Bug 1610307 [wpt PR 21266] - Update wpt metadata, a=testonly
[gecko.git] / image / SurfaceCache.cpp
blob5a0768d378c3381e4c4bd3d1f4dabd1feb382279
1 /* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* This Source Code Form is subject to the terms of the Mozilla Public
3 * License, v. 2.0. If a copy of the MPL was not distributed with this
4 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
6 /**
7 * SurfaceCache is a service for caching temporary surfaces in imagelib.
8 */
10 #include "SurfaceCache.h"
12 #include <algorithm>
13 #include <utility>
15 #include "ISurfaceProvider.h"
16 #include "Image.h"
17 #include "LookupResult.h"
18 #include "ShutdownTracker.h"
19 #include "gfx2DGlue.h"
20 #include "gfxPlatform.h"
21 #include "imgFrame.h"
22 #include "mozilla/Assertions.h"
23 #include "mozilla/Attributes.h"
24 #include "mozilla/CheckedInt.h"
25 #include "mozilla/DebugOnly.h"
26 #include "mozilla/Likely.h"
27 #include "mozilla/Pair.h"
28 #include "mozilla/RefPtr.h"
29 #include "mozilla/StaticMutex.h"
30 #include "mozilla/StaticPrefs_image.h"
31 #include "mozilla/StaticPtr.h"
32 #include "mozilla/Tuple.h"
33 #include "nsExpirationTracker.h"
34 #include "nsHashKeys.h"
35 #include "nsIMemoryReporter.h"
36 #include "nsRefPtrHashtable.h"
37 #include "nsSize.h"
38 #include "nsTArray.h"
39 #include "prsystem.h"
41 using std::max;
42 using std::min;
44 namespace mozilla {
46 using namespace gfx;
48 namespace image {
50 MOZ_DEFINE_MALLOC_SIZE_OF(SurfaceCacheMallocSizeOf)
52 class CachedSurface;
53 class SurfaceCacheImpl;
55 ///////////////////////////////////////////////////////////////////////////////
56 // Static Data
57 ///////////////////////////////////////////////////////////////////////////////
59 // The single surface cache instance.
60 static StaticRefPtr<SurfaceCacheImpl> sInstance;
62 // The mutex protecting the surface cache.
63 static StaticMutex sInstanceMutex;
65 ///////////////////////////////////////////////////////////////////////////////
66 // SurfaceCache Implementation
67 ///////////////////////////////////////////////////////////////////////////////
69 /**
70 * Cost models the cost of storing a surface in the cache. Right now, this is
71 * simply an estimate of the size of the surface in bytes, but in the future it
72 * may be worth taking into account the cost of rematerializing the surface as
73 * well.
75 typedef size_t Cost;
77 static Cost ComputeCost(const IntSize& aSize, uint32_t aBytesPerPixel) {
78 MOZ_ASSERT(aBytesPerPixel == 1 || aBytesPerPixel == 4);
79 return aSize.width * aSize.height * aBytesPerPixel;
82 /**
83 * Since we want to be able to make eviction decisions based on cost, we need to
84 * be able to look up the CachedSurface which has a certain cost as well as the
85 * cost associated with a certain CachedSurface. To make this possible, in data
86 * structures we actually store a CostEntry, which contains a weak pointer to
87 * its associated surface.
89 * To make usage of the weak pointer safe, SurfaceCacheImpl always calls
90 * StartTracking after a surface is stored in the cache and StopTracking before
91 * it is removed.
93 class CostEntry {
94 public:
95 CostEntry(NotNull<CachedSurface*> aSurface, Cost aCost)
96 : mSurface(aSurface), mCost(aCost) {}
98 NotNull<CachedSurface*> Surface() const { return mSurface; }
99 Cost GetCost() const { return mCost; }
101 bool operator==(const CostEntry& aOther) const {
102 return mSurface == aOther.mSurface && mCost == aOther.mCost;
105 bool operator<(const CostEntry& aOther) const {
106 return mCost < aOther.mCost ||
107 (mCost == aOther.mCost &&
108 recordreplay::RecordReplayValue(mSurface < aOther.mSurface));
111 private:
112 NotNull<CachedSurface*> mSurface;
113 Cost mCost;
117 * A CachedSurface associates a surface with a key that uniquely identifies that
118 * surface.
120 class CachedSurface {
121 ~CachedSurface() {}
123 public:
124 MOZ_DECLARE_REFCOUNTED_TYPENAME(CachedSurface)
125 NS_INLINE_DECL_THREADSAFE_REFCOUNTING(CachedSurface)
127 explicit CachedSurface(NotNull<ISurfaceProvider*> aProvider)
128 : mProvider(aProvider), mIsLocked(false) {}
130 DrawableSurface GetDrawableSurface() const {
131 if (MOZ_UNLIKELY(IsPlaceholder())) {
132 MOZ_ASSERT_UNREACHABLE("Called GetDrawableSurface() on a placeholder");
133 return DrawableSurface();
136 return mProvider->Surface();
139 void SetLocked(bool aLocked) {
140 if (IsPlaceholder()) {
141 return; // Can't lock a placeholder.
144 // Update both our state and our provider's state. Some surface providers
145 // are permanently locked; maintaining our own locking state enables us to
146 // respect SetLocked() even when it's meaningless from the provider's
147 // perspective.
148 mIsLocked = aLocked;
149 mProvider->SetLocked(aLocked);
152 bool IsLocked() const {
153 return !IsPlaceholder() && mIsLocked && mProvider->IsLocked();
156 void SetCannotSubstitute() {
157 mProvider->Availability().SetCannotSubstitute();
159 bool CannotSubstitute() const {
160 return mProvider->Availability().CannotSubstitute();
163 bool IsPlaceholder() const {
164 return mProvider->Availability().IsPlaceholder();
166 bool IsDecoded() const { return !IsPlaceholder() && mProvider->IsFinished(); }
168 ImageKey GetImageKey() const { return mProvider->GetImageKey(); }
169 const SurfaceKey& GetSurfaceKey() const { return mProvider->GetSurfaceKey(); }
170 nsExpirationState* GetExpirationState() { return &mExpirationState; }
172 CostEntry GetCostEntry() {
173 return image::CostEntry(WrapNotNull(this), mProvider->LogicalSizeInBytes());
176 size_t ShallowSizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const {
177 return aMallocSizeOf(this) + aMallocSizeOf(mProvider.get());
180 // A helper type used by SurfaceCacheImpl::CollectSizeOfSurfaces.
181 struct MOZ_STACK_CLASS SurfaceMemoryReport {
182 SurfaceMemoryReport(nsTArray<SurfaceMemoryCounter>& aCounters,
183 MallocSizeOf aMallocSizeOf)
184 : mCounters(aCounters), mMallocSizeOf(aMallocSizeOf) {}
186 void Add(NotNull<CachedSurface*> aCachedSurface, bool aIsFactor2) {
187 if (aCachedSurface->IsPlaceholder()) {
188 return;
191 // Record the memory used by the ISurfaceProvider. This may not have a
192 // straightforward relationship to the size of the surface that
193 // DrawableRef() returns if the surface is generated dynamically. (i.e.,
194 // for surfaces with PlaybackType::eAnimated.)
195 aCachedSurface->mProvider->AddSizeOfExcludingThis(
196 mMallocSizeOf, [&](ISurfaceProvider::AddSizeOfCbData& aMetadata) {
197 SurfaceMemoryCounter counter(aCachedSurface->GetSurfaceKey(),
198 aCachedSurface->IsLocked(),
199 aCachedSurface->CannotSubstitute(),
200 aIsFactor2, aMetadata.finished);
202 counter.Values().SetDecodedHeap(aMetadata.heap);
203 counter.Values().SetDecodedNonHeap(aMetadata.nonHeap);
204 counter.Values().SetExternalHandles(aMetadata.handles);
205 counter.Values().SetFrameIndex(aMetadata.index);
206 counter.Values().SetExternalId(aMetadata.externalId);
208 mCounters.AppendElement(counter);
212 private:
213 nsTArray<SurfaceMemoryCounter>& mCounters;
214 MallocSizeOf mMallocSizeOf;
217 private:
218 nsExpirationState mExpirationState;
219 NotNull<RefPtr<ISurfaceProvider>> mProvider;
220 bool mIsLocked;
223 static int64_t AreaOfIntSize(const IntSize& aSize) {
224 return static_cast<int64_t>(aSize.width) * static_cast<int64_t>(aSize.height);
228 * An ImageSurfaceCache is a per-image surface cache. For correctness we must be
229 * able to remove all surfaces associated with an image when the image is
230 * destroyed or invalidated. Since this will happen frequently, it makes sense
231 * to make it cheap by storing the surfaces for each image separately.
233 * ImageSurfaceCache also keeps track of whether its associated image is locked
234 * or unlocked.
