Bug 1665671 [wpt PR 25602] - [Sanitizer API] Add dropAttributes to SanitizerConfig...
[gecko.git] / mfbt / Vector.h
blobaf5b3bb73245158befefcfe76cd3bbccc434c7e7
1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
3 /* This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 /* A type/length-parametrized vector class. */
9 #ifndef mozilla_Vector_h
10 #define mozilla_Vector_h
12 #include <new> // for placement new
13 #include <utility>
15 #include "mozilla/Alignment.h"
16 #include "mozilla/AllocPolicy.h"
17 #include "mozilla/ArrayUtils.h" // for PointerRangeSize
18 #include "mozilla/Assertions.h"
19 #include "mozilla/Attributes.h"
20 #include "mozilla/MathAlgorithms.h"
21 #include "mozilla/MemoryReporting.h"
22 #include "mozilla/OperatorNewExtensions.h"
23 #include "mozilla/ReentrancyGuard.h"
24 #include "mozilla/Span.h"
25 #include "mozilla/TemplateLib.h"
26 #include "mozilla/TypeTraits.h"
28 namespace mozilla {
30 template <typename T, size_t N, class AllocPolicy>
31 class Vector;
33 namespace detail {
36 * Check that the given capacity wastes the minimal amount of space if
37 * allocated on the heap. This means that aCapacity*sizeof(T) is as close to a
38 * power-of-two as possible. growStorageBy() is responsible for ensuring this.
40 template <typename T>
41 static bool CapacityHasExcessSpace(size_t aCapacity) {
42 size_t size = aCapacity * sizeof(T);
43 return RoundUpPow2(size) - size >= sizeof(T);
47 * This template class provides a default implementation for vector operations
48 * when the element type is not known to be a POD, as judged by IsPod.
50 template <typename T, size_t N, class AP, bool IsPod>
51 struct VectorImpl {
53 * Constructs an object in the uninitialized memory at *aDst with aArgs.
55 template <typename... Args>
56 MOZ_NONNULL(1)
57 static inline void new_(T* aDst, Args&&... aArgs) {
58 new (KnownNotNull, aDst) T(std::forward<Args>(aArgs)...);
61 /* Destroys constructed objects in the range [aBegin, aEnd). */
62 static inline void destroy(T* aBegin, T* aEnd) {
63 MOZ_ASSERT(aBegin <= aEnd);
64 for (T* p = aBegin; p < aEnd; ++p) {
65 p->~T();
69 /* Constructs objects in the uninitialized range [aBegin, aEnd). */
70 static inline void initialize(T* aBegin, T* aEnd) {
71 MOZ_ASSERT(aBegin <= aEnd);
72 for (T* p = aBegin; p < aEnd; ++p) {
73 new_(p);
78 * Copy-constructs objects in the uninitialized range
79 * [aDst, aDst+(aSrcEnd-aSrcStart)) from the range [aSrcStart, aSrcEnd).
81 template <typename U>
82 static inline void copyConstruct(T* aDst, const U* aSrcStart,
83 const U* aSrcEnd) {
84 MOZ_ASSERT(aSrcStart <= aSrcEnd);
85 for (const U* p = aSrcStart; p < aSrcEnd; ++p, ++aDst) {
86 new_(aDst, *p);
91 * Move-constructs objects in the uninitialized range
92 * [aDst, aDst+(aSrcEnd-aSrcStart)) from the range [aSrcStart, aSrcEnd).
94 template <typename U>
95 static inline void moveConstruct(T* aDst, U* aSrcStart, U* aSrcEnd) {
96 MOZ_ASSERT(aSrcStart <= aSrcEnd);
97 for (U* p = aSrcStart; p < aSrcEnd; ++p, ++aDst) {
98 new_(aDst, std::move(*p));
103 * Copy-constructs objects in the uninitialized range [aDst, aDst+aN) from
104 * the same object aU.
106 template <typename U>
107 static inline void copyConstructN(T* aDst, size_t aN, const U& aU) {
108 for (T* end = aDst + aN; aDst < end; ++aDst) {
109 new_(aDst, aU);
114 * Grows the given buffer to have capacity aNewCap, preserving the objects
115 * constructed in the range [begin, end) and updating aV. Assumes that (1)
116 * aNewCap has not overflowed, and (2) multiplying aNewCap by sizeof(T) will
117 * not overflow.
119 static inline MOZ_MUST_USE bool growTo(Vector<T, N, AP>& aV, size_t aNewCap) {
120 MOZ_ASSERT(!aV.usingInlineStorage());
121 MOZ_ASSERT(!CapacityHasExcessSpace<T>(aNewCap));
122 T* newbuf = aV.template pod_malloc<T>(aNewCap);
123 if (MOZ_UNLIKELY(!newbuf)) {
124 return false;
126 T* dst = newbuf;
127 T* src = aV.beginNoCheck();
128 for (; src < aV.endNoCheck(); ++dst, ++src) {
129 new_(dst, std::move(*src));
131 VectorImpl::destroy(aV.beginNoCheck(), aV.endNoCheck());
132 aV.free_(aV.mBegin, aV.mTail.mCapacity);
133 aV.mBegin = newbuf;
134 /* aV.mLength is unchanged. */
135 aV.mTail.mCapacity = aNewCap;
136 return true;
141 * This partial template specialization provides a default implementation for
142 * vector operations when the element type is known to be a POD, as judged by
143 * IsPod.
145 template <typename T, size_t N, class AP>
146 struct VectorImpl<T, N, AP, true> {
147 template <typename... Args>
148 MOZ_NONNULL(1)
149 static inline void new_(T* aDst, Args&&... aArgs) {
150 // Explicitly construct a local object instead of using a temporary since
151 // T(args...) will be treated like a C-style cast in the unary case and
152 // allow unsafe conversions. Both forms should be equivalent to an
153 // optimizing compiler.
154 T temp(std::forward<Args>(aArgs)...);
155 *aDst = temp;
158 static inline void destroy(T*, T*) {}
160 static inline void initialize(T* aBegin, T* aEnd) {
162 * You would think that memset would be a big win (or even break even)
163 * when we know T is a POD. But currently it's not. This is probably
164 * because |append| tends to be given small ranges and memset requires
165 * a function call that doesn't get inlined.
167 * memset(aBegin, 0, sizeof(T) * (aEnd - aBegin));
169 MOZ_ASSERT(aBegin <= aEnd);
170 for (T* p = aBegin; p < aEnd; ++p) {
171 new_(p);
175 template <typename U>
176 static inline void copyConstruct(T* aDst, const U* aSrcStart,
177 const U* aSrcEnd) {
179 * See above memset comment. Also, notice that copyConstruct is
180 * currently templated (T != U), so memcpy won't work without
181 * requiring T == U.
