1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
3 /* This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 #ifndef mozilla_TaskController_h
8 #define mozilla_TaskController_h
10 #include "mozilla/CondVar.h"
11 #include "mozilla/IdlePeriodState.h"
12 #include "mozilla/RefPtr.h"
13 #include "mozilla/Mutex.h"
14 #include "mozilla/StaticMutex.h"
15 #include "mozilla/TimeStamp.h"
16 #include "mozilla/EventQueue.h"
17 #include "nsISupportsImpl.h"
18 #include "nsIEventTarget.h"
28 class nsIThreadObserver
;
34 class PerformanceCounter
;
35 class PerformanceCounterState
;
37 const EventQueuePriority kDefaultPriorityValue
= EventQueuePriority::Normal
;
39 // This file contains the core classes to access the Gecko scheduler. The
40 // scheduler forms a graph of prioritize tasks, and is responsible for ensuring
41 // the execution of tasks or their dependencies in order of inherited priority.
43 // The core class is the 'Task' class. The task class describes a single unit of
44 // work. Users scheduling work implement this class and are required to
45 // reimplement the 'Run' function in order to do work.
47 // The TaskManager class is reimplemented by users that require
48 // the ability to reprioritize or suspend tasks.
50 // The TaskController is responsible for scheduling the work itself. The AddTask
51 // function is used to schedule work. The ReprioritizeTask function may be used
52 // to change the priority of a task already in the task graph, without
55 // The TaskManager is the baseclass used to atomically manage a large set of
56 // tasks. API users reimplementing TaskManager may reimplement a number of
57 // functions that they may use to indicate to the scheduler changes in the state
58 // for any tasks they manage. They may be used to reprioritize or suspend tasks
59 // under their control, and will also be notified before and after tasks under
60 // their control are executed. Their methods will only be called once per event
61 // loop turn, however they may still incur some performance overhead. In
62 // addition to this frequent reprioritizations may incur a significant
63 // performance overhead and are discouraged. A TaskManager may currently only be
64 // used to manage tasks that are bound to the Gecko Main Thread.
67 NS_INLINE_DECL_THREADSAFE_REFCOUNTING(TaskManager
)
69 TaskManager() : mTaskCount(0) {}
71 // Subclasses implementing task manager will have this function called to
72 // determine whether their associated tasks are currently suspended. This
73 // will only be called once per iteration of the task queue, this means that
74 // suspension of tasks managed by a single TaskManager may be assumed to
76 virtual bool IsSuspended(const MutexAutoLock
& aProofOfLock
) { return false; }
78 // Subclasses may implement this in order to supply a priority adjustment
79 // to their managed tasks. This is called once per iteration of the task
80 // queue, and may be assumed to occur atomically for all managed tasks.
81 virtual int32_t GetPriorityModifierForEventLoopTurn(
82 const MutexAutoLock
& aProofOfLock
) {
86 void DidQueueTask() { ++mTaskCount
; }
87 // This is called when a managed task is about to be executed by the
88 // scheduler. Anyone reimplementing this should ensure to call the parent or
89 // decrement mTaskCount.
90 virtual void WillRunTask() { --mTaskCount
; }
91 // This is called when a managed task has finished being executed by the
93 virtual void DidRunTask() {}
94 uint32_t PendingTaskCount() { return mTaskCount
; }
97 virtual ~TaskManager() {}
100 friend class TaskController
;
102 enum class IterationType
{ NOT_EVENT_LOOP_TURN
, EVENT_LOOP_TURN
};
103 bool UpdateCachesForCurrentIterationAndReportPriorityModifierChanged(
104 const MutexAutoLock
& aProofOfLock
, IterationType aIterationType
);
106 bool mCurrentSuspended
= false;
107 int32_t mCurrentPriorityModifier
= 0;
109 std::atomic
<uint32_t> mTaskCount
;
112 // A Task is the the base class for any unit of work that may be scheduled.
113 // Subclasses may specify their priority and whether they should be bound to
114 // the Gecko Main thread. When not bound to the main thread tasks may be
115 // executed on any available thread (including the main thread), but they may
116 // also be executed in parallel to any other task they do not have a dependency
117 // relationship with. Tasks will be run in order of object creation.
