Bug 1073336 part 5 - Add AnimationPlayerCollection::PlayerUpdated; r=dbaron
[gecko.git] / tools / profiler / LulMainInt.h
blob5b795d65933297b905d5945e4a1335904b4b3ecc
1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
3 /* This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 #ifndef LulMainInt_h
8 #define LulMainInt_h
10 #include "LulPlatformMacros.h"
12 #include <vector>
14 #include "mozilla/Assertions.h"
16 // This file is provides internal interface inside LUL. If you are an
17 // end-user of LUL, do not include it in your code. The end-user
18 // interface is in LulMain.h.
21 namespace lul {
23 ////////////////////////////////////////////////////////////////
24 // DW_REG_ constants //
25 ////////////////////////////////////////////////////////////////
27 // These are the Dwarf CFI register numbers, as (presumably) defined
28 // in the ELF ABI supplements for each architecture.
30 enum DW_REG_NUMBER {
31 // No real register has this number. It's convenient to be able to
32 // treat the CFA (Canonical Frame Address) as "just another
33 // register", though.
34 DW_REG_CFA = -1,
35 #if defined(LUL_ARCH_arm)
36 // ARM registers
37 DW_REG_ARM_R7 = 7,
38 DW_REG_ARM_R11 = 11,
39 DW_REG_ARM_R12 = 12,
40 DW_REG_ARM_R13 = 13,
41 DW_REG_ARM_R14 = 14,
42 DW_REG_ARM_R15 = 15,
43 #elif defined(LUL_ARCH_x64)
44 // Because the X86 (32 bit) and AMD64 (64 bit) summarisers are
45 // combined, a merged set of register constants is needed.
46 DW_REG_INTEL_XBP = 6,
47 DW_REG_INTEL_XSP = 7,
48 DW_REG_INTEL_XIP = 16,
49 #elif defined(LUL_ARCH_x86)
50 DW_REG_INTEL_XBP = 5,
51 DW_REG_INTEL_XSP = 4,
52 DW_REG_INTEL_XIP = 8,
53 #else
54 # error "Unknown arch"
55 #endif
59 ////////////////////////////////////////////////////////////////
60 // LExpr //
61 ////////////////////////////////////////////////////////////////
63 // An expression -- very primitive. Denotes either "register +
64 // offset" or a dereferenced version of the same. So as to allow
65 // convenient handling of Dwarf-derived unwind info, the register may
66 // also denote the CFA. A large number of these need to be stored, so
67 // we ensure it fits into 8 bytes. See comment below on RuleSet to
68 // see how expressions fit into the bigger picture.
70 struct LExpr {
71 // Denotes an expression with no value.
72 LExpr()
73 : mHow(UNKNOWN)
74 , mReg(0)
75 , mOffset(0)
78 // Denotes any expressible expression.
79 LExpr(uint8_t how, int16_t reg, int32_t offset)
80 : mHow(how)
81 , mReg(reg)
82 , mOffset(offset)
85 // Change the offset for an expression that references memory.
86 LExpr add_delta(long delta)
88 MOZ_ASSERT(mHow == NODEREF);
89 // If this is a non-debug build and the above assertion would have
90 // failed, at least return LExpr() so that the machinery that uses
91 // the resulting expression fails in a repeatable way.
92 return (mHow == NODEREF) ? LExpr(mHow, mReg, mOffset+delta)
93 : LExpr(); // Gone bad
96 // Dereference an expression that denotes a memory address.
97 LExpr deref()
99 MOZ_ASSERT(mHow == NODEREF);
100 // Same rationale as for add_delta().
101 return (mHow == NODEREF) ? LExpr(DEREF, mReg, mOffset)
102 : LExpr(); // Gone bad
105 // Representation of expressions. If |mReg| is DW_REG_CFA (-1) then
106 // it denotes the CFA. All other allowed values for |mReg| are
107 // nonnegative and are DW_REG_ values.
109 enum { UNKNOWN=0, // This LExpr denotes no value.
110 NODEREF, // Value is (mReg + mOffset).
111 DEREF }; // Value is *(mReg + mOffset).
113 uint8_t mHow; // UNKNOWN, NODEREF or DEREF
114 int16_t mReg; // A DW_REG_ value
115 int32_t mOffset; // 32-bit signed offset should be more than enough.
118 static_assert(sizeof(LExpr) <= 8, "LExpr size changed unexpectedly");
121 ////////////////////////////////////////////////////////////////
122 // RuleSet //
123 ////////////////////////////////////////////////////////////////
125 // This is platform-dependent. For some address range, describes how
126 // to recover the CFA and then how to recover the registers for the
127 // previous frame.
129 // The set of LExprs contained in a given RuleSet describe a DAG which
130 // says how to compute the caller's registers ("new registers") from
131 // the callee's registers ("old registers"). The DAG can contain a
132 // single internal node, which is the value of the CFA for the callee.
133 // It would be possible to construct a DAG that omits the CFA, but
134 // including it makes the summarisers simpler, and the Dwarf CFI spec
135 // has the CFA as a central concept.
