Bug 1687064 [wpt PR 27207] - Update wpt metadata, a=testonly
[gecko.git] / image / SurfaceCache.cpp
blob2d058b41be41aecea86d9c2862b3c24f92cbd8f8
1 /* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* This Source Code Form is subject to the terms of the Mozilla Public
3 * License, v. 2.0. If a copy of the MPL was not distributed with this
4 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
6 /**
7 * SurfaceCache is a service for caching temporary surfaces in imagelib.
8 */
10 #include "SurfaceCache.h"
12 #include <algorithm>
13 #include <utility>
15 #include "ISurfaceProvider.h"
16 #include "Image.h"
17 #include "LookupResult.h"
18 #include "ShutdownTracker.h"
19 #include "gfx2DGlue.h"
20 #include "gfxPlatform.h"
21 #include "imgFrame.h"
22 #include "mozilla/Assertions.h"
23 #include "mozilla/Attributes.h"
24 #include "mozilla/CheckedInt.h"
25 #include "mozilla/DebugOnly.h"
26 #include "mozilla/Likely.h"
27 #include "mozilla/RefPtr.h"
28 #include "mozilla/StaticMutex.h"
29 #include "mozilla/StaticPrefs_image.h"
30 #include "mozilla/StaticPtr.h"
31 #include "mozilla/Tuple.h"
32 #include "nsExpirationTracker.h"
33 #include "nsHashKeys.h"
34 #include "nsIMemoryReporter.h"
35 #include "nsRefPtrHashtable.h"
36 #include "nsSize.h"
37 #include "nsTArray.h"
38 #include "Orientation.h"
39 #include "prsystem.h"
41 using std::max;
42 using std::min;
44 namespace mozilla {
46 using namespace gfx;
48 namespace image {
50 MOZ_DEFINE_MALLOC_SIZE_OF(SurfaceCacheMallocSizeOf)
52 class CachedSurface;
53 class SurfaceCacheImpl;
55 ///////////////////////////////////////////////////////////////////////////////
56 // Static Data
57 ///////////////////////////////////////////////////////////////////////////////
59 // The single surface cache instance.
60 static StaticRefPtr<SurfaceCacheImpl> sInstance;
62 // The mutex protecting the surface cache.
63 static StaticMutex sInstanceMutex;
65 ///////////////////////////////////////////////////////////////////////////////
66 // SurfaceCache Implementation
67 ///////////////////////////////////////////////////////////////////////////////
69 /**
70 * Cost models the cost of storing a surface in the cache. Right now, this is
71 * simply an estimate of the size of the surface in bytes, but in the future it
72 * may be worth taking into account the cost of rematerializing the surface as
73 * well.
75 typedef size_t Cost;
77 static Cost ComputeCost(const IntSize& aSize, uint32_t aBytesPerPixel) {
78 MOZ_ASSERT(aBytesPerPixel == 1 || aBytesPerPixel == 4);
79 return aSize.width * aSize.height * aBytesPerPixel;
82 /**
83 * Since we want to be able to make eviction decisions based on cost, we need to
84 * be able to look up the CachedSurface which has a certain cost as well as the
85 * cost associated with a certain CachedSurface. To make this possible, in data
86 * structures we actually store a CostEntry, which contains a weak pointer to
87 * its associated surface.
89 * To make usage of the weak pointer safe, SurfaceCacheImpl always calls
90 * StartTracking after a surface is stored in the cache and StopTracking before
91 * it is removed.
93 class CostEntry {
94 public:
95 CostEntry(NotNull<CachedSurface*> aSurface, Cost aCost)
96 : mSurface(aSurface), mCost(aCost) {}
98 NotNull<CachedSurface*> Surface() const { return mSurface; }
99 Cost GetCost() const { return mCost; }
101 bool operator==(const CostEntry& aOther) const {
102 return mSurface == aOther.mSurface && mCost == aOther.mCost;
105 bool operator<(const CostEntry& aOther) const {
106 return mCost < aOther.mCost ||
107 (mCost == aOther.mCost && mSurface < aOther.mSurface);
110 private:
111 NotNull<CachedSurface*> mSurface;
112 Cost mCost;
116 * A CachedSurface associates a surface with a key that uniquely identifies that
117 * surface.
119 class CachedSurface {
120 ~CachedSurface() {}
122 public:
123 MOZ_DECLARE_REFCOUNTED_TYPENAME(CachedSurface)
124 NS_INLINE_DECL_THREADSAFE_REFCOUNTING(CachedSurface)
126 explicit CachedSurface(NotNull<ISurfaceProvider*> aProvider)
127 : mProvider(aProvider), mIsLocked(false) {}
129 DrawableSurface GetDrawableSurface() const {
130 if (MOZ_UNLIKELY(IsPlaceholder())) {
131 MOZ_ASSERT_UNREACHABLE("Called GetDrawableSurface() on a placeholder");
132 return DrawableSurface();
135 return mProvider->Surface();
138 void SetLocked(bool aLocked) {
139 if (IsPlaceholder()) {
140 return; // Can't lock a placeholder.
143 // Update both our state and our provider's state. Some surface providers
144 // are permanently locked; maintaining our own locking state enables us to
145 // respect SetLocked() even when it's meaningless from the provider's
146 // perspective.
147 mIsLocked = aLocked;
148 mProvider->SetLocked(aLocked);
151 bool IsLocked() const {
152 return !IsPlaceholder() && mIsLocked && mProvider->IsLocked();
155 void SetCannotSubstitute() {
156 mProvider->Availability().SetCannotSubstitute();
158 bool CannotSubstitute() const {
159 return mProvider->Availability().CannotSubstitute();
162 bool IsPlaceholder() const {
163 return mProvider->Availability().IsPlaceholder();
165 bool IsDecoded() const { return !IsPlaceholder() && mProvider->IsFinished(); }
167 ImageKey GetImageKey() const { return mProvider->GetImageKey(); }
168 const SurfaceKey& GetSurfaceKey() const { return mProvider->GetSurfaceKey(); }
169 nsExpirationState* GetExpirationState() { return &mExpirationState; }
171 CostEntry GetCostEntry() {
172 return image::CostEntry(WrapNotNull(this), mProvider->LogicalSizeInBytes());
175 size_t ShallowSizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const {
176 return aMallocSizeOf(this) + aMallocSizeOf(mProvider.get());
179 // A helper type used by SurfaceCacheImpl::CollectSizeOfSurfaces.
180 struct MOZ_STACK_CLASS SurfaceMemoryReport {
181 SurfaceMemoryReport(nsTArray<SurfaceMemoryCounter>& aCounters,
182 MallocSizeOf aMallocSizeOf)
183 : mCounters(aCounters), mMallocSizeOf(aMallocSizeOf) {}
185 void Add(NotNull<CachedSurface*> aCachedSurface, bool aIsFactor2) {
186 if (aCachedSurface->IsPlaceholder()) {
187 return;
190 // Record the memory used by the ISurfaceProvider. This may not have a
191 // straightforward relationship to the size of the surface that
192 // DrawableRef() returns if the surface is generated dynamically. (i.e.,
193 // for surfaces with PlaybackType::eAnimated.)
194 aCachedSurface->mProvider->AddSizeOfExcludingThis(
195 mMallocSizeOf, [&](ISurfaceProvider::AddSizeOfCbData& aMetadata) {
196 SurfaceMemoryCounter counter(aCachedSurface->GetSurfaceKey(),
197 aCachedSurface->IsLocked(),
198 aCachedSurface->CannotSubstitute(),
199 aIsFactor2, aMetadata.mFinished);
201 counter.Values().SetDecodedHeap(aMetadata.mHeapBytes);
202 counter.Values().SetDecodedNonHeap(aMetadata.mNonHeapBytes);
203 counter.Values().SetDecodedUnknown(aMetadata.mUnknownBytes);
204 counter.Values().SetExternalHandles(aMetadata.mExternalHandles);
205 counter.Values().SetFrameIndex(aMetadata.mIndex);
206 counter.Values().SetExternalId(aMetadata.mExternalId);
207 counter.Values().SetSurfaceTypes(aMetadata.mTypes);
209 mCounters.AppendElement(counter);
213 private:
214 nsTArray<SurfaceMemoryCounter>& mCounters;
215 MallocSizeOf mMallocSizeOf;
218 private:
219 nsExpirationState mExpirationState;
220 NotNull<RefPtr<ISurfaceProvider>> mProvider;
221 bool mIsLocked;
224 static int64_t AreaOfIntSize(const IntSize& aSize) {
225 return static_cast<int64_t>(aSize.width) * static_cast<int64_t>(aSize.height);
229 * An ImageSurfaceCache is a per-image surface cache. For correctness we must be
230 * able to remove all surfaces associated with an image when the image is
231 * destroyed or invalidated. Since this will happen frequently, it makes sense
232 * to make it cheap by storing the surfaces for each image separately.
234 * ImageSurfaceCache also keeps track of whether its associated image is locked
235 * or unlocked.