183 * memcpy(aDst, aSrcStart, sizeof(T) * (aSrcEnd - aSrcStart));
185 MOZ_ASSERT(aSrcStart <= aSrcEnd);
186 for (const U* p = aSrcStart; p < aSrcEnd; ++p, ++aDst) {
187 new_(aDst, *p);
191 template <typename U>
192 static inline void moveConstruct(T* aDst, const U* aSrcStart,
193 const U* aSrcEnd) {
194 copyConstruct(aDst, aSrcStart, aSrcEnd);
197 static inline void copyConstructN(T* aDst, size_t aN, const T& aT) {
198 for (T* end = aDst + aN; aDst < end; ++aDst) {
199 new_(aDst, aT);
203 static inline MOZ_MUST_USE bool growTo(Vector<T, N, AP>& aV, size_t aNewCap) {
204 MOZ_ASSERT(!aV.usingInlineStorage());
205 MOZ_ASSERT(!CapacityHasExcessSpace<T>(aNewCap));
206 T* newbuf =
207 aV.template pod_realloc<T>(aV.mBegin, aV.mTail.mCapacity, aNewCap);
208 if (MOZ_UNLIKELY(!newbuf)) {
209 return false;
211 aV.mBegin = newbuf;
212 /* aV.mLength is unchanged. */
213 aV.mTail.mCapacity = aNewCap;
214 return true;
218 // A struct for TestVector.cpp to access private internal fields.
219 // DO NOT DEFINE IN YOUR OWN CODE.
220 struct VectorTesting;
222 } // namespace detail
225 * STL-like container providing a short-lived, dynamic buffer. Vector calls the
226 * constructors/destructors of all elements stored in its internal buffer, so
227 * non-PODs may be safely used. Additionally, Vector will store the first N
228 * elements in-place before resorting to dynamic allocation.
230 * T requirements:
231 * - default and copy constructible, assignable, destructible
232 * - operations do not throw
233 * MinInlineCapacity requirements:
234 * - any value, however, MinInlineCapacity is clamped to min/max values
235 * AllocPolicy:
236 * - see "Allocation policies" in AllocPolicy.h (defaults to
237 * mozilla::MallocAllocPolicy)
239 * Vector is not reentrant: T member functions called during Vector member
240 * functions must not call back into the same object!
242 template <typename T, size_t MinInlineCapacity = 0,
243 class AllocPolicy = MallocAllocPolicy>
244 class MOZ_NON_PARAM Vector final : private AllocPolicy {
245 /* utilities */
247 static constexpr bool kElemIsPod = IsPod<T>::value;
248 typedef detail::VectorImpl<T, MinInlineCapacity, AllocPolicy, kElemIsPod>
249 Impl;
250 friend struct detail::VectorImpl<T, MinInlineCapacity, AllocPolicy,
251 kElemIsPod>;
253 friend struct detail::VectorTesting;
255 MOZ_MUST_USE bool growStorageBy(size_t aIncr);
256 MOZ_MUST_USE bool convertToHeapStorage(size_t aNewCap);
257 MOZ_MUST_USE bool maybeCheckSimulatedOOM(size_t aRequestedSize);
259 /* magic constants */
262 * The maximum space allocated for inline element storage.
264 * We reduce space by what the AllocPolicy base class and prior Vector member
265 * fields likely consume to attempt to play well with binary size classes.
267 static constexpr size_t kMaxInlineBytes =
268 1024 -
269 (sizeof(AllocPolicy) + sizeof(T*) + sizeof(size_t) + sizeof(size_t));
272 * The number of T elements of inline capacity built into this Vector. This
273 * is usually |MinInlineCapacity|, but it may be less (or zero!) for large T.
275 * We use a partially-specialized template (not explicit specialization, which
276 * is only allowed at namespace scope) to compute this value. The benefit is
277 * that |sizeof(T)| need not be computed, and |T| doesn't have to be fully
278 * defined at the time |Vector<T>| appears, if no inline storage is requested.
280 template <size_t MinimumInlineCapacity, size_t Dummy>
281 struct ComputeCapacity {
282 static constexpr size_t value =
283 tl::Min<MinimumInlineCapacity, kMaxInlineBytes / sizeof(T)>::value;
286 template <size_t Dummy>
287 struct ComputeCapacity<0, Dummy> {
288 static constexpr size_t value = 0;
291 /** The actual inline capacity in number of elements T. This may be zero! */
292 static constexpr size_t kInlineCapacity =
293 ComputeCapacity<MinInlineCapacity, 0>::value;
295 /* member data */
298 * Pointer to the buffer, be it inline or heap-allocated. Only [mBegin,
299 * mBegin + mLength) hold valid constructed T objects. The range [mBegin +
300 * mLength, mBegin + mCapacity) holds uninitialized memory. The range
301 * [mBegin + mLength, mBegin + mReserved) also holds uninitialized memory
302 * previously allocated by a call to reserve().
304 T* mBegin;
306 /* Number of elements in the vector. */
307 size_t mLength;
310 * Memory used to store capacity, reserved element count (debug builds only),
311 * and inline storage. The simple "answer" is:
313 * size_t mCapacity;
314 * #ifdef DEBUG
315 * size_t mReserved;
316 * #endif
317 * alignas(T) unsigned char mBytes[kInlineCapacity * sizeof(T)];
319 * but there are complications. First, C++ forbids zero-sized arrays that
320 * might result. Second, we don't want zero capacity to affect Vector's size
321 * (even empty classes take up a byte, unless they're base classes).
323 * Yet again, we eliminate the zero-sized array using partial specialization.
324 * And we eliminate potential size hit by putting capacity/reserved in one
325 * struct, then putting the array (if any) in a derived struct. If no array
326 * is needed, the derived struct won't consume extra space.
328 struct CapacityAndReserved {
329 explicit CapacityAndReserved(size_t aCapacity, size_t aReserved)
330 : mCapacity(aCapacity)
331 #ifdef DEBUG
333 mReserved(aReserved)
334 #endif
337 CapacityAndReserved() = default;
339 /* Max number of elements storable in the vector without resizing. */
340 size_t mCapacity;
342 #ifdef DEBUG
343 /* Max elements of reserved or used space in this vector. */
344 size_t mReserved;
345 #endif
348 // Silence warnings about this struct possibly being padded dued to the
349 // alignas() in it -- there's nothing we can do to avoid it.
350 #ifdef _MSC_VER
351 # pragma warning(push)
352 # pragma warning(disable : 4324)
353 #endif // _MSC_VER
355 template <size_t Capacity, size_t Dummy>
356 struct CRAndStorage : CapacityAndReserved {
357 explicit CRAndStorage(size_t aCapacity, size_t aReserved)
358 : CapacityAndReserved(aCapacity, aReserved) {}
359 CRAndStorage() = default;
361 alignas(T) unsigned char mBytes[Capacity * sizeof(T)];
363 // GCC fails due to -Werror=strict-aliasing if |mBytes| is directly cast to
364 // T*. Indirecting through this function addresses the problem.
