
]++;
858 /* If the last coef(s) were zero, emit an end-of-block code */
865 * Trial-encode one MCU's worth of Huffman-compressed coefficients.
866 * No data is actually output, so no suspension return is possible.
870 encode_mcu_gather(j_compress_ptr cinfo
, JBLOCKROW
*MCU_data
)
872 huff_entropy_ptr entropy
= (huff_entropy_ptr
)cinfo
->entropy
;
874 jpeg_component_info
*compptr
;
876 /* Take care of restart intervals if needed */
877 if (cinfo
->restart_interval
) {
878 if (entropy
->restarts_to_go
== 0) {
879 /* Re-initialize DC predictions to 0 */
880 for (ci
= 0; ci
< cinfo
->comps_in_scan
; ci
++)
881 entropy
->saved
.last_dc_val
[ci
] = 0;
882 /* Update restart state */
883 entropy
->restarts_to_go
= cinfo
->restart_interval
;
885 entropy
->restarts_to_go
--;
888 for (blkn
= 0; blkn
< cinfo
->blocks_in_MCU
; blkn
++) {
889 ci
= cinfo
->MCU_membership
[blkn
];
890 compptr
= cinfo
->cur_comp_info
[ci
];
891 htest_one_block(cinfo
, MCU_data
[blkn
][0], entropy
->saved
.last_dc_val
[ci
],
892 entropy
->dc_count_ptrs
[compptr
->dc_tbl_no
],
893 entropy
->ac_count_ptrs
[compptr
->ac_tbl_no
]);
894 entropy
->saved
.last_dc_val
[ci
] = MCU_data
[blkn
][0][0];
902 * Generate the best Huffman code table for the given counts, fill htbl.
903 * Note this is also used by jcphuff.c.
905 * The JPEG standard requires that no symbol be assigned a codeword of all
906 * one bits (so that padding bits added at the end of a compressed segment
907 * can't look like a valid code). Because of the canonical ordering of
908 * codewords, this just means that there must be an unused slot in the
909 * longest codeword length category. Annex K (Clause K.2) of
910 * Rec. ITU-T T.81 (1992) | ISO/IEC 10918-1:1994 suggests reserving such a slot
911 * by pretending that symbol 256 is a valid symbol with count 1. In theory
912 * that's not optimal; giving it count zero but including it in the symbol set
913 * anyway should give a better Huffman code. But the theoretically better code
914 * actually seems to come out worse in practice, because it produces more
915 * all-ones bytes (which incur stuffed zero bytes in the final file). In any
916 * case the difference is tiny.
918 * The JPEG standard requires Huffman codes to be no more than 16 bits long.
919 * If some symbols have a very small but nonzero probability, the Huffman tree
920 * must be adjusted to meet the code length restriction. We currently use
921 * the adjustment method suggested in JPEG section K.2. This method is *not*
922 * optimal; it may not choose the best possible limited-length code. But
923 * typically only very-low-frequency symbols will be given less-than-optimal
924 * lengths, so the code is almost optimal. Experimental comparisons against
925 * an optimal limited-length-code algorithm indicate that the difference is
926 * microscopic --- usually less than a hundredth of a percent of total size.
927 * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
931 jpeg_gen_optimal_table(j_compress_ptr cinfo
, JHUFF_TBL
*htbl
, long freq
[])
933 #define MAX_CLEN 32 /* assumed maximum initial code length */
934 UINT8 bits
[MAX_CLEN
+ 1]; /* bits[k] = # of symbols with code length k */
935 int codesize
[257]; /* codesize[k] = code length of symbol k */
936 int others
[257]; /* next symbol in current branch of tree */
941 /* This algorithm is explained in section K.2 of the JPEG standard */
943 memset(bits
, 0, sizeof(bits
));
944 memset(codesize
, 0, sizeof(codesize
));
945 for (i
= 0; i
< 257; i
++)
946 others
[i
] = -1; /* init links to empty */
948 freq
[256] = 1; /* make sure 256 has a nonzero count */
949 /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
950 * that no real symbol is given code-value of all ones, because 256
951 * will be placed last in the largest codeword category.
954 /* Huffman's basic algorithm to assign optimal code lengths to symbols */
957 /* Find the smallest nonzero frequency, set c1 = its symbol */
958 /* In case of ties, take the larger symbol number */
961 for (i
= 0; i
<= 256; i
++) {
962 if (freq
[i
] && freq
[i
] <= v
) {
968 /* Find the next smallest nonzero frequency, set c2 = its symbol */
969 /* In case of ties, take the larger symbol number */
972 for (i
= 0; i
<= 256; i
++) {
973 if (freq
[i
] && freq
[i
] <= v
&& i
!= c1
) {
979 /* Done if we've merged everything into one frequency */
983 /* Else merge the two counts/trees */
984 freq
[c1
] += freq
[c2
];
987 /* Increment the codesize of everything in c1's tree branch */
989 while (others
[c1
] >= 0) {
994 others
[c1
] = c2
; /* chain c2 onto c1's tree branch */
996 /* Increment the codesize of everything in c2's tree branch */
998 while (others
[c2
] >= 0) {
1004 /* Now count the number of symbols of each code length */
1005 for (i
= 0; i
<= 256; i
++) {
1007 /* The JPEG standard seems to think that this can't happen, */
1008 /* but I'm paranoid... */
1009 if (codesize
[i
] > MAX_CLEN
)
1010 ERREXIT(cinfo
, JERR_HUFF_CLEN_OVERFLOW
);
1012 bits
[codesize
[i
]]++;
1016 /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
1017 * Huffman procedure assigned any such lengths, we must adjust the coding.
