1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2 * vim: set ts=8 sts=2 et sw=2 tw=80:
3 * This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 /* A type suitable for returning either a value or an error from a function. */
9 #ifndef mozilla_Result_h
10 #define mozilla_Result_h
15 #include <type_traits>
16 #include "mozilla/Assertions.h"
17 #include "mozilla/Attributes.h"
18 #include "mozilla/CompactPair.h"
23 * Empty struct, indicating success for operations that have no return value.
24 * For example, if you declare another empty struct `struct OutOfMemory {};`,
25 * then `Result<Ok, OutOfMemory>` represents either success or OOM.
30 class GenericErrorResult
;
31 template <typename V
, typename E
>
36 enum class PackingStrategy
{
46 template <typename V
, typename E
, PackingStrategy Strategy
>
47 class ResultImplementation
;
49 // The purpose of AlignedStorageOrEmpty is to make an empty class look like
50 // std::aligned_storage_t for the purposes of the PackingStrategy::NullIsOk
51 // specializations of ResultImplementation below. We can't use
52 // std::aligned_storage_t itself with an empty class, since it would no longer
54 template <typename V
, bool IsEmpty
= std::is_empty_v
<V
>>
55 struct AlignedStorageOrEmpty
;
58 struct AlignedStorageOrEmpty
<V
, true> : V
{
59 constexpr V
* addr() { return this; }
60 constexpr const V
* addr() const { return this; }
64 struct AlignedStorageOrEmpty
<V
, false> {
65 V
* addr() { return reinterpret_cast<V
*>(&mData
); }
66 const V
* addr() const { return reinterpret_cast<const V
*>(&mData
); }
69 std::aligned_storage_t
<sizeof(V
), alignof(V
)> mData
;
72 template <typename V
, typename E
>
73 class ResultImplementationNullIsOkBase
{
75 using ErrorStorageType
= typename UnusedZero
<E
>::StorageType
;
77 static constexpr auto kNullValue
= UnusedZero
<E
>::nullValue
;
79 static_assert(std::is_trivially_copyable_v
<ErrorStorageType
>);
81 // XXX This can't be statically asserted in general, if ErrorStorageType is
82 // not a basic type. With C++20 bit_cast, we could probably re-add such as
83 // assertion. static_assert(kNullValue == decltype(kNullValue)(0));
85 CompactPair
<AlignedStorageOrEmpty
<V
>, ErrorStorageType
> mValue
;
88 explicit ResultImplementationNullIsOkBase(const V
& aSuccessValue
)
89 : mValue(std::piecewise_construct
, std::tuple
<>(),
90 std::tuple(kNullValue
)) {
91 if constexpr (!std::is_empty_v
<V
>) {
92 new (mValue
.first().addr()) V(aSuccessValue
);
95 explicit ResultImplementationNullIsOkBase(V
&& aSuccessValue
)
96 : mValue(std::piecewise_construct
, std::tuple
<>(),
97 std::tuple(kNullValue
)) {
98 if constexpr (!std::is_empty_v
<V
>) {
99 new (mValue
.first().addr()) V(std::move(aSuccessValue
));
102 template <typename
... Args
>
103 explicit ResultImplementationNullIsOkBase(std::in_place_t
, Args
&&... aArgs
)
104 : mValue(std::piecewise_construct
, std::tuple
<>(),
105 std::tuple(kNullValue
)) {
106 if constexpr (!std::is_empty_v
<V
>) {
107 new (mValue
.first().addr()) V(std::forward
<Args
>(aArgs
)...);
110 explicit ResultImplementationNullIsOkBase(E aErrorValue
)
111 : mValue(std::piecewise_construct
, std::tuple
<>(),
112 std::tuple(UnusedZero
<E
>::Store(std::move(aErrorValue
)))) {
113 MOZ_ASSERT(mValue
.second() != kNullValue
);
116 ResultImplementationNullIsOkBase(ResultImplementationNullIsOkBase
&& aOther
)
117 : mValue(std::piecewise_construct
