Bug 1610307 [wpt PR 21266] - Update wpt metadata, a=testonly
[gecko.git] / image / imgFrame.cpp
blob20600bc0cbf816c6fd2b01add5ff89b86a2dc23c
1 /* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set ts=2 et sw=2 tw=80: */
3 /* This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 #include "imgFrame.h"
8 #include "ImageRegion.h"
9 #include "ShutdownTracker.h"
10 #include "SurfaceCache.h"
12 #include "prenv.h"
14 #include "gfx2DGlue.h"
15 #include "gfxPlatform.h"
17 #include "gfxUtils.h"
19 #include "GeckoProfiler.h"
20 #include "MainThreadUtils.h"
21 #include "mozilla/CheckedInt.h"
22 #include "mozilla/gfx/gfxVars.h"
23 #include "mozilla/gfx/Tools.h"
24 #include "mozilla/gfx/SourceSurfaceRawData.h"
25 #include "mozilla/image/RecyclingSourceSurface.h"
26 #include "mozilla/layers/SourceSurfaceSharedData.h"
27 #include "mozilla/layers/SourceSurfaceVolatileData.h"
28 #include "mozilla/Likely.h"
29 #include "mozilla/MemoryReporting.h"
30 #include "nsMargin.h"
31 #include "nsRefreshDriver.h"
32 #include "nsThreadUtils.h"
34 namespace mozilla {
36 using namespace gfx;
38 namespace image {
40 static int32_t VolatileSurfaceStride(const IntSize& size,
41 SurfaceFormat format) {
42 // Stride must be a multiple of four or cairo will complain.
43 return (size.width * BytesPerPixel(format) + 0x3) & ~0x3;
46 static already_AddRefed<DataSourceSurface> CreateLockedSurface(
47 DataSourceSurface* aSurface, const IntSize& size, SurfaceFormat format) {
48 switch (aSurface->GetType()) {
49 case SurfaceType::DATA_SHARED:
50 case SurfaceType::DATA_ALIGNED: {
51 // Shared memory is never released until the surface itself is released.
52 // Similar for aligned/heap surfaces.
53 RefPtr<DataSourceSurface> surf(aSurface);
54 return surf.forget();
56 default: {
57 // Volatile memory requires us to map it first, and it is fallible.
58 DataSourceSurface::ScopedMap smap(aSurface,
59 DataSourceSurface::READ_WRITE);
60 if (smap.IsMapped()) {
61 return MakeAndAddRef<SourceSurfaceMappedData>(std::move(smap), size,
62 format);
64 break;
68 return nullptr;
71 static bool ShouldUseHeap(const IntSize& aSize, int32_t aStride,
72 bool aIsAnimated) {
73 // On some platforms (i.e. Android), a volatile buffer actually keeps a file
74 // handle active. We would like to avoid too many since we could easily
75 // exhaust the pool. However, other platforms we do not have the file handle
76 // problem, and additionally we may avoid a superfluous memset since the
77 // volatile memory starts out as zero-filled. Hence the knobs below.
79 // For as long as an animated image is retained, its frames will never be
80 // released to let the OS purge volatile buffers.
81 if (aIsAnimated && StaticPrefs::image_mem_animated_use_heap()) {
82 return true;
85 // Lets us avoid too many small images consuming all of the handles. The
86 // actual allocation checks for overflow.
87 int32_t bufferSize = (aStride * aSize.height) / 1024;
88 if (bufferSize < StaticPrefs::image_mem_volatile_min_threshold_kb()) {
89 return true;
92 return false;
95 static already_AddRefed<DataSourceSurface> AllocateBufferForImage(
96 const IntSize& size, SurfaceFormat format, bool aIsAnimated = false) {
97 int32_t stride = VolatileSurfaceStride(size, format);
99 if (gfxVars::GetUseWebRenderOrDefault() && StaticPrefs::image_mem_shared()) {
100 RefPtr<SourceSurfaceSharedData> newSurf = new SourceSurfaceSharedData();
101 if (newSurf->Init(size, stride, format)) {
102 return newSurf.forget();
104 } else if (ShouldUseHeap(size, stride, aIsAnimated)) {
105 RefPtr<SourceSurfaceAlignedRawData> newSurf =
106 new SourceSurfaceAlignedRawData();
107 if (newSurf->Init(size, format, false, 0, stride)) {
108 return newSurf.forget();
110 } else {
111 RefPtr<SourceSurfaceVolatileData> newSurf = new SourceSurfaceVolatileData();
112 if (newSurf->Init(size, stride, format)) {
113 return newSurf.forget();
116 return nullptr;
119 static bool GreenSurface(DataSourceSurface* aSurface, const IntSize& aSize,
120 SurfaceFormat aFormat) {
121 int32_t stride = aSurface->Stride();
122 uint32_t* surfaceData = reinterpret_cast<uint32_t*>(aSurface->GetData());
123 uint32_t surfaceDataLength = (stride * aSize.height) / sizeof(uint32_t);
125 // Start by assuming that GG is in the second byte and
126 // AA is in the final byte -- the most common case.