237 * The cache may also enter "factor of 2" mode which occurs when the number of
238 * surfaces in the cache exceeds the "image.cache.factor2.threshold-surfaces"
239 * pref plus the number of native sizes of the image. When in "factor of 2"
240 * mode, the cache will strongly favour sizes which are a factor of 2 of the
241 * largest native size. It accomplishes this by suggesting a factor of 2 size
242 * when lookups fail and substituting the nearest factor of 2 surface to the
243 * ideal size as the "best" available (as opposed to substitution but not
244 * found). This allows us to minimize memory consumption and CPU time spent
245 * decoding when a website requires many variants of the same surface.
247 class ImageSurfaceCache {
248 ~ImageSurfaceCache() {}
250 public:
251 explicit ImageSurfaceCache(const ImageKey aImageKey)
252 : mLocked(false),
253 mFactor2Mode(false),
254 mFactor2Pruned(false),
255 mIsVectorImage(aImageKey->GetType() == imgIContainer::TYPE_VECTOR) {}
257 MOZ_DECLARE_REFCOUNTED_TYPENAME(ImageSurfaceCache)
258 NS_INLINE_DECL_THREADSAFE_REFCOUNTING(ImageSurfaceCache)
260 typedef nsRefPtrHashtable<nsGenericHashKey<SurfaceKey>, CachedSurface>
261 SurfaceTable;
263 bool IsEmpty() const { return mSurfaces.Count() == 0; }
265 size_t ShallowSizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const {
266 size_t bytes = aMallocSizeOf(this) +
267 mSurfaces.ShallowSizeOfExcludingThis(aMallocSizeOf);
268 for (auto iter = ConstIter(); !iter.Done(); iter.Next()) {
269 bytes += iter.UserData()->ShallowSizeOfIncludingThis(aMallocSizeOf);
271 return bytes;
274 [[nodiscard]] bool Insert(NotNull<CachedSurface*> aSurface) {
275 MOZ_ASSERT(!mLocked || aSurface->IsPlaceholder() || aSurface->IsLocked(),
276 "Inserting an unlocked surface for a locked image");
277 return mSurfaces.Put(aSurface->GetSurfaceKey(),
278 RefPtr<CachedSurface>{aSurface}, fallible);
281 already_AddRefed<CachedSurface> Remove(NotNull<CachedSurface*> aSurface) {
282 MOZ_ASSERT(mSurfaces.GetWeak(aSurface->GetSurfaceKey()),
283 "Should not be removing a surface we don't have");
285 RefPtr<CachedSurface> surface;
286 mSurfaces.Remove(aSurface->GetSurfaceKey(), getter_AddRefs(surface));
287 AfterMaybeRemove();
288 return surface.forget();
291 already_AddRefed<CachedSurface> Lookup(const SurfaceKey& aSurfaceKey,
292 bool aForAccess) {
293 RefPtr<CachedSurface> surface;
294 mSurfaces.Get(aSurfaceKey, getter_AddRefs(surface));
296 if (aForAccess) {
297 if (surface) {
298 // We don't want to allow factor of 2 mode pruning to release surfaces
299 // for which the callers will accept no substitute.
300 surface->SetCannotSubstitute();
301 } else if (!mFactor2Mode) {
302 // If no exact match is found, and this is for use rather than internal
303 // accounting (i.e. insert and removal), we know this will trigger a
304 // decode. Make sure we switch now to factor of 2 mode if necessary.
305 MaybeSetFactor2Mode();
309 return surface.forget();
313 * @returns A tuple containing the best matching CachedSurface if available,
314 * a MatchType describing how the CachedSurface was selected, and
315 * an IntSize which is the size the caller should choose to decode
316 * at should it attempt to do so.
318 Tuple<already_AddRefed<CachedSurface>, MatchType, IntSize> LookupBestMatch(
319 const SurfaceKey& aIdealKey) {
320 // Try for an exact match first.
321 RefPtr<CachedSurface> exactMatch;
322 mSurfaces.Get(aIdealKey, getter_AddRefs(exactMatch));
323 if (exactMatch) {
324 if (exactMatch->IsDecoded()) {
325 return MakeTuple(exactMatch.forget(), MatchType::EXACT, IntSize());
327 } else if (!mFactor2Mode) {
328 // If no exact match is found, and we are not in factor of 2 mode, then
329 // we know that we will trigger a decode because at best we will provide
330 // a substitute. Make sure we switch now to factor of 2 mode if necessary.
331 MaybeSetFactor2Mode();
334 // Try for a best match second, if using compact.
335 IntSize suggestedSize = SuggestedSize(aIdealKey.Size());
336 if (suggestedSize != aIdealKey.Size()) {
337 if (!exactMatch) {
338 SurfaceKey compactKey = aIdealKey.CloneWithSize(suggestedSize);
339 mSurfaces.Get(compactKey, getter_AddRefs(exactMatch));
340 if (exactMatch && exactMatch->IsDecoded()) {
341 MOZ_ASSERT(suggestedSize != aIdealKey.Size());
342 return MakeTuple(exactMatch.forget(),
343 MatchType::SUBSTITUTE_BECAUSE_BEST, suggestedSize);
348 // There's no perfect match, so find the best match we can.
349 RefPtr<CachedSurface> bestMatch;
350 for (auto iter = ConstIter(); !iter.Done(); iter.Next()) {
351 NotNull<CachedSurface*> current = WrapNotNull(iter.UserData());
352 const SurfaceKey& currentKey = current->GetSurfaceKey();
354 // We never match a placeholder.
355 if (current->IsPlaceholder()) {
356 continue;
358 // Matching the playback type and SVG context is required.
359 if (currentKey.Playback() != aIdealKey.Playback() ||
360 currentKey.SVGContext() != aIdealKey.SVGContext()) {
361 continue;
363 // Matching the flags is required.
364 if (currentKey.Flags() != aIdealKey.Flags()) {
365 continue;
367 // Anything is better than nothing! (Within the constraints we just
368 // checked, of course.)
369 if (!bestMatch) {
370 bestMatch = current;
371 continue;
374 MOZ_ASSERT(bestMatch, "Should have a current best match");
376 // Always prefer completely decoded surfaces.
377 bool bestMatchIsDecoded = bestMatch->IsDecoded();
378 if (bestMatchIsDecoded && !current->IsDecoded()) {
379 continue;
381 if (!bestMatchIsDecoded && current->IsDecoded()) {
382 bestMatch = current;
383 continue;
386 SurfaceKey bestMatchKey = bestMatch->GetSurfaceKey();
387 if (CompareArea(aIdealKey.Size(), bestMatchKey.Size(),
388 currentKey.Size())) {
389 bestMatch = current;
393 MatchType matchType;
394 if (bestMatch) {
395 if (!exactMatch) {
396 // No exact match, neither ideal nor factor of 2.
397 MOZ_ASSERT(suggestedSize != bestMatch->GetSurfaceKey().Size(),
398 "No exact match despite the fact the sizes match!");
399 matchType = MatchType::SUBSTITUTE_BECAUSE_NOT_FOUND;
400 } else if (exactMatch != bestMatch) {
401 // The exact match is still decoding, but we found a substitute.
402 matchType = MatchType::SUBSTITUTE_BECAUSE_PENDING;
403 } else if (aIdealKey.Size() != bestMatch->GetSurfaceKey().Size()) {
404 // The best factor of 2 match is still decoding, but the best we've got.
405 MOZ_ASSERT(suggestedSize != aIdealKey.Size());
406 MOZ_ASSERT(mFactor2Mode || mIsVectorImage);
407 matchType = MatchType::SUBSTITUTE_BECAUSE_BEST;
408 } else {
409 // The exact match is still decoding, but it's the best we've got.
410 matchType = MatchType::EXACT;
412 } else {
413 if (exactMatch) {
414 // We found an "exact match"; it must have been a placeholder.
415 MOZ_ASSERT(exactMatch->IsPlaceholder());
416 matchType = MatchType::PENDING;
417 } else {
418 // We couldn't find an exact match *or* a substitute.
419 matchType = MatchType::NOT_FOUND;
423 return MakeTuple(bestMatch.forget(), matchType, suggestedSize);
426 void MaybeSetFactor2Mode() {
427 MOZ_ASSERT(!mFactor2Mode);
429 // Typically an image cache will not have too many size-varying surfaces, so
430 // if we exceed the given threshold, we should consider using a subset.
431 int32_t thresholdSurfaces =
432 StaticPrefs::image_cache_factor2_threshold_surfaces();
433 if (thresholdSurfaces < 0 ||
434 mSurfaces.Count() <= static_cast<uint32_t>(thresholdSurfaces)) {
435 return;
438 // Determine how many native surfaces this image has. If it is zero, and it
439 // is a vector image, then we should impute a single native size. Otherwise,
440 // it may be zero because we don't know yet, or the image has an error, or
441 // it isn't supported.
442 auto first = ConstIter();
443 NotNull<CachedSurface*> current = WrapNotNull(first.UserData());
444 Image* image = static_cast<Image*>(current->GetImageKey());
445 size_t nativeSizes = image->GetNativeSizesLength();
446 if (mIsVectorImage) {
447 MOZ_ASSERT(nativeSizes == 0);
448 nativeSizes = 1;
449 } else if (nativeSizes == 0) {
450 return;
453 // Increase the threshold by the number of native sizes. This ensures that
454 // we do not prevent decoding of the image at all its native sizes. It does
455 // not guarantee we will provide a surface at that size however (i.e. many
456 // other sized surfaces are requested, in addition to the native sizes).