236 * The cache may also enter "factor of 2" mode which occurs when the number of
237 * surfaces in the cache exceeds the "image.cache.factor2.threshold-surfaces"
238 * pref plus the number of native sizes of the image. When in "factor of 2"
239 * mode, the cache will strongly favour sizes which are a factor of 2 of the
240 * largest native size. It accomplishes this by suggesting a factor of 2 size
241 * when lookups fail and substituting the nearest factor of 2 surface to the
242 * ideal size as the "best" available (as opposed to substitution but not
243 * found). This allows us to minimize memory consumption and CPU time spent
244 * decoding when a website requires many variants of the same surface.
246 class ImageSurfaceCache {
247 ~ImageSurfaceCache() {}
249 public:
250 explicit ImageSurfaceCache(const ImageKey aImageKey)
251 : mLocked(false),
252 mFactor2Mode(false),
253 mFactor2Pruned(false),
254 mIsVectorImage(aImageKey->GetType() == imgIContainer::TYPE_VECTOR) {}
256 MOZ_DECLARE_REFCOUNTED_TYPENAME(ImageSurfaceCache)
257 NS_INLINE_DECL_THREADSAFE_REFCOUNTING(ImageSurfaceCache)
259 typedef nsRefPtrHashtable<nsGenericHashKey<SurfaceKey>, CachedSurface>
260 SurfaceTable;
262 bool IsEmpty() const { return mSurfaces.Count() == 0; }
264 size_t ShallowSizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const {
265 size_t bytes = aMallocSizeOf(this) +
266 mSurfaces.ShallowSizeOfExcludingThis(aMallocSizeOf);
267 for (auto iter = ConstIter(); !iter.Done(); iter.Next()) {
268 bytes += iter.UserData()->ShallowSizeOfIncludingThis(aMallocSizeOf);
270 return bytes;
273 MOZ_MUST_USE bool Insert(NotNull<CachedSurface*> aSurface) {
274 MOZ_ASSERT(!mLocked || aSurface->IsPlaceholder() || aSurface->IsLocked(),
275 "Inserting an unlocked surface for a locked image");
276 return mSurfaces.Put(aSurface->GetSurfaceKey(), aSurface, fallible);
279 already_AddRefed<CachedSurface> Remove(NotNull<CachedSurface*> aSurface) {
280 MOZ_ASSERT(mSurfaces.GetWeak(aSurface->GetSurfaceKey()),
281 "Should not be removing a surface we don't have");
283 RefPtr<CachedSurface> surface;
284 mSurfaces.Remove(aSurface->GetSurfaceKey(), getter_AddRefs(surface));
285 AfterMaybeRemove();
286 return surface.forget();
289 already_AddRefed<CachedSurface> Lookup(const SurfaceKey& aSurfaceKey,
290 bool aForAccess) {
291 RefPtr<CachedSurface> surface;
292 mSurfaces.Get(aSurfaceKey, getter_AddRefs(surface));
294 if (aForAccess) {
295 if (surface) {
296 // We don't want to allow factor of 2 mode pruning to release surfaces
297 // for which the callers will accept no substitute.
298 surface->SetCannotSubstitute();
299 } else if (!mFactor2Mode) {
300 // If no exact match is found, and this is for use rather than internal
301 // accounting (i.e. insert and removal), we know this will trigger a
302 // decode. Make sure we switch now to factor of 2 mode if necessary.
303 MaybeSetFactor2Mode();
307 return surface.forget();
311 * @returns A tuple containing the best matching CachedSurface if available,
312 * a MatchType describing how the CachedSurface was selected, and
313 * an IntSize which is the size the caller should choose to decode
314 * at should it attempt to do so.
316 Tuple<already_AddRefed<CachedSurface>, MatchType, IntSize> LookupBestMatch(
317 const SurfaceKey& aIdealKey) {
318 // Try for an exact match first.
319 RefPtr<CachedSurface> exactMatch;
320 mSurfaces.Get(aIdealKey, getter_AddRefs(exactMatch));
321 if (exactMatch) {
322 if (exactMatch->IsDecoded()) {
323 return MakeTuple(exactMatch.forget(), MatchType::EXACT, IntSize());
325 } else if (!mFactor2Mode) {
326 // If no exact match is found, and we are not in factor of 2 mode, then
327 // we know that we will trigger a decode because at best we will provide
328 // a substitute. Make sure we switch now to factor of 2 mode if necessary.
329 MaybeSetFactor2Mode();
332 // Try for a best match second, if using compact.
333 IntSize suggestedSize = SuggestedSize(aIdealKey.Size());
334 if (suggestedSize != aIdealKey.Size()) {
335 if (!exactMatch) {
336 SurfaceKey compactKey = aIdealKey.CloneWithSize(suggestedSize);
337 mSurfaces.Get(compactKey, getter_AddRefs(exactMatch));
338 if (exactMatch && exactMatch->IsDecoded()) {
339 MOZ_ASSERT(suggestedSize != aIdealKey.Size());
340 return MakeTuple(exactMatch.forget(),
341 MatchType::SUBSTITUTE_BECAUSE_BEST, suggestedSize);
346 // There's no perfect match, so find the best match we can.
347 RefPtr<CachedSurface> bestMatch;
348 for (auto iter = ConstIter(); !iter.Done(); iter.Next()) {
349 NotNull<CachedSurface*> current = WrapNotNull(iter.UserData());
350 const SurfaceKey& currentKey = current->GetSurfaceKey();
352 // We never match a placeholder.
353 if (current->IsPlaceholder()) {
354 continue;
356 // Matching the playback type and SVG context is required.
357 if (currentKey.Playback() != aIdealKey.Playback() ||
358 currentKey.SVGContext() != aIdealKey.SVGContext()) {
359 continue;
361 // Matching the flags is required.
362 if (currentKey.Flags() != aIdealKey.Flags()) {
363 continue;
365 // Anything is better than nothing! (Within the constraints we just
366 // checked, of course.)
367 if (!bestMatch) {
368 bestMatch = current;
369 continue;
372 MOZ_ASSERT(bestMatch, "Should have a current best match");
374 // Always prefer completely decoded surfaces.
375 bool bestMatchIsDecoded = bestMatch->IsDecoded();
376 if (bestMatchIsDecoded && !current->IsDecoded()) {
377 continue;
379 if (!bestMatchIsDecoded && current->IsDecoded()) {
380 bestMatch = current;
381 continue;
384 SurfaceKey bestMatchKey = bestMatch->GetSurfaceKey();
385 if (CompareArea(aIdealKey.Size(), bestMatchKey.Size(),
386 currentKey.Size())) {
387 bestMatch = current;
391 MatchType matchType;
392 if (bestMatch) {
393 if (!exactMatch) {
394 // No exact match, neither ideal nor factor of 2.
395 MOZ_ASSERT(suggestedSize != bestMatch->GetSurfaceKey().Size(),
396 "No exact match despite the fact the sizes match!");
397 matchType = MatchType::SUBSTITUTE_BECAUSE_NOT_FOUND;
398 } else if (exactMatch != bestMatch) {
399 // The exact match is still decoding, but we found a substitute.
400 matchType = MatchType::SUBSTITUTE_BECAUSE_PENDING;
401 } else if (aIdealKey.Size() != bestMatch->GetSurfaceKey().Size()) {
402 // The best factor of 2 match is still decoding, but the best we've got.
403 MOZ_ASSERT(suggestedSize != aIdealKey.Size());
404 MOZ_ASSERT(mFactor2Mode || mIsVectorImage);
405 matchType = MatchType::SUBSTITUTE_BECAUSE_BEST;
406 } else {
407 // The exact match is still decoding, but it's the best we've got.
408 matchType = MatchType::EXACT;
410 } else {
411 if (exactMatch) {
412 // We found an "exact match"; it must have been a placeholder.
413 MOZ_ASSERT(exactMatch->IsPlaceholder());
414 matchType = MatchType::PENDING;
415 } else {
416 // We couldn't find an exact match *or* a substitute.
417 matchType = MatchType::NOT_FOUND;
421 return MakeTuple(bestMatch.forget(), matchType, suggestedSize);
424 void MaybeSetFactor2Mode() {
425 MOZ_ASSERT(!mFactor2Mode);
427 // Typically an image cache will not have too many size-varying surfaces, so
428 // if we exceed the given threshold, we should consider using a subset.
429 int32_t thresholdSurfaces =
430 StaticPrefs::image_cache_factor2_threshold_surfaces();
431 if (thresholdSurfaces < 0 ||
432 mSurfaces.Count() <= static_cast<uint32_t>(thresholdSurfaces)) {
433 return;
436 // Determine how many native surfaces this image has. If it is zero, and it
437 // is a vector image, then we should impute a single native size. Otherwise,
438 // it may be zero because we don't know yet, or the image has an error, or
439 // it isn't supported.
440 auto first = ConstIter();
441 NotNull<CachedSurface*> current = WrapNotNull(first.UserData());
442 Image* image = static_cast<Image*>(current->GetImageKey());
443 size_t nativeSizes = image->GetNativeSizesLength();
444 if (mIsVectorImage) {
445 MOZ_ASSERT(nativeSizes == 0);
446 nativeSizes = 1;
447 } else if (nativeSizes == 0) {
448 return;
451 // Increase the threshold by the number of native sizes. This ensures that
452 // we do not prevent decoding of the image at all its native sizes. It does
453 // not guarantee we will provide a surface at that size however (i.e. many
454 // other sized surfaces are requested, in addition to the native sizes).