, std::tuple
<>(),
118 std::tuple(aOther
.mValue
.second())) {
119 if constexpr (!std::is_empty_v
<V
>) {
121 new (mValue
.first().addr()) V(std::move(*aOther
.mValue
.first().addr()));
125 ResultImplementationNullIsOkBase
& operator=(
126 ResultImplementationNullIsOkBase
&& aOther
) {
127 if constexpr (!std::is_empty_v
<V
>) {
129 mValue
.first().addr()->~V();
132 mValue
.second() = std::move(aOther
.mValue
.second());
133 if constexpr (!std::is_empty_v
<V
>) {
135 new (mValue
.first().addr()) V(std::move(*aOther
.mValue
.first().addr()));
141 bool isOk() const { return mValue
.second() == kNullValue
; }
143 const V
& inspect() const { return *mValue
.first().addr(); }
144 V
unwrap() { return std::move(*mValue
.first().addr()); }
146 decltype(auto) inspectErr() const {
147 return UnusedZero
<E
>::Inspect(mValue
.second());
149 E
unwrapErr() { return UnusedZero
<E
>::Unwrap(mValue
.second()); }
152 template <typename V
, typename E
,
153 bool IsVTriviallyDestructible
= std::is_trivially_destructible_v
<V
>>
154 class ResultImplementationNullIsOk
;
156 template <typename V
, typename E
>
157 class ResultImplementationNullIsOk
<V
, E
, true>
158 : public ResultImplementationNullIsOkBase
<V
, E
> {
160 using ResultImplementationNullIsOkBase
<V
,
161 E
>::ResultImplementationNullIsOkBase
;
164 template <typename V
, typename E
>
165 class ResultImplementationNullIsOk
<V
, E
, false>
166 : public ResultImplementationNullIsOkBase
<V
, E
> {
168 using ResultImplementationNullIsOkBase
<V
,
169 E
>::ResultImplementationNullIsOkBase
;
171 ResultImplementationNullIsOk(ResultImplementationNullIsOk
&&) = default;
172 ResultImplementationNullIsOk
& operator=(ResultImplementationNullIsOk
&&) =
175 ~ResultImplementationNullIsOk() {
177 this->mValue
.first().addr()->~V();
183 * Specialization for when the success type is default-constructible and the
184 * error type is a value type which can never have the value 0 (as determined by
187 template <typename V
, typename E
>
188 class ResultImplementation
<V
, E
, PackingStrategy::NullIsOk
>
189 : public ResultImplementationNullIsOk
<V
, E
> {
191 using ResultImplementationNullIsOk
<V
, E
>::ResultImplementationNullIsOk
;
195 using UnsignedIntType
= std::conditional_t
<
196 S
== 1, std::uint8_t,
198 S
== 2, std::uint16_t,
199 std::conditional_t
<S
== 3 || S
== 4, std::uint32_t,
200 std::conditional_t
<S
<= 8, std::uint64_t, void>>>>;
203 * Specialization for when alignment permits using the least significant bit
206 template <typename V
, typename E
>
207 class ResultImplementation
<V
, E
, PackingStrategy::LowBitTagIsError
> {
208 static_assert(std::is_trivially_copyable_v
<V
> &&
209 std::is_trivially_destructible_v
<V
>);
210 static_assert(std::is_trivially_copyable_v
<E
> &&
211 std::is_trivially_destructible_v
<E
>);
213 static constexpr size_t kRequiredSize
= std::max(sizeof(V
), sizeof(E
));
215 using StorageType
= UnsignedIntType
<kRequiredSize
>;
217 #if defined(__clang__)
218 alignas(std::max(alignof(V
), alignof(E
))) StorageType mBits
;
220 // Some gcc versions choke on using std::max with alignas, see
221 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94929 (and this seems to have
222 // regressed in some gcc 9.x version before being fixed again) Keeping the
223 // code above since we would eventually drop this when we no longer support
224 // gcc versions with the bug.