120 NS_INLINE_DECL_THREADSAFE_REFCOUNTING(Task
)
122 bool IsMainThreadOnly() { return mMainThreadOnly
; }
124 // This returns the current task priority with its modifier applied.
125 uint32_t GetPriority() { return mPriority
+ mPriorityModifier
; }
126 uint64_t GetSeqNo() { return mSeqNo
; }
128 // Callee needs to assume this may be called on any thread.
129 // aInterruptPriority passes the priority of the higher priority task that
130 // is ready to be executed. The task may safely ignore this function, or
131 // interrupt any work being done. It may return 'false' from its run function
132 // in order to be run automatically in the future, or true if it will
133 // reschedule incomplete work manually.
134 virtual void RequestInterrupt(uint32_t aInterruptPriority
) {}
136 // At the moment this -must- be called before the task is added to the
137 // controller. Calling this after tasks have been added to the controller
138 // results in undefined behavior!
139 // At submission, tasks must depend only on tasks managed by the same, or
141 void AddDependency(Task
* aTask
) {
143 MOZ_ASSERT(!mIsInGraph
);
144 mDependencies
.insert(aTask
);
147 // This sets the TaskManager for the current task. Calling this after the
148 // task has been added to the TaskController results in undefined behavior.
149 void SetManager(TaskManager
* aManager
) {
150 MOZ_ASSERT(mMainThreadOnly
);
151 MOZ_ASSERT(!mIsInGraph
);
152 mTaskManager
= aManager
;
154 TaskManager
* GetManager() { return mTaskManager
; }
156 struct PriorityCompare
{
157 bool operator()(const RefPtr
<Task
>& aTaskA
,
158 const RefPtr
<Task
>& aTaskB
) const {
159 uint32_t prioA
= aTaskA
->GetPriority();
160 uint32_t prioB
= aTaskB
->GetPriority();
161 return (prioA
> prioB
) ||
162 (prioA
== prioB
&& (aTaskA
->GetSeqNo() < aTaskB
->GetSeqNo()));
166 // Tell the task about its idle deadline. Will only be called for
167 // tasks managed by an IdleTaskManager, right before the task runs.
168 virtual void SetIdleDeadline(TimeStamp aDeadline
) {}
170 virtual PerformanceCounter
* GetPerformanceCounter() const { return nullptr; }
172 // Get a name for this task. This returns false if the task has no name.
173 #ifdef MOZ_COLLECTING_RUNNABLE_TELEMETRY
174 virtual bool GetName(nsACString
& aName
) = 0;
176 virtual bool GetName(nsACString
& aName
) { return false; }
180 Task(bool aMainThreadOnly
,
181 uint32_t aPriority
= static_cast<uint32_t>(kDefaultPriorityValue
))
182 : mMainThreadOnly(aMainThreadOnly
),
183 mSeqNo(sCurrentTaskSeqNo
++),
184 mPriority(aPriority
) {}
186 Task(bool aMainThreadOnly
,
187 EventQueuePriority aPriority
= kDefaultPriorityValue
)
188 : mMainThreadOnly(aMainThreadOnly
),
189 mSeqNo(sCurrentTaskSeqNo
++),
190 mPriority(static_cast<uint32_t>(aPriority
)) {}
194 friend class TaskController
;
196 // When this returns false, the task is considered incomplete and will be
197 // rescheduled at the current 'mPriority' level.
198 virtual bool Run() = 0;
201 Task
* GetHighestPriorityDependency();
203 // Iterator pointing to this task's position in
204 // mThreadableTasks/mMainThreadTasks if, and only if this task is currently
205 // scheduled to be executed. This allows fast access to the task's position
206 // in the set, allowing for fast removal.
207 // This is safe, and remains valid unless the task is removed from the set.