457 thresholdSurfaces += nativeSizes;
458 if (mSurfaces.Count() <= static_cast<uint32_t>(thresholdSurfaces)) {
459 return;
462 // Get our native size. While we know the image should be fully decoded,
463 // if it is an SVG, it is valid to have a zero size. We can't do compacting
464 // in that case because we need to know the width/height ratio to define a
465 // candidate set.
466 IntSize nativeSize;
467 if (NS_FAILED(image->GetWidth(&nativeSize.width)) ||
468 NS_FAILED(image->GetHeight(&nativeSize.height)) ||
469 nativeSize.IsEmpty()) {
470 return;
473 // We have a valid size, we can change modes.
474 mFactor2Mode = true;
477 template <typename Function>
478 void Prune(Function&& aRemoveCallback) {
479 if (!mFactor2Mode || mFactor2Pruned) {
480 return;
483 // Attempt to discard any surfaces which are not factor of 2 and the best
484 // factor of 2 match exists.
485 bool hasNotFactorSize = false;
486 for (auto iter = mSurfaces.Iter(); !iter.Done(); iter.Next()) {
487 NotNull<CachedSurface*> current = WrapNotNull(iter.UserData());
488 const SurfaceKey& currentKey = current->GetSurfaceKey();
489 const IntSize& currentSize = currentKey.Size();
491 // First we check if someone requested this size and would not accept
492 // an alternatively sized surface.
493 if (current->CannotSubstitute()) {
494 continue;
497 // Next we find the best factor of 2 size for this surface. If this
498 // surface is a factor of 2 size, then we want to keep it.
499 IntSize bestSize = SuggestedSize(currentSize);
500 if (bestSize == currentSize) {
501 continue;
504 // Check the cache for a surface with the same parameters except for the
505 // size which uses the closest factor of 2 size.
506 SurfaceKey compactKey = currentKey.CloneWithSize(bestSize);
507 RefPtr<CachedSurface> compactMatch;
508 mSurfaces.Get(compactKey, getter_AddRefs(compactMatch));
509 if (compactMatch && compactMatch->IsDecoded()) {
510 aRemoveCallback(current);
511 iter.Remove();
512 } else {
513 hasNotFactorSize = true;
517 // We have no surfaces that are not factor of 2 sized, so we can stop
518 // pruning henceforth, because we avoid the insertion of new surfaces that
519 // don't match our sizing set (unless the caller won't accept a
520 // substitution.)
521 if (!hasNotFactorSize) {
522 mFactor2Pruned = true;
525 // We should never leave factor of 2 mode due to pruning in of itself, but
526 // if we discarded surfaces due to the volatile buffers getting released,
527 // it is possible.
528 AfterMaybeRemove();
531 IntSize SuggestedSize(const IntSize& aSize) const {
532 IntSize suggestedSize = SuggestedSizeInternal(aSize);
533 if (mIsVectorImage) {
534 suggestedSize = SurfaceCache::ClampVectorSize(suggestedSize);
536 return suggestedSize;
539 IntSize SuggestedSizeInternal(const IntSize& aSize) const {
540 // When not in factor of 2 mode, we can always decode at the given size.
541 if (!mFactor2Mode) {
542 return aSize;
545 // We cannot enter factor of 2 mode unless we have a minimum number of
546 // surfaces, and we should have left it if the cache was emptied.
547 if (MOZ_UNLIKELY(IsEmpty())) {
548 MOZ_ASSERT_UNREACHABLE("Should not be empty and in factor of 2 mode!");
549 return aSize;
552 // This bit of awkwardness gets the largest native size of the image.
553 auto iter = ConstIter();
554 NotNull<CachedSurface*> firstSurface = WrapNotNull(iter.UserData());
555 Image* image = static_cast<Image*>(firstSurface->GetImageKey());
556 IntSize factorSize;
557 if (NS_FAILED(image->GetWidth(&factorSize.width)) ||
558 NS_FAILED(image->GetHeight(&factorSize.height)) ||
559 factorSize.IsEmpty()) {
560 // We should not have entered factor of 2 mode without a valid size, and
561 // several successfully decoded surfaces. Note that valid vector images
562 // may have a default size of 0x0, and those are not yet supported.
563 MOZ_ASSERT_UNREACHABLE("Expected valid native size!");
564 return aSize;
566 if (image->GetOrientation().SwapsWidthAndHeight() &&
567 image->HandledOrientation()) {
568 std::swap(factorSize.width, factorSize.height);
571 if (mIsVectorImage) {
572 // Ensure the aspect ratio matches the native size before forcing the
573 // caller to accept a factor of 2 size. The difference between the aspect
574 // ratios is:
576 // delta = nativeWidth/nativeHeight - desiredWidth/desiredHeight
578 // delta*nativeHeight*desiredHeight = nativeWidth*desiredHeight
579 // - desiredWidth*nativeHeight
581 // Using the maximum accepted delta as a constant, we can avoid the
582 // floating point division and just compare after some integer ops.
583 int32_t delta =
584 factorSize.width * aSize.height - aSize.width * factorSize.height;
585 int32_t maxDelta = (factorSize.height * aSize.height) >> 4;
586 if (delta > maxDelta || delta < -maxDelta) {
587 return aSize;
590 // If the requested size is bigger than the native size, we actually need
591 // to grow the native size instead of shrinking it.
592 if (factorSize.width < aSize.width) {
593 do {
594 IntSize candidate(factorSize.width * 2, factorSize.height * 2);
595 if (!SurfaceCache::IsLegalSize(candidate)) {
596 break;
599 factorSize = candidate;
600 } while (factorSize.width < aSize.width);
602 return factorSize;
605 // Otherwise we can find the best fit as normal.
608 // Start with the native size as the best first guess.
609 IntSize bestSize = factorSize;
610 factorSize.width /= 2;
611 factorSize.height /= 2;
613 while (!factorSize.IsEmpty()) {
614 if (!CompareArea(aSize, bestSize, factorSize)) {
615 // This size is not better than the last. Since we proceed from largest
616 // to smallest, we know that the next size will not be better if the
617 // previous size was rejected. Break early.
618 break;
621 // The current factor of 2 size is better than the last selected size.
622 bestSize = factorSize;
623 factorSize.width /= 2;
624 factorSize.height /= 2;
627 return bestSize;
630 bool CompareArea(const IntSize& aIdealSize, const IntSize& aBestSize,
631 const IntSize& aSize) const {
632 // Compare sizes. We use an area-based heuristic here instead of computing a
633 // truly optimal answer, since it seems very unlikely to make a difference
634 // for realistic sizes.
635 int64_t idealArea = AreaOfIntSize(aIdealSize);
636 int64_t currentArea = AreaOfIntSize(aSize);
637 int64_t bestMatchArea = AreaOfIntSize(aBestSize);
639 // If the best match is smaller than the ideal size, prefer bigger sizes.
640 if (bestMatchArea < idealArea) {
641 if (currentArea > bestMatchArea) {
642 return true;
644 return false;
647 // Other, prefer sizes closer to the ideal size, but still not smaller.
648 if (idealArea <= currentArea && currentArea < bestMatchArea) {
649 return true;
652 // This surface isn't an improvement over the current best match.
653 return false;
656 template <typename Function>
657 void CollectSizeOfSurfaces(nsTArray<SurfaceMemoryCounter>& aCounters,
658 MallocSizeOf aMallocSizeOf,
659 Function&& aRemoveCallback) {
660 CachedSurface::SurfaceMemoryReport report(aCounters, aMallocSizeOf);
661 for (auto iter = mSurfaces.Iter(); !iter.Done(); iter.Next()) {
662 NotNull<CachedSurface*> surface = WrapNotNull(iter.UserData());
664 // We don't need the drawable surface for ourselves, but adding a surface
665 // to the report will trigger this indirectly. If the surface was
666 // discarded by the OS because it was in volatile memory, we should remove
667 // it from the cache immediately rather than include it in the report.
668 DrawableSurface drawableSurface;
669 if (!surface->IsPlaceholder()) {
670 drawableSurface = surface->GetDrawableSurface();
671 if (!drawableSurface) {
672 aRemoveCallback(surface);
673 iter.Remove();
674 continue;
678 const IntSize& size = surface->GetSurfaceKey().Size();
679 bool factor2Size = false;
680 if (mFactor2Mode) {
681 factor2Size = (size == SuggestedSize(size));
683 report.Add(surface, factor2Size);
686 AfterMaybeRemove();
689 SurfaceTable::Iterator ConstIter() const { return mSurfaces.ConstIter(); }
690 uint32_t Count() const { return mSurfaces.Count(); }
692 void SetLocked(bool aLocked) { mLocked = aLocked; }
693 bool IsLocked() const { return mLocked; }
695 private:
696 void AfterMaybeRemove() {
697 if (IsEmpty() && mFactor2Mode) {
698 // The last surface for this cache was removed. This can happen if the
699 // surface was stored in a volatile buffer and got purged, or the surface
700 // expired from the cache. If the cache itself lingers for some reason
701 // (e.g. in the process of performing a lookup, the cache itself is
702 // locked), then we need to reset the factor of 2 state because it
703 // requires at least one surface present to get the native size
704 // information from the image.