127 uint32_t color = mozilla::NativeEndian::swapFromBigEndian(0x00FF00FF);
129 // We are only going to handle this type of test under
130 // certain circumstances.
131 MOZ_ASSERT(surfaceData);
132 MOZ_ASSERT(aFormat == SurfaceFormat::B8G8R8A8 ||
133 aFormat == SurfaceFormat::B8G8R8X8 ||
134 aFormat == SurfaceFormat::R8G8B8A8 ||
135 aFormat == SurfaceFormat::R8G8B8X8 ||
136 aFormat == SurfaceFormat::A8R8G8B8 ||
137 aFormat == SurfaceFormat::X8R8G8B8);
138 MOZ_ASSERT((stride * aSize.height) % sizeof(uint32_t));
140 if (aFormat == SurfaceFormat::A8R8G8B8 ||
141 aFormat == SurfaceFormat::X8R8G8B8) {
142 color = mozilla::NativeEndian::swapFromBigEndian(0xFF00FF00);
145 for (uint32_t i = 0; i < surfaceDataLength; i++) {
146 surfaceData[i] = color;
149 return true;
152 static bool ClearSurface(DataSourceSurface* aSurface, const IntSize& aSize,
153 SurfaceFormat aFormat) {
154 int32_t stride = aSurface->Stride();
155 uint8_t* data = aSurface->GetData();
156 MOZ_ASSERT(data);
158 if (aFormat == SurfaceFormat::OS_RGBX) {
159 // Skia doesn't support RGBX surfaces, so ensure the alpha value is set
160 // to opaque white. While it would be nice to only do this for Skia,
161 // imgFrame can run off main thread and past shutdown where
162 // we might not have gfxPlatform, so just memset every time instead.
163 memset(data, 0xFF, stride * aSize.height);
164 } else if (aSurface->OnHeap()) {
165 // We only need to memset it if the buffer was allocated on the heap.
166 // Otherwise, it's allocated via mmap and refers to a zeroed page and will
167 // be COW once it's written to.
168 memset(data, 0, stride * aSize.height);
171 return true;
174 imgFrame::imgFrame()
175 : mMonitor("imgFrame"),
176 mDecoded(0, 0, 0, 0),
177 mLockCount(0),
178 mRecycleLockCount(0),
179 mAborted(false),
180 mFinished(false),
181 mOptimizable(false),
182 mShouldRecycle(false),
183 mTimeout(FrameTimeout::FromRawMilliseconds(100)),
184 mDisposalMethod(DisposalMethod::NOT_SPECIFIED),
185 mBlendMethod(BlendMethod::OVER),
186 mFormat(SurfaceFormat::UNKNOWN),
187 mNonPremult(false) {}
189 imgFrame::~imgFrame() {
190 #ifdef DEBUG
191 MonitorAutoLock lock(mMonitor);
192 MOZ_ASSERT(mAborted || AreAllPixelsWritten());
193 MOZ_ASSERT(mAborted || mFinished);
194 #endif
197 nsresult imgFrame::InitForDecoder(const nsIntSize& aImageSize,
198 SurfaceFormat aFormat, bool aNonPremult,
199 const Maybe<AnimationParams>& aAnimParams,
200 bool aShouldRecycle) {
201 // Assert for properties that should be verified by decoders,
202 // warn for properties related to bad content.
203 if (!SurfaceCache::IsLegalSize(aImageSize)) {
204 NS_WARNING("Should have legal image size");
205 mAborted = true;
206 return NS_ERROR_FAILURE;
209 mImageSize = aImageSize;
211 // May be updated shortly after InitForDecoder by BlendAnimationFilter
212 // because it needs to take into consideration the previous frames to
213 // properly calculate. We start with the whole frame as dirty.
