webdriver: Implement Fullscreen command support (#100)
[gecko.git] / mfbt / HashFunctions.h
blob1a88e86bfe00c935e87ba5561e616fd9ce4dc85b
1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
3 /* This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 /* Utilities for hashing. */
9 /*
10 * This file exports functions for hashing data down to a 32-bit value,
11 * including:
13 * - HashString Hash a char* or char16_t/wchar_t* of known or unknown
14 * length.
16 * - HashBytes Hash a byte array of known length.
18 * - HashGeneric Hash one or more values. Currently, we support uint32_t,
19 * types which can be implicitly cast to uint32_t, data
20 * pointers, and function pointers.
22 * - AddToHash Add one or more values to the given hash. This supports the
23 * same list of types as HashGeneric.
26 * You can chain these functions together to hash complex objects. For example:
28 * class ComplexObject
29 * {
30 * char* mStr;
31 * uint32_t mUint1, mUint2;
32 * void (*mCallbackFn)();
34 * public:
35 * uint32_t hash()
36 * {
37 * uint32_t hash = HashString(mStr);
38 * hash = AddToHash(hash, mUint1, mUint2);
39 * return AddToHash(hash, mCallbackFn);
40 * }
41 * };
43 * If you want to hash an nsAString or nsACString, use the HashString functions
44 * in nsHashKeys.h.
47 #ifndef mozilla_HashFunctions_h
48 #define mozilla_HashFunctions_h
50 #include "mozilla/Assertions.h"
51 #include "mozilla/Attributes.h"
52 #include "mozilla/Char16.h"
53 #include "mozilla/MathAlgorithms.h"
54 #include "mozilla/Types.h"
56 #include <stdint.h>
58 #ifdef __cplusplus
59 namespace mozilla {
61 /**
62 * The golden ratio as a 32-bit fixed-point value.
64 static const uint32_t kGoldenRatioU32 = 0x9E3779B9U;
66 inline uint32_t
67 RotateBitsLeft32(uint32_t aValue, uint8_t aBits)
69 MOZ_ASSERT(aBits < 32);
70 return (aValue << aBits) | (aValue >> (32 - aBits));
73 namespace detail {
75 inline uint32_t
76 AddU32ToHash(uint32_t aHash, uint32_t aValue)
79 * This is the meat of all our hash routines. This hash function is not
80 * particularly sophisticated, but it seems to work well for our mostly
81 * plain-text inputs. Implementation notes follow.
83 * Our use of the golden ratio here is arbitrary; we could pick almost any
84 * number which:
86 * * is odd (because otherwise, all our hash values will be even)
88 * * has a reasonably-even mix of 1's and 0's (consider the extreme case
89 * where we multiply by 0x3 or 0xeffffff -- this will not produce good
90 * mixing across all bits of the hash).
92 * The rotation length of 5 is also arbitrary, although an odd number is again
93 * preferable so our hash explores the whole universe of possible rotations.
95 * Finally, we multiply by the golden ratio *after* xor'ing, not before.
96 * Otherwise, if |aHash| is 0 (as it often is for the beginning of a
97 * message), the expression
99 * (kGoldenRatioU32 * RotateBitsLeft(aHash, 5)) |xor| aValue
101 * evaluates to |aValue|.
103 * (Number-theoretic aside: Because any odd number |m| is relatively prime to
104 * our modulus (2^32), the list
106 * [x * m (mod 2^32) for 0 <= x < 2^32]
108 * has no duplicate elements. This means that multiplying by |m| does not
109 * cause us to skip any possible hash values.
111 * It's also nice if |m| has large-ish order mod 2^32 -- that is, if the
112 * smallest k such that m^k == 1 (mod 2^32) is large -- so we can safely
113 * multiply our hash value by |m| a few times without negating the
114 * multiplicative effect. Our golden ratio constant has order 2^29, which is
115 * more than enough for our purposes.)
117 return kGoldenRatioU32 * (RotateBitsLeft32(aHash, 5) ^ aValue);
121 * AddUintptrToHash takes sizeof(uintptr_t) as a template parameter.
