Bug 1758688 [wpt PR 33067] - [FedCM] Make revoke a non-static method, a=testonly
[gecko.git] / gfx / 2d / PathHelpers.cpp
blob5ddccc0489c4bf1b853f11ff47339dd406f3f7a0
1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
3 /* This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 #include "PathHelpers.h"
9 namespace mozilla {
10 namespace gfx {
12 UserDataKey sDisablePixelSnapping;
14 void AppendRectToPath(PathBuilder* aPathBuilder, const Rect& aRect,
15 bool aDrawClockwise) {
16 if (aDrawClockwise) {
17 aPathBuilder->MoveTo(aRect.TopLeft());
18 aPathBuilder->LineTo(aRect.TopRight());
19 aPathBuilder->LineTo(aRect.BottomRight());
20 aPathBuilder->LineTo(aRect.BottomLeft());
21 } else {
22 aPathBuilder->MoveTo(aRect.TopRight());
23 aPathBuilder->LineTo(aRect.TopLeft());
24 aPathBuilder->LineTo(aRect.BottomLeft());
25 aPathBuilder->LineTo(aRect.BottomRight());
27 aPathBuilder->Close();
30 void AppendRoundedRectToPath(PathBuilder* aPathBuilder, const Rect& aRect,
31 const RectCornerRadii& aRadii,
32 bool aDrawClockwise) {
33 // For CW drawing, this looks like:
35 // ...******0** 1 C
36 // ****
37 // *** 2
38 // **
39 // *
40 // *
41 // 3
42 // *
43 // *
45 // Where 0, 1, 2, 3 are the control points of the Bezier curve for
46 // the corner, and C is the actual corner point.
48 // At the start of the loop, the current point is assumed to be
49 // the point adjacent to the top left corner on the top
50 // horizontal. Note that corner indices start at the top left and
51 // continue clockwise, whereas in our loop i = 0 refers to the top
52 // right corner.
54 // When going CCW, the control points are swapped, and the first
55 // corner that's drawn is the top left (along with the top segment).
57 // There is considerable latitude in how one chooses the four
58 // control points for a Bezier curve approximation to an ellipse.
59 // For the overall path to be continuous and show no corner at the
60 // endpoints of the arc, points 0 and 3 must be at the ends of the
61 // straight segments of the rectangle; points 0, 1, and C must be
62 // collinear; and points 3, 2, and C must also be collinear. This
63 // leaves only two free parameters: the ratio of the line segments
64 // 01 and 0C, and the ratio of the line segments 32 and 3C. See
65 // the following papers for extensive discussion of how to choose
66 // these ratios:
68 // Dokken, Tor, et al. "Good approximation of circles by
69 // curvature-continuous Bezier curves." Computer-Aided
70 // Geometric Design 7(1990) 33--41.
71 // Goldapp, Michael. "Approximation of circular arcs by cubic
72 // polynomials." Computer-Aided Geometric Design 8(1991) 227--238.
73 // Maisonobe, Luc. "Drawing an elliptical arc using polylines,
74 // quadratic, or cubic Bezier curves."
75 // http://www.spaceroots.org/documents/ellipse/elliptical-arc.pdf
77 // We follow the approach in section 2 of Goldapp (least-error,
78 // Hermite-type approximation) and make both ratios equal to
80 // 2 2 + n - sqrt(2n + 28)
81 // alpha = - * ---------------------
82 // 3 n - 4
84 // where n = 3( cbrt(sqrt(2)+1) - cbrt(sqrt(2)-1) ).
86 // This is the result of Goldapp's equation (10b) when the angle
87 // swept out by the arc is pi/2, and the parameter "a-bar" is the
88 // expression given immediately below equation (21).
90 // Using this value, the maximum radial error for a circle, as a
91 // fraction of the radius, is on the order of 0.2 x 10^-3.
92 // Neither Dokken nor Goldapp discusses error for a general
93 // ellipse; Maisonobe does, but his choice of control points
94 // follows different constraints, and Goldapp's expression for
95 // 'alpha' gives much smaller radial error, even for very flat
96 // ellipses, than Maisonobe's equivalent.
98 // For the various corners and for each axis, the sign of this
99 // constant changes, or it might be 0 -- it's multiplied by the
100 // appropriate multiplier from the list before using.
102 const Float alpha = Float(0.55191497064665766025);
104 typedef struct {
105 Float a, b;
106 } twoFloats;
108 twoFloats cwCornerMults[4] = {{-1, 0}, // cc == clockwise
109 {0, -1},
110 {+1, 0},
111 {0, +1}};
112 twoFloats ccwCornerMults[4] = {{+1, 0}, // ccw == counter-clockwise
113 {0, -1},
114 {-1, 0},
115 {0, +1}};
117 twoFloats* cornerMults = aDrawClockwise ? cwCornerMults : ccwCornerMults;
119 Point cornerCoords[] = {aRect.TopLeft(), aRect.TopRight(),
120 aRect.BottomRight(), aRect.BottomLeft()};
122 Point pc, p0, p1, p2, p3;
124 if (aDrawClockwise) {
125 aPathBuilder->MoveTo(
126 Point(aRect.X() + aRadii[eCornerTopLeft].width, aRect.Y()));
127 } else {
128 aPathBuilder->MoveTo(Point(
129 aRect.X() + aRect.Width() - aRadii[eCornerTopRight].width, aRect.Y()));
132 for (int i = 0; i < 4; ++i) {
133 // the corner index -- either 1 2 3 0 (cw) or 0 3 2 1 (ccw)
134 int c = aDrawClockwise ? ((i + 1) % 4) : ((4 - i) % 4);
136 // i+2 and i+3 respectively. These are used to index into the corner
137 // multiplier table, and were deduced by calculating out the long form
138 // of each corner and finding a pattern in the signs and values.