214 mDirtyRect = GetRect();
216 if (aAnimParams) {
217 mBlendRect = aAnimParams->mBlendRect;
218 mTimeout = aAnimParams->mTimeout;
219 mBlendMethod = aAnimParams->mBlendMethod;
220 mDisposalMethod = aAnimParams->mDisposalMethod;
221 } else {
222 mBlendRect = GetRect();
225 if (aShouldRecycle) {
226 // If we are recycling then we should always use BGRA for the underlying
227 // surface because if we use BGRX, the next frame composited into the
228 // surface could be BGRA and cause rendering problems.
229 MOZ_ASSERT(aAnimParams);
230 mFormat = SurfaceFormat::OS_RGBA;
231 } else {
232 mFormat = aFormat;
235 mNonPremult = aNonPremult;
236 mShouldRecycle = aShouldRecycle;
238 MOZ_ASSERT(!mLockedSurface, "Called imgFrame::InitForDecoder() twice?");
240 bool postFirstFrame = aAnimParams && aAnimParams->mFrameNum > 0;
241 mRawSurface = AllocateBufferForImage(mImageSize, mFormat, postFirstFrame);
242 if (!mRawSurface) {
243 mAborted = true;
244 return NS_ERROR_OUT_OF_MEMORY;
247 if (StaticPrefs::browser_measurement_render_anims_and_video_solid() &&
248 aAnimParams) {
249 mBlankRawSurface = AllocateBufferForImage(mImageSize, mFormat);
250 if (!mBlankRawSurface) {
251 mAborted = true;
252 return NS_ERROR_OUT_OF_MEMORY;
256 mLockedSurface = CreateLockedSurface(mRawSurface, mImageSize, mFormat);
257 if (!mLockedSurface) {
258 NS_WARNING("Failed to create LockedSurface");
259 mAborted = true;
260 return NS_ERROR_OUT_OF_MEMORY;
263 if (mBlankRawSurface) {
264 mBlankLockedSurface =
265 CreateLockedSurface(mBlankRawSurface, mImageSize, mFormat);
266 if (!mBlankLockedSurface) {
267 NS_WARNING("Failed to create BlankLockedSurface");
268 mAborted = true;
269 return NS_ERROR_OUT_OF_MEMORY;
273 if (!ClearSurface(mRawSurface, mImageSize, mFormat)) {
274 NS_WARNING("Could not clear allocated buffer");
275 mAborted = true;
276 return NS_ERROR_OUT_OF_MEMORY;
279 if (mBlankRawSurface) {
280 if (!GreenSurface(mBlankRawSurface, mImageSize, mFormat)) {
281 NS_WARNING("Could not clear allocated blank buffer");
282 mAborted = true;
283 return NS_ERROR_OUT_OF_MEMORY;
287 return NS_OK;
290 nsresult imgFrame::InitForDecoderRecycle(const AnimationParams& aAnimParams) {
291 // We want to recycle this frame, but there is no guarantee that consumers are
292 // done with it in a timely manner. Let's ensure they are done with it first.
293 MonitorAutoLock lock(mMonitor);
295 MOZ_ASSERT(mLockCount > 0);
296 MOZ_ASSERT(mLockedSurface);
298 if (!mShouldRecycle) {
299 // This frame either was never marked as recyclable, or the flag was cleared
300 // for a caller which does not support recycling.
301 return NS_ERROR_NOT_AVAILABLE;
304 if (mRecycleLockCount > 0) {
305 if (NS_IsMainThread()) {
306 // We should never be both decoding and recycling on the main thread. Sync
307 // decoding can only be used to produce the first set of frames. Those
308 // either never use recycling because advancing was blocked (main thread
309 // is busy) or we were auto-advancing (to seek to a frame) and the frames
310 // were never accessed (and thus cannot have recycle locks).
311 MOZ_ASSERT_UNREACHABLE("Recycling/decoding on the main thread?");
312 return NS_ERROR_NOT_AVAILABLE;
315 // We don't want to wait forever to reclaim the frame because we have no
316 // idea why it is still held. It is possibly due to OMTP. Since we are off
317 // the main thread, and we generally have frames already buffered for the
318 // animation, we can afford to wait a short period of time to hopefully
319 // complete the transaction and reclaim the buffer.
321 // We choose to wait for, at most, the refresh driver interval, so that we
322 // won't skip more than one frame. If the frame is still in use due to
323 // outstanding transactions, we are already skipping frames. If the frame
324 // is still in use for some other purpose, it won't be returned to the pool
325 // and its owner can hold onto it forever without additional impact here.
326 TimeDuration timeout =
327 TimeDuration::FromMilliseconds(nsRefreshDriver::DefaultInterval());
328 while (true) {
329 TimeStamp start = TimeStamp::Now();
330 mMonitor.Wait(timeout);
331 if (mRecycleLockCount == 0) {
332 break;
335 TimeDuration delta = TimeStamp::Now() - start;
336 if (delta >= timeout) {
337 // We couldn't secure the frame for recycling. It will allocate a new
338 // frame instead.