365 void* data() { return mBytes; }
367 T* storage() { return static_cast<T*>(data()); }
370 template <size_t Dummy>
371 struct CRAndStorage<0, Dummy> : CapacityAndReserved {
372 explicit CRAndStorage(size_t aCapacity, size_t aReserved)
373 : CapacityAndReserved(aCapacity, aReserved) {}
374 CRAndStorage() = default;
376 T* storage() {
377 // If this returns |nullptr|, functions like |Vector::begin()| would too,
378 // breaking callers that pass a vector's elements as pointer/length to
379 // code that bounds its operation by length but (even just as a sanity
380 // check) always wants a non-null pointer. Fake up an aligned, non-null
381 // pointer to support these callers.
382 return reinterpret_cast<T*>(sizeof(T));
386 CRAndStorage<kInlineCapacity, 0> mTail;
388 #ifdef _MSC_VER
389 # pragma warning(pop)
390 #endif // _MSC_VER
392 #ifdef DEBUG
393 friend class ReentrancyGuard;
394 bool mEntered;
395 #endif
397 /* private accessors */
399 bool usingInlineStorage() const {
400 return mBegin == const_cast<Vector*>(this)->inlineStorage();
403 T* inlineStorage() { return mTail.storage(); }
405 T* beginNoCheck() const { return mBegin; }
407 T* endNoCheck() { return mBegin + mLength; }
409 const T* endNoCheck() const { return mBegin + mLength; }
411 #ifdef DEBUG
413 * The amount of explicitly allocated space in this vector that is immediately
414 * available to be filled by appending additional elements. This value is
415 * always greater than or equal to |length()| -- the vector's actual elements
416 * are implicitly reserved. This value is always less than or equal to
417 * |capacity()|. It may be explicitly increased using the |reserve()| method.
419 size_t reserved() const {
420 MOZ_ASSERT(mLength <= mTail.mReserved);
421 MOZ_ASSERT(mTail.mReserved <= mTail.mCapacity);
422 return mTail.mReserved;
424 #endif
426 /* Append operations guaranteed to succeed due to pre-reserved space. */
427 template <typename U>
428 void internalAppend(U&& aU);
429 template <typename U, size_t O, class BP>
430 void internalAppendAll(const Vector<U, O, BP>& aU);
431 void internalAppendN(const T& aT, size_t aN);
432 template <typename U>
433 void internalAppend(const U* aBegin, size_t aLength);
435 public:
436 static const size_t sMaxInlineStorage = MinInlineCapacity;
438 typedef T ElementType;
440 explicit Vector(AllocPolicy = AllocPolicy());
441 Vector(Vector&&); /* Move constructor. */
442 Vector& operator=(Vector&&); /* Move assignment. */
443 ~Vector();
445 /* accessors */
447 const AllocPolicy& allocPolicy() const { return *this; }
449 AllocPolicy& allocPolicy() { return *this; }
451 enum { InlineLength = MinInlineCapacity };
453 size_t length() const { return mLength; }
455 bool empty() const { return mLength == 0; }
457 size_t capacity() const { return mTail.mCapacity; }
459 T* begin() {
460 MOZ_ASSERT(!mEntered);
461 return mBegin;
464 const T* begin() const {
465 MOZ_ASSERT(!mEntered);
466 return mBegin;
469 T* end() {
470 MOZ_ASSERT(!mEntered);
471 return mBegin + mLength;
474 const T* end() const {
475 MOZ_ASSERT(!mEntered);
476 return mBegin + mLength;
479 T& operator[](size_t aIndex) {
480 MOZ_ASSERT(!mEntered);
481 MOZ_ASSERT(aIndex < mLength);
482 return begin()[aIndex];
485 const T& operator[](size_t aIndex) const {
486 MOZ_ASSERT(!mEntered);
487 MOZ_ASSERT(aIndex < mLength);
488 return begin()[aIndex];
491 T& back() {
492 MOZ_ASSERT(!mEntered);
493 MOZ_ASSERT(!empty());
494 return *(end() - 1);
497 const T& back() const {
498 MOZ_ASSERT(!mEntered);
499 MOZ_ASSERT(!empty());
500 return *(end() - 1);
503 operator mozilla::Span<const T>() const {
504 // Explicitly specify template argument here to avoid instantiating Span<T>
505 // first and then implicitly converting to Span<const T>
506 return mozilla::Span<const T>{mBegin, mLength};
509 operator mozilla::Span<T>() { return mozilla::Span{mBegin, mLength}; }
511 class Range {
512 friend class Vector;
513 T* mCur;
514 T* mEnd;
515 Range(T* aCur, T* aEnd) : mCur(aCur), mEnd(aEnd) {
516 MOZ_ASSERT(aCur <= aEnd);
519 public:
520 bool empty() const { return mCur == mEnd; }
521 size_t remain() const { return PointerRangeSize(mCur, mEnd); }
522 T& front() const {
523 MOZ_ASSERT(!empty());
524 return *mCur;
526 void popFront() {
527 MOZ_ASSERT(!empty());
528 ++mCur;
530 T popCopyFront() {
531 MOZ_ASSERT(!empty());
532 return *mCur++;
536 class ConstRange {
537 friend class Vector;
538 const T* mCur;
539 const T* mEnd;
540 ConstRange(const T* aCur, const T* aEnd) : mCur(aCur), mEnd(aEnd) {
541 MOZ_ASSERT(aCur <= aEnd);
544 public:
545 bool empty() const { return mCur == mEnd; }
546 size_t remain() const { return PointerRangeSize(mCur, mEnd); }
547 const T& front() const {
548 MOZ_ASSERT(!empty());
549 return *mCur;
551 void popFront() {
552 MOZ_ASSERT(!empty());
553 ++mCur;
555 T popCopyFront() {
556 MOZ_ASSERT(!empty());
557 return *mCur++;
561 Range all() { return Range(begin(), end()); }
562 ConstRange all() const { return ConstRange(begin(), end()); }
564 /* mutators */
567 * Reverse the order of the elements in the vector in place.
569 void reverse();
572 * Given that the vector is empty, grow the internal capacity to |aRequest|,
573 * keeping the length 0.
575 MOZ_MUST_USE bool initCapacity(size_t aRequest);
578 * Given that the vector is empty, grow the internal capacity and length to
579 * |aRequest| leaving the elements' memory completely uninitialized (with all
580 * the associated hazards and caveats). This avoids the usual allocation-size
581 * rounding that happens in resize and overhead of initialization for elements
582 * that are about to be overwritten.
584 MOZ_MUST_USE bool initLengthUninitialized(size_t aRequest);
587 * If reserve(aRequest) succeeds and |aRequest >= length()|, then appending
588 * |aRequest - length()| elements, in any sequence of append/appendAll calls,
589 * is guaranteed to succeed.
591 * A request to reserve an amount less than the current length does not affect
592 * reserved space.
594 MOZ_MUST_USE bool reserve(size_t aRequest);
597 * Destroy elements in the range [end() - aIncr, end()). Does not deallocate
598 * or unreserve storage for those elements.
600 void shrinkBy(size_t aIncr);
603 * Destroy elements in the range [aNewLength, end()). Does not deallocate
604 * or unreserve storage for those elements.