208 // See also iterator invalidation in:
209 // https://en.cppreference.com/w/cpp/container
212 // "All Associative Containers: The insert and emplace members shall not
213 // affect the validity of iterators and references to the container
214 // [26.2.6/9]" "All Associative Containers: The erase members shall invalidate
215 // only iterators and references to the erased elements [26.2.6/9]"
216 std::set
<RefPtr
<Task
>, PriorityCompare
>::iterator mIterator
;
217 std::set
<RefPtr
<Task
>, PriorityCompare
> mDependencies
;
219 RefPtr
<TaskManager
> mTaskManager
;
221 // Access to these variables is protected by the GraphMutex.
222 bool mMainThreadOnly
;
223 bool mCompleted
= false;
224 bool mInProgress
= false;
226 bool mIsInGraph
= false;
229 static std::atomic
<uint64_t> sCurrentTaskSeqNo
;
232 // Modifier currently being applied to this task by its taskmanager.
233 int32_t mPriorityModifier
= 0;
234 // Time this task was inserted into the task graph, this is used by the
236 mozilla::TimeStamp mInsertionTime
;
241 RefPtr
<Task
> mCurrentTask
;
242 // This may be higher than mCurrentTask's priority due to priority
243 // propagation. This is -only- valid when mCurrentTask != nullptr.
244 uint32_t mEffectiveTaskPriority
;
247 // A task manager implementation for priority levels that should only
248 // run during idle periods.
249 class IdleTaskManager
: public TaskManager
{
251 explicit IdleTaskManager(already_AddRefed
<nsIIdlePeriod
>&& aIdlePeriod
)
252 : mIdlePeriodState(std::move(aIdlePeriod
)) {}
254 IdlePeriodState
& State() { return mIdlePeriodState
; }
256 bool IsSuspended(const MutexAutoLock
& aProofOfLock
) override
{
257 TimeStamp idleDeadline
= State().GetCachedIdleDeadline();
258 return !idleDeadline
;
262 // Tracking of our idle state of various sorts.
263 IdlePeriodState mIdlePeriodState
;
266 // The TaskController is the core class of the scheduler. It is used to
267 // schedule tasks to be executed, as well as to reprioritize tasks that have
268 // already been scheduled. The core functions to do this are AddTask and
270 class TaskController
{
273 : mGraphMutex("TaskController::mGraphMutex"),
274 mThreadPoolCV(mGraphMutex
, "TaskController::mThreadPoolCV"),
275 mMainThreadCV(mGraphMutex
, "TaskController::mMainThreadCV") {}
277 static TaskController
* Get();
279 static bool Initialize();
281 void SetThreadObserver(nsIThreadObserver
* aObserver
) {
282 MutexAutoLock
lock(mGraphMutex
);
283 mObserver
= aObserver
;
285 void SetConditionVariable(CondVar
* aExternalCondVar
) {
286 mExternalCondVar
= aExternalCondVar
;
289 void SetIdleTaskManager(IdleTaskManager
* aIdleTaskManager
) {
290 mIdleTaskManager
= aIdleTaskManager
;
292 IdleTaskManager
* GetIdleTaskManager() { return mIdleTaskManager
.get(); }
294 // Initialization and shutdown code.
295 void SetPerformanceCounterState(
296 PerformanceCounterState
* aPerformanceCounterState
);
298 static void Shutdown();
300 // This adds a task to the TaskController graph.
301 // This may be called on any thread.
302 void AddTask(already_AddRefed
<Task
>&& aTask
);
304 // This wait function is the theoretical function you would need if our main
305 // thread needs to also process OS messages or something along those lines.
306 void WaitForTaskOrMessage();
308 // This gets the next (highest priority) task that is only allowed to execute
309 // on the main thread.
310 void ExecuteNextTaskOnlyMainThread();
312 // Process all pending main thread tasks.
313 void ProcessPendingMTTask(bool aMayWait
= false);
315 // This allows reprioritization of a task already in the task graph.
316 // This may be called on any thread.
317 void ReprioritizeTask(Task
* aTask
, uint32_t aPriority
);
319 void DispatchRunnable(already_AddRefed
<nsIRunnable
>&& aRunnable
,
320 uint32_t aPriority
, TaskManager
* aManager
= nullptr);
322 nsIRunnable
* GetRunnableForMTTask(bool aReallyWait
);
324 bool HasMainThreadPendingTasks();
326 // Let users know whether the last main thread task runnable did work.