705 mFactor2Mode = mFactor2Pruned = false;
709 SurfaceTable mSurfaces;
711 bool mLocked;
713 // True in "factor of 2" mode.
714 bool mFactor2Mode;
716 // True if all non-factor of 2 surfaces have been removed from the cache. Note
717 // that this excludes unsubstitutable sizes.
718 bool mFactor2Pruned;
720 // True if the surfaces are produced from a vector image. If so, it must match
721 // the aspect ratio when using factor of 2 mode.
722 bool mIsVectorImage;
726 * SurfaceCacheImpl is responsible for determining which surfaces will be cached
727 * and managing the surface cache data structures. Rather than interact with
728 * SurfaceCacheImpl directly, client code interacts with SurfaceCache, which
729 * maintains high-level invariants and encapsulates the details of the surface
730 * cache's implementation.
732 class SurfaceCacheImpl final : public nsIMemoryReporter {
733 public:
734 NS_DECL_ISUPPORTS
736 SurfaceCacheImpl(uint32_t aSurfaceCacheExpirationTimeMS,
737 uint32_t aSurfaceCacheDiscardFactor,
738 uint32_t aSurfaceCacheSize)
739 : mExpirationTracker(aSurfaceCacheExpirationTimeMS),
740 mMemoryPressureObserver(new MemoryPressureObserver),
741 mDiscardFactor(aSurfaceCacheDiscardFactor),
742 mMaxCost(aSurfaceCacheSize),
743 mAvailableCost(aSurfaceCacheSize),
744 mLockedCost(0),
745 mOverflowCount(0),
746 mAlreadyPresentCount(0),
747 mTableFailureCount(0),
748 mTrackingFailureCount(0) {
749 nsCOMPtr<nsIObserverService> os = services::GetObserverService();
750 if (os) {
751 os->AddObserver(mMemoryPressureObserver, "memory-pressure", false);
755 private:
756 virtual ~SurfaceCacheImpl() {
757 nsCOMPtr<nsIObserverService> os = services::GetObserverService();
758 if (os) {
759 os->RemoveObserver(mMemoryPressureObserver, "memory-pressure");
762 UnregisterWeakMemoryReporter(this);
765 public:
766 void InitMemoryReporter() { RegisterWeakMemoryReporter(this); }
768 InsertOutcome Insert(NotNull<ISurfaceProvider*> aProvider, bool aSetAvailable,
769 const StaticMutexAutoLock& aAutoLock) {
770 // If this is a duplicate surface, refuse to replace the original.
771 // XXX(seth): Calling Lookup() and then RemoveEntry() does the lookup
772 // twice. We'll make this more efficient in bug 1185137.
773 LookupResult result =
774 Lookup(aProvider->GetImageKey(), aProvider->GetSurfaceKey(), aAutoLock,
775 /* aMarkUsed = */ false);
776 if (MOZ_UNLIKELY(result)) {
777 mAlreadyPresentCount++;
778 return InsertOutcome::FAILURE_ALREADY_PRESENT;
781 if (result.Type() == MatchType::PENDING) {
782 RemoveEntry(aProvider->GetImageKey(), aProvider->GetSurfaceKey(),
783 aAutoLock);
786 MOZ_ASSERT(result.Type() == MatchType::NOT_FOUND ||
787 result.Type() == MatchType::PENDING,
788 "A LookupResult with no surface should be NOT_FOUND or PENDING");
790 // If this is bigger than we can hold after discarding everything we can,
791 // refuse to cache it.
792 Cost cost = aProvider->LogicalSizeInBytes();
793 if (MOZ_UNLIKELY(!CanHoldAfterDiscarding(cost))) {
794 mOverflowCount++;
795 return InsertOutcome::FAILURE;
798 // Remove elements in order of cost until we can fit this in the cache. Note
799 // that locked surfaces aren't in mCosts, so we never remove them here.
800 while (cost > mAvailableCost) {
801 MOZ_ASSERT(!mCosts.IsEmpty(),
802 "Removed everything and it still won't fit");
803 Remove(mCosts.LastElement().Surface(), /* aStopTracking */ true,
804 aAutoLock);
807 // Locate the appropriate per-image cache. If there's not an existing cache
808 // for this image, create it.
809 const ImageKey imageKey = aProvider->GetImageKey();
810 RefPtr<ImageSurfaceCache> cache = GetImageCache(imageKey);
811 if (!cache) {
812 cache = new ImageSurfaceCache(imageKey);
813 if (!mImageCaches.Put(aProvider->GetImageKey(), RefPtr{cache},
814 fallible)) {
815 mTableFailureCount++;
816 return InsertOutcome::FAILURE;
820 // If we were asked to mark the cache entry available, do so.
821 if (aSetAvailable) {
822 aProvider->Availability().SetAvailable();
825 auto surface = MakeNotNull<RefPtr<CachedSurface>>(aProvider);
827 // We require that locking succeed if the image is locked and we're not
828 // inserting a placeholder; the caller may need to know this to handle
829 // errors correctly.
830 bool mustLock = cache->IsLocked() && !surface->IsPlaceholder();
831 if (mustLock) {
832 surface->SetLocked(true);
833 if (!surface->IsLocked()) {
834 return InsertOutcome::FAILURE;
838 // Insert.
839 MOZ_ASSERT(cost <= mAvailableCost, "Inserting despite too large a cost");
840 if (!cache->Insert(surface)) {
841 mTableFailureCount++;
842 if (mustLock) {
843 surface->SetLocked(false);
845 return InsertOutcome::FAILURE;
848 if (MOZ_UNLIKELY(!StartTracking(surface, aAutoLock))) {
849 MOZ_ASSERT(!mustLock);
850 Remove(surface, /* aStopTracking */ false, aAutoLock);
851 return InsertOutcome::FAILURE;
854 return InsertOutcome::SUCCESS;
857 void Remove(NotNull<CachedSurface*> aSurface, bool aStopTracking,
858 const StaticMutexAutoLock& aAutoLock) {
859 ImageKey imageKey = aSurface->GetImageKey();
861 RefPtr<ImageSurfaceCache> cache = GetImageCache(imageKey);
862 MOZ_ASSERT(cache, "Shouldn't try to remove a surface with no image cache");
864 // If the surface was not a placeholder, tell its image that we discarded
865 // it.
866 if (!aSurface->IsPlaceholder()) {
867 static_cast<Image*>(imageKey)->OnSurfaceDiscarded(
868 aSurface->GetSurfaceKey());
871 // If we failed during StartTracking, we can skip this step.
872 if (aStopTracking) {
873 StopTracking(aSurface, /* aIsTracked */ true, aAutoLock);
876 // Individual surfaces must be freed outside the lock.
877 mCachedSurfacesDiscard.AppendElement(cache->Remove(aSurface));
879 MaybeRemoveEmptyCache(imageKey, cache);
882 bool StartTracking(NotNull<CachedSurface*> aSurface,
883 const StaticMutexAutoLock& aAutoLock) {
884 CostEntry costEntry = aSurface->GetCostEntry();
885 MOZ_ASSERT(costEntry.GetCost() <= mAvailableCost,
886 "Cost too large and the caller didn't catch it");
888 if (aSurface->IsLocked()) {
889 mLockedCost += costEntry.GetCost();
890 MOZ_ASSERT(mLockedCost <= mMaxCost, "Locked more than we can hold?");
891 } else {
892 if (NS_WARN_IF(!mCosts.InsertElementSorted(costEntry, fallible))) {
893 mTrackingFailureCount++;
894 return false;
897 // This may fail during XPCOM shutdown, so we need to ensure the object is
898 // tracked before calling RemoveObject in StopTracking.
899 nsresult rv = mExpirationTracker.AddObjectLocked(aSurface, aAutoLock);
900 if (NS_WARN_IF(NS_FAILED(rv))) {
901 DebugOnly<bool> foundInCosts = mCosts.RemoveElementSorted(costEntry);
902 MOZ_ASSERT(foundInCosts, "Lost track of costs for this surface");
903 mTrackingFailureCount++;
904 return false;
908 mAvailableCost -= costEntry.GetCost();
909 return true;
912 void StopTracking(NotNull<CachedSurface*> aSurface, bool aIsTracked,
913 const StaticMutexAutoLock& aAutoLock) {
914 CostEntry costEntry = aSurface->GetCostEntry();
916 if (aSurface->IsLocked()) {
917 MOZ_ASSERT(mLockedCost >= costEntry.GetCost(), "Costs don't balance");
918 mLockedCost -= costEntry.GetCost();
919 // XXX(seth): It'd be nice to use an O(log n) lookup here. This is O(n).
920 MOZ_ASSERT(!mCosts.Contains(costEntry),
921 "Shouldn't have a cost entry for a locked surface");
922 } else {
923 if (MOZ_LIKELY(aSurface->GetExpirationState()->IsTracked())) {
924 MOZ_ASSERT(aIsTracked, "Expiration-tracking a surface unexpectedly!");
925 mExpirationTracker.RemoveObjectLocked(aSurface, aAutoLock);
926 } else {
927 // Our call to AddObject must have failed in StartTracking; most likely
928 // we're in XPCOM shutdown right now.