339 return NS_ERROR_NOT_AVAILABLE;
342 timeout -= delta;
346 mBlendRect = aAnimParams.mBlendRect;
347 mTimeout = aAnimParams.mTimeout;
348 mBlendMethod = aAnimParams.mBlendMethod;
349 mDisposalMethod = aAnimParams.mDisposalMethod;
350 mDirtyRect = GetRect();
352 return NS_OK;
355 nsresult imgFrame::InitWithDrawable(gfxDrawable* aDrawable,
356 const nsIntSize& aSize,
357 const SurfaceFormat aFormat,
358 SamplingFilter aSamplingFilter,
359 uint32_t aImageFlags,
360 gfx::BackendType aBackend) {
361 // Assert for properties that should be verified by decoders,
362 // warn for properties related to bad content.
363 if (!SurfaceCache::IsLegalSize(aSize)) {
364 NS_WARNING("Should have legal image size");
365 mAborted = true;
366 return NS_ERROR_FAILURE;
369 mImageSize = aSize;
370 mFormat = aFormat;
372 RefPtr<DrawTarget> target;
374 bool canUseDataSurface = Factory::DoesBackendSupportDataDrawtarget(aBackend);
375 if (canUseDataSurface) {
376 // It's safe to use data surfaces for content on this platform, so we can
377 // get away with using volatile buffers.
378 MOZ_ASSERT(!mLockedSurface, "Called imgFrame::InitWithDrawable() twice?");
380 mRawSurface = AllocateBufferForImage(mImageSize, mFormat);
381 if (!mRawSurface) {
382 mAborted = true;
383 return NS_ERROR_OUT_OF_MEMORY;
386 mLockedSurface = CreateLockedSurface(mRawSurface, mImageSize, mFormat);
387 if (!mLockedSurface) {
388 NS_WARNING("Failed to create LockedSurface");
389 mAborted = true;
390 return NS_ERROR_OUT_OF_MEMORY;
393 if (!ClearSurface(mRawSurface, mImageSize, mFormat)) {
394 NS_WARNING("Could not clear allocated buffer");
395 mAborted = true;
396 return NS_ERROR_OUT_OF_MEMORY;
399 target = gfxPlatform::CreateDrawTargetForData(
400 mLockedSurface->GetData(), mImageSize, mLockedSurface->Stride(),
401 mFormat);
402 } else {
403 // We can't use data surfaces for content, so we'll create an offscreen
404 // surface instead. This means if someone later calls RawAccessRef(), we
405 // may have to do an expensive readback, but we warned callers about that in
406 // the documentation for this method.
407 MOZ_ASSERT(!mOptSurface, "Called imgFrame::InitWithDrawable() twice?");
409 if (gfxPlatform::GetPlatform()->SupportsAzureContentForType(aBackend)) {
410 target = gfxPlatform::GetPlatform()->CreateDrawTargetForBackend(
411 aBackend, mImageSize, mFormat);
412 } else {
413 target = gfxPlatform::GetPlatform()->CreateOffscreenContentDrawTarget(
414 mImageSize, mFormat);
418 if (!target || !target->IsValid()) {
419 mAborted = true;
420 return NS_ERROR_OUT_OF_MEMORY;
423 // Draw using the drawable the caller provided.
424 RefPtr<gfxContext> ctx = gfxContext::CreateOrNull(target);
425 MOZ_ASSERT(ctx); // Already checked the draw target above.
426 gfxUtils::DrawPixelSnapped(ctx, aDrawable, SizeDouble(mImageSize),
427 ImageRegion::Create(ThebesRect(GetRect())),
428 mFormat, aSamplingFilter, aImageFlags);
430 if (canUseDataSurface && !mLockedSurface) {
431 NS_WARNING("Failed to create VolatileDataSourceSurface");
432 mAborted = true;
433 return NS_ERROR_OUT_OF_MEMORY;
436 if (!canUseDataSurface) {
437 // We used an offscreen surface, which is an "optimized" surface from
438 // imgFrame's perspective.
439 mOptSurface = target->Snapshot();
440 } else {
441 FinalizeSurface();
444 // If we reach this point, we should regard ourselves as complete.