455 thresholdSurfaces += nativeSizes;
456 if (mSurfaces.Count() <= static_cast<uint32_t>(thresholdSurfaces)) {
457 return;
460 // Get our native size. While we know the image should be fully decoded,
461 // if it is an SVG, it is valid to have a zero size. We can't do compacting
462 // in that case because we need to know the width/height ratio to define a
463 // candidate set.
464 IntSize nativeSize;
465 if (NS_FAILED(image->GetWidth(&nativeSize.width)) ||
466 NS_FAILED(image->GetHeight(&nativeSize.height)) ||
467 nativeSize.IsEmpty()) {
468 return;
471 // We have a valid size, we can change modes.
472 mFactor2Mode = true;
475 template <typename Function>
476 void Prune(Function&& aRemoveCallback) {
477 if (!mFactor2Mode || mFactor2Pruned) {
478 return;
481 // Attempt to discard any surfaces which are not factor of 2 and the best
482 // factor of 2 match exists.
483 bool hasNotFactorSize = false;
484 for (auto iter = mSurfaces.Iter(); !iter.Done(); iter.Next()) {
485 NotNull<CachedSurface*> current = WrapNotNull(iter.UserData());
486 const SurfaceKey& currentKey = current->GetSurfaceKey();
487 const IntSize& currentSize = currentKey.Size();
489 // First we check if someone requested this size and would not accept
490 // an alternatively sized surface.
491 if (current->CannotSubstitute()) {
492 continue;
495 // Next we find the best factor of 2 size for this surface. If this
496 // surface is a factor of 2 size, then we want to keep it.
497 IntSize bestSize = SuggestedSize(currentSize);
498 if (bestSize == currentSize) {
499 continue;
502 // Check the cache for a surface with the same parameters except for the
503 // size which uses the closest factor of 2 size.
504 SurfaceKey compactKey = currentKey.CloneWithSize(bestSize);
505 RefPtr<CachedSurface> compactMatch;
506 mSurfaces.Get(compactKey, getter_AddRefs(compactMatch));
507 if (compactMatch && compactMatch->IsDecoded()) {
508 aRemoveCallback(current);
509 iter.Remove();
510 } else {
511 hasNotFactorSize = true;
515 // We have no surfaces that are not factor of 2 sized, so we can stop
516 // pruning henceforth, because we avoid the insertion of new surfaces that
517 // don't match our sizing set (unless the caller won't accept a
518 // substitution.)
519 if (!hasNotFactorSize) {
520 mFactor2Pruned = true;
523 // We should never leave factor of 2 mode due to pruning in of itself, but
524 // if we discarded surfaces due to the volatile buffers getting released,
525 // it is possible.
526 AfterMaybeRemove();
529 IntSize SuggestedSize(const IntSize& aSize) const {
530 IntSize suggestedSize = SuggestedSizeInternal(aSize);
531 if (mIsVectorImage) {
532 suggestedSize = SurfaceCache::ClampVectorSize(suggestedSize);
534 return suggestedSize;
537 IntSize SuggestedSizeInternal(const IntSize& aSize) const {
538 // When not in factor of 2 mode, we can always decode at the given size.
539 if (!mFactor2Mode) {
540 return aSize;
543 // We cannot enter factor of 2 mode unless we have a minimum number of
544 // surfaces, and we should have left it if the cache was emptied.
545 if (MOZ_UNLIKELY(IsEmpty())) {
546 MOZ_ASSERT_UNREACHABLE("Should not be empty and in factor of 2 mode!");
547 return aSize;
550 // This bit of awkwardness gets the largest native size of the image.
551 auto iter = ConstIter();
552 NotNull<CachedSurface*> firstSurface = WrapNotNull(iter.UserData());
553 Image* image = static_cast<Image*>(firstSurface->GetImageKey());
554 IntSize factorSize;
555 if (NS_FAILED(image->GetWidth(&factorSize.width)) ||
556 NS_FAILED(image->GetHeight(&factorSize.height)) ||
557 factorSize.IsEmpty()) {
558 // We should not have entered factor of 2 mode without a valid size, and
559 // several successfully decoded surfaces. Note that valid vector images
560 // may have a default size of 0x0, and those are not yet supported.
561 MOZ_ASSERT_UNREACHABLE("Expected valid native size!");
562 return aSize;
565 if (mIsVectorImage) {
566 // Ensure the aspect ratio matches the native size before forcing the
567 // caller to accept a factor of 2 size. The difference between the aspect
568 // ratios is:
570 // delta = nativeWidth/nativeHeight - desiredWidth/desiredHeight
572 // delta*nativeHeight*desiredHeight = nativeWidth*desiredHeight
573 // - desiredWidth*nativeHeight
575 // Using the maximum accepted delta as a constant, we can avoid the
576 // floating point division and just compare after some integer ops.
577 int32_t delta =
578 factorSize.width * aSize.height - aSize.width * factorSize.height;
579 int32_t maxDelta = (factorSize.height * aSize.height) >> 4;
580 if (delta > maxDelta || delta < -maxDelta) {
581 return aSize;
584 // If the requested size is bigger than the native size, we actually need
585 // to grow the native size instead of shrinking it.
586 if (factorSize.width < aSize.width) {
587 do {
588 IntSize candidate(factorSize.width * 2, factorSize.height * 2);
589 if (!SurfaceCache::IsLegalSize(candidate)) {
590 break;
593 factorSize = candidate;
594 } while (factorSize.width < aSize.width);
596 return factorSize;
599 // Otherwise we can find the best fit as normal.
602 // Start with the native size as the best first guess.
603 IntSize bestSize = factorSize;
604 factorSize.width /= 2;
605 factorSize.height /= 2;
607 while (!factorSize.IsEmpty()) {
608 if (!CompareArea(aSize, bestSize, factorSize)) {
609 // This size is not better than the last. Since we proceed from largest
610 // to smallest, we know that the next size will not be better if the
611 // previous size was rejected. Break early.
612 break;
615 // The current factor of 2 size is better than the last selected size.
616 bestSize = factorSize;
617 factorSize.width /= 2;
618 factorSize.height /= 2;
621 return bestSize;
624 bool CompareArea(const IntSize& aIdealSize, const IntSize& aBestSize,
625 const IntSize& aSize) const {
626 // Compare sizes. We use an area-based heuristic here instead of computing a
627 // truly optimal answer, since it seems very unlikely to make a difference
628 // for realistic sizes.
629 int64_t idealArea = AreaOfIntSize(aIdealSize);
630 int64_t currentArea = AreaOfIntSize(aSize);
631 int64_t bestMatchArea = AreaOfIntSize(aBestSize);
633 // If the best match is smaller than the ideal size, prefer bigger sizes.
634 if (bestMatchArea < idealArea) {
635 if (currentArea > bestMatchArea) {
636 return true;
638 return false;
641 // Other, prefer sizes closer to the ideal size, but still not smaller.
642 if (idealArea <= currentArea && currentArea < bestMatchArea) {
643 return true;
646 // This surface isn't an improvement over the current best match.
647 return false;
650 template <typename Function>
651 void CollectSizeOfSurfaces(nsTArray<SurfaceMemoryCounter>& aCounters,
652 MallocSizeOf aMallocSizeOf,
653 Function&& aRemoveCallback) {
654 CachedSurface::SurfaceMemoryReport report(aCounters, aMallocSizeOf);
655 for (auto iter = mSurfaces.Iter(); !iter.Done(); iter.Next()) {
656 NotNull<CachedSurface*> surface = WrapNotNull(iter.UserData());
658 // We don't need the drawable surface for ourselves, but adding a surface
659 // to the report will trigger this indirectly. If the surface was
660 // discarded by the OS because it was in volatile memory, we should remove
661 // it from the cache immediately rather than include it in the report.
662 DrawableSurface drawableSurface;
663 if (!surface->IsPlaceholder()) {
664 drawableSurface = surface->GetDrawableSurface();
665 if (!drawableSurface) {
666 aRemoveCallback(surface);
667 iter.Remove();
668 continue;
672 const IntSize& size = surface->GetSurfaceKey().Size();
673 bool factor2Size = false;
674 if (mFactor2Mode) {
675 factor2Size = (size == SuggestedSize(size));
677 report.Add(surface, factor2Size);
680 AfterMaybeRemove();
683 SurfaceTable::Iterator ConstIter() const { return mSurfaces.ConstIter(); }
684 uint32_t Count() const { return mSurfaces.Count(); }
686 void SetLocked(bool aLocked) { mLocked = aLocked; }
687 bool IsLocked() const { return mLocked; }
689 private:
690 void AfterMaybeRemove() {
691 if (IsEmpty() && mFactor2Mode) {
692 // The last surface for this cache was removed. This can happen if the
693 // surface was stored in a volatile buffer and got purged, or the surface
694 // expired from the cache. If the cache itself lingers for some reason
695 // (e.g. in the process of performing a lookup, the cache itself is
696 // locked), then we need to reset the factor of 2 state because it
697 // requires at least one surface present to get the native size
698 // information from the image.