929 MOZ_ASSERT(!aIsTracked, "Not expiration-tracking an unlocked surface!");
932 DebugOnly<bool> foundInCosts = mCosts.RemoveElementSorted(costEntry);
933 MOZ_ASSERT(foundInCosts, "Lost track of costs for this surface");
936 mAvailableCost += costEntry.GetCost();
937 MOZ_ASSERT(mAvailableCost <= mMaxCost,
938 "More available cost than we started with");
941 LookupResult Lookup(const ImageKey aImageKey, const SurfaceKey& aSurfaceKey,
942 const StaticMutexAutoLock& aAutoLock, bool aMarkUsed) {
943 RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
944 if (!cache) {
945 // No cached surfaces for this image.
946 return LookupResult(MatchType::NOT_FOUND);
949 RefPtr<CachedSurface> surface = cache->Lookup(aSurfaceKey, aMarkUsed);
950 if (!surface) {
951 // Lookup in the per-image cache missed.
952 return LookupResult(MatchType::NOT_FOUND);
955 if (surface->IsPlaceholder()) {
956 return LookupResult(MatchType::PENDING);
959 DrawableSurface drawableSurface = surface->GetDrawableSurface();
960 if (!drawableSurface) {
961 // The surface was released by the operating system. Remove the cache
962 // entry as well.
963 Remove(WrapNotNull(surface), /* aStopTracking */ true, aAutoLock);
964 return LookupResult(MatchType::NOT_FOUND);
967 if (aMarkUsed &&
968 !MarkUsed(WrapNotNull(surface), WrapNotNull(cache), aAutoLock)) {
969 Remove(WrapNotNull(surface), /* aStopTracking */ false, aAutoLock);
970 return LookupResult(MatchType::NOT_FOUND);
973 MOZ_ASSERT(surface->GetSurfaceKey() == aSurfaceKey,
974 "Lookup() not returning an exact match?");
975 return LookupResult(std::move(drawableSurface), MatchType::EXACT);
978 LookupResult LookupBestMatch(const ImageKey aImageKey,
979 const SurfaceKey& aSurfaceKey,
980 const StaticMutexAutoLock& aAutoLock,
981 bool aMarkUsed) {
982 RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
983 if (!cache) {
984 // No cached surfaces for this image.
985 return LookupResult(
986 MatchType::NOT_FOUND,
987 SurfaceCache::ClampSize(aImageKey, aSurfaceKey.Size()));
990 // Repeatedly look up the best match, trying again if the resulting surface
991 // has been freed by the operating system, until we can either lock a
992 // surface for drawing or there are no matching surfaces left.
993 // XXX(seth): This is O(N^2), but N is expected to be very small. If we
994 // encounter a performance problem here we can revisit this.
996 RefPtr<CachedSurface> surface;
997 DrawableSurface drawableSurface;
998 MatchType matchType = MatchType::NOT_FOUND;
999 IntSize suggestedSize;
1000 while (true) {
1001 Tie(surface, matchType, suggestedSize) =
1002 cache->LookupBestMatch(aSurfaceKey);
1004 if (!surface) {
1005 return LookupResult(
1006 matchType, suggestedSize); // Lookup in the per-image cache missed.
1009 drawableSurface = surface->GetDrawableSurface();
1010 if (drawableSurface) {
1011 break;
1014 // The surface was released by the operating system. Remove the cache
1015 // entry as well.
1016 Remove(WrapNotNull(surface), /* aStopTracking */ true, aAutoLock);
1019 MOZ_ASSERT_IF(matchType == MatchType::EXACT,
1020 surface->GetSurfaceKey() == aSurfaceKey);
1021 MOZ_ASSERT_IF(
1022 matchType == MatchType::SUBSTITUTE_BECAUSE_NOT_FOUND ||
1023 matchType == MatchType::SUBSTITUTE_BECAUSE_PENDING,
1024 surface->GetSurfaceKey().SVGContext() == aSurfaceKey.SVGContext() &&
1025 surface->GetSurfaceKey().Playback() == aSurfaceKey.Playback() &&
1026 surface->GetSurfaceKey().Flags() == aSurfaceKey.Flags());
1028 if (matchType == MatchType::EXACT ||
1029 matchType == MatchType::SUBSTITUTE_BECAUSE_BEST) {
1030 if (aMarkUsed &&
1031 !MarkUsed(WrapNotNull(surface), WrapNotNull(cache), aAutoLock)) {
1032 Remove(WrapNotNull(surface), /* aStopTracking */ false, aAutoLock);
1036 return LookupResult(std::move(drawableSurface), matchType, suggestedSize);
1039 bool CanHold(const Cost aCost) const { return aCost <= mMaxCost; }
1041 size_t MaximumCapacity() const { return size_t(mMaxCost); }
1043 void SurfaceAvailable(NotNull<ISurfaceProvider*> aProvider,
1044 const StaticMutexAutoLock& aAutoLock) {
1045 if (!aProvider->Availability().IsPlaceholder()) {
1046 MOZ_ASSERT_UNREACHABLE("Calling SurfaceAvailable on non-placeholder");
1047 return;
1050 // Reinsert the provider, requesting that Insert() mark it available. This
1051 // may or may not succeed, depending on whether some other decoder has
1052 // beaten us to the punch and inserted a non-placeholder version of this
1053 // surface first, but it's fine either way.
1054 // XXX(seth): This could be implemented more efficiently; we should be able
1055 // to just update our data structures without reinserting.
1056 Insert(aProvider, /* aSetAvailable = */ true, aAutoLock);
1059 void LockImage(const ImageKey aImageKey) {
1060 RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
1061 if (!cache) {
1062 cache = new ImageSurfaceCache(aImageKey);
1063 mImageCaches.Put(aImageKey, RefPtr{cache});
1066 cache->SetLocked(true);
1068 // We don't relock this image's existing surfaces right away; instead, the
1069 // image should arrange for Lookup() to touch them if they are still useful.
1072 void UnlockImage(const ImageKey aImageKey,
1073 const StaticMutexAutoLock& aAutoLock) {
1074 RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
1075 if (!cache || !cache->IsLocked()) {
1076 return; // Already unlocked.
1079 cache->SetLocked(false);
1080 DoUnlockSurfaces(WrapNotNull(cache), /* aStaticOnly = */ false, aAutoLock);
1083 void UnlockEntries(const ImageKey aImageKey,
1084 const StaticMutexAutoLock& aAutoLock) {
1085 RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
1086 if (!cache || !cache->IsLocked()) {
1087 return; // Already unlocked.
1090 // (Note that we *don't* unlock the per-image cache here; that's the
1091 // difference between this and UnlockImage.)
1092 DoUnlockSurfaces(WrapNotNull(cache),
1093 /* aStaticOnly = */
1094 !StaticPrefs::image_mem_animated_discardable_AtStartup(),
1095 aAutoLock);
1098 already_AddRefed<ImageSurfaceCache> RemoveImage(
1099 const ImageKey aImageKey, const StaticMutexAutoLock& aAutoLock) {
1100 RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
1101 if (!cache) {
1102 return nullptr; // No cached surfaces for this image, so nothing to do.
1105 // Discard all of the cached surfaces for this image.
1106 // XXX(seth): This is O(n^2) since for each item in the cache we are
1107 // removing an element from the costs array. Since n is expected to be
1108 // small, performance should be good, but if usage patterns change we should
1109 // change the data structure used for mCosts.
1110 for (auto iter = cache->ConstIter(); !iter.Done(); iter.Next()) {
1111 StopTracking(WrapNotNull(iter.UserData()),
1112 /* aIsTracked */ true, aAutoLock);
1115 // The per-image cache isn't needed anymore, so remove it as well.
1116 // This implicitly unlocks the image if it was locked.
1117 mImageCaches.Remove(aImageKey);
1119 // Since we did not actually remove any of the surfaces from the cache
1120 // itself, only stopped tracking them, we should free it outside the lock.
1121 return cache.forget();
1124 void PruneImage(const ImageKey aImageKey,
1125 const StaticMutexAutoLock& aAutoLock) {
1126 RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
1127 if (!cache) {
1128 return; // No cached surfaces for this image, so nothing to do.
1131 cache->Prune([this, &aAutoLock](NotNull<CachedSurface*> aSurface) -> void {
1132 StopTracking(aSurface, /* aIsTracked */ true, aAutoLock);
1133 // Individual surfaces must be freed outside the lock.
1134 mCachedSurfacesDiscard.AppendElement(aSurface);
1137 MaybeRemoveEmptyCache(aImageKey, cache);
1140 void DiscardAll(const StaticMutexAutoLock& aAutoLock) {
1141 // Remove in order of cost because mCosts is an array and the other data
1142 // structures are all hash tables. Note that locked surfaces are not
1143 // removed, since they aren't present in mCosts.
1144 while (!mCosts.IsEmpty()) {
1145 Remove(mCosts.LastElement().Surface(), /* aStopTracking */ true,
1146 aAutoLock);
1150 void DiscardForMemoryPressure(const StaticMutexAutoLock& aAutoLock) {
1151 // Compute our discardable cost. Since locked surfaces aren't discardable,
1152 // we exclude them.