445 mDecoded = GetRect();
446 mFinished = true;
448 #ifdef DEBUG
449 MonitorAutoLock lock(mMonitor);
450 MOZ_ASSERT(AreAllPixelsWritten());
451 #endif
453 return NS_OK;
456 nsresult imgFrame::Optimize(DrawTarget* aTarget) {
457 MOZ_ASSERT(NS_IsMainThread());
458 mMonitor.AssertCurrentThreadOwns();
460 if (mLockCount > 0 || !mOptimizable) {
461 // Don't optimize right now.
462 return NS_OK;
465 // Check whether image optimization is disabled -- not thread safe!
466 static bool gDisableOptimize = false;
467 static bool hasCheckedOptimize = false;
468 if (!hasCheckedOptimize) {
469 if (PR_GetEnv("MOZ_DISABLE_IMAGE_OPTIMIZE")) {
470 gDisableOptimize = true;
472 hasCheckedOptimize = true;
475 // Don't optimize during shutdown because gfxPlatform may not be available.
476 if (ShutdownTracker::ShutdownHasStarted()) {
477 return NS_OK;
480 if (gDisableOptimize) {
481 return NS_OK;
484 if (mOptSurface) {
485 return NS_OK;
488 // XXX(seth): It's currently unclear if there's any reason why we can't
489 // optimize non-premult surfaces. We should look into removing this.
490 if (mNonPremult) {
491 return NS_OK;
493 if (!gfxVars::UseWebRender()) {
494 mOptSurface = aTarget->OptimizeSourceSurface(mLockedSurface);
495 } else {
496 mOptSurface = gfxPlatform::GetPlatform()
497 ->ScreenReferenceDrawTarget()
498 ->OptimizeSourceSurface(mLockedSurface);
500 if (mOptSurface == mLockedSurface) {
501 mOptSurface = nullptr;
504 if (mOptSurface) {
505 // There's no reason to keep our original surface around if we have an
506 // optimized surface. Release our reference to it. This will leave
507 // |mLockedSurface| as the only thing keeping it alive, so it'll get freed
508 // below.
509 mRawSurface = nullptr;
512 // Release all strong references to the surface's memory. If the underlying
513 // surface is volatile, this will allow the operating system to free the
514 // memory if it needs to.
515 mLockedSurface = nullptr;
516 mOptimizable = false;
518 return NS_OK;
521 DrawableFrameRef imgFrame::DrawableRef() { return DrawableFrameRef(this); }
523 RawAccessFrameRef imgFrame::RawAccessRef(bool aOnlyFinished /*= false*/) {
524 return RawAccessFrameRef(this, aOnlyFinished);
527 void imgFrame::SetRawAccessOnly() {
528 AssertImageDataLocked();
530 // Lock our data and throw away the key.
531 LockImageData(false);
534 imgFrame::SurfaceWithFormat imgFrame::SurfaceForDrawing(
535 bool aDoPartialDecode, bool aDoTile, ImageRegion& aRegion,
536 SourceSurface* aSurface) {
537 MOZ_ASSERT(NS_IsMainThread());
538 mMonitor.AssertCurrentThreadOwns();
540 if (!aDoPartialDecode) {
541 return SurfaceWithFormat(new gfxSurfaceDrawable(aSurface, mImageSize),
542 mFormat);
545 gfxRect available =
546 gfxRect(mDecoded.X(), mDecoded.Y(), mDecoded.Width(), mDecoded.Height());
548 if (aDoTile) {
549 // Create a temporary surface.
550 // Give this surface an alpha channel because there are
551 // transparent pixels in the padding or undecoded area
552 RefPtr<DrawTarget> target =
553 gfxPlatform::GetPlatform()->CreateOffscreenContentDrawTarget(
554 mImageSize, SurfaceFormat::OS_RGBA);
555 if (!target) {
556 return SurfaceWithFormat();
559 SurfacePattern pattern(aSurface, aRegion.GetExtendMode(),
560 Matrix::Translation(mDecoded.X(), mDecoded.Y()));
561 target->FillRect(ToRect(aRegion.Intersect(available).Rect()), pattern);
563 RefPtr<SourceSurface> newsurf = target->Snapshot();
564 return SurfaceWithFormat(new gfxSurfaceDrawable(newsurf, mImageSize),
565 target->GetFormat());
568 // Not tiling, and we have a surface, so we can account for
569 // a partial decode just by twiddling parameters.