699 mFactor2Mode = mFactor2Pruned = false;
703 SurfaceTable mSurfaces;
705 bool mLocked;
707 // True in "factor of 2" mode.
708 bool mFactor2Mode;
710 // True if all non-factor of 2 surfaces have been removed from the cache. Note
711 // that this excludes unsubstitutable sizes.
712 bool mFactor2Pruned;
714 // True if the surfaces are produced from a vector image. If so, it must match
715 // the aspect ratio when using factor of 2 mode.
716 bool mIsVectorImage;
720 * SurfaceCacheImpl is responsible for determining which surfaces will be cached
721 * and managing the surface cache data structures. Rather than interact with
722 * SurfaceCacheImpl directly, client code interacts with SurfaceCache, which
723 * maintains high-level invariants and encapsulates the details of the surface
724 * cache's implementation.
726 class SurfaceCacheImpl final : public nsIMemoryReporter {
727 public:
728 NS_DECL_ISUPPORTS
730 SurfaceCacheImpl(uint32_t aSurfaceCacheExpirationTimeMS,
731 uint32_t aSurfaceCacheDiscardFactor,
732 uint32_t aSurfaceCacheSize)
733 : mExpirationTracker(aSurfaceCacheExpirationTimeMS),
734 mMemoryPressureObserver(new MemoryPressureObserver),
735 mDiscardFactor(aSurfaceCacheDiscardFactor),
736 mMaxCost(aSurfaceCacheSize),
737 mAvailableCost(aSurfaceCacheSize),
738 mLockedCost(0),
739 mOverflowCount(0),
740 mAlreadyPresentCount(0),
741 mTableFailureCount(0),
742 mTrackingFailureCount(0) {
743 nsCOMPtr<nsIObserverService> os = services::GetObserverService();
744 if (os) {
745 os->AddObserver(mMemoryPressureObserver, "memory-pressure", false);
749 private:
750 virtual ~SurfaceCacheImpl() {
751 nsCOMPtr<nsIObserverService> os = services::GetObserverService();
752 if (os) {
753 os->RemoveObserver(mMemoryPressureObserver, "memory-pressure");
756 UnregisterWeakMemoryReporter(this);
759 public:
760 void InitMemoryReporter() { RegisterWeakMemoryReporter(this); }
762 InsertOutcome Insert(NotNull<ISurfaceProvider*> aProvider, bool aSetAvailable,
763 const StaticMutexAutoLock& aAutoLock) {
764 // If this is a duplicate surface, refuse to replace the original.
765 // XXX(seth): Calling Lookup() and then RemoveEntry() does the lookup
766 // twice. We'll make this more efficient in bug 1185137.
767 LookupResult result =
768 Lookup(aProvider->GetImageKey(), aProvider->GetSurfaceKey(), aAutoLock,
769 /* aMarkUsed = */ false);
770 if (MOZ_UNLIKELY(result)) {
771 mAlreadyPresentCount++;
772 return InsertOutcome::FAILURE_ALREADY_PRESENT;
775 if (result.Type() == MatchType::PENDING) {
776 RemoveEntry(aProvider->GetImageKey(), aProvider->GetSurfaceKey(),
777 aAutoLock);
780 MOZ_ASSERT(result.Type() == MatchType::NOT_FOUND ||
781 result.Type() == MatchType::PENDING,
782 "A LookupResult with no surface should be NOT_FOUND or PENDING");
784 // If this is bigger than we can hold after discarding everything we can,
785 // refuse to cache it.
786 Cost cost = aProvider->LogicalSizeInBytes();
787 if (MOZ_UNLIKELY(!CanHoldAfterDiscarding(cost))) {
788 mOverflowCount++;
789 return InsertOutcome::FAILURE;
792 // Remove elements in order of cost until we can fit this in the cache. Note
793 // that locked surfaces aren't in mCosts, so we never remove them here.
794 while (cost > mAvailableCost) {
795 MOZ_ASSERT(!mCosts.IsEmpty(),
796 "Removed everything and it still won't fit");
797 Remove(mCosts.LastElement().Surface(), /* aStopTracking */ true,
798 aAutoLock);
801 // Locate the appropriate per-image cache. If there's not an existing cache
802 // for this image, create it.
803 const ImageKey imageKey = aProvider->GetImageKey();
804 RefPtr<ImageSurfaceCache> cache = GetImageCache(imageKey);
805 if (!cache) {
806 cache = new ImageSurfaceCache(imageKey);
807 if (!mImageCaches.Put(aProvider->GetImageKey(), cache, fallible)) {
808 mTableFailureCount++;
809 return InsertOutcome::FAILURE;
813 // If we were asked to mark the cache entry available, do so.
814 if (aSetAvailable) {
815 aProvider->Availability().SetAvailable();
818 auto surface = MakeNotNull<RefPtr<CachedSurface>>(aProvider);
820 // We require that locking succeed if the image is locked and we're not
821 // inserting a placeholder; the caller may need to know this to handle
822 // errors correctly.
823 bool mustLock = cache->IsLocked() && !surface->IsPlaceholder();
824 if (mustLock) {
825 surface->SetLocked(true);
826 if (!surface->IsLocked()) {
827 return InsertOutcome::FAILURE;
831 // Insert.
832 MOZ_ASSERT(cost <= mAvailableCost, "Inserting despite too large a cost");
833 if (!cache->Insert(surface)) {
834 mTableFailureCount++;
835 if (mustLock) {
836 surface->SetLocked(false);
838 return InsertOutcome::FAILURE;
841 if (MOZ_UNLIKELY(!StartTracking(surface, aAutoLock))) {
842 MOZ_ASSERT(!mustLock);
843 Remove(surface, /* aStopTracking */ false, aAutoLock);
844 return InsertOutcome::FAILURE;
847 return InsertOutcome::SUCCESS;
850 void Remove(NotNull<CachedSurface*> aSurface, bool aStopTracking,
851 const StaticMutexAutoLock& aAutoLock) {
852 ImageKey imageKey = aSurface->GetImageKey();
854 RefPtr<ImageSurfaceCache> cache = GetImageCache(imageKey);
855 MOZ_ASSERT(cache, "Shouldn't try to remove a surface with no image cache");
857 // If the surface was not a placeholder, tell its image that we discarded
858 // it.
859 if (!aSurface->IsPlaceholder()) {
860 static_cast<Image*>(imageKey)->OnSurfaceDiscarded(
861 aSurface->GetSurfaceKey());
864 // If we failed during StartTracking, we can skip this step.
865 if (aStopTracking) {
866 StopTracking(aSurface, /* aIsTracked */ true, aAutoLock);
869 // Individual surfaces must be freed outside the lock.
870 mCachedSurfacesDiscard.AppendElement(cache->Remove(aSurface));
872 MaybeRemoveEmptyCache(imageKey, cache);
875 bool StartTracking(NotNull<CachedSurface*> aSurface,
876 const StaticMutexAutoLock& aAutoLock) {
877 CostEntry costEntry = aSurface->GetCostEntry();
878 MOZ_ASSERT(costEntry.GetCost() <= mAvailableCost,
879 "Cost too large and the caller didn't catch it");
881 if (aSurface->IsLocked()) {
882 mLockedCost += costEntry.GetCost();
883 MOZ_ASSERT(mLockedCost <= mMaxCost, "Locked more than we can hold?");
884 } else {
885 if (NS_WARN_IF(!mCosts.InsertElementSorted(costEntry, fallible))) {
886 mTrackingFailureCount++;
887 return false;
890 // This may fail during XPCOM shutdown, so we need to ensure the object is
891 // tracked before calling RemoveObject in StopTracking.
892 nsresult rv = mExpirationTracker.AddObjectLocked(aSurface, aAutoLock);
893 if (NS_WARN_IF(NS_FAILED(rv))) {
894 DebugOnly<bool> foundInCosts = mCosts.RemoveElementSorted(costEntry);
895 MOZ_ASSERT(foundInCosts, "Lost track of costs for this surface");
896 mTrackingFailureCount++;
897 return false;
901 mAvailableCost -= costEntry.GetCost();
902 return true;
905 void StopTracking(NotNull<CachedSurface*> aSurface, bool aIsTracked,
906 const StaticMutexAutoLock& aAutoLock) {
907 CostEntry costEntry = aSurface->GetCostEntry();
909 if (aSurface->IsLocked()) {
910 MOZ_ASSERT(mLockedCost >= costEntry.GetCost(), "Costs don't balance");
911 mLockedCost -= costEntry.GetCost();
912 // XXX(seth): It'd be nice to use an O(log n) lookup here. This is O(n).