1153 const Cost discardableCost = (mMaxCost - mAvailableCost) - mLockedCost;
1154 MOZ_ASSERT(discardableCost <= mMaxCost, "Discardable cost doesn't add up");
1156 // Our target is to raise our available cost by (1 / mDiscardFactor) of our
1157 // discardable cost - in other words, we want to end up with about
1158 // (discardableCost / mDiscardFactor) fewer bytes stored in the surface
1159 // cache after we're done.
1160 const Cost targetCost = mAvailableCost + (discardableCost / mDiscardFactor);
1162 if (targetCost > mMaxCost - mLockedCost) {
1163 MOZ_ASSERT_UNREACHABLE("Target cost is more than we can discard");
1164 DiscardAll(aAutoLock);
1165 return;
1168 // Discard surfaces until we've reduced our cost to our target cost.
1169 while (mAvailableCost < targetCost) {
1170 MOZ_ASSERT(!mCosts.IsEmpty(), "Removed everything and still not done");
1171 Remove(mCosts.LastElement().Surface(), /* aStopTracking */ true,
1172 aAutoLock);
1176 void TakeDiscard(nsTArray<RefPtr<CachedSurface>>& aDiscard,
1177 const StaticMutexAutoLock& aAutoLock) {
1178 MOZ_ASSERT(aDiscard.IsEmpty());
1179 aDiscard = std::move(mCachedSurfacesDiscard);
1182 void LockSurface(NotNull<CachedSurface*> aSurface,
1183 const StaticMutexAutoLock& aAutoLock) {
1184 if (aSurface->IsPlaceholder() || aSurface->IsLocked()) {
1185 return;
1188 StopTracking(aSurface, /* aIsTracked */ true, aAutoLock);
1190 // Lock the surface. This can fail.
1191 aSurface->SetLocked(true);
1192 DebugOnly<bool> tracked = StartTracking(aSurface, aAutoLock);
1193 MOZ_ASSERT(tracked);
1196 size_t ShallowSizeOfIncludingThis(
1197 MallocSizeOf aMallocSizeOf, const StaticMutexAutoLock& aAutoLock) const {
1198 size_t bytes =
1199 aMallocSizeOf(this) + mCosts.ShallowSizeOfExcludingThis(aMallocSizeOf) +
1200 mImageCaches.ShallowSizeOfExcludingThis(aMallocSizeOf) +
1201 mCachedSurfacesDiscard.ShallowSizeOfExcludingThis(aMallocSizeOf) +
1202 mExpirationTracker.ShallowSizeOfExcludingThis(aMallocSizeOf);
1203 for (auto iter = mImageCaches.ConstIter(); !iter.Done(); iter.Next()) {
1204 bytes += iter.UserData()->ShallowSizeOfIncludingThis(aMallocSizeOf);
1206 return bytes;
1209 NS_IMETHOD
1210 CollectReports(nsIHandleReportCallback* aHandleReport, nsISupports* aData,
1211 bool aAnonymize) override {
1212 StaticMutexAutoLock lock(sInstanceMutex);
1214 uint32_t lockedImageCount = 0;
1215 uint32_t totalSurfaceCount = 0;
1216 uint32_t lockedSurfaceCount = 0;
1217 for (auto iter = mImageCaches.ConstIter(); !iter.Done(); iter.Next()) {
1218 totalSurfaceCount += iter.UserData()->Count();
1219 if (iter.UserData()->IsLocked()) {
1220 ++lockedImageCount;
1222 for (auto surfIter = iter.UserData()->ConstIter(); !surfIter.Done();
1223 surfIter.Next()) {
1224 if (surfIter.UserData()->IsLocked()) {
1225 ++lockedSurfaceCount;
1230 // clang-format off
1231 // We have explicit memory reporting for the surface cache which is more
1232 // accurate than the cost metrics we report here, but these metrics are
1233 // still useful to report, since they control the cache's behavior.
1234 MOZ_COLLECT_REPORT(
1235 "explicit/images/cache/overhead", KIND_HEAP, UNITS_BYTES,
1236 ShallowSizeOfIncludingThis(SurfaceCacheMallocSizeOf, lock),
1237 "Memory used by the surface cache data structures, excluding surface data.");
1239 MOZ_COLLECT_REPORT(
1240 "imagelib-surface-cache-estimated-total",
1241 KIND_OTHER, UNITS_BYTES, (mMaxCost - mAvailableCost),
1242 "Estimated total memory used by the imagelib surface cache.");
1244 MOZ_COLLECT_REPORT(
1245 "imagelib-surface-cache-estimated-locked",
1246 KIND_OTHER, UNITS_BYTES, mLockedCost,
1247 "Estimated memory used by locked surfaces in the imagelib surface cache.");
1249 MOZ_COLLECT_REPORT(
1250 "imagelib-surface-cache-tracked-cost-count",
1251 KIND_OTHER, UNITS_COUNT, mCosts.Length(),
1252 "Total number of surfaces tracked for cost (and expiry) in the imagelib surface cache.");
1254 MOZ_COLLECT_REPORT(
1255 "imagelib-surface-cache-tracked-expiry-count",
1256 KIND_OTHER, UNITS_COUNT, mExpirationTracker.Length(lock),
1257 "Total number of surfaces tracked for expiry (and cost) in the imagelib surface cache.");
1259 MOZ_COLLECT_REPORT(
1260 "imagelib-surface-cache-image-count",
1261 KIND_OTHER, UNITS_COUNT, mImageCaches.Count(),
1262 "Total number of images in the imagelib surface cache.");
1264 MOZ_COLLECT_REPORT(
1265 "imagelib-surface-cache-locked-image-count",
1266 KIND_OTHER, UNITS_COUNT, lockedImageCount,
1267 "Total number of locked images in the imagelib surface cache.");
1269 MOZ_COLLECT_REPORT(
1270 "imagelib-surface-cache-image-surface-count",
1271 KIND_OTHER, UNITS_COUNT, totalSurfaceCount,
1272 "Total number of surfaces in the imagelib surface cache.");
1274 MOZ_COLLECT_REPORT(
1275 "imagelib-surface-cache-locked-surfaces-count",
1276 KIND_OTHER, UNITS_COUNT, lockedSurfaceCount,
1277 "Total number of locked surfaces in the imagelib surface cache.");
1279 MOZ_COLLECT_REPORT(
1280 "imagelib-surface-cache-overflow-count",
1281 KIND_OTHER, UNITS_COUNT, mOverflowCount,
1282 "Count of how many times the surface cache has hit its capacity and been "
1283 "unable to insert a new surface.");
1285 MOZ_COLLECT_REPORT(
1286 "imagelib-surface-cache-tracking-failure-count",
1287 KIND_OTHER, UNITS_COUNT, mTrackingFailureCount,
1288 "Count of how many times the surface cache has failed to begin tracking a "
1289 "given surface.");
1291 MOZ_COLLECT_REPORT(
1292 "imagelib-surface-cache-already-present-count",
1293 KIND_OTHER, UNITS_COUNT, mAlreadyPresentCount,
1294 "Count of how many times the surface cache has failed to insert a surface "
1295 "because it is already present.");
1297 MOZ_COLLECT_REPORT(
1298 "imagelib-surface-cache-table-failure-count",
1299 KIND_OTHER, UNITS_COUNT, mTableFailureCount,
1300 "Count of how many times the surface cache has failed to insert a surface "
1301 "because a hash table could not accept an entry.");
1302 // clang-format on
1304 return NS_OK;
1307 void CollectSizeOfSurfaces(const ImageKey aImageKey,
1308 nsTArray<SurfaceMemoryCounter>& aCounters,
1309 MallocSizeOf aMallocSizeOf,
1310 const StaticMutexAutoLock& aAutoLock) {
1311 RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
1312 if (!cache) {
1313 return; // No surfaces for this image.
1316 // Report all surfaces in the per-image cache.
1317 cache->CollectSizeOfSurfaces(
1318 aCounters, aMallocSizeOf,
1319 [this, &aAutoLock](NotNull<CachedSurface*> aSurface) -> void {
1320 StopTracking(aSurface, /* aIsTracked */ true, aAutoLock);
1321 // Individual surfaces must be freed outside the lock.
1322 mCachedSurfacesDiscard.AppendElement(aSurface);
1325 MaybeRemoveEmptyCache(aImageKey, cache);
1328 void ReleaseImageOnMainThread(already_AddRefed<image::Image>&& aImage,
1329 const StaticMutexAutoLock& aAutoLock) {
1330 RefPtr<image::Image> image = aImage;
1331 if (!image) {
1332 return;
1335 bool needsDispatch = mReleasingImagesOnMainThread.IsEmpty();
1336 mReleasingImagesOnMainThread.AppendElement(image);
1338 if (!needsDispatch) {
1339 // There is already a ongoing task for ClearReleasingImages().