606 void shrinkTo(size_t aNewLength);
608 /** Grow the vector by aIncr elements. */
609 MOZ_MUST_USE bool growBy(size_t aIncr);
611 /** Call shrinkBy or growBy based on whether newSize > length(). */
612 MOZ_MUST_USE bool resize(size_t aNewLength);
615 * Increase the length of the vector, but don't initialize the new elements
616 * -- leave them as uninitialized memory.
618 MOZ_MUST_USE bool growByUninitialized(size_t aIncr);
619 void infallibleGrowByUninitialized(size_t aIncr);
620 MOZ_MUST_USE bool resizeUninitialized(size_t aNewLength);
622 /** Shorthand for shrinkBy(length()). */
623 void clear();
625 /** Clears and releases any heap-allocated storage. */
626 void clearAndFree();
629 * Shrinks the storage to drop excess capacity if possible.
631 * The return value indicates whether the operation succeeded, otherwise, it
632 * represents an OOM. The bool can be safely ignored unless you want to
633 * provide the guarantee that `length() == capacity()`.
635 * For PODs, it calls the AllocPolicy's pod_realloc. For non-PODs, it moves
636 * the elements into the new storage.
638 bool shrinkStorageToFit();
641 * If true, appending |aNeeded| elements won't reallocate elements storage.
642 * This *doesn't* mean that infallibleAppend may be used! You still must
643 * reserve the extra space, even if this method indicates that appends won't
644 * need to reallocate elements storage.
646 bool canAppendWithoutRealloc(size_t aNeeded) const;
648 /** Potentially fallible append operations. */
651 * This can take either a T& or a T&&. Given a T&&, it moves |aU| into the
652 * vector, instead of copying it. If it fails, |aU| is left unmoved. ("We are
653 * not amused.")
655 template <typename U>
656 MOZ_MUST_USE bool append(U&& aU);
659 * Construct a T in-place as a new entry at the end of this vector.
661 template <typename... Args>
662 MOZ_MUST_USE bool emplaceBack(Args&&... aArgs) {
663 if (!growByUninitialized(1)) return false;
664 Impl::new_(&back(), std::forward<Args>(aArgs)...);
665 return true;
668 template <typename U, size_t O, class BP>
669 MOZ_MUST_USE bool appendAll(const Vector<U, O, BP>& aU);
670 MOZ_MUST_USE bool appendN(const T& aT, size_t aN);
671 template <typename U>
672 MOZ_MUST_USE bool append(const U* aBegin, const U* aEnd);
673 template <typename U>
674 MOZ_MUST_USE bool append(const U* aBegin, size_t aLength);
677 * Guaranteed-infallible append operations for use upon vectors whose
678 * memory has been pre-reserved. Don't use this if you haven't reserved the
679 * memory!
681 template <typename U>
682 void infallibleAppend(U&& aU) {
683 internalAppend(std::forward<U>(aU));
685 void infallibleAppendN(const T& aT, size_t aN) { internalAppendN(aT, aN); }
686 template <typename U>
687 void infallibleAppend(const U* aBegin, const U* aEnd) {
688 internalAppend(aBegin, PointerRangeSize(aBegin, aEnd));
690 template <typename U>
691 void infallibleAppend(const U* aBegin, size_t aLength) {
692 internalAppend(aBegin, aLength);
694 template <typename... Args>
695 void infallibleEmplaceBack(Args&&... aArgs) {
696 infallibleGrowByUninitialized(1);
697 Impl::new_(&back(), std::forward<Args>(aArgs)...);
700 void popBack();
702 T popCopy();
705 * If elements are stored in-place, return nullptr and leave this vector
706 * unmodified.
708 * Otherwise return this vector's elements buffer, and clear this vector as if
709 * by clearAndFree(). The caller now owns the buffer and is responsible for
710 * deallocating it consistent with this vector's AllocPolicy.
712 * N.B. Although a T*, only the range [0, length()) is constructed.
714 MOZ_MUST_USE T* extractRawBuffer();
717 * If elements are stored in-place, allocate a new buffer, move this vector's
718 * elements into it, and return that buffer.
720 * Otherwise return this vector's elements buffer. The caller now owns the
721 * buffer and is responsible for deallocating it consistent with this vector's
722 * AllocPolicy.
724 * This vector is cleared, as if by clearAndFree(), when this method
725 * succeeds. This method fails and returns nullptr only if new elements buffer
726 * allocation fails.
728 * N.B. Only the range [0, length()) of the returned buffer is constructed.
729 * If any of these elements are uninitialized (as growByUninitialized
730 * enables), behavior is undefined.
732 MOZ_MUST_USE T* extractOrCopyRawBuffer();
735 * Transfer ownership of an array of objects into the vector. The caller
736 * must have allocated the array in accordance with this vector's
737 * AllocPolicy.
739 * N.B. This call assumes that there are no uninitialized elements in the
740 * passed range [aP, aP + aLength). The range [aP + aLength, aP +
741 * aCapacity) must be allocated uninitialized memory.
743 void replaceRawBuffer(T* aP, size_t aLength, size_t aCapacity);
746 * Transfer ownership of an array of objects into the vector. The caller
747 * must have allocated the array in accordance with this vector's
748 * AllocPolicy.
750 * N.B. This call assumes that there are no uninitialized elements in the
751 * passed array.
753 void replaceRawBuffer(T* aP, size_t aLength);
756 * Places |aVal| at position |aP|, shifting existing elements from |aP| onward
757 * one position higher. On success, |aP| should not be reused because it'll
758 * be a dangling pointer if reallocation of the vector storage occurred; the
759 * return value should be used instead. On failure, nullptr is returned.
761 * Example usage:
763 * if (!(p = vec.insert(p, val))) {
764 * <handle failure>
766 * <keep working with p>
768 * This is inherently a linear-time operation. Be careful!
770 template <typename U>
771 MOZ_MUST_USE T* insert(T* aP, U&& aVal);
774 * Removes the element |aT|, which must fall in the bounds [begin, end),
775 * shifting existing elements from |aT + 1| onward one position lower.
777 void erase(T* aT);
780 * Removes the elements [|aBegin|, |aEnd|), which must fall in the bounds
781 * [begin, end), shifting existing elements from |aEnd| onward to aBegin's old
782 * position.
784 void erase(T* aBegin, T* aEnd);
787 * Removes all elements that satisfy the predicate, shifting existing elements
788 * lower to fill erased gaps.
790 template <typename Pred>
791 void eraseIf(Pred aPred);
794 * Removes all elements that compare equal to |aU|, shifting existing elements
795 * lower to fill erased gaps.
797 template <typename U>
798 void eraseIfEqual(const U& aU);
801 * Measure the size of the vector's heap-allocated storage.
803 size_t sizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const;
806 * Like sizeOfExcludingThis, but also measures the size of the vector
807 * object (which must be heap-allocated) itself.