570 aRegion = aRegion.Intersect(available);
571 IntSize availableSize(mDecoded.Width(), mDecoded.Height());
573 return SurfaceWithFormat(new gfxSurfaceDrawable(aSurface, availableSize),
574 mFormat);
577 bool imgFrame::Draw(gfxContext* aContext, const ImageRegion& aRegion,
578 SamplingFilter aSamplingFilter, uint32_t aImageFlags,
579 float aOpacity) {
580 AUTO_PROFILER_LABEL("imgFrame::Draw", GRAPHICS);
582 MOZ_ASSERT(NS_IsMainThread());
583 NS_ASSERTION(!aRegion.Rect().IsEmpty(), "Drawing empty region!");
584 NS_ASSERTION(!aRegion.IsRestricted() ||
585 !aRegion.Rect().Intersect(aRegion.Restriction()).IsEmpty(),
586 "We must be allowed to sample *some* source pixels!");
588 // Perform the draw and freeing of the surface outside the lock. We want to
589 // avoid contention with the decoder if we can. The surface may also attempt
590 // to relock the monitor if it is freed (e.g. RecyclingSourceSurface).
591 RefPtr<SourceSurface> surf;
592 SurfaceWithFormat surfaceResult;
593 ImageRegion region(aRegion);
594 gfxRect imageRect(0, 0, mImageSize.width, mImageSize.height);
597 MonitorAutoLock lock(mMonitor);
599 // Possibly convert this image into a GPU texture, this may also cause our
600 // mLockedSurface to be released and the OS to release the underlying
601 // memory.
602 Optimize(aContext->GetDrawTarget());
604 bool doPartialDecode = !AreAllPixelsWritten();
606 // Most draw targets will just use the surface only during DrawPixelSnapped
607 // but captures/recordings will retain a reference outside this stack
608 // context. While in theory a decoder thread could be trying to recycle this
609 // frame at this very moment, in practice the only way we can get here is if
610 // this frame is the current frame of the animation. Since we can only
611 // advance on the main thread, we know nothing else will try to use it.
612 DrawTarget* drawTarget = aContext->GetDrawTarget();
613 bool recording = drawTarget->GetBackendType() == BackendType::RECORDING;
614 bool temporary = !drawTarget->IsCaptureDT() && !recording;
615 RefPtr<SourceSurface> surf = GetSourceSurfaceInternal(temporary);
616 if (!surf) {
617 return false;
620 bool doTile = !imageRect.Contains(aRegion.Rect()) &&
621 !(aImageFlags & imgIContainer::FLAG_CLAMP);
623 surfaceResult = SurfaceForDrawing(doPartialDecode, doTile, region, surf);
625 // If we are recording, then we cannot recycle the surface. The blob
626 // rasterizer is not properly synchronized for recycling in the compositor
627 // process. The easiest thing to do is just mark the frames it consumes as
628 // non-recyclable.
629 if (recording && surfaceResult.IsValid()) {
630 mShouldRecycle = false;
634 if (surfaceResult.IsValid()) {
635 gfxUtils::DrawPixelSnapped(aContext, surfaceResult.mDrawable,
636 imageRect.Size(), region, surfaceResult.mFormat,
637 aSamplingFilter, aImageFlags, aOpacity);
640 return true;
643 nsresult imgFrame::ImageUpdated(const nsIntRect& aUpdateRect) {
644 MonitorAutoLock lock(mMonitor);
645 return ImageUpdatedInternal(aUpdateRect);
648 nsresult imgFrame::ImageUpdatedInternal(const nsIntRect& aUpdateRect) {
649 mMonitor.AssertCurrentThreadOwns();
651 // Clamp to the frame rect to ensure that decoder bugs don't result in a
652 // decoded rect that extends outside the bounds of the frame rect.
653 IntRect updateRect = aUpdateRect.Intersect(GetRect());
654 if (updateRect.IsEmpty()) {
655 return NS_OK;
658 mDecoded.UnionRect(mDecoded, updateRect);
660 // Update our invalidation counters for any consumers watching for changes
661 // in the surface.
662 if (mRawSurface) {
663 mRawSurface->Invalidate(updateRect);
665 if (mLockedSurface && mRawSurface != mLockedSurface) {
666 mLockedSurface->Invalidate(updateRect);
668 return NS_OK;
671 void imgFrame::Finish(Opacity aFrameOpacity /* = Opacity::SOME_TRANSPARENCY */,
672 bool aFinalize /* = true */) {
673 MonitorAutoLock lock(mMonitor);
674 MOZ_ASSERT(mLockCount > 0, "Image data should be locked");
676 IntRect frameRect(GetRect());
677 if (!mDecoded.IsEqualEdges(frameRect)) {
678 // The decoder should have produced rows starting from either the bottom or
679 // the top of the image. We need to calculate the region for which we have
680 // not yet invalidated.