913 MOZ_ASSERT(!mCosts.Contains(costEntry),
914 "Shouldn't have a cost entry for a locked surface");
915 } else {
916 if (MOZ_LIKELY(aSurface->GetExpirationState()->IsTracked())) {
917 MOZ_ASSERT(aIsTracked, "Expiration-tracking a surface unexpectedly!");
918 mExpirationTracker.RemoveObjectLocked(aSurface, aAutoLock);
919 } else {
920 // Our call to AddObject must have failed in StartTracking; most likely
921 // we're in XPCOM shutdown right now.
922 MOZ_ASSERT(!aIsTracked, "Not expiration-tracking an unlocked surface!");
925 DebugOnly<bool> foundInCosts = mCosts.RemoveElementSorted(costEntry);
926 MOZ_ASSERT(foundInCosts, "Lost track of costs for this surface");
929 mAvailableCost += costEntry.GetCost();
930 MOZ_ASSERT(mAvailableCost <= mMaxCost,
931 "More available cost than we started with");
934 LookupResult Lookup(const ImageKey aImageKey, const SurfaceKey& aSurfaceKey,
935 const StaticMutexAutoLock& aAutoLock, bool aMarkUsed) {
936 RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
937 if (!cache) {
938 // No cached surfaces for this image.
939 return LookupResult(MatchType::NOT_FOUND);
942 RefPtr<CachedSurface> surface = cache->Lookup(aSurfaceKey, aMarkUsed);
943 if (!surface) {
944 // Lookup in the per-image cache missed.
945 return LookupResult(MatchType::NOT_FOUND);
948 if (surface->IsPlaceholder()) {
949 return LookupResult(MatchType::PENDING);
952 DrawableSurface drawableSurface = surface->GetDrawableSurface();
953 if (!drawableSurface) {
954 // The surface was released by the operating system. Remove the cache
955 // entry as well.
956 Remove(WrapNotNull(surface), /* aStopTracking */ true, aAutoLock);
957 return LookupResult(MatchType::NOT_FOUND);
960 if (aMarkUsed &&
961 !MarkUsed(WrapNotNull(surface), WrapNotNull(cache), aAutoLock)) {
962 Remove(WrapNotNull(surface), /* aStopTracking */ false, aAutoLock);
963 return LookupResult(MatchType::NOT_FOUND);
966 MOZ_ASSERT(surface->GetSurfaceKey() == aSurfaceKey,
967 "Lookup() not returning an exact match?");
968 return LookupResult(std::move(drawableSurface), MatchType::EXACT);
971 LookupResult LookupBestMatch(const ImageKey aImageKey,
972 const SurfaceKey& aSurfaceKey,
973 const StaticMutexAutoLock& aAutoLock,
974 bool aMarkUsed) {
975 RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
976 if (!cache) {
977 // No cached surfaces for this image.
978 return LookupResult(
979 MatchType::NOT_FOUND,
980 SurfaceCache::ClampSize(aImageKey, aSurfaceKey.Size()));
983 // Repeatedly look up the best match, trying again if the resulting surface
984 // has been freed by the operating system, until we can either lock a
985 // surface for drawing or there are no matching surfaces left.
986 // XXX(seth): This is O(N^2), but N is expected to be very small. If we
987 // encounter a performance problem here we can revisit this.
989 RefPtr<CachedSurface> surface;
990 DrawableSurface drawableSurface;
991 MatchType matchType = MatchType::NOT_FOUND;
992 IntSize suggestedSize;
993 while (true) {
994 Tie(surface, matchType, suggestedSize) =
995 cache->LookupBestMatch(aSurfaceKey);
997 if (!surface) {
998 return LookupResult(
999 matchType, suggestedSize); // Lookup in the per-image cache missed.
1002 drawableSurface = surface->GetDrawableSurface();
1003 if (drawableSurface) {
1004 break;
1007 // The surface was released by the operating system. Remove the cache
1008 // entry as well.
1009 Remove(WrapNotNull(surface), /* aStopTracking */ true, aAutoLock);
1012 MOZ_ASSERT_IF(matchType == MatchType::EXACT,
1013 surface->GetSurfaceKey() == aSurfaceKey);
1014 MOZ_ASSERT_IF(
1015 matchType == MatchType::SUBSTITUTE_BECAUSE_NOT_FOUND ||
1016 matchType == MatchType::SUBSTITUTE_BECAUSE_PENDING,
1017 surface->GetSurfaceKey().SVGContext() == aSurfaceKey.SVGContext() &&
1018 surface->GetSurfaceKey().Playback() == aSurfaceKey.Playback() &&
1019 surface->GetSurfaceKey().Flags() == aSurfaceKey.Flags());
1021 if (matchType == MatchType::EXACT ||
1022 matchType == MatchType::SUBSTITUTE_BECAUSE_BEST) {
1023 if (aMarkUsed &&
1024 !MarkUsed(WrapNotNull(surface), WrapNotNull(cache), aAutoLock)) {
1025 Remove(WrapNotNull(surface), /* aStopTracking */ false, aAutoLock);
1029 return LookupResult(std::move(drawableSurface), matchType, suggestedSize);
1032 bool CanHold(const Cost aCost) const { return aCost <= mMaxCost; }
1034 size_t MaximumCapacity() const { return size_t(mMaxCost); }
1036 void SurfaceAvailable(NotNull<ISurfaceProvider*> aProvider,
1037 const StaticMutexAutoLock& aAutoLock) {
1038 if (!aProvider->Availability().IsPlaceholder()) {
1039 MOZ_ASSERT_UNREACHABLE("Calling SurfaceAvailable on non-placeholder");
1040 return;
1043 // Reinsert the provider, requesting that Insert() mark it available. This
1044 // may or may not succeed, depending on whether some other decoder has
1045 // beaten us to the punch and inserted a non-placeholder version of this
1046 // surface first, but it's fine either way.
1047 // XXX(seth): This could be implemented more efficiently; we should be able
1048 // to just update our data structures without reinserting.
1049 Insert(aProvider, /* aSetAvailable = */ true, aAutoLock);
1052 void LockImage(const ImageKey aImageKey) {
1053 RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
1054 if (!cache) {
1055 cache = new ImageSurfaceCache(aImageKey);
1056 mImageCaches.Put(aImageKey, cache);
1059 cache->SetLocked(true);
1061 // We don't relock this image's existing surfaces right away; instead, the
1062 // image should arrange for Lookup() to touch them if they are still useful.
1065 void UnlockImage(const ImageKey aImageKey,
1066 const StaticMutexAutoLock& aAutoLock) {
1067 RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
1068 if (!cache || !cache->IsLocked()) {
1069 return; // Already unlocked.
1072 cache->SetLocked(false);
1073 DoUnlockSurfaces(WrapNotNull(cache), /* aStaticOnly = */ false, aAutoLock);
1076 void UnlockEntries(const ImageKey aImageKey,
1077 const StaticMutexAutoLock& aAutoLock) {
1078 RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
1079 if (!cache || !cache->IsLocked()) {
1080 return; // Already unlocked.
1083 // (Note that we *don't* unlock the per-image cache here; that's the
1084 // difference between this and UnlockImage.)
1085 DoUnlockSurfaces(WrapNotNull(cache),
1086 /* aStaticOnly = */
1087 !StaticPrefs::image_mem_animated_discardable_AtStartup(),
1088 aAutoLock);
1091 already_AddRefed<ImageSurfaceCache> RemoveImage(
1092 const ImageKey aImageKey, const StaticMutexAutoLock& aAutoLock) {
1093 RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
1094 if (!cache) {
1095 return nullptr; // No cached surfaces for this image, so nothing to do.
1098 // Discard all of the cached surfaces for this image.
1099 // XXX(seth): This is O(n^2) since for each item in the cache we are
1100 // removing an element from the costs array. Since n is expected to be
1101 // small, performance should be good, but if usage patterns change we should
1102 // change the data structure used for mCosts.
1103 for (auto iter = cache->ConstIter(); !iter.Done(); iter.Next()) {
1104 StopTracking(WrapNotNull(iter.UserData()),
1105 /* aIsTracked */ true, aAutoLock);
1108 // The per-image cache isn't needed anymore, so remove it as well.
1109 // This implicitly unlocks the image if it was locked.
1110 mImageCaches.Remove(aImageKey);
1112 // Since we did not actually remove any of the surfaces from the cache
1113 // itself, only stopped tracking them, we should free it outside the lock.
1114 return cache.forget();
1117 void PruneImage(const ImageKey aImageKey,
1118 const StaticMutexAutoLock& aAutoLock) {
1119 RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
1120 if (!cache) {
1121 return; // No cached surfaces for this image, so nothing to do.
1124 cache->Prune([this, &aAutoLock](NotNull<CachedSurface*> aSurface) -> void {
1125 StopTracking(aSurface, /* aIsTracked */ true, aAutoLock);
1126 // Individual surfaces must be freed outside the lock.