809 size_t sizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const;
811 void swap(Vector& aOther);
813 private:
814 Vector(const Vector&) = delete;
815 void operator=(const Vector&) = delete;
818 /* This does the re-entrancy check plus several other sanity checks. */
819 #define MOZ_REENTRANCY_GUARD_ET_AL \
820 ReentrancyGuard g(*this); \
821 MOZ_ASSERT_IF(usingInlineStorage(), mTail.mCapacity == kInlineCapacity); \
822 MOZ_ASSERT(reserved() <= mTail.mCapacity); \
823 MOZ_ASSERT(mLength <= reserved()); \
824 MOZ_ASSERT(mLength <= mTail.mCapacity)
826 /* Vector Implementation */
828 template <typename T, size_t N, class AP>
829 MOZ_ALWAYS_INLINE Vector<T, N, AP>::Vector(AP aAP)
830 : AP(std::move(aAP)),
831 mLength(0),
832 mTail(kInlineCapacity, 0)
833 #ifdef DEBUG
835 mEntered(false)
836 #endif
838 mBegin = inlineStorage();
841 /* Move constructor. */
842 template <typename T, size_t N, class AllocPolicy>
843 MOZ_ALWAYS_INLINE Vector<T, N, AllocPolicy>::Vector(Vector&& aRhs)
844 : AllocPolicy(std::move(aRhs))
845 #ifdef DEBUG
847 mEntered(false)
848 #endif
850 mLength = aRhs.mLength;
851 mTail.mCapacity = aRhs.mTail.mCapacity;
852 #ifdef DEBUG
853 mTail.mReserved = aRhs.mTail.mReserved;
854 #endif
856 if (aRhs.usingInlineStorage()) {
857 /* We can't move the buffer over in this case, so copy elements. */
858 mBegin = inlineStorage();
859 Impl::moveConstruct(mBegin, aRhs.beginNoCheck(), aRhs.endNoCheck());
861 * Leave aRhs's mLength, mBegin, mCapacity, and mReserved as they are.
862 * The elements in its in-line storage still need to be destroyed.
864 } else {
866 * Take src's buffer, and turn src into an empty vector using
867 * in-line storage.
869 mBegin = aRhs.mBegin;
870 aRhs.mBegin = aRhs.inlineStorage();
871 aRhs.mTail.mCapacity = kInlineCapacity;
872 aRhs.mLength = 0;
873 #ifdef DEBUG
874 aRhs.mTail.mReserved = 0;
875 #endif
879 /* Move assignment. */
880 template <typename T, size_t N, class AP>
881 MOZ_ALWAYS_INLINE Vector<T, N, AP>& Vector<T, N, AP>::operator=(Vector&& aRhs) {
882 MOZ_ASSERT(this != &aRhs, "self-move assignment is prohibited");
883 this->~Vector();
884 new (KnownNotNull, this) Vector(std::move(aRhs));
885 return *this;
888 template <typename T, size_t N, class AP>
889 MOZ_ALWAYS_INLINE Vector<T, N, AP>::~Vector() {
890 MOZ_REENTRANCY_GUARD_ET_AL;
891 Impl::destroy(beginNoCheck(), endNoCheck());
892 if (!usingInlineStorage()) {
893 this->free_(beginNoCheck(), mTail.mCapacity);
897 template <typename T, size_t N, class AP>
898 MOZ_ALWAYS_INLINE void Vector<T, N, AP>::reverse() {
899 MOZ_REENTRANCY_GUARD_ET_AL;
900 T* elems = mBegin;
901 size_t len = mLength;
902 size_t mid = len / 2;
903 for (size_t i = 0; i < mid; i++) {
904 std::swap(elems[i], elems[len - i - 1]);
909 * This function will create a new heap buffer with capacity aNewCap,
910 * move all elements in the inline buffer to this new buffer,
911 * and fail on OOM.
913 template <typename T, size_t N, class AP>
914 inline bool Vector<T, N, AP>::convertToHeapStorage(size_t aNewCap) {
915 MOZ_ASSERT(usingInlineStorage());
917 /* Allocate buffer. */
918 MOZ_ASSERT(!detail::CapacityHasExcessSpace<T>(aNewCap));
919 T* newBuf = this->template pod_malloc<T>(aNewCap);
920 if (MOZ_UNLIKELY(!newBuf)) {
921 return false;
924 /* Copy inline elements into heap buffer. */
925 Impl::moveConstruct(newBuf, beginNoCheck(), endNoCheck());
926 Impl::destroy(beginNoCheck(), endNoCheck());
928 /* Switch in heap buffer. */
929 mBegin = newBuf;
930 /* mLength is unchanged. */
931 mTail.mCapacity = aNewCap;
932 return true;
935 template <typename T, size_t N, class AP>
936 MOZ_NEVER_INLINE bool Vector<T, N, AP>::growStorageBy(size_t aIncr) {
937 MOZ_ASSERT(mLength + aIncr > mTail.mCapacity);
940 * When choosing a new capacity, its size should is as close to 2**N bytes
941 * as possible. 2**N-sized requests are best because they are unlikely to
942 * be rounded up by the allocator. Asking for a 2**N number of elements
943 * isn't as good, because if sizeof(T) is not a power-of-two that would
944 * result in a non-2**N request size.
947 size_t newCap;
949 if (aIncr == 1) {
950 if (usingInlineStorage()) {
951 /* This case occurs in ~70--80% of the calls to this function. */
952 size_t newSize =
953 tl::RoundUpPow2<(kInlineCapacity + 1) * sizeof(T)>::value;
954 newCap = newSize / sizeof(T);
955 goto convert;
958 if (mLength == 0) {
959 /* This case occurs in ~0--10% of the calls to this function. */
960 newCap = 1;
961 goto grow;
964 /* This case occurs in ~15--20% of the calls to this function. */
967 * Will mLength * 4 *sizeof(T) overflow? This condition limits a vector
968 * to 1GB of memory on a 32-bit system, which is a reasonable limit. It
969 * also ensures that
971 * static_cast<char*>(end()) - static_cast<char*>(begin())
973 * doesn't overflow ptrdiff_t (see bug 510319).
975 if (MOZ_UNLIKELY(mLength & tl::MulOverflowMask<4 * sizeof(T)>::value)) {
976 this->reportAllocOverflow();
977 return false;
981 * If we reach here, the existing capacity will have a size that is already
982 * as close to 2^N as sizeof(T) will allow. Just double the capacity, and
983 * then there might be space for one more element.