139 int i2 = (i + 2) % 4;
140 int i3 = (i + 3) % 4;
142 pc = cornerCoords[c];
144 if (aRadii[c].width > 0.0 && aRadii[c].height > 0.0) {
145 p0.x = pc.x + cornerMults[i].a * aRadii[c].width;
146 p0.y = pc.y + cornerMults[i].b * aRadii[c].height;
148 p3.x = pc.x + cornerMults[i3].a * aRadii[c].width;
149 p3.y = pc.y + cornerMults[i3].b * aRadii[c].height;
151 p1.x = p0.x + alpha * cornerMults[i2].a * aRadii[c].width;
152 p1.y = p0.y + alpha * cornerMults[i2].b * aRadii[c].height;
154 p2.x = p3.x - alpha * cornerMults[i3].a * aRadii[c].width;
155 p2.y = p3.y - alpha * cornerMults[i3].b * aRadii[c].height;
157 aPathBuilder->LineTo(p0);
158 aPathBuilder->BezierTo(p1, p2, p3);
159 } else {
160 aPathBuilder->LineTo(pc);
164 aPathBuilder->Close();
167 void AppendEllipseToPath(PathBuilder* aPathBuilder, const Point& aCenter,
168 const Size& aDimensions) {
169 Size halfDim = aDimensions / 2.f;
170 Rect rect(aCenter - Point(halfDim.width, halfDim.height), aDimensions);
171 RectCornerRadii radii(halfDim.width, halfDim.height);
173 AppendRoundedRectToPath(aPathBuilder, rect, radii);
176 bool SnapLineToDevicePixelsForStroking(Point& aP1, Point& aP2,
177 const DrawTarget& aDrawTarget,
178 Float aLineWidth) {
179 Matrix mat = aDrawTarget.GetTransform();
180 if (mat.HasNonTranslation()) {
181 return false;
183 if (aP1.x != aP2.x && aP1.y != aP2.y) {
184 return false; // not a horizontal or vertical line
186 Point p1 = aP1 + mat.GetTranslation(); // into device space
187 Point p2 = aP2 + mat.GetTranslation();
188 p1.Round();
189 p2.Round();
190 p1 -= mat.GetTranslation(); // back into user space
191 p2 -= mat.GetTranslation();
193 aP1 = p1;
194 aP2 = p2;
196 bool lineWidthIsOdd = (int(aLineWidth) % 2) == 1;
197 if (lineWidthIsOdd) {
198 if (aP1.x == aP2.x) {
199 // snap vertical line, adding 0.5 to align it to be mid-pixel:
200 aP1 += Point(0.5, 0);
201 aP2 += Point(0.5, 0);
202 } else {
203 // snap horizontal line, adding 0.5 to align it to be mid-pixel:
204 aP1 += Point(0, 0.5);
205 aP2 += Point(0, 0.5);
208 return true;
211 void StrokeSnappedEdgesOfRect(const Rect& aRect, DrawTarget& aDrawTarget,
212 const ColorPattern& aColor,
213 const StrokeOptions& aStrokeOptions) {
214 if (aRect.IsEmpty()) {
215 return;
218 Point p1 = aRect.TopLeft();
219 Point p2 = aRect.BottomLeft();
220 SnapLineToDevicePixelsForStroking(p1, p2, aDrawTarget,
221 aStrokeOptions.mLineWidth);
222 aDrawTarget.StrokeLine(p1, p2, aColor, aStrokeOptions);
224 p1 = aRect.BottomLeft();
225 p2 = aRect.BottomRight();
226 SnapLineToDevicePixelsForStroking(p1, p2, aDrawTarget,
227 aStrokeOptions.mLineWidth);
228 aDrawTarget.StrokeLine(p1, p2, aColor, aStrokeOptions);
230 p1 = aRect.TopLeft();
231 p2 = aRect.TopRight();
232 SnapLineToDevicePixelsForStroking(p1, p2, aDrawTarget,
233 aStrokeOptions.mLineWidth);
234 aDrawTarget.StrokeLine(p1, p2, aColor, aStrokeOptions);
236 p1 = aRect.TopRight();
237 p2 = aRect.BottomRight();
238 SnapLineToDevicePixelsForStroking(p1, p2, aDrawTarget,
239 aStrokeOptions.mLineWidth);
240 aDrawTarget.StrokeLine(p1, p2, aColor, aStrokeOptions);
243 // The logic for this comes from _cairo_stroke_style_max_distance_from_path
244 Margin MaxStrokeExtents(const StrokeOptions& aStrokeOptions,
245 const Matrix& aTransform) {
246 double styleExpansionFactor = 0.5f;
248 if (aStrokeOptions.mLineCap == CapStyle::SQUARE) {
249 styleExpansionFactor = M_SQRT1_2;
252 if (aStrokeOptions.mLineJoin == JoinStyle::MITER &&
253 styleExpansionFactor < M_SQRT2 * aStrokeOptions.mMiterLimit) {
254 styleExpansionFactor = M_SQRT2 * aStrokeOptions.mMiterLimit;
257 styleExpansionFactor *= aStrokeOptions.mLineWidth;
259 double dx = styleExpansionFactor * hypot(aTransform._11, aTransform._21);
260 double dy = styleExpansionFactor * hypot(aTransform._22, aTransform._12);
262 // Even if the stroke only partially covers a pixel, it must still render to
263 // full pixels. Round up to compensate for this.
264 dx = ceil(dx);
265 dy = ceil(dy);
267 return Margin(dy, dx, dy, dx);
270 } // namespace gfx
271 } // namespace mozilla