1340 return;
1343 NS_DispatchToMainThread(NS_NewRunnableFunction(
1344 "SurfaceCacheImpl::ReleaseImageOnMainThread",
1345 []() -> void { SurfaceCache::ClearReleasingImages(); }));
1348 void TakeReleasingImages(nsTArray<RefPtr<image::Image>>& aImage,
1349 const StaticMutexAutoLock& aAutoLock) {
1350 MOZ_ASSERT(NS_IsMainThread());
1351 aImage.SwapElements(mReleasingImagesOnMainThread);
1354 private:
1355 already_AddRefed<ImageSurfaceCache> GetImageCache(const ImageKey aImageKey) {
1356 RefPtr<ImageSurfaceCache> imageCache;
1357 mImageCaches.Get(aImageKey, getter_AddRefs(imageCache));
1358 return imageCache.forget();
1361 void MaybeRemoveEmptyCache(const ImageKey aImageKey,
1362 ImageSurfaceCache* aCache) {
1363 // Remove the per-image cache if it's unneeded now. Keep it if the image is
1364 // locked, since the per-image cache is where we store that state. Note that
1365 // we don't push it into mImageCachesDiscard because all of its surfaces
1366 // have been removed, so it is safe to free while holding the lock.
1367 if (aCache->IsEmpty() && !aCache->IsLocked()) {
1368 mImageCaches.Remove(aImageKey);
1372 // This is similar to CanHold() except that it takes into account the costs of
1373 // locked surfaces. It's used internally in Insert(), but it's not exposed
1374 // publicly because we permit multithreaded access to the surface cache, which
1375 // means that the result would be meaningless: another thread could insert a
1376 // surface or lock an image at any time.
1377 bool CanHoldAfterDiscarding(const Cost aCost) const {
1378 return aCost <= mMaxCost - mLockedCost;
1381 bool MarkUsed(NotNull<CachedSurface*> aSurface,
1382 NotNull<ImageSurfaceCache*> aCache,
1383 const StaticMutexAutoLock& aAutoLock) {
1384 if (aCache->IsLocked()) {
1385 LockSurface(aSurface, aAutoLock);
1386 return true;
1389 nsresult rv = mExpirationTracker.MarkUsedLocked(aSurface, aAutoLock);
1390 if (NS_WARN_IF(NS_FAILED(rv))) {
1391 // If mark used fails, it is because it failed to reinsert the surface
1392 // after removing it from the tracker. Thus we need to update our
1393 // own accounting but otherwise expect it to be untracked.
1394 StopTracking(aSurface, /* aIsTracked */ false, aAutoLock);
1395 return false;
1397 return true;
1400 void DoUnlockSurfaces(NotNull<ImageSurfaceCache*> aCache, bool aStaticOnly,
1401 const StaticMutexAutoLock& aAutoLock) {
1402 AutoTArray<NotNull<CachedSurface*>, 8> discard;
1404 // Unlock all the surfaces the per-image cache is holding.
1405 for (auto iter = aCache->ConstIter(); !iter.Done(); iter.Next()) {
1406 NotNull<CachedSurface*> surface = WrapNotNull(iter.UserData());
1407 if (surface->IsPlaceholder() || !surface->IsLocked()) {
1408 continue;
1410 if (aStaticOnly &&
1411 surface->GetSurfaceKey().Playback() != PlaybackType::eStatic) {
1412 continue;
1414 StopTracking(surface, /* aIsTracked */ true, aAutoLock);
1415 surface->SetLocked(false);
1416 if (MOZ_UNLIKELY(!StartTracking(surface, aAutoLock))) {
1417 discard.AppendElement(surface);
1421 // Discard any that we failed to track.
1422 for (auto iter = discard.begin(); iter != discard.end(); ++iter) {
1423 Remove(*iter, /* aStopTracking */ false, aAutoLock);
1427 void RemoveEntry(const ImageKey aImageKey, const SurfaceKey& aSurfaceKey,
1428 const StaticMutexAutoLock& aAutoLock) {
1429 RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
1430 if (!cache) {
1431 return; // No cached surfaces for this image.
1434 RefPtr<CachedSurface> surface =
1435 cache->Lookup(aSurfaceKey, /* aForAccess = */ false);
1436 if (!surface) {
1437 return; // Lookup in the per-image cache missed.
1440 Remove(WrapNotNull(surface), /* aStopTracking */ true, aAutoLock);
1443 class SurfaceTracker final
1444 : public ExpirationTrackerImpl<CachedSurface, 2, StaticMutex,
1445 StaticMutexAutoLock> {
1446 public:
1447 explicit SurfaceTracker(uint32_t aSurfaceCacheExpirationTimeMS)
1448 : ExpirationTrackerImpl<CachedSurface, 2, StaticMutex,
1449 StaticMutexAutoLock>(
1450 aSurfaceCacheExpirationTimeMS, "SurfaceTracker") {}
1452 protected:
1453 void NotifyExpiredLocked(CachedSurface* aSurface,
1454 const StaticMutexAutoLock& aAutoLock) override {
1455 sInstance->Remove(WrapNotNull(aSurface), /* aStopTracking */ true,
1456 aAutoLock);
1459 void NotifyHandlerEndLocked(const StaticMutexAutoLock& aAutoLock) override {
1460 sInstance->TakeDiscard(mDiscard, aAutoLock);
1463 void NotifyHandlerEnd() override {
1464 nsTArray<RefPtr<CachedSurface>> discard(std::move(mDiscard));
1467 StaticMutex& GetMutex() override { return sInstanceMutex; }
1469 nsTArray<RefPtr<CachedSurface>> mDiscard;
1472 class MemoryPressureObserver final : public nsIObserver {
1473 public:
1474 NS_DECL_ISUPPORTS
1476 NS_IMETHOD Observe(nsISupports*, const char* aTopic,
1477 const char16_t*) override {
1478 nsTArray<RefPtr<CachedSurface>> discard;
1480 StaticMutexAutoLock lock(sInstanceMutex);
1481 if (sInstance && strcmp(aTopic, "memory-pressure") == 0) {
1482 sInstance->DiscardForMemoryPressure(lock);
1483 sInstance->TakeDiscard(discard, lock);
1486 return NS_OK;
1489 private:
1490 virtual ~MemoryPressureObserver() {}
1493 nsTArray<CostEntry> mCosts;
1494 nsRefPtrHashtable<nsPtrHashKey<Image>, ImageSurfaceCache> mImageCaches;
1495 nsTArray<RefPtr<CachedSurface>> mCachedSurfacesDiscard;
1496 SurfaceTracker mExpirationTracker;
1497 RefPtr<MemoryPressureObserver> mMemoryPressureObserver;
1498 nsTArray<RefPtr<image::Image>> mReleasingImagesOnMainThread;
1499 const uint32_t mDiscardFactor;
1500 const Cost mMaxCost;
1501 Cost mAvailableCost;
1502 Cost mLockedCost;
1503 size_t mOverflowCount;
1504 size_t mAlreadyPresentCount;
1505 size_t mTableFailureCount;
1506 size_t mTrackingFailureCount;
1509 NS_IMPL_ISUPPORTS(SurfaceCacheImpl, nsIMemoryReporter)
1510 NS_IMPL_ISUPPORTS(SurfaceCacheImpl::MemoryPressureObserver, nsIObserver)
1512 ///////////////////////////////////////////////////////////////////////////////
1513 // Public API
1514 ///////////////////////////////////////////////////////////////////////////////
1516 /* static */
1517 void SurfaceCache::Initialize() {
1518 // Initialize preferences.
1519 MOZ_ASSERT(NS_IsMainThread());
1520 MOZ_ASSERT(!sInstance, "Shouldn't initialize more than once");
1522 // See StaticPrefs for the default values of these preferences.
1524 // Length of time before an unused surface is removed from the cache, in
1525 // milliseconds.
1526 uint32_t surfaceCacheExpirationTimeMS =
1527 StaticPrefs::image_mem_surfacecache_min_expiration_ms_AtStartup();
1529 // What fraction of the memory used by the surface cache we should discard
1530 // when we get a memory pressure notification. This value is interpreted as
1531 // 1/N, so 1 means to discard everything, 2 means to discard about half of the
1532 // memory we're using, and so forth. We clamp it to avoid division by zero.
1533 uint32_t surfaceCacheDiscardFactor =
1534 max(StaticPrefs::image_mem_surfacecache_discard_factor_AtStartup(), 1u);
1536 // Maximum size of the surface cache, in kilobytes.
1537 uint64_t surfaceCacheMaxSizeKB =
1538 StaticPrefs::image_mem_surfacecache_max_size_kb_AtStartup();
1540 if (sizeof(uintptr_t) <= 4) {
1541 // Limit surface cache to 1 GB if our address space is 32 bit.
1542 surfaceCacheMaxSizeKB = 1024 * 1024;
1545 // A knob determining the actual size of the surface cache. Currently the
1546 // cache is (size of main memory) / (surface cache size factor) KB
1547 // or (surface cache max size) KB, whichever is smaller. The formula
1548 // may change in the future, though.
1549 // For example, a value of 4 would yield a 256MB cache on a 1GB machine.
1550 // The smallest machines we are likely to run this code on have 256MB
1551 // of memory, which would yield a 64MB cache on this setting.
1552 // We clamp this value to avoid division by zero.
1553 uint32_t surfaceCacheSizeFactor =
1554 max(StaticPrefs::image_mem_surfacecache_size_factor_AtStartup(), 1u);
1556 // Compute the size of the surface cache.
1557 uint64_t memorySize = PR_GetPhysicalMemorySize();
1558 if (memorySize == 0) {
1559 MOZ_ASSERT_UNREACHABLE("PR_GetPhysicalMemorySize not implemented here");
1560 memorySize = 256 * 1024 * 1024; // Fall back to 256MB.