225 alignas(alignof(V
) > alignof(E
) ? alignof(V
) : alignof(E
)) StorageType mBits
;
229 explicit ResultImplementation(V aValue
) {
230 if constexpr (!std::is_empty_v
<V
>) {
231 std::memcpy(&mBits
, &aValue
, sizeof(V
));
232 MOZ_ASSERT((mBits
& 1) == 0);
238 explicit ResultImplementation(E aErrorValue
) {
239 if constexpr (!std::is_empty_v
<E
>) {
240 std::memcpy(&mBits
, &aErrorValue
, sizeof(E
));
241 MOZ_ASSERT((mBits
& 1) == 0);
249 bool isOk() const { return (mBits
& 1) == 0; }
253 std::memcpy(&res
, &mBits
, sizeof(V
));
256 V
unwrap() { return inspect(); }
258 E
inspectErr() const {
259 const auto bits
= mBits
^ 1;
261 std::memcpy(&res
, &bits
, sizeof(E
));
264 E
unwrapErr() { return inspectErr(); }
267 // Return true if any of the struct can fit in a word.
268 template <typename V
, typename E
>
269 struct IsPackableVariant
{
282 std::conditional_t
<sizeof(VEbool
) <= sizeof(EVbool
), VEbool
, EVbool
>;
284 static const bool value
= sizeof(Impl
) <= sizeof(uintptr_t);
288 * Specialization for when both type are not using all the bytes, in order to
289 * use one byte as a tag.
291 template <typename V
, typename E
>
292 class ResultImplementation
<V
, E
, PackingStrategy::PackedVariant
> {
293 using Impl
= typename IsPackableVariant
<V
, E
>::Impl
;
297 explicit ResultImplementation(V aValue
) {
298 data
.v
= std::move(aValue
);
301 explicit ResultImplementation(E aErrorValue
) {
302 data
.e
= std::move(aErrorValue
);
306 bool isOk() const { return data
.ok
; }
308 const V
& inspect() const { return data
.v
; }
309 V
unwrap() { return std::move(data
.v
); }
311 const E
& inspectErr() const { return data
.e
; }
312 E
unwrapErr() { return std::move(data
.e
); }
315 // To use nullptr as a special value, we need the counter part to exclude zero
316 // from its range of valid representations.
318 // By default assume that zero can be represented.
319 template <typename T
>
321 static const bool value
= false;
324 // This template can be used as a helper for specializing UnusedZero for scoped
325 // enum types which never use 0 as an error value, e.g.
327 // namespace mozilla::detail {
330 // struct UnusedZero<MyEnumType> : UnusedZeroEnum<MyEnumType> {};
332 // } // namespace mozilla::detail
334 template <typename T
>
335 struct UnusedZeroEnum
{
336 using StorageType
= std::underlying_type_t
<T
>;
338 static constexpr bool value
= true;
339 static constexpr StorageType nullValue
= 0;
341 static constexpr T
Inspect(const StorageType
& aValue
) {
342 return static_cast<T
>(aValue
);
344 static constexpr T
Unwrap(StorageType aValue
) {
345 return static_cast<T
>(aValue
);
347 static constexpr StorageType
Store(T aValue
) {
348 return static_cast<StorageType
>(aValue
);
352 // A bit of help figuring out which of the above specializations to use.
354 // We begin by safely assuming types don't have a spare bit, unless they are
356 template <typename T
>
358 static const bool value
= std::is_empty_v
<T
>;
361 // As an incomplete type, void* does not have a spare bit.
363 struct HasFreeLSB
<void*> {
364 static const bool value
= false;
367 // The lowest bit of a properly-aligned pointer is always zero if the pointee
368 // type is greater than byte-aligned. That bit is free to use if it's masked
369 // out of such pointers before they're dereferenced.
370 template <typename T
>
371 struct HasFreeLSB
<T
*> {
372 static const bool value
= (alignof(T
) & 1) == 0;
375 // Select one of the previous result implementation based on the properties of
376 // the V and E types.