327 bool MTTaskRunnableProcessedTask() { return mMTTaskRunnableProcessedTask
; }
329 static int32_t GetPoolThreadCount();
330 static size_t GetThreadStackSize();
333 friend void ThreadFuncPoolThread(void* aIndex
);
335 bool InitializeInternal();
337 void InitializeThreadPool();
339 // This gets the next (highest priority) task that is only allowed to execute
340 // on the main thread, if any, and executes it.
341 // Returns true if it succeeded.
342 bool ExecuteNextTaskOnlyMainThreadInternal(const MutexAutoLock
& aProofOfLock
);
344 // The guts of ExecuteNextTaskOnlyMainThreadInternal, which get idle handling
345 // wrapped around them. Returns whether a task actually ran.
346 bool DoExecuteNextTaskOnlyMainThreadInternal(
347 const MutexAutoLock
& aProofOfLock
);
349 Task
* GetFinalDependency(Task
* aTask
);
350 void MaybeInterruptTask(Task
* aTask
);
351 Task
* GetHighestPriorityMTTask();
353 void EnsureMainThreadTasksScheduled();
355 void ProcessUpdatedPriorityModifier(TaskManager
* aManager
);
357 void ShutdownThreadPoolInternal();
358 void ShutdownInternal();
360 void RunPoolThread();
362 static std::unique_ptr
<TaskController
> sSingleton
;
363 static StaticMutex sSingletonMutex
;
365 // This protects access to the task graph.
368 // This protects thread pool initialization. We cannot do this from within
369 // the GraphMutex, since thread creation on Windows can generate events on
370 // the main thread that need to be handled.
371 Mutex mPoolInitializationMutex
=
372 Mutex("TaskController::mPoolInitializationMutex");
374 CondVar mThreadPoolCV
;
375 CondVar mMainThreadCV
;
377 // Variables below are protected by mGraphMutex.
379 std::vector
<PoolThread
> mPoolThreads
;
380 std::stack
<RefPtr
<Task
>> mCurrentTasksMT
;
382 // A list of all tasks ordered by priority.
383 std::set
<RefPtr
<Task
>, Task::PriorityCompare
> mThreadableTasks
;
384 std::set
<RefPtr
<Task
>, Task::PriorityCompare
> mMainThreadTasks
;
386 // TaskManagers currently active.
387 // We can use a raw pointer since tasks always hold on to their TaskManager.
388 std::set
<TaskManager
*> mTaskManagers
;
390 // This ensures we keep running the main thread if we processed a task there.
391 bool mMayHaveMainThreadTask
= true;
392 bool mShuttingDown
= false;
394 // This stores whether the last main thread task runnable did work.
395 bool mMTTaskRunnableProcessedTask
= false;
397 // Whether our thread pool is initialized. We use this currently to avoid
398 // starting the threads in processes where it's never used. This is protected
399 // by mPoolInitializationMutex.
400 bool mThreadPoolInitialized
= false;
402 // Whether we have scheduled a runnable on the main thread event loop.
403 // This is used for nsIRunnable compatibility.
404 RefPtr
<nsIRunnable
> mMTProcessingRunnable
;
405 RefPtr
<nsIRunnable
> mMTBlockingProcessingRunnable
;
407 // XXX - Thread observer to notify when a new event has been dispatched
408 nsIThreadObserver
* mObserver
= nullptr;
409 // XXX - External condvar to notify when we have received an event
410 CondVar
* mExternalCondVar
= nullptr;
411 // Idle task manager so we can properly do idle state stuff.
412 RefPtr
<IdleTaskManager
> mIdleTaskManager
;
414 // Our tracking of our performance counter and long task state,
415 // shared with nsThread.
416 PerformanceCounterState
* mPerformanceCounterState
= nullptr;
419 } // namespace mozilla
421 #endif // mozilla_TaskController_h