1127 mCachedSurfacesDiscard.AppendElement(aSurface);
1130 MaybeRemoveEmptyCache(aImageKey, cache);
1133 void DiscardAll(const StaticMutexAutoLock& aAutoLock) {
1134 // Remove in order of cost because mCosts is an array and the other data
1135 // structures are all hash tables. Note that locked surfaces are not
1136 // removed, since they aren't present in mCosts.
1137 while (!mCosts.IsEmpty()) {
1138 Remove(mCosts.LastElement().Surface(), /* aStopTracking */ true,
1139 aAutoLock);
1143 void DiscardForMemoryPressure(const StaticMutexAutoLock& aAutoLock) {
1144 // Compute our discardable cost. Since locked surfaces aren't discardable,
1145 // we exclude them.
1146 const Cost discardableCost = (mMaxCost - mAvailableCost) - mLockedCost;
1147 MOZ_ASSERT(discardableCost <= mMaxCost, "Discardable cost doesn't add up");
1149 // Our target is to raise our available cost by (1 / mDiscardFactor) of our
1150 // discardable cost - in other words, we want to end up with about
1151 // (discardableCost / mDiscardFactor) fewer bytes stored in the surface
1152 // cache after we're done.
1153 const Cost targetCost = mAvailableCost + (discardableCost / mDiscardFactor);
1155 if (targetCost > mMaxCost - mLockedCost) {
1156 MOZ_ASSERT_UNREACHABLE("Target cost is more than we can discard");
1157 DiscardAll(aAutoLock);
1158 return;
1161 // Discard surfaces until we've reduced our cost to our target cost.
1162 while (mAvailableCost < targetCost) {
1163 MOZ_ASSERT(!mCosts.IsEmpty(), "Removed everything and still not done");
1164 Remove(mCosts.LastElement().Surface(), /* aStopTracking */ true,
1165 aAutoLock);
1169 void TakeDiscard(nsTArray<RefPtr<CachedSurface>>& aDiscard,
1170 const StaticMutexAutoLock& aAutoLock) {
1171 MOZ_ASSERT(aDiscard.IsEmpty());
1172 aDiscard = std::move(mCachedSurfacesDiscard);
1175 void LockSurface(NotNull<CachedSurface*> aSurface,
1176 const StaticMutexAutoLock& aAutoLock) {
1177 if (aSurface->IsPlaceholder() || aSurface->IsLocked()) {
1178 return;
1181 StopTracking(aSurface, /* aIsTracked */ true, aAutoLock);
1183 // Lock the surface. This can fail.
1184 aSurface->SetLocked(true);
1185 DebugOnly<bool> tracked = StartTracking(aSurface, aAutoLock);
1186 MOZ_ASSERT(tracked);
1189 size_t ShallowSizeOfIncludingThis(
1190 MallocSizeOf aMallocSizeOf, const StaticMutexAutoLock& aAutoLock) const {
1191 size_t bytes =
1192 aMallocSizeOf(this) + mCosts.ShallowSizeOfExcludingThis(aMallocSizeOf) +
1193 mImageCaches.ShallowSizeOfExcludingThis(aMallocSizeOf) +
1194 mCachedSurfacesDiscard.ShallowSizeOfExcludingThis(aMallocSizeOf) +
1195 mExpirationTracker.ShallowSizeOfExcludingThis(aMallocSizeOf);
1196 for (auto iter = mImageCaches.ConstIter(); !iter.Done(); iter.Next()) {
1197 bytes += iter.UserData()->ShallowSizeOfIncludingThis(aMallocSizeOf);
1199 return bytes;
1202 NS_IMETHOD
1203 CollectReports(nsIHandleReportCallback* aHandleReport, nsISupports* aData,
1204 bool aAnonymize) override {
1205 StaticMutexAutoLock lock(sInstanceMutex);
1207 uint32_t lockedImageCount = 0;
1208 uint32_t totalSurfaceCount = 0;
1209 uint32_t lockedSurfaceCount = 0;
1210 for (auto iter = mImageCaches.ConstIter(); !iter.Done(); iter.Next()) {
1211 totalSurfaceCount += iter.UserData()->Count();
1212 if (iter.UserData()->IsLocked()) {
1213 ++lockedImageCount;
1215 for (auto surfIter = iter.UserData()->ConstIter(); !surfIter.Done();
1216 surfIter.Next()) {
1217 if (surfIter.UserData()->IsLocked()) {
1218 ++lockedSurfaceCount;
1223 // clang-format off
1224 // We have explicit memory reporting for the surface cache which is more
1225 // accurate than the cost metrics we report here, but these metrics are
1226 // still useful to report, since they control the cache's behavior.
1227 MOZ_COLLECT_REPORT(
1228 "explicit/images/cache/overhead", KIND_HEAP, UNITS_BYTES,
1229 ShallowSizeOfIncludingThis(SurfaceCacheMallocSizeOf, lock),
1230 "Memory used by the surface cache data structures, excluding surface data.");
1232 MOZ_COLLECT_REPORT(
1233 "imagelib-surface-cache-estimated-total",
1234 KIND_OTHER, UNITS_BYTES, (mMaxCost - mAvailableCost),
1235 "Estimated total memory used by the imagelib surface cache.");
1237 MOZ_COLLECT_REPORT(
1238 "imagelib-surface-cache-estimated-locked",
1239 KIND_OTHER, UNITS_BYTES, mLockedCost,
1240 "Estimated memory used by locked surfaces in the imagelib surface cache.");
1242 MOZ_COLLECT_REPORT(
1243 "imagelib-surface-cache-tracked-cost-count",
1244 KIND_OTHER, UNITS_COUNT, mCosts.Length(),
1245 "Total number of surfaces tracked for cost (and expiry) in the imagelib surface cache.");
1247 MOZ_COLLECT_REPORT(
1248 "imagelib-surface-cache-tracked-expiry-count",
1249 KIND_OTHER, UNITS_COUNT, mExpirationTracker.Length(lock),
1250 "Total number of surfaces tracked for expiry (and cost) in the imagelib surface cache.");
1252 MOZ_COLLECT_REPORT(
1253 "imagelib-surface-cache-image-count",
1254 KIND_OTHER, UNITS_COUNT, mImageCaches.Count(),
1255 "Total number of images in the imagelib surface cache.");
1257 MOZ_COLLECT_REPORT(
1258 "imagelib-surface-cache-locked-image-count",
1259 KIND_OTHER, UNITS_COUNT, lockedImageCount,
1260 "Total number of locked images in the imagelib surface cache.");
1262 MOZ_COLLECT_REPORT(
1263 "imagelib-surface-cache-image-surface-count",
1264 KIND_OTHER, UNITS_COUNT, totalSurfaceCount,
1265 "Total number of surfaces in the imagelib surface cache.");
1267 MOZ_COLLECT_REPORT(
1268 "imagelib-surface-cache-locked-surfaces-count",
1269 KIND_OTHER, UNITS_COUNT, lockedSurfaceCount,
1270 "Total number of locked surfaces in the imagelib surface cache.");
1272 MOZ_COLLECT_REPORT(
1273 "imagelib-surface-cache-overflow-count",
1274 KIND_OTHER, UNITS_COUNT, mOverflowCount,
1275 "Count of how many times the surface cache has hit its capacity and been "
1276 "unable to insert a new surface.");
1278 MOZ_COLLECT_REPORT(
1279 "imagelib-surface-cache-tracking-failure-count",
1280 KIND_OTHER, UNITS_COUNT, mTrackingFailureCount,
1281 "Count of how many times the surface cache has failed to begin tracking a "
1282 "given surface.");
1284 MOZ_COLLECT_REPORT(
1285 "imagelib-surface-cache-already-present-count",
1286 KIND_OTHER, UNITS_COUNT, mAlreadyPresentCount,
1287 "Count of how many times the surface cache has failed to insert a surface "
1288 "because it is already present.");
1290 MOZ_COLLECT_REPORT(
1291 "imagelib-surface-cache-table-failure-count",
1292 KIND_OTHER, UNITS_COUNT, mTableFailureCount,
1293 "Count of how many times the surface cache has failed to insert a surface "
1294 "because a hash table could not accept an entry.");
1295 // clang-format on
1297 return NS_OK;
1300 void CollectSizeOfSurfaces(const ImageKey aImageKey,
1301 nsTArray<SurfaceMemoryCounter>& aCounters,
1302 MallocSizeOf aMallocSizeOf,
1303 const StaticMutexAutoLock& aAutoLock) {
1304 RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
1305 if (!cache) {
1306 return; // No surfaces for this image.
1309 // Report all surfaces in the per-image cache.
1310 cache->CollectSizeOfSurfaces(
1311 aCounters, aMallocSizeOf,
1312 [this, &aAutoLock](NotNull<CachedSurface*> aSurface) -> void {
1313 StopTracking(aSurface, /* aIsTracked */ true, aAutoLock);
1314 // Individual surfaces must be freed outside the lock.