377 template <typename V
, typename E
>
378 struct SelectResultImpl
{
379 static const PackingStrategy value
=
380 (HasFreeLSB
<V
>::value
&& HasFreeLSB
<E
>::value
)
381 ? PackingStrategy::LowBitTagIsError
382 : (UnusedZero
<E
>::value
&& sizeof(E
) <= sizeof(uintptr_t))
383 ? PackingStrategy::NullIsOk
384 : (std::is_default_constructible_v
<V
> &&
385 std::is_default_constructible_v
<E
> && IsPackableVariant
<V
, E
>::value
)
386 ? PackingStrategy::PackedVariant
387 : PackingStrategy::Variant
;
389 using Type
= ResultImplementation
<V
, E
, value
>;
392 template <typename T
>
393 struct IsResult
: std::false_type
{};
395 template <typename V
, typename E
>
396 struct IsResult
<Result
<V
, E
>> : std::true_type
{};
398 } // namespace detail
400 template <typename V
, typename E
>
401 auto ToResult(Result
<V
, E
>&& aValue
)
402 -> decltype(std::forward
<Result
<V
, E
>>(aValue
)) {
403 return std::forward
<Result
<V
, E
>>(aValue
);
407 * Result<V, E> represents the outcome of an operation that can either succeed
408 * or fail. It contains either a success value of type V or an error value of
411 * All Result methods are const, so results are basically immutable.
412 * This is just like Variant<V, E> but with a slightly different API, and the
413 * following cases are optimized so Result can be stored more efficiently:
415 * - If both the success and error types do not use their least significant bit,
416 * are trivially copyable and destructible, Result<V, E> is guaranteed to be as
417 * large as the larger type. This is determined via the HasFreeLSB trait. By
418 * default, empty classes (in particular Ok) and aligned pointer types are
419 * assumed to have a free LSB, but you can specialize this trait for other
420 * types. If the success type is empty, the representation is guaranteed to be
421 * all zero bits on success. Do not change this representation! There is JIT
422 * code that depends on it. (Implementation note: The lowest bit is used as a
423 * tag bit: 0 to indicate the Result's bits are a success value, 1 to indicate
424 * the Result's bits (with the 1 masked out) encode an error value)
426 * - Else, if the error type can't have a all-zero bits representation and is
427 * not larger than a pointer, a CompactPair is used to represent this rather
428 * than a Variant. This has shown to be better optimizable, and the template
429 * code is much simpler than that of Variant, so it should also compile faster.
430 * Whether an error type can't be all-zero bits, is determined via the
431 * UnusedZero trait. MFBT doesn't declare any public type UnusedZero, but
432 * nsresult is declared UnusedZero in XPCOM.
434 * The purpose of Result is to reduce the screwups caused by using `false` or
435 * `nullptr` to indicate errors.
436 * What screwups? See <https://bugzilla.mozilla.org/show_bug.cgi?id=912928> for
439 * Result<const V, E> or Result<V, const E> are not meaningful. The success or
440 * error values in a Result instance are non-modifiable in-place anyway. This
441 * guarantee must also be maintained when evolving Result. They can be
442 * unwrap()ped, but this loses const qualification. However, Result<const V, E>
443 * or Result<V, const E> may be misleading and prevent movability. Just use
444 * Result<V, E>. (Result<const V*, E> may make sense though, just Result<const
445 * V* const, E> is not possible.)
447 template <typename V
, typename E
>
448 class MOZ_MUST_USE_TYPE Result final
{
449 // See class comment on Result<const V, E> and Result<V, const E>.
450 static_assert(!std::is_const_v
<V
>);
451 static_assert(!std::is_const_v
<E
>);
452 static_assert(!std::is_reference_v
<V
>);
453 static_assert(!std::is_reference_v
<E
>);
455 using Impl
= typename
detail::SelectResultImpl
<V
, E
>::Type
;
463 /** Create a success result. */
464 MOZ_IMPLICIT
Result(V
&& aValue
) : mImpl(std::forward
<V
>(aValue
)) {
468 /** Create a success result. */
469 MOZ_IMPLICIT
Result(const V
& aValue
) : mImpl(aValue
) { MOZ_ASSERT(isOk()); }
471 /** Create a success result in-place. */
472 template <typename
... Args
>
473 explicit Result(std::in_place_t
, Args
&&... aArgs
)
474 : mImpl(std::in_place
, std::forward
<Args
>(aArgs
)...) {
478 /** Create an error result. */
479 explicit Result(E aErrorValue
) : mImpl(std::move(aErrorValue
)) {
484 * Create a (success/error) result from another (success/error) result with a
485 * different but convertible error type. */
486 template <typename E2
,
487 typename
= std::enable_if_t
<std::is_convertible_v
<E2
, E
>>>
488 MOZ_IMPLICIT
Result(Result
<V
, E2
>&& aOther
)
489 : mImpl(aOther
.isOk() ? Impl
{aOther
.unwrap()}
490 : Impl
{aOther
.unwrapErr()}) {}
493 * Implementation detail of MOZ_TRY().