681 IntRect delta(0, 0, frameRect.width, 0);
682 if (mDecoded.y == 0) {
683 delta.y = mDecoded.height;
684 delta.height = frameRect.height - mDecoded.height;
685 } else if (mDecoded.y + mDecoded.height == frameRect.height) {
686 delta.height = frameRect.height - mDecoded.y;
687 } else {
688 MOZ_ASSERT_UNREACHABLE("Decoder only updated middle of image!");
689 delta = frameRect;
692 ImageUpdatedInternal(delta);
695 MOZ_ASSERT(mDecoded.IsEqualEdges(frameRect));
697 if (aFinalize) {
698 FinalizeSurfaceInternal();
701 mFinished = true;
703 // The image is now complete, wake up anyone who's waiting.
704 mMonitor.NotifyAll();
707 uint32_t imgFrame::GetImageBytesPerRow() const {
708 mMonitor.AssertCurrentThreadOwns();
710 if (mRawSurface) {
711 return mImageSize.width * BytesPerPixel(mFormat);
714 return 0;
717 uint32_t imgFrame::GetImageDataLength() const {
718 return GetImageBytesPerRow() * mImageSize.height;
721 void imgFrame::GetImageData(uint8_t** aData, uint32_t* aLength) const {
722 MonitorAutoLock lock(mMonitor);
723 GetImageDataInternal(aData, aLength);
726 void imgFrame::GetImageDataInternal(uint8_t** aData, uint32_t* aLength) const {
727 mMonitor.AssertCurrentThreadOwns();
728 MOZ_ASSERT(mLockCount > 0, "Image data should be locked");
729 MOZ_ASSERT(mLockedSurface);
731 if (mLockedSurface) {
732 // TODO: This is okay for now because we only realloc shared surfaces on
733 // the main thread after decoding has finished, but if animations want to
734 // read frame data off the main thread, we will need to reconsider this.
735 *aData = mLockedSurface->GetData();
736 MOZ_ASSERT(
737 *aData,
738 "mLockedSurface is non-null, but GetData is null in GetImageData");
739 } else {
740 *aData = nullptr;
743 *aLength = GetImageDataLength();
746 uint8_t* imgFrame::GetImageData() const {
747 uint8_t* data;
748 uint32_t length;
749 GetImageData(&data, &length);
750 return data;
753 uint8_t* imgFrame::LockImageData(bool aOnlyFinished) {
754 MonitorAutoLock lock(mMonitor);
756 MOZ_ASSERT(mLockCount >= 0, "Unbalanced locks and unlocks");
757 if (mLockCount < 0 || (aOnlyFinished && !mFinished)) {
758 return nullptr;
761 uint8_t* data;
762 if (mLockedSurface) {
763 data = mLockedSurface->GetData();
764 } else {
765 data = nullptr;
768 // If the raw data is still available, we should get a valid pointer for it.
769 if (!data) {
770 MOZ_ASSERT_UNREACHABLE("It's illegal to re-lock an optimized imgFrame");
771 return nullptr;
774 ++mLockCount;
775 return data;
778 void imgFrame::AssertImageDataLocked() const {
779 #ifdef DEBUG
780 MonitorAutoLock lock(mMonitor);
781 MOZ_ASSERT(mLockCount > 0, "Image data should be locked");
782 #endif
785 nsresult imgFrame::UnlockImageData() {
786 MonitorAutoLock lock(mMonitor);
788 MOZ_ASSERT(mLockCount > 0, "Unlocking an unlocked image!");
789 if (mLockCount <= 0) {
790 return NS_ERROR_FAILURE;
793 MOZ_ASSERT(mLockCount > 1 || mFinished || mAborted,
794 "Should have Finish()'d or aborted before unlocking");
796 mLockCount--;
798 return NS_OK;
801 void imgFrame::SetOptimizable() {
802 AssertImageDataLocked();
803 MonitorAutoLock lock(mMonitor);
804 mOptimizable = true;
807 void imgFrame::FinalizeSurface() {
808 MonitorAutoLock lock(mMonitor);
809 FinalizeSurfaceInternal();
812 void imgFrame::FinalizeSurfaceInternal() {
813 mMonitor.AssertCurrentThreadOwns();
815 // Not all images will have mRawSurface to finalize (i.e. paletted images).