123 template<size_t PtrSize>
124 inline uint32_t
125 AddUintptrToHash(uint32_t aHash, uintptr_t aValue)
127 return AddU32ToHash(aHash, static_cast<uint32_t>(aValue));
130 template<>
131 inline uint32_t
132 AddUintptrToHash<8>(uint32_t aHash, uintptr_t aValue)
134 uint32_t v1 = static_cast<uint32_t>(aValue);
135 uint32_t v2 = static_cast<uint32_t>(static_cast<uint64_t>(aValue) >> 32);
136 return AddU32ToHash(AddU32ToHash(aHash, v1), v2);
139 } /* namespace detail */
142 * AddToHash takes a hash and some values and returns a new hash based on the
143 * inputs.
145 * Currently, we support hashing uint32_t's, values which we can implicitly
146 * convert to uint32_t, data pointers, and function pointers.
148 template<typename T,
149 bool TypeIsNotIntegral = !mozilla::IsIntegral<T>::value,
150 typename U = typename mozilla::EnableIf<TypeIsNotIntegral>::Type>
151 MOZ_MUST_USE inline uint32_t
152 AddToHash(uint32_t aHash, T aA)
155 * Try to convert |A| to uint32_t implicitly. If this works, great. If not,
156 * we'll error out.
158 return detail::AddU32ToHash(aHash, aA);
161 template<typename A>
162 MOZ_MUST_USE inline uint32_t
163 AddToHash(uint32_t aHash, A* aA)
166 * You might think this function should just take a void*. But then we'd only
167 * catch data pointers and couldn't handle function pointers.
170 static_assert(sizeof(aA) == sizeof(uintptr_t), "Strange pointer!");
172 return detail::AddUintptrToHash<sizeof(uintptr_t)>(aHash, uintptr_t(aA));
175 // We use AddUintptrToHash() for hashing all integral types. 8-byte integral types
176 // are treated the same as 64-bit pointers, and smaller integral types are first
177 // implicitly converted to 32 bits and then passed to AddUintptrToHash() to be hashed.
178 template<typename T,
179 typename U = typename mozilla::EnableIf<mozilla::IsIntegral<T>::value>::Type>
180 MOZ_MUST_USE inline uint32_t
181 AddToHash(uint32_t aHash, T aA)
183 return detail::AddUintptrToHash<sizeof(T)>(aHash, aA);
186 template<typename A, typename... Args>
187 MOZ_MUST_USE uint32_t
188 AddToHash(uint32_t aHash, A aArg, Args... aArgs)
190 return AddToHash(AddToHash(aHash, aArg), aArgs...);
194 * The HashGeneric class of functions let you hash one or more values.
196 * If you want to hash together two values x and y, calling HashGeneric(x, y) is
197 * much better than calling AddToHash(x, y), because AddToHash(x, y) assumes
198 * that x has already been hashed.
200 template<typename... Args>
201 MOZ_MUST_USE inline uint32_t
202 HashGeneric(Args... aArgs)
204 return AddToHash(0, aArgs...);
207 namespace detail {
209 template<typename T>
210 uint32_t
211 HashUntilZero(const T* aStr)
213 uint32_t hash = 0;
214 for (T c; (c = *aStr); aStr++) {
215 hash = AddToHash(hash, c);
217 return hash;
220 template<typename T>
221 uint32_t
222 HashKnownLength(const T* aStr, size_t aLength)
224 uint32_t hash = 0;
225 for (size_t i = 0; i < aLength; i++) {
226 hash = AddToHash(hash, aStr[i]);
228 return hash;
231 } /* namespace detail */
234 * The HashString overloads below do just what you'd expect.
236 * If you have the string's length, you might as well call the overload which
237 * includes the length. It may be marginally faster.