494 * Create an error result from another error result.
496 template <typename E2
>
497 MOZ_IMPLICIT
Result(GenericErrorResult
<E2
>&& aErrorResult
)
498 : mImpl(std::move(aErrorResult
.mErrorValue
)) {
499 static_assert(std::is_convertible_v
<E2
, E
>, "E2 must be convertible to E");
504 * Implementation detail of MOZ_TRY().
505 * Create an error result from another error result.
507 template <typename E2
>
508 MOZ_IMPLICIT
Result(const GenericErrorResult
<E2
>& aErrorResult
)
509 : mImpl(aErrorResult
.mErrorValue
) {
510 static_assert(std::is_convertible_v
<E2
, E
>, "E2 must be convertible to E");
514 Result(const Result
&) = delete;
515 Result(Result
&&) = default;
516 Result
& operator=(const Result
&) = delete;
517 Result
& operator=(Result
&&) = default;
519 /** True if this Result is a success result. */
520 bool isOk() const { return mImpl
.isOk(); }
522 /** True if this Result is an error result. */
523 bool isErr() const { return !mImpl
.isOk(); }
525 /** Take the success value from this Result, which must be a success result.
529 return mImpl
.unwrap();
533 * Take the success value from this Result, which must be a success result.
534 * If it is an error result, then return the aValue.
536 V
unwrapOr(V aValue
) {
537 return MOZ_LIKELY(isOk()) ? mImpl
.unwrap() : std::move(aValue
);
540 /** Take the error value from this Result, which must be an error result. */
543 return mImpl
.unwrapErr();
546 /** See the success value from this Result, which must be a success result. */
547 decltype(auto) inspect() const {
548 static_assert(!std::is_reference_v
<
549 std::invoke_result_t
<decltype(&Impl::inspect
), Impl
>> ||
550 std::is_const_v
<std::remove_reference_t
<
551 std::invoke_result_t
<decltype(&Impl::inspect
), Impl
>>>);
553 return mImpl
.inspect();
556 /** See the error value from this Result, which must be an error result. */
557 decltype(auto) inspectErr() const {
559 !std::is_reference_v
<
560 std::invoke_result_t
<decltype(&Impl::inspectErr
), Impl
>> ||
561 std::is_const_v
<std::remove_reference_t
<
562 std::invoke_result_t
<decltype(&Impl::inspectErr
), Impl
>>>);
564 return mImpl
.inspectErr();
567 /** Propagate the error value from this Result, which must be an error result.
569 * This can be used to propagate an error from a function call to the caller
570 * with a different value type, but the same error type:
572 * Result<T1, E> Func1() {
573 * Result<T2, E> res = Func2();
574 * if (res.isErr()) { return res.propagateErr(); }
577 GenericErrorResult
<E
> propagateErr() {
579 return GenericErrorResult
<E
>{mImpl
.unwrapErr()};
583 * Map a function V -> V2 over this result's success variant. If this result
584 * is an error, do not invoke the function and propagate the error.