816 if (mShouldRecycle || !mRawSurface ||
817 mRawSurface->GetType() != SurfaceType::DATA_SHARED) {
818 return;
821 auto sharedSurf = static_cast<SourceSurfaceSharedData*>(mRawSurface.get());
822 sharedSurf->Finalize();
825 already_AddRefed<SourceSurface> imgFrame::GetSourceSurface() {
826 MonitorAutoLock lock(mMonitor);
827 return GetSourceSurfaceInternal(/* aTemporary */ false);
830 already_AddRefed<SourceSurface> imgFrame::GetSourceSurfaceInternal(
831 bool aTemporary) {
832 mMonitor.AssertCurrentThreadOwns();
834 if (mOptSurface) {
835 if (mOptSurface->IsValid()) {
836 RefPtr<SourceSurface> surf(mOptSurface);
837 return surf.forget();
838 } else {
839 mOptSurface = nullptr;
843 if (mBlankLockedSurface) {
844 // We are going to return the blank surface because of the flags.
845 // We are including comments here that are copied from below
846 // just so that we are on the same page!
848 // We don't need to create recycling wrapper for some callers because they
849 // promise to release the surface immediately after.
850 if (!aTemporary && mShouldRecycle) {
851 RefPtr<SourceSurface> surf =
852 new RecyclingSourceSurface(this, mBlankLockedSurface);
853 return surf.forget();
856 RefPtr<SourceSurface> surf(mBlankLockedSurface);
857 return surf.forget();
860 if (mLockedSurface) {
861 // We don't need to create recycling wrapper for some callers because they
862 // promise to release the surface immediately after.
863 if (!aTemporary && mShouldRecycle) {
864 RefPtr<SourceSurface> surf =
865 new RecyclingSourceSurface(this, mLockedSurface);
866 return surf.forget();
869 RefPtr<SourceSurface> surf(mLockedSurface);
870 return surf.forget();
873 MOZ_ASSERT(!mShouldRecycle, "Should recycle but no locked surface!");
875 if (!mRawSurface) {
876 return nullptr;
879 return CreateLockedSurface(mRawSurface, mImageSize, mFormat);
882 void imgFrame::Abort() {
883 MonitorAutoLock lock(mMonitor);
885 mAborted = true;
887 // Wake up anyone who's waiting.
888 mMonitor.NotifyAll();
891 bool imgFrame::IsAborted() const {
892 MonitorAutoLock lock(mMonitor);
893 return mAborted;
896 bool imgFrame::IsFinished() const {
897 MonitorAutoLock lock(mMonitor);
898 return mFinished;
901 void imgFrame::WaitUntilFinished() const {
902 MonitorAutoLock lock(mMonitor);
904 while (true) {
905 // Return if we're aborted or complete.
906 if (mAborted || mFinished) {
907 return;
910 // Not complete yet, so we'll have to wait.
911 mMonitor.Wait();
915 bool imgFrame::AreAllPixelsWritten() const {
916 mMonitor.AssertCurrentThreadOwns();
917 return mDecoded.IsEqualInterior(GetRect());
920 void imgFrame::AddSizeOfExcludingThis(MallocSizeOf aMallocSizeOf,
921 const AddSizeOfCb& aCallback) const {
922 MonitorAutoLock lock(mMonitor);
924 AddSizeOfCbData metadata;
926 metadata.finished = mFinished;
927 if (mLockedSurface) {
928 metadata.heap += aMallocSizeOf(mLockedSurface);
930 if (mOptSurface) {
931 metadata.heap += aMallocSizeOf(mOptSurface);
933 if (mRawSurface) {
934 metadata.heap += aMallocSizeOf(mRawSurface);
935 mRawSurface->AddSizeOfExcludingThis(aMallocSizeOf, metadata.heap,
936 metadata.nonHeap, metadata.handles,
937 metadata.externalId);
940 aCallback(metadata);
943 RecyclingSourceSurface::RecyclingSourceSurface(imgFrame* aParent,
944 DataSourceSurface* aSurface)
945 : mParent(aParent), mSurface(aSurface), mType(SurfaceType::DATA) {
946 mParent->mMonitor.AssertCurrentThreadOwns();
947 ++mParent->mRecycleLockCount;
949 if (aSurface->GetType() == SurfaceType::DATA_SHARED) {
950 mType = SurfaceType::DATA_RECYCLING_SHARED;
954 RecyclingSourceSurface::~RecyclingSourceSurface() {
955 MonitorAutoLock lock(mParent->mMonitor);
956 MOZ_ASSERT(mParent->mRecycleLockCount > 0);
957 if (--mParent->mRecycleLockCount == 0) {
958 mParent->mMonitor.NotifyAll();
962 } // namespace image
963 } // namespace mozilla