985 newCap = mLength * 2;
986 if (detail::CapacityHasExcessSpace<T>(newCap)) {
987 newCap += 1;
989 } else {
990 /* This case occurs in ~2% of the calls to this function. */
991 size_t newMinCap = mLength + aIncr;
993 /* Did mLength + aIncr overflow? Will newCap * sizeof(T) overflow? */
994 if (MOZ_UNLIKELY(newMinCap < mLength ||
995 newMinCap & tl::MulOverflowMask<2 * sizeof(T)>::value)) {
996 this->reportAllocOverflow();
997 return false;
1000 size_t newMinSize = newMinCap * sizeof(T);
1001 size_t newSize = RoundUpPow2(newMinSize);
1002 newCap = newSize / sizeof(T);
1005 if (usingInlineStorage()) {
1006 convert:
1007 return convertToHeapStorage(newCap);
1010 grow:
1011 return Impl::growTo(*this, newCap);
1014 template <typename T, size_t N, class AP>
1015 inline bool Vector<T, N, AP>::initCapacity(size_t aRequest) {
1016 MOZ_ASSERT(empty());
1017 MOZ_ASSERT(usingInlineStorage());
1018 if (aRequest == 0) {
1019 return true;
1021 T* newbuf = this->template pod_malloc<T>(aRequest);
1022 if (MOZ_UNLIKELY(!newbuf)) {
1023 return false;
1025 mBegin = newbuf;
1026 mTail.mCapacity = aRequest;
1027 #ifdef DEBUG
1028 mTail.mReserved = aRequest;
1029 #endif
1030 return true;
1033 template <typename T, size_t N, class AP>
1034 inline bool Vector<T, N, AP>::initLengthUninitialized(size_t aRequest) {
1035 if (!initCapacity(aRequest)) {
1036 return false;
1038 infallibleGrowByUninitialized(aRequest);
1039 return true;
1042 template <typename T, size_t N, class AP>
1043 inline bool Vector<T, N, AP>::maybeCheckSimulatedOOM(size_t aRequestedSize) {
1044 if (aRequestedSize <= N) {
1045 return true;
1048 #ifdef DEBUG
1049 if (aRequestedSize <= mTail.mReserved) {
1050 return true;
1052 #endif
1054 return allocPolicy().checkSimulatedOOM();
1057 template <typename T, size_t N, class AP>
1058 inline bool Vector<T, N, AP>::reserve(size_t aRequest) {
1059 MOZ_REENTRANCY_GUARD_ET_AL;
1060 if (aRequest > mTail.mCapacity) {
1061 if (MOZ_UNLIKELY(!growStorageBy(aRequest - mLength))) {
1062 return false;
1064 } else if (!maybeCheckSimulatedOOM(aRequest)) {
1065 return false;
1067 #ifdef DEBUG
1068 if (aRequest > mTail.mReserved) {
1069 mTail.mReserved = aRequest;
1071 MOZ_ASSERT(mLength <= mTail.mReserved);
1072 MOZ_ASSERT(mTail.mReserved <= mTail.mCapacity);
1073 #endif
1074 return true;
1077 template <typename T, size_t N, class AP>
1078 inline void Vector<T, N, AP>::shrinkBy(size_t aIncr) {
1079 MOZ_REENTRANCY_GUARD_ET_AL;
1080 MOZ_ASSERT(aIncr <= mLength);
1081 Impl::destroy(endNoCheck() - aIncr, endNoCheck());
1082 mLength -= aIncr;
1085 template <typename T, size_t N, class AP>
1086 MOZ_ALWAYS_INLINE void Vector<T, N, AP>::shrinkTo(size_t aNewLength) {
1087 MOZ_ASSERT(aNewLength <= mLength);
1088 shrinkBy(mLength - aNewLength);
1091 template <typename T, size_t N, class AP>
1092 MOZ_ALWAYS_INLINE bool Vector<T, N, AP>::growBy(size_t aIncr) {
1093 MOZ_REENTRANCY_GUARD_ET_AL;
1094 if (aIncr > mTail.mCapacity - mLength) {
1095 if (MOZ_UNLIKELY(!growStorageBy(aIncr))) {
1096 return false;
1098 } else if (!maybeCheckSimulatedOOM(mLength + aIncr)) {
1099 return false;
1101 MOZ_ASSERT(mLength + aIncr <= mTail.mCapacity);
1102 T* newend = endNoCheck() + aIncr;
1103 Impl::initialize(endNoCheck(), newend);
1104 mLength += aIncr;
1105 #ifdef DEBUG
1106 if (mLength > mTail.mReserved) {
1107 mTail.mReserved = mLength;
1109 #endif
1110 return true;
1113 template <typename T, size_t N, class AP>
1114 MOZ_ALWAYS_INLINE bool Vector<T, N, AP>::growByUninitialized(size_t aIncr) {
1115 MOZ_REENTRANCY_GUARD_ET_AL;
1116 if (aIncr > mTail.mCapacity - mLength) {
1117 if (MOZ_UNLIKELY(!growStorageBy(aIncr))) {
1118 return false;
1120 } else if (!maybeCheckSimulatedOOM(mLength + aIncr)) {
1121 return false;
1123 #ifdef DEBUG
1124 if (mLength + aIncr > mTail.mReserved) {
1125 mTail.mReserved = mLength + aIncr;
1127 #endif
1128 infallibleGrowByUninitialized(aIncr);
1129 return true;
1132 template <typename T, size_t N, class AP>
1133 MOZ_ALWAYS_INLINE void Vector<T, N, AP>::infallibleGrowByUninitialized(
1134 size_t aIncr) {
1135 MOZ_ASSERT(mLength + aIncr <= reserved());
1136 mLength += aIncr;
1139 template <typename T, size_t N, class AP>
1140 inline bool Vector<T, N, AP>::resize(size_t aNewLength) {
1141 size_t curLength = mLength;
1142 if (aNewLength > curLength) {
1143 return growBy(aNewLength - curLength);
1145 shrinkBy(curLength - aNewLength);
1146 return true;
1149 template <typename T, size_t N, class AP>
1150 MOZ_ALWAYS_INLINE bool Vector<T, N, AP>::resizeUninitialized(
1151 size_t aNewLength) {
1152 size_t curLength = mLength;
1153 if (aNewLength > curLength) {
1154 return growByUninitialized(aNewLength - curLength);
1156 shrinkBy(curLength - aNewLength);
1157 return true;
1160 template <typename T, size_t N, class AP>
1161 inline void Vector<T, N, AP>::clear() {
1162 MOZ_REENTRANCY_GUARD_ET_AL;
1163 Impl::destroy(beginNoCheck(), endNoCheck());
1164 mLength = 0;