586 * Mapping over success values invokes the function to produce a new success
589 * // Map Result<int, E> to another Result<int, E>
590 * Result<int, E> res(5);
591 * Result<int, E> res2 = res.map([](int x) { return x * x; });
592 * MOZ_ASSERT(res.isOk());
593 * MOZ_ASSERT(res2.unwrap() == 25);
595 * // Map Result<const char*, E> to Result<size_t, E>
596 * Result<const char*, E> res("hello, map!");
597 * Result<size_t, E> res2 = res.map(strlen);
598 * MOZ_ASSERT(res.isOk());
599 * MOZ_ASSERT(res2.unwrap() == 11);
601 * Mapping over an error does not invoke the function and propagates the
604 * Result<V, int> res(5);
605 * MOZ_ASSERT(res.isErr());
606 * Result<V2, int> res2 = res.map([](V v) { ... });
607 * MOZ_ASSERT(res2.isErr());
608 * MOZ_ASSERT(res2.unwrapErr() == 5);
610 template <typename F
>
611 auto map(F f
) -> Result
<std::result_of_t
<F(V
)>, E
> {
612 using RetResult
= Result
<std::result_of_t
<F(V
)>, E
>;
613 return MOZ_LIKELY(isOk()) ? RetResult(f(unwrap())) : RetResult(unwrapErr());
617 * Map a function E -> E2 over this result's error variant. If this result is
618 * a success, do not invoke the function and move the success over.
620 * Mapping over error values invokes the function to produce a new error
623 * // Map Result<V, int> to another Result<V, int>
624 * Result<V, int> res(5);
625 * Result<V, int> res2 = res.mapErr([](int x) { return x * x; });
626 * MOZ_ASSERT(res2.isErr());
627 * MOZ_ASSERT(res2.unwrapErr() == 25);
629 * // Map Result<V, const char*> to Result<V, size_t>
630 * Result<V, const char*> res("hello, mapErr!");
631 * Result<V, size_t> res2 = res.mapErr(strlen);
632 * MOZ_ASSERT(res2.isErr());
633 * MOZ_ASSERT(res2.unwrapErr() == 14);
635 * Mapping over a success does not invoke the function and moves the success:
637 * Result<int, E> res(5);
638 * MOZ_ASSERT(res.isOk());
639 * Result<int, E2> res2 = res.mapErr([](E e) { ... });
640 * MOZ_ASSERT(res2.isOk());
641 * MOZ_ASSERT(res2.unwrap() == 5);
643 template <typename F
>
644 auto mapErr(F f
) -> Result
<V
, std::result_of_t
<F(E
)>> {
645 using RetResult
= Result
<V
, std::result_of_t
<F(E
)>>;
646 return MOZ_UNLIKELY(isErr()) ? RetResult(f(unwrapErr()))
647 : RetResult(unwrap());
651 * Map a function E -> Result<V, E2> over this result's error variant. If
652 * this result is a success, do not invoke the function and move the success
655 * `orElse`ing over error values invokes the function to produce a new
658 * // `orElse` Result<V, int> error variant to another Result<V, int>
659 * // error variant or Result<V, int> success variant
660 * auto orElse = [](int x) -> Result<V, int> {
667 * Result<V, int> res(5);
668 * auto res2 = res.orElse(orElse);
669 * MOZ_ASSERT(res2.isErr());
670 * MOZ_ASSERT(res2.unwrapErr() == 25);
672 * Result<V, int> res3(6);
673 * auto res4 = res3.orElse(orElse);
674 * MOZ_ASSERT(res4.isOk());
675 * MOZ_ASSERT(res4.unwrap() == ...);
677 * // `orElse` Result<V, const char*> error variant to Result<V, size_t>
678 * // error variant or Result<V, size_t> success variant
679 * auto orElse = [](const char* s) -> Result<V, size_t> {
680 * if (strcmp(s, "foo")) {
681 * return Err(strlen(s));
686 * Result<V, const char*> res("hello, orElse!");
687 * auto res2 = res.orElse(orElse);
688 * MOZ_ASSERT(res2.isErr());
689 * MOZ_ASSERT(res2.unwrapErr() == 14);
691 * Result<V, const char*> res3("foo");
692 * auto res4 = ress.orElse(orElse);
693 * MOZ_ASSERT(res4.isOk());
694 * MOZ_ASSERT(res4.unwrap() == ...);
696 * `orElse`ing over a success does not invoke the function and moves the
699 * Result<int, E> res(5);
700 * MOZ_ASSERT(res.isOk());
701 * Result<int, E2> res2 = res.orElse([](E e) { ... });
702 * MOZ_ASSERT(res2.isOk());
703 * MOZ_ASSERT(res2.unwrap() == 5);
705 template <typename F
>
706 auto orElse(F f
) -> Result
<V
, typename
std::result_of_t
<F(E
)>::err_type
> {
707 return MOZ_UNLIKELY(isErr()) ? f(unwrapErr()) : unwrap();
711 * Given a function V -> Result<V2, E>, apply it to this result's success
712 * value and return its result. If this result is an error value, it is
715 * This is sometimes called "flatMap" or ">>=" in other contexts.