137 // For this to make sense, |mCfaExpr| can't have
138 // |mReg| == DW_REG_CFA since we have no previous value for the CFA.
139 // All of the other |Expr| fields can -- and usually do -- specify
140 // |mReg| == DW_REG_CFA.
142 // With that in place, the unwind algorithm proceeds as follows.
144 // (0) Initially: we have values for the old registers, and a memory
145 // image.
147 // (1) Compute the CFA by evaluating |mCfaExpr|. Add the computed
148 // value to the set of "old registers".
150 // (2) Compute values for the registers by evaluating all of the other
151 // |Expr| fields in the RuleSet. These can depend on both the old
152 // register values and the just-computed CFA.
154 // If we are unwinding without computing a CFA, perhaps because the
155 // RuleSets are derived from EXIDX instead of Dwarf, then
156 // |mCfaExpr.mHow| will be LExpr::UNKNOWN, so the computed value will
157 // be invalid -- that is, TaggedUWord() -- and so any attempt to use
158 // that will result in the same value. But that's OK because the
159 // RuleSet would make no sense if depended on the CFA but specified no
160 // way to compute it.
162 // A RuleSet is not allowed to cover zero address range. Having zero
163 // length would break binary searching in SecMaps and PriMaps.
165 class RuleSet {
166 public:
167 RuleSet();
168 void Print(void(*aLog)(const char*));
170 // Find the LExpr* for a given DW_REG_ value in this class.
171 LExpr* ExprForRegno(DW_REG_NUMBER aRegno);
173 uintptr_t mAddr;
174 uintptr_t mLen;
175 // How to compute the CFA.
176 LExpr mCfaExpr;
177 // How to compute caller register values. These may reference the
178 // value defined by |mCfaExpr|.
179 #if defined(LUL_ARCH_x64) || defined(LUL_ARCH_x86)
180 LExpr mXipExpr; // return address
181 LExpr mXspExpr;
182 LExpr mXbpExpr;
183 #elif defined(LUL_ARCH_arm)
184 LExpr mR15expr; // return address
185 LExpr mR14expr;
186 LExpr mR13expr;
187 LExpr mR12expr;
188 LExpr mR11expr;
189 LExpr mR7expr;
190 #else
191 # error "Unknown arch"
192 #endif
196 ////////////////////////////////////////////////////////////////
197 // SecMap //
198 ////////////////////////////////////////////////////////////////
200 // A SecMap may have zero address range, temporarily, whilst RuleSets
201 // are being added to it. But adding a zero-range SecMap to a PriMap
202 // will make it impossible to maintain the total order of the PriMap
203 // entries, and so that can't be allowed to happen.
205 class SecMap {
206 public:
207 // These summarise the contained mRuleSets, in that they give
208 // exactly the lowest and highest addresses that any of the entries
209 // in this SecMap cover. Hence invariants:
211 // mRuleSets is nonempty
212 // <=> mSummaryMinAddr <= mSummaryMaxAddr
213 // && mSummaryMinAddr == mRuleSets[0].mAddr
214 // && mSummaryMaxAddr == mRuleSets[#rulesets-1].mAddr
215 // + mRuleSets[#rulesets-1].mLen - 1;
217 // This requires that no RuleSet has zero length.
219 // mRuleSets is empty
220 // <=> mSummaryMinAddr > mSummaryMaxAddr
222 // This doesn't constrain mSummaryMinAddr and mSummaryMaxAddr uniquely,
223 // so let's use mSummaryMinAddr == 1 and mSummaryMaxAddr == 0 to denote
224 // this case.
226 explicit SecMap(void(*aLog)(const char*));
227 ~SecMap();
229 // Binary search mRuleSets to find one that brackets |ia|, or nullptr
230 // if none is found. It's not allowable to do this until PrepareRuleSets
231 // has been called first.
232 RuleSet* FindRuleSet(uintptr_t ia);
234 // Add a RuleSet to the collection. The rule is copied in. Calling
235 // this makes the map non-searchable.
236 void AddRuleSet(RuleSet* rs);
238 // Prepare the map for searching. Also, remove any rules for code
239 // address ranges which don't fall inside [start, +len). |len| may
240 // not be zero.
241 void PrepareRuleSets(uintptr_t start, size_t len);
243 bool IsEmpty();
245 size_t Size() { return mRuleSets.size(); }
247 // The min and max addresses of the addresses in the contained
248 // RuleSets. See comment above for invariants.
249 uintptr_t mSummaryMinAddr;
250 uintptr_t mSummaryMaxAddr;
252 private:
253 // False whilst adding entries; true once it is safe to call FindRuleSet.
254 // Transition (false->true) is caused by calling PrepareRuleSets().
255 bool mUsable;
257 // A vector of RuleSets, sorted, nonoverlapping (post Prepare()).
258 std::vector<RuleSet> mRuleSets;
260 // A logging sink, for debugging.
261 void (*mLog)(const char*);
264 } // namespace lul
266 #endif // ndef LulMainInt_h