1167 template <typename T, size_t N, class AP>
1168 inline void Vector<T, N, AP>::clearAndFree() {
1169 clear();
1171 if (usingInlineStorage()) {
1172 return;
1174 this->free_(beginNoCheck(), mTail.mCapacity);
1175 mBegin = inlineStorage();
1176 mTail.mCapacity = kInlineCapacity;
1177 #ifdef DEBUG
1178 mTail.mReserved = 0;
1179 #endif
1182 template <typename T, size_t N, class AP>
1183 inline bool Vector<T, N, AP>::shrinkStorageToFit() {
1184 MOZ_REENTRANCY_GUARD_ET_AL;
1186 const auto length = this->length();
1187 if (usingInlineStorage() || length == capacity()) {
1188 return true;
1191 if (!length) {
1192 this->free_(beginNoCheck(), mTail.mCapacity);
1193 mBegin = inlineStorage();
1194 mTail.mCapacity = kInlineCapacity;
1195 #ifdef DEBUG
1196 mTail.mReserved = 0;
1197 #endif
1198 return true;
1201 T* newBuf;
1202 size_t newCap;
1203 if (length <= kInlineCapacity) {
1204 newBuf = inlineStorage();
1205 newCap = kInlineCapacity;
1206 } else {
1207 if (kElemIsPod) {
1208 newBuf = this->template pod_realloc<T>(beginNoCheck(), mTail.mCapacity,
1209 length);
1210 } else {
1211 newBuf = this->template pod_malloc<T>(length);
1213 if (MOZ_UNLIKELY(!newBuf)) {
1214 return false;
1216 newCap = length;
1218 if (!kElemIsPod || newBuf == inlineStorage()) {
1219 Impl::moveConstruct(newBuf, beginNoCheck(), endNoCheck());
1220 Impl::destroy(beginNoCheck(), endNoCheck());
1222 if (!kElemIsPod) {
1223 this->free_(beginNoCheck(), mTail.mCapacity);
1225 mBegin = newBuf;
1226 mTail.mCapacity = newCap;
1227 #ifdef DEBUG
1228 mTail.mReserved = length;
1229 #endif
1230 return true;
1233 template <typename T, size_t N, class AP>
1234 inline bool Vector<T, N, AP>::canAppendWithoutRealloc(size_t aNeeded) const {
1235 return mLength + aNeeded <= mTail.mCapacity;
1238 template <typename T, size_t N, class AP>
1239 template <typename U, size_t O, class BP>
1240 MOZ_ALWAYS_INLINE void Vector<T, N, AP>::internalAppendAll(
1241 const Vector<U, O, BP>& aOther) {
1242 internalAppend(aOther.begin(), aOther.length());
1245 template <typename T, size_t N, class AP>
1246 template <typename U>
1247 MOZ_ALWAYS_INLINE void Vector<T, N, AP>::internalAppend(U&& aU) {
1248 MOZ_ASSERT(mLength + 1 <= mTail.mReserved);
1249 MOZ_ASSERT(mTail.mReserved <= mTail.mCapacity);
1250 Impl::new_(endNoCheck(), std::forward<U>(aU));
1251 ++mLength;
1254 template <typename T, size_t N, class AP>
1255 MOZ_ALWAYS_INLINE bool Vector<T, N, AP>::appendN(const T& aT, size_t aNeeded) {
1256 MOZ_REENTRANCY_GUARD_ET_AL;
1257 if (mLength + aNeeded > mTail.mCapacity) {
1258 if (MOZ_UNLIKELY(!growStorageBy(aNeeded))) {
1259 return false;
1261 } else if (!maybeCheckSimulatedOOM(mLength + aNeeded)) {
1262 return false;
1264 #ifdef DEBUG
1265 if (mLength + aNeeded > mTail.mReserved) {
1266 mTail.mReserved = mLength + aNeeded;
1268 #endif
1269 internalAppendN(aT, aNeeded);
1270 return true;
1273 template <typename T, size_t N, class AP>
1274 MOZ_ALWAYS_INLINE void Vector<T, N, AP>::internalAppendN(const T& aT,
1275 size_t aNeeded) {
1276 MOZ_ASSERT(mLength + aNeeded <= mTail.mReserved);
1277 MOZ_ASSERT(mTail.mReserved <= mTail.mCapacity);
1278 Impl::copyConstructN(endNoCheck(), aNeeded, aT);
1279 mLength += aNeeded;
1282 template <typename T, size_t N, class AP>
1283 template <typename U>
1284 inline T* Vector<T, N, AP>::insert(T* aP, U&& aVal) {
1285 MOZ_ASSERT(begin() <= aP);
1286 MOZ_ASSERT(aP <= end());
1287 size_t pos = aP - begin();
1288 MOZ_ASSERT(pos <= mLength);
1289 size_t oldLength = mLength;
1290 if (pos == oldLength) {
1291 if (!append(std::forward<U>(aVal))) {
1292 return nullptr;
1294 } else {
1295 T oldBack = std::move(back());
1296 if (!append(std::move(oldBack))) {
1297 return nullptr;
1299 for (size_t i = oldLength - 1; i > pos; --i) {
1300 (*this)[i] = std::move((*this)[i - 1]);
1302 (*this)[pos] = std::forward<U>(aVal);
1304 return begin() + pos;
1307 template <typename T, size_t N, class AP>
1308 inline void Vector<T, N, AP>::erase(T* aIt) {
1309 MOZ_ASSERT(begin() <= aIt);
1310 MOZ_ASSERT(aIt < end());
1311 while (aIt + 1 < end()) {
1312 *aIt = std::move(*(aIt + 1));
1313 ++aIt;
1315 popBack();
1318 template <typename T, size_t N, class AP>
1319 inline void Vector<T, N, AP>::erase(T* aBegin, T* aEnd) {
1320 MOZ_ASSERT(begin() <= aBegin);
1321 MOZ_ASSERT(aBegin <= aEnd);
1322 MOZ_ASSERT(aEnd <= end());
1323 while (aEnd < end()) {
1324 *aBegin++ = std::move(*aEnd++);
1326 shrinkBy(aEnd - aBegin);
1329 template <typename T, size_t N, class AP>
1330 template <typename Pred>
1331 void Vector<T, N, AP>::eraseIf(Pred aPred) {
1332 // remove_if finds the first element to be erased, and then efficiently move-
1333 // assigns elements to effectively overwrite elements that satisfy the
1334 // predicate. It returns the new end pointer, after which there are only
1335 // moved-from elements ready to be destroyed, so we just need to shrink the
1336 // vector accordingly.