1315 mCachedSurfacesDiscard.AppendElement(aSurface);
1318 MaybeRemoveEmptyCache(aImageKey, cache);
1321 private:
1322 already_AddRefed<ImageSurfaceCache> GetImageCache(const ImageKey aImageKey) {
1323 RefPtr<ImageSurfaceCache> imageCache;
1324 mImageCaches.Get(aImageKey, getter_AddRefs(imageCache));
1325 return imageCache.forget();
1328 void MaybeRemoveEmptyCache(const ImageKey aImageKey,
1329 ImageSurfaceCache* aCache) {
1330 // Remove the per-image cache if it's unneeded now. Keep it if the image is
1331 // locked, since the per-image cache is where we store that state. Note that
1332 // we don't push it into mImageCachesDiscard because all of its surfaces
1333 // have been removed, so it is safe to free while holding the lock.
1334 if (aCache->IsEmpty() && !aCache->IsLocked()) {
1335 mImageCaches.Remove(aImageKey);
1339 // This is similar to CanHold() except that it takes into account the costs of
1340 // locked surfaces. It's used internally in Insert(), but it's not exposed
1341 // publicly because we permit multithreaded access to the surface cache, which
1342 // means that the result would be meaningless: another thread could insert a
1343 // surface or lock an image at any time.
1344 bool CanHoldAfterDiscarding(const Cost aCost) const {
1345 return aCost <= mMaxCost - mLockedCost;
1348 bool MarkUsed(NotNull<CachedSurface*> aSurface,
1349 NotNull<ImageSurfaceCache*> aCache,
1350 const StaticMutexAutoLock& aAutoLock) {
1351 if (aCache->IsLocked()) {
1352 LockSurface(aSurface, aAutoLock);
1353 return true;
1356 nsresult rv = mExpirationTracker.MarkUsedLocked(aSurface, aAutoLock);
1357 if (NS_WARN_IF(NS_FAILED(rv))) {
1358 // If mark used fails, it is because it failed to reinsert the surface
1359 // after removing it from the tracker. Thus we need to update our
1360 // own accounting but otherwise expect it to be untracked.
1361 StopTracking(aSurface, /* aIsTracked */ false, aAutoLock);
1362 return false;
1364 return true;
1367 void DoUnlockSurfaces(NotNull<ImageSurfaceCache*> aCache, bool aStaticOnly,
1368 const StaticMutexAutoLock& aAutoLock) {
1369 AutoTArray<NotNull<CachedSurface*>, 8> discard;
1371 // Unlock all the surfaces the per-image cache is holding.
1372 for (auto iter = aCache->ConstIter(); !iter.Done(); iter.Next()) {
1373 NotNull<CachedSurface*> surface = WrapNotNull(iter.UserData());
1374 if (surface->IsPlaceholder() || !surface->IsLocked()) {
1375 continue;
1377 if (aStaticOnly &&
1378 surface->GetSurfaceKey().Playback() != PlaybackType::eStatic) {
1379 continue;
1381 StopTracking(surface, /* aIsTracked */ true, aAutoLock);
1382 surface->SetLocked(false);
1383 if (MOZ_UNLIKELY(!StartTracking(surface, aAutoLock))) {
1384 discard.AppendElement(surface);
1388 // Discard any that we failed to track.
1389 for (auto iter = discard.begin(); iter != discard.end(); ++iter) {
1390 Remove(*iter, /* aStopTracking */ false, aAutoLock);
1394 void RemoveEntry(const ImageKey aImageKey, const SurfaceKey& aSurfaceKey,
1395 const StaticMutexAutoLock& aAutoLock) {
1396 RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
1397 if (!cache) {
1398 return; // No cached surfaces for this image.
1401 RefPtr<CachedSurface> surface =
1402 cache->Lookup(aSurfaceKey, /* aForAccess = */ false);
1403 if (!surface) {
1404 return; // Lookup in the per-image cache missed.
1407 Remove(WrapNotNull(surface), /* aStopTracking */ true, aAutoLock);
1410 class SurfaceTracker final
1411 : public ExpirationTrackerImpl<CachedSurface, 2, StaticMutex,
1412 StaticMutexAutoLock> {
1413 public:
1414 explicit SurfaceTracker(uint32_t aSurfaceCacheExpirationTimeMS)
1415 : ExpirationTrackerImpl<CachedSurface, 2, StaticMutex,
1416 StaticMutexAutoLock>(
1417 aSurfaceCacheExpirationTimeMS, "SurfaceTracker",
1418 SystemGroup::EventTargetFor(TaskCategory::Other)) {}
1420 protected:
1421 void NotifyExpiredLocked(CachedSurface* aSurface,
1422 const StaticMutexAutoLock& aAutoLock) override {
1423 sInstance->Remove(WrapNotNull(aSurface), /* aStopTracking */ true,
1424 aAutoLock);
1427 void NotifyHandlerEndLocked(const StaticMutexAutoLock& aAutoLock) override {
1428 sInstance->TakeDiscard(mDiscard, aAutoLock);
1431 void NotifyHandlerEnd() override {
1432 nsTArray<RefPtr<CachedSurface>> discard(std::move(mDiscard));
1435 StaticMutex& GetMutex() override { return sInstanceMutex; }
1437 nsTArray<RefPtr<CachedSurface>> mDiscard;
1440 class MemoryPressureObserver final : public nsIObserver {
1441 public:
1442 NS_DECL_ISUPPORTS
1444 NS_IMETHOD Observe(nsISupports*, const char* aTopic,
1445 const char16_t*) override {
1446 nsTArray<RefPtr<CachedSurface>> discard;
1448 StaticMutexAutoLock lock(sInstanceMutex);
1449 if (sInstance && strcmp(aTopic, "memory-pressure") == 0) {
1450 sInstance->DiscardForMemoryPressure(lock);
1451 sInstance->TakeDiscard(discard, lock);
1454 return NS_OK;
1457 private:
1458 virtual ~MemoryPressureObserver() {}
1461 nsTArray<CostEntry> mCosts;
1462 nsRefPtrHashtable<nsPtrHashKey<Image>, ImageSurfaceCache> mImageCaches;
1463 nsTArray<RefPtr<CachedSurface>> mCachedSurfacesDiscard;
1464 SurfaceTracker mExpirationTracker;
1465 RefPtr<MemoryPressureObserver> mMemoryPressureObserver;
1466 const uint32_t mDiscardFactor;
1467 const Cost mMaxCost;
1468 Cost mAvailableCost;
1469 Cost mLockedCost;
1470 size_t mOverflowCount;
1471 size_t mAlreadyPresentCount;
1472 size_t mTableFailureCount;
1473 size_t mTrackingFailureCount;
1476 NS_IMPL_ISUPPORTS(SurfaceCacheImpl, nsIMemoryReporter)
1477 NS_IMPL_ISUPPORTS(SurfaceCacheImpl::MemoryPressureObserver, nsIObserver)
1479 ///////////////////////////////////////////////////////////////////////////////
1480 // Public API
1481 ///////////////////////////////////////////////////////////////////////////////
1483 /* static */
1484 void SurfaceCache::Initialize() {
1485 // Initialize preferences.
1486 MOZ_ASSERT(NS_IsMainThread());
1487 MOZ_ASSERT(!sInstance, "Shouldn't initialize more than once");
1489 // See StaticPrefs for the default values of these preferences.
1491 // Length of time before an unused surface is removed from the cache, in
1492 // milliseconds.
1493 uint32_t surfaceCacheExpirationTimeMS =
1494 StaticPrefs::image_mem_surfacecache_min_expiration_ms_AtStartup();
1496 // What fraction of the memory used by the surface cache we should discard
1497 // when we get a memory pressure notification. This value is interpreted as
1498 // 1/N, so 1 means to discard everything, 2 means to discard about half of the
1499 // memory we're using, and so forth. We clamp it to avoid division by zero.
1500 uint32_t surfaceCacheDiscardFactor =
1501 max(StaticPrefs::image_mem_surfacecache_discard_factor_AtStartup(), 1u);
1503 // Maximum size of the surface cache, in kilobytes.
1504 uint64_t surfaceCacheMaxSizeKB =
1505 StaticPrefs::image_mem_surfacecache_max_size_kb_AtStartup();
1507 if (sizeof(uintptr_t) <= 4) {
1508 // Limit surface cache to 1 GB if our address space is 32 bit.
1509 surfaceCacheMaxSizeKB = 1024 * 1024;
1512 // A knob determining the actual size of the surface cache. Currently the
1513 // cache is (size of main memory) / (surface cache size factor) KB
1514 // or (surface cache max size) KB, whichever is smaller. The formula
1515 // may change in the future, though.
1516 // For example, a value of 4 would yield a 256MB cache on a 1GB machine.
1517 // The smallest machines we are likely to run this code on have 256MB
1518 // of memory, which would yield a 64MB cache on this setting.
1519 // We clamp this value to avoid division by zero.
1520 uint32_t surfaceCacheSizeFactor =
1521 max(StaticPrefs::image_mem_surfacecache_size_factor_AtStartup(), 1u);
1523 // Compute the size of the surface cache.