1018 * Here is what Rec. ITU-T T.81 | ISO/IEC 10918-1 says about how this next
1019 * bit works: Since symbols are paired for the longest Huffman code, the
1020 * symbols are removed from this length category two at a time. The prefix
1021 * for the pair (which is one bit shorter) is allocated to one of the pair;
1022 * then, skipping the BITS entry for that prefix length, a code word from the
1023 * next shortest nonzero BITS entry is converted into a prefix for two code
1024 * words one bit longer.
1027 for (i
= MAX_CLEN
; i
> 16; i
--) {
1028 while (bits
[i
] > 0) {
1029 j
= i
- 2; /* find length of new prefix to be used */
1030 while (bits
[j
] == 0)
1033 bits
[i
] -= 2; /* remove two symbols */
1034 bits
[i
- 1]++; /* one goes in this length */
1035 bits
[j
+ 1] += 2; /* two new symbols in this length */
1036 bits
[j
]--; /* symbol of this length is now a prefix */
1040 /* Remove the count for the pseudo-symbol 256 from the largest codelength */
1041 while (bits
[i
] == 0) /* find largest codelength still in use */
1045 /* Return final symbol counts (only for lengths 0..16) */
1046 memcpy(htbl
->bits
, bits
, sizeof(htbl
->bits
));
1048 /* Return a list of the symbols sorted by code length */
1049 /* It's not real clear to me why we don't need to consider the codelength
1050 * changes made above, but Rec. ITU-T T.81 | ISO/IEC 10918-1 seems to think
1054 for (i
= 1; i
<= MAX_CLEN
; i
++) {
1055 for (j
= 0; j
<= 255; j
++) {
1056 if (codesize
[j
] == i
) {
1057 htbl
->huffval
[p
] = (UINT8
)j
;
1063 /* Set sent_table FALSE so updated table will be written to JPEG file. */
1064 htbl
->sent_table
= FALSE
;
1069 * Finish up a statistics-gathering pass and create the new Huffman tables.
1073 finish_pass_gather(j_compress_ptr cinfo
)
1075 huff_entropy_ptr entropy
= (huff_entropy_ptr
)cinfo
->entropy
;
1076 int ci
, dctbl
, actbl
;
1077 jpeg_component_info
*compptr
;
1078 JHUFF_TBL
**htblptr
;
1079 boolean did_dc
[NUM_HUFF_TBLS
];
1080 boolean did_ac
[NUM_HUFF_TBLS
];
1082 /* It's important not to apply jpeg_gen_optimal_table more than once
1083 * per table, because it clobbers the input frequency counts!
1085 memset(did_dc
, 0, sizeof(did_dc
));
1086 memset(did_ac
, 0, sizeof(did_ac
));
1088 for (ci
= 0; ci
< cinfo
->comps_in_scan
; ci
++) {
1089 compptr
= cinfo
->cur_comp_info
[ci
];
1090 dctbl
= compptr
->dc_tbl_no
;
1091 actbl
= compptr
->ac_tbl_no
;
1092 if (!did_dc
[dctbl
]) {
1093 htblptr
= &cinfo
->dc_huff_tbl_ptrs
[dctbl
];
1094 if (*htblptr
== NULL
)
1095 *htblptr
= jpeg_alloc_huff_table((j_common_ptr
)cinfo
);
1096 jpeg_gen_optimal_table(cinfo
, *htblptr
, entropy
->dc_count_ptrs
[dctbl
]);
1097 did_dc
[dctbl
] = TRUE
;
1099 if (!did_ac
[actbl
]) {
1100 htblptr
= &cinfo
->ac_huff_tbl_ptrs
[actbl
];
1101 if (*htblptr
== NULL
)
1102 *htblptr
= jpeg_alloc_huff_table((j_common_ptr
)cinfo
);
1103 jpeg_gen_optimal_table(cinfo
, *htblptr
, entropy
->ac_count_ptrs
[actbl
]);
1104 did_ac
[actbl
] = TRUE
;
1110 #endif /* ENTROPY_OPT_SUPPORTED */
1114 * Module initialization routine for Huffman entropy encoding.
1118 jinit_huff_encoder(j_compress_ptr cinfo
)
1120 huff_entropy_ptr entropy
;
1123 entropy
= (huff_entropy_ptr
)
1124 (*cinfo
->mem
->alloc_small
) ((j_common_ptr
)cinfo
, JPOOL_IMAGE
,
1125 sizeof(huff_entropy_encoder
));
1126 cinfo
->entropy
= (struct jpeg_entropy_encoder
*)entropy
;
1127 entropy
->pub
.start_pass
= start_pass_huff
;
1129 /* Mark tables unallocated */
1130 for (i
= 0; i
< NUM_HUFF_TBLS
; i
++) {
1131 entropy
->dc_derived_tbls
[i
] = entropy
->ac_derived_tbls
[i
] = NULL
;
1132 #ifdef ENTROPY_OPT_SUPPORTED
1133 entropy
->dc_count_ptrs
[i
] = entropy
->ac_count_ptrs
[i
] = NULL
;