1337 T* newEnd = std::remove_if(begin(), end(),
1338 [&aPred](const T& aT) { return aPred(aT); });
1339 MOZ_ASSERT(newEnd <= end());
1340 shrinkBy(end() - newEnd);
1343 template <typename T, size_t N, class AP>
1344 template <typename U>
1345 void Vector<T, N, AP>::eraseIfEqual(const U& aU) {
1346 return eraseIf([&aU](const T& aT) { return aT == aU; });
1349 template <typename T, size_t N, class AP>
1350 template <typename U>
1351 MOZ_ALWAYS_INLINE bool Vector<T, N, AP>::append(const U* aInsBegin,
1352 const U* aInsEnd) {
1353 MOZ_REENTRANCY_GUARD_ET_AL;
1354 size_t aNeeded = PointerRangeSize(aInsBegin, aInsEnd);
1355 if (mLength + aNeeded > mTail.mCapacity) {
1356 if (MOZ_UNLIKELY(!growStorageBy(aNeeded))) {
1357 return false;
1359 } else if (!maybeCheckSimulatedOOM(mLength + aNeeded)) {
1360 return false;
1362 #ifdef DEBUG
1363 if (mLength + aNeeded > mTail.mReserved) {
1364 mTail.mReserved = mLength + aNeeded;
1366 #endif
1367 internalAppend(aInsBegin, aNeeded);
1368 return true;
1371 template <typename T, size_t N, class AP>
1372 template <typename U>
1373 MOZ_ALWAYS_INLINE void Vector<T, N, AP>::internalAppend(const U* aInsBegin,
1374 size_t aInsLength) {
1375 MOZ_ASSERT(mLength + aInsLength <= mTail.mReserved);
1376 MOZ_ASSERT(mTail.mReserved <= mTail.mCapacity);
1377 Impl::copyConstruct(endNoCheck(), aInsBegin, aInsBegin + aInsLength);
1378 mLength += aInsLength;
1381 template <typename T, size_t N, class AP>
1382 template <typename U>
1383 MOZ_ALWAYS_INLINE bool Vector<T, N, AP>::append(U&& aU) {
1384 MOZ_REENTRANCY_GUARD_ET_AL;
1385 if (mLength == mTail.mCapacity) {
1386 if (MOZ_UNLIKELY(!growStorageBy(1))) {
1387 return false;
1389 } else if (!maybeCheckSimulatedOOM(mLength + 1)) {
1390 return false;
1392 #ifdef DEBUG
1393 if (mLength + 1 > mTail.mReserved) {
1394 mTail.mReserved = mLength + 1;
1396 #endif
1397 internalAppend(std::forward<U>(aU));
1398 return true;
1401 template <typename T, size_t N, class AP>
1402 template <typename U, size_t O, class BP>
1403 MOZ_ALWAYS_INLINE bool Vector<T, N, AP>::appendAll(
1404 const Vector<U, O, BP>& aOther) {
1405 return append(aOther.begin(), aOther.length());
1408 template <typename T, size_t N, class AP>
1409 template <class U>
1410 MOZ_ALWAYS_INLINE bool Vector<T, N, AP>::append(const U* aInsBegin,
1411 size_t aInsLength) {
1412 return append(aInsBegin, aInsBegin + aInsLength);
1415 template <typename T, size_t N, class AP>
1416 MOZ_ALWAYS_INLINE void Vector<T, N, AP>::popBack() {
1417 MOZ_REENTRANCY_GUARD_ET_AL;
1418 MOZ_ASSERT(!empty());
1419 --mLength;
1420 endNoCheck()->~T();
1423 template <typename T, size_t N, class AP>
1424 MOZ_ALWAYS_INLINE T Vector<T, N, AP>::popCopy() {
1425 T ret = back();
1426 popBack();
1427 return ret;
1430 template <typename T, size_t N, class AP>
1431 inline T* Vector<T, N, AP>::extractRawBuffer() {
1432 MOZ_REENTRANCY_GUARD_ET_AL;
1434 if (usingInlineStorage()) {
1435 return nullptr;
1438 T* ret = mBegin;
1439 mBegin = inlineStorage();
1440 mLength = 0;
1441 mTail.mCapacity = kInlineCapacity;
1442 #ifdef DEBUG
1443 mTail.mReserved = 0;
1444 #endif
1445 return ret;
1448 template <typename T, size_t N, class AP>
1449 inline T* Vector<T, N, AP>::extractOrCopyRawBuffer() {
1450 if (T* ret = extractRawBuffer()) {
1451 return ret;
1454 MOZ_REENTRANCY_GUARD_ET_AL;
1456 T* copy = this->template pod_malloc<T>(mLength);
1457 if (!copy) {
1458 return nullptr;
1461 Impl::moveConstruct(copy, beginNoCheck(), endNoCheck());
1462 Impl::destroy(beginNoCheck(), endNoCheck());
1463 mBegin = inlineStorage();
1464 mLength = 0;
1465 mTail.mCapacity = kInlineCapacity;
1466 #ifdef DEBUG
1467 mTail.mReserved = 0;
1468 #endif
1469 return copy;
1472 template <typename T, size_t N, class AP>
1473 inline void Vector<T, N, AP>::replaceRawBuffer(T* aP, size_t aLength,
1474 size_t aCapacity) {
1475 MOZ_REENTRANCY_GUARD_ET_AL;
1477 /* Destroy what we have. */
1478 Impl::destroy(beginNoCheck(), endNoCheck());
1479 if (!usingInlineStorage()) {
1480 this->free_(beginNoCheck(), mTail.mCapacity);
1483 /* Take in the new buffer. */
1484 if (aCapacity <= kInlineCapacity) {
1486 * We convert to inline storage if possible, even though aP might
1487 * otherwise be acceptable. Maybe this behaviour should be
1488 * specifiable with an argument to this function.
1490 mBegin = inlineStorage();
1491 mLength = aLength;
1492 mTail.mCapacity = kInlineCapacity;
1493 Impl::moveConstruct(mBegin, aP, aP + aLength);
1494 Impl::destroy(aP, aP + aLength);
1495 this->free_(aP, aCapacity);
1496 } else {
1497 mBegin = aP;
1498 mLength = aLength;
1499 mTail.mCapacity = aCapacity;
1501 #ifdef DEBUG
1502 mTail.mReserved = aCapacity;
1503 #endif
1506 template <typename T, size_t N, class AP>
1507 inline void Vector<T, N, AP>::replaceRawBuffer(T* aP, size_t aLength) {
1508 replaceRawBuffer(aP, aLength, aLength);
1511 template <typename T, size_t N, class AP>
1512 inline size_t Vector<T, N, AP>::sizeOfExcludingThis(
1513 MallocSizeOf aMallocSizeOf) const {
1514 return usingInlineStorage() ? 0 : aMallocSizeOf(beginNoCheck());
1517 template <typename T, size_t N, class AP>
1518 inline size_t Vector<T, N, AP>::sizeOfIncludingThis(
1519 MallocSizeOf aMallocSizeOf) const {
1520 return aMallocSizeOf(this) + sizeOfExcludingThis(aMallocSizeOf);
1523 template <typename T, size_t N, class AP>
1524 inline void Vector<T, N, AP>::swap(Vector& aOther) {
1525 static_assert(N == 0, "still need to implement this for N != 0");
1527 // This only works when inline storage is always empty.
1528 if (!usingInlineStorage() && aOther.usingInlineStorage()) {
1529 aOther.mBegin = mBegin;
1530 mBegin = inlineStorage();
1531 } else if (usingInlineStorage() && !aOther.usingInlineStorage()) {
1532 mBegin = aOther.mBegin;
1533 aOther.mBegin = aOther.inlineStorage();
1534 } else if (!usingInlineStorage() && !aOther.usingInlineStorage()) {
1535 std::swap(mBegin, aOther.mBegin);
1536 } else {
1537 // This case is a no-op, since we'd set both to use their inline storage.
1540 std::swap(mLength, aOther.mLength);
1541 std::swap(mTail.mCapacity, aOther.mTail.mCapacity);
1542 #ifdef DEBUG
1543 std::swap(mTail.mReserved, aOther.mTail.mReserved);
1544 #endif
1547 } // namespace mozilla
1549 #endif /* mozilla_Vector_h */