239 MOZ_MUST_USE inline uint32_t
240 HashString(const char* aStr)
242 return detail::HashUntilZero(reinterpret_cast<const unsigned char*>(aStr));
245 MOZ_MUST_USE inline uint32_t
246 HashString(const char* aStr, size_t aLength)
248 return detail::HashKnownLength(reinterpret_cast<const unsigned char*>(aStr), aLength);
251 MOZ_MUST_USE
252 inline uint32_t
253 HashString(const unsigned char* aStr, size_t aLength)
255 return detail::HashKnownLength(aStr, aLength);
258 MOZ_MUST_USE inline uint32_t
259 HashString(const char16_t* aStr)
261 return detail::HashUntilZero(aStr);
264 MOZ_MUST_USE inline uint32_t
265 HashString(const char16_t* aStr, size_t aLength)
267 return detail::HashKnownLength(aStr, aLength);
271 * On Windows, wchar_t is not the same as char16_t, even though it's
272 * the same width!
274 #ifdef WIN32
275 MOZ_MUST_USE inline uint32_t
276 HashString(const wchar_t* aStr)
278 return detail::HashUntilZero(aStr);
281 MOZ_MUST_USE inline uint32_t
282 HashString(const wchar_t* aStr, size_t aLength)
284 return detail::HashKnownLength(aStr, aLength);
286 #endif
289 * Hash some number of bytes.
291 * This hash walks word-by-word, rather than byte-by-byte, so you won't get the
292 * same result out of HashBytes as you would out of HashString.
294 MOZ_MUST_USE extern MFBT_API uint32_t
295 HashBytes(const void* bytes, size_t aLength);
298 * A pseudorandom function mapping 32-bit integers to 32-bit integers.
300 * This is for when you're feeding private data (like pointer values or credit
301 * card numbers) to a non-crypto hash function (like HashBytes) and then using
302 * the hash code for something that untrusted parties could observe (like a JS
303 * Map). Plug in a HashCodeScrambler before that last step to avoid leaking the
304 * private data.
306 * By itself, this does not prevent hash-flooding DoS attacks, because an
307 * attacker can still generate many values with exactly equal hash codes by
308 * attacking the non-crypto hash function alone. Equal hash codes will, of
309 * course, still be equal however much you scramble them.
311 * The algorithm is SipHash-1-3. See <https://131002.net/siphash/>.
313 class HashCodeScrambler
315 struct SipHasher;
317 uint64_t mK0, mK1;
319 public:
320 /** Creates a new scrambler with the given 128-bit key. */
321 constexpr HashCodeScrambler(uint64_t aK0, uint64_t aK1) : mK0(aK0), mK1(aK1) {}
324 * Scramble a hash code. Always produces the same result for the same
325 * combination of key and hash code.
327 uint32_t scramble(uint32_t aHashCode) const
329 SipHasher hasher(mK0, mK1);
330 return uint32_t(hasher.sipHash(aHashCode));
333 private:
334 struct SipHasher
336 SipHasher(uint64_t aK0, uint64_t aK1)
338 // 1. Initialization.
339 mV0 = aK0 ^ UINT64_C(0x736f6d6570736575);
340 mV1 = aK1 ^ UINT64_C(0x646f72616e646f6d);
341 mV2 = aK0 ^ UINT64_C(0x6c7967656e657261);
342 mV3 = aK1 ^ UINT64_C(0x7465646279746573);
345 uint64_t sipHash(uint64_t aM)
347 // 2. Compression.
348 mV3 ^= aM;
349 sipRound();
350 mV0 ^= aM;
352 // 3. Finalization.
353 mV2 ^= 0xff;
354 for (int i = 0; i < 3; i++)
355 sipRound();
356 return mV0 ^ mV1 ^ mV2 ^ mV3;
359 void sipRound()
361 mV0 += mV1;
362 mV1 = RotateLeft(mV1, 13);
363 mV1 ^= mV0;
364 mV0 = RotateLeft(mV0, 32);
365 mV2 += mV3;
366 mV3 = RotateLeft(mV3, 16);
367 mV3 ^= mV2;
368 mV0 += mV3;
369 mV3 = RotateLeft(mV3, 21);
370 mV3 ^= mV0;
371 mV2 += mV1;
372 mV1 = RotateLeft(mV1, 17);
373 mV1 ^= mV2;
374 mV2 = RotateLeft(mV2, 32);
377 uint64_t mV0, mV1, mV2, mV3;
381 } /* namespace mozilla */
382 #endif /* __cplusplus */
384 #endif /* mozilla_HashFunctions_h */