717 * `andThen`ing over success values invokes the function to produce a new
720 * Result<const char*, Error> res("hello, andThen!");
721 * Result<HtmlFreeString, Error> res2 = res.andThen([](const char* s) {
722 * return containsHtmlTag(s)
723 * ? Result<HtmlFreeString, Error>(Error("Invalid: contains HTML"))
724 * : Result<HtmlFreeString, Error>(HtmlFreeString(s));
727 * MOZ_ASSERT(res2.isOk());
728 * MOZ_ASSERT(res2.unwrap() == HtmlFreeString("hello, andThen!");
730 * `andThen`ing over error results does not invoke the function, and just
731 * propagates the error result:
733 * Result<int, const char*> res("some error");
734 * auto res2 = res.andThen([](int x) { ... });
735 * MOZ_ASSERT(res2.isErr());
736 * MOZ_ASSERT(res.unwrapErr() == res2.unwrapErr());
738 template <typename F
, typename
= std::enable_if_t
<detail::IsResult
<
739 std::invoke_result_t
<F
, V
&&>>::value
>>
740 auto andThen(F f
) -> std::invoke_result_t
<F
, V
&&> {
741 return MOZ_LIKELY(isOk()) ? f(unwrap()) : propagateErr();
746 * A type that auto-converts to an error Result. This is like a Result without
747 * a success type. It's the best return type for functions that always return
748 * an error--functions designed to build and populate error objects. It's also
749 * useful in error-handling macros; see MOZ_TRY for an example.
751 template <typename E
>
752 class MOZ_MUST_USE_TYPE GenericErrorResult
{
755 template <typename V
, typename E2
>
759 explicit GenericErrorResult(const E
& aErrorValue
)
760 : mErrorValue(aErrorValue
) {}
762 explicit GenericErrorResult(E
&& aErrorValue
)
763 : mErrorValue(std::move(aErrorValue
)) {}
766 template <typename E
>
767 inline auto Err(E
&& aErrorValue
) {
768 return GenericErrorResult
<std::decay_t
<E
>>(std::forward
<E
>(aErrorValue
));
771 } // namespace mozilla
774 * MOZ_TRY(expr) is the C++ equivalent of Rust's `try!(expr);`. First, it
775 * evaluates expr, which must produce a Result value. On success, it
776 * discards the result altogether. On error, it immediately returns an error
777 * Result from the enclosing function.
779 #define MOZ_TRY(expr) \
781 auto mozTryTempResult_ = ::mozilla::ToResult(expr); \
782 if (MOZ_UNLIKELY(mozTryTempResult_.isErr())) { \
783 return mozTryTempResult_.propagateErr(); \
788 * MOZ_TRY_VAR(target, expr) is the C++ equivalent of Rust's `target =
789 * try!(expr);`. First, it evaluates expr, which must produce a Result value. On
790 * success, the result's success value is assigned to target. On error,
791 * immediately returns the error result. |target| must be an lvalue.
793 #define MOZ_TRY_VAR(target, expr) \
795 auto mozTryVarTempResult_ = (expr); \
796 if (MOZ_UNLIKELY(mozTryVarTempResult_.isErr())) { \
797 return mozTryVarTempResult_.propagateErr(); \
799 (target) = mozTryVarTempResult_.unwrap(); \
802 #endif // mozilla_Result_h