1524 uint64_t memorySize = PR_GetPhysicalMemorySize();
1525 if (memorySize == 0) {
1526 MOZ_ASSERT_UNREACHABLE("PR_GetPhysicalMemorySize not implemented here");
1527 memorySize = 256 * 1024 * 1024; // Fall back to 256MB.
1529 uint64_t proposedSize = memorySize / surfaceCacheSizeFactor;
1530 uint64_t surfaceCacheSizeBytes =
1531 min(proposedSize, surfaceCacheMaxSizeKB * 1024);
1532 uint32_t finalSurfaceCacheSizeBytes =
1533 min(surfaceCacheSizeBytes, uint64_t(UINT32_MAX));
1535 // Create the surface cache singleton with the requested settings. Note that
1536 // the size is a limit that the cache may not grow beyond, but we do not
1537 // actually allocate any storage for surfaces at this time.
1538 sInstance = new SurfaceCacheImpl(surfaceCacheExpirationTimeMS,
1539 surfaceCacheDiscardFactor,
1540 finalSurfaceCacheSizeBytes);
1541 sInstance->InitMemoryReporter();
1544 /* static */
1545 void SurfaceCache::Shutdown() {
1546 RefPtr<SurfaceCacheImpl> cache;
1548 StaticMutexAutoLock lock(sInstanceMutex);
1549 MOZ_ASSERT(NS_IsMainThread());
1550 MOZ_ASSERT(sInstance, "No singleton - was Shutdown() called twice?");
1551 cache = sInstance.forget();
1555 /* static */
1556 LookupResult SurfaceCache::Lookup(const ImageKey aImageKey,
1557 const SurfaceKey& aSurfaceKey,
1558 bool aMarkUsed) {
1559 nsTArray<RefPtr<CachedSurface>> discard;
1560 LookupResult rv(MatchType::NOT_FOUND);
1563 StaticMutexAutoLock lock(sInstanceMutex);
1564 if (!sInstance) {
1565 return rv;
1568 rv = sInstance->Lookup(aImageKey, aSurfaceKey, lock, aMarkUsed);
1569 sInstance->TakeDiscard(discard, lock);
1572 return rv;
1575 /* static */
1576 LookupResult SurfaceCache::LookupBestMatch(const ImageKey aImageKey,
1577 const SurfaceKey& aSurfaceKey,
1578 bool aMarkUsed) {
1579 nsTArray<RefPtr<CachedSurface>> discard;
1580 LookupResult rv(MatchType::NOT_FOUND);
1583 StaticMutexAutoLock lock(sInstanceMutex);
1584 if (!sInstance) {
1585 return rv;
1588 rv = sInstance->LookupBestMatch(aImageKey, aSurfaceKey, lock, aMarkUsed);
1589 sInstance->TakeDiscard(discard, lock);
1592 return rv;
1595 /* static */
1596 InsertOutcome SurfaceCache::Insert(NotNull<ISurfaceProvider*> aProvider) {
1597 nsTArray<RefPtr<CachedSurface>> discard;
1598 InsertOutcome rv(InsertOutcome::FAILURE);
1601 StaticMutexAutoLock lock(sInstanceMutex);
1602 if (!sInstance) {
1603 return rv;
1606 rv = sInstance->Insert(aProvider, /* aSetAvailable = */ false, lock);
1607 sInstance->TakeDiscard(discard, lock);
1610 return rv;
1613 /* static */
1614 bool SurfaceCache::CanHold(const IntSize& aSize,
1615 uint32_t aBytesPerPixel /* = 4 */) {
1616 StaticMutexAutoLock lock(sInstanceMutex);
1617 if (!sInstance) {
1618 return false;
1621 Cost cost = ComputeCost(aSize, aBytesPerPixel);
1622 return sInstance->CanHold(cost);
1625 /* static */
1626 bool SurfaceCache::CanHold(size_t aSize) {
1627 StaticMutexAutoLock lock(sInstanceMutex);
1628 if (!sInstance) {
1629 return false;
1632 return sInstance->CanHold(aSize);
1635 /* static */
1636 void SurfaceCache::SurfaceAvailable(NotNull<ISurfaceProvider*> aProvider) {
1637 StaticMutexAutoLock lock(sInstanceMutex);
1638 if (!sInstance) {
1639 return;
1642 sInstance->SurfaceAvailable(aProvider, lock);
1645 /* static */
1646 void SurfaceCache::LockImage(const ImageKey aImageKey) {
1647 StaticMutexAutoLock lock(sInstanceMutex);
1648 if (sInstance) {
1649 return sInstance->LockImage(aImageKey);
1653 /* static */
1654 void SurfaceCache::UnlockImage(const ImageKey aImageKey) {
1655 StaticMutexAutoLock lock(sInstanceMutex);
1656 if (sInstance) {
1657 return sInstance->UnlockImage(aImageKey, lock);
1661 /* static */
1662 void SurfaceCache::UnlockEntries(const ImageKey aImageKey) {
1663 StaticMutexAutoLock lock(sInstanceMutex);
1664 if (sInstance) {
1665 return sInstance->UnlockEntries(aImageKey, lock);
1669 /* static */
1670 void SurfaceCache::RemoveImage(const ImageKey aImageKey) {
1671 RefPtr<ImageSurfaceCache> discard;
1673 StaticMutexAutoLock lock(sInstanceMutex);
1674 if (sInstance) {
1675 discard = sInstance->RemoveImage(aImageKey, lock);
1680 /* static */
1681 void SurfaceCache::PruneImage(const ImageKey aImageKey) {
1682 nsTArray<RefPtr<CachedSurface>> discard;
1684 StaticMutexAutoLock lock(sInstanceMutex);
1685 if (sInstance) {
1686 sInstance->PruneImage(aImageKey, lock);
1687 sInstance->TakeDiscard(discard, lock);
1692 /* static */
1693 void SurfaceCache::DiscardAll() {
1694 nsTArray<RefPtr<CachedSurface>> discard;
1696 StaticMutexAutoLock lock(sInstanceMutex);
1697 if (sInstance) {
1698 sInstance->DiscardAll(lock);
1699 sInstance->TakeDiscard(discard, lock);
1704 /* static */
1705 void SurfaceCache::CollectSizeOfSurfaces(
1706 const ImageKey aImageKey, nsTArray<SurfaceMemoryCounter>& aCounters,
1707 MallocSizeOf aMallocSizeOf) {
1708 nsTArray<RefPtr<CachedSurface>> discard;
1710 StaticMutexAutoLock lock(sInstanceMutex);
1711 if (!sInstance) {
1712 return;
1715 sInstance->CollectSizeOfSurfaces(aImageKey, aCounters, aMallocSizeOf, lock);
1716 sInstance->TakeDiscard(discard, lock);
1720 /* static */
1721 size_t SurfaceCache::MaximumCapacity() {
1722 StaticMutexAutoLock lock(sInstanceMutex);
1723 if (!sInstance) {
1724 return 0;
1727 return sInstance->MaximumCapacity();
1730 /* static */
1731 bool SurfaceCache::IsLegalSize(const IntSize& aSize) {
1732 // reject over-wide or over-tall images
1733 const int32_t k64KLimit = 0x0000FFFF;
1734 if (MOZ_UNLIKELY(aSize.width > k64KLimit || aSize.height > k64KLimit)) {
1735 NS_WARNING("image too big");
1736 return false;
1739 // protect against invalid sizes
1740 if (MOZ_UNLIKELY(aSize.height <= 0 || aSize.width <= 0)) {
1741 return false;
1744 // check to make sure we don't overflow a 32-bit
1745 CheckedInt32 requiredBytes =
1746 CheckedInt32(aSize.width) * CheckedInt32(aSize.height) * 4;
1747 if (MOZ_UNLIKELY(!requiredBytes.isValid())) {
1748 NS_WARNING("width or height too large");
1749 return false;
1751 return true;
1754 IntSize SurfaceCache::ClampVectorSize(const IntSize& aSize) {
1755 // If we exceed the maximum, we need to scale the size downwards to fit.
1756 // It shouldn't get here if it is significantly larger because
1757 // VectorImage::UseSurfaceCacheForSize should prevent us from requesting
1758 // a rasterized version of a surface greater than 4x the maximum.
1759 int32_t maxSizeKB =
1760 StaticPrefs::image_cache_max_rasterized_svg_threshold_kb();
1761 if (maxSizeKB <= 0) {
1762 return aSize;
1765 int64_t proposedKB = int64_t(aSize.width) * aSize.height / 256;
1766 if (maxSizeKB >= proposedKB) {
1767 return aSize;
1770 double scale = sqrt(double(maxSizeKB) / proposedKB);
1771 return IntSize(int32_t(scale * aSize.width), int32_t(scale * aSize.height));
1774 IntSize SurfaceCache::ClampSize(ImageKey aImageKey, const IntSize& aSize) {
1775 if (aImageKey->GetType() != imgIContainer::TYPE_VECTOR) {
1776 return aSize;
1779 return ClampVectorSize(aSize);
1782 } // namespace image
1783 } // namespace mozilla