1562 uint64_t proposedSize = memorySize / surfaceCacheSizeFactor;
1563 uint64_t surfaceCacheSizeBytes =
1564 min(proposedSize, surfaceCacheMaxSizeKB * 1024);
1565 uint32_t finalSurfaceCacheSizeBytes =
1566 min(surfaceCacheSizeBytes, uint64_t(UINT32_MAX));
1568 // Create the surface cache singleton with the requested settings. Note that
1569 // the size is a limit that the cache may not grow beyond, but we do not
1570 // actually allocate any storage for surfaces at this time.
1571 sInstance = new SurfaceCacheImpl(surfaceCacheExpirationTimeMS,
1572 surfaceCacheDiscardFactor,
1573 finalSurfaceCacheSizeBytes);
1574 sInstance->InitMemoryReporter();
1577 /* static */
1578 void SurfaceCache::Shutdown() {
1579 RefPtr<SurfaceCacheImpl> cache;
1581 StaticMutexAutoLock lock(sInstanceMutex);
1582 MOZ_ASSERT(NS_IsMainThread());
1583 MOZ_ASSERT(sInstance, "No singleton - was Shutdown() called twice?");
1584 cache = sInstance.forget();
1588 /* static */
1589 LookupResult SurfaceCache::Lookup(const ImageKey aImageKey,
1590 const SurfaceKey& aSurfaceKey,
1591 bool aMarkUsed) {
1592 nsTArray<RefPtr<CachedSurface>> discard;
1593 LookupResult rv(MatchType::NOT_FOUND);
1596 StaticMutexAutoLock lock(sInstanceMutex);
1597 if (!sInstance) {
1598 return rv;
1601 rv = sInstance->Lookup(aImageKey, aSurfaceKey, lock, aMarkUsed);
1602 sInstance->TakeDiscard(discard, lock);
1605 return rv;
1608 /* static */
1609 LookupResult SurfaceCache::LookupBestMatch(const ImageKey aImageKey,
1610 const SurfaceKey& aSurfaceKey,
1611 bool aMarkUsed) {
1612 nsTArray<RefPtr<CachedSurface>> discard;
1613 LookupResult rv(MatchType::NOT_FOUND);
1616 StaticMutexAutoLock lock(sInstanceMutex);
1617 if (!sInstance) {
1618 return rv;
1621 rv = sInstance->LookupBestMatch(aImageKey, aSurfaceKey, lock, aMarkUsed);
1622 sInstance->TakeDiscard(discard, lock);
1625 return rv;
1628 /* static */
1629 InsertOutcome SurfaceCache::Insert(NotNull<ISurfaceProvider*> aProvider) {
1630 nsTArray<RefPtr<CachedSurface>> discard;
1631 InsertOutcome rv(InsertOutcome::FAILURE);
1634 StaticMutexAutoLock lock(sInstanceMutex);
1635 if (!sInstance) {
1636 return rv;
1639 rv = sInstance->Insert(aProvider, /* aSetAvailable = */ false, lock);
1640 sInstance->TakeDiscard(discard, lock);
1643 return rv;
1646 /* static */
1647 bool SurfaceCache::CanHold(const IntSize& aSize,
1648 uint32_t aBytesPerPixel /* = 4 */) {
1649 StaticMutexAutoLock lock(sInstanceMutex);
1650 if (!sInstance) {
1651 return false;
1654 Cost cost = ComputeCost(aSize, aBytesPerPixel);
1655 return sInstance->CanHold(cost);
1658 /* static */
1659 bool SurfaceCache::CanHold(size_t aSize) {
1660 StaticMutexAutoLock lock(sInstanceMutex);
1661 if (!sInstance) {
1662 return false;
1665 return sInstance->CanHold(aSize);
1668 /* static */
1669 void SurfaceCache::SurfaceAvailable(NotNull<ISurfaceProvider*> aProvider) {
1670 StaticMutexAutoLock lock(sInstanceMutex);
1671 if (!sInstance) {
1672 return;
1675 sInstance->SurfaceAvailable(aProvider, lock);
1678 /* static */
1679 void SurfaceCache::LockImage(const ImageKey aImageKey) {
1680 StaticMutexAutoLock lock(sInstanceMutex);
1681 if (sInstance) {
1682 return sInstance->LockImage(aImageKey);
1686 /* static */
1687 void SurfaceCache::UnlockImage(const ImageKey aImageKey) {
1688 StaticMutexAutoLock lock(sInstanceMutex);
1689 if (sInstance) {
1690 return sInstance->UnlockImage(aImageKey, lock);
1694 /* static */
1695 void SurfaceCache::UnlockEntries(const ImageKey aImageKey) {
1696 StaticMutexAutoLock lock(sInstanceMutex);
1697 if (sInstance) {
1698 return sInstance->UnlockEntries(aImageKey, lock);
1702 /* static */
1703 void SurfaceCache::RemoveImage(const ImageKey aImageKey) {
1704 RefPtr<ImageSurfaceCache> discard;
1706 StaticMutexAutoLock lock(sInstanceMutex);
1707 if (sInstance) {
1708 discard = sInstance->RemoveImage(aImageKey, lock);
1713 /* static */
1714 void SurfaceCache::PruneImage(const ImageKey aImageKey) {
1715 nsTArray<RefPtr<CachedSurface>> discard;
1717 StaticMutexAutoLock lock(sInstanceMutex);
1718 if (sInstance) {
1719 sInstance->PruneImage(aImageKey, lock);
1720 sInstance->TakeDiscard(discard, lock);
1725 /* static */
1726 void SurfaceCache::DiscardAll() {
1727 nsTArray<RefPtr<CachedSurface>> discard;
1729 StaticMutexAutoLock lock(sInstanceMutex);
1730 if (sInstance) {
1731 sInstance->DiscardAll(lock);
1732 sInstance->TakeDiscard(discard, lock);
1737 /* static */
1738 void SurfaceCache::CollectSizeOfSurfaces(
1739 const ImageKey aImageKey, nsTArray<SurfaceMemoryCounter>& aCounters,
1740 MallocSizeOf aMallocSizeOf) {
1741 nsTArray<RefPtr<CachedSurface>> discard;
1743 StaticMutexAutoLock lock(sInstanceMutex);
1744 if (!sInstance) {
1745 return;
1748 sInstance->CollectSizeOfSurfaces(aImageKey, aCounters, aMallocSizeOf, lock);
1749 sInstance->TakeDiscard(discard, lock);
1753 /* static */
1754 size_t SurfaceCache::MaximumCapacity() {
1755 StaticMutexAutoLock lock(sInstanceMutex);
1756 if (!sInstance) {
1757 return 0;
1760 return sInstance->MaximumCapacity();
1763 /* static */
1764 bool SurfaceCache::IsLegalSize(const IntSize& aSize) {
1765 // reject over-wide or over-tall images
1766 const int32_t k64KLimit = 0x0000FFFF;
1767 if (MOZ_UNLIKELY(aSize.width > k64KLimit || aSize.height > k64KLimit)) {
1768 NS_WARNING("image too big");
1769 return false;
1772 // protect against invalid sizes
1773 if (MOZ_UNLIKELY(aSize.height <= 0 || aSize.width <= 0)) {
1774 return false;
1777 // check to make sure we don't overflow a 32-bit
1778 CheckedInt32 requiredBytes =
1779 CheckedInt32(aSize.width) * CheckedInt32(aSize.height) * 4;
1780 if (MOZ_UNLIKELY(!requiredBytes.isValid())) {
1781 NS_WARNING("width or height too large");
1782 return false;
1784 return true;
1787 IntSize SurfaceCache::ClampVectorSize(const IntSize& aSize) {
1788 // If we exceed the maximum, we need to scale the size downwards to fit.
1789 // It shouldn't get here if it is significantly larger because
1790 // VectorImage::UseSurfaceCacheForSize should prevent us from requesting
1791 // a rasterized version of a surface greater than 4x the maximum.
1792 int32_t maxSizeKB =
1793 StaticPrefs::image_cache_max_rasterized_svg_threshold_kb();
1794 if (maxSizeKB <= 0) {
1795 return aSize;
1798 int64_t proposedKB = int64_t(aSize.width) * aSize.height / 256;
1799 if (maxSizeKB >= proposedKB) {
1800 return aSize;
1803 double scale = sqrt(double(maxSizeKB) / proposedKB);
1804 return IntSize(int32_t(scale * aSize.width), int32_t(scale * aSize.height));
1807 IntSize SurfaceCache::ClampSize(ImageKey aImageKey, const IntSize& aSize) {
1808 if (aImageKey->GetType() != imgIContainer::TYPE_VECTOR) {
1809 return aSize;
1812 return ClampVectorSize(aSize);
1815 /* static */
1816 void SurfaceCache::ReleaseImageOnMainThread(
1817 already_AddRefed<image::Image> aImage, bool aAlwaysProxy) {
1818 if (NS_IsMainThread() && !aAlwaysProxy) {
1819 RefPtr<image::Image> image = std::move(aImage);
1820 return;
1823 StaticMutexAutoLock lock(sInstanceMutex);
1824 if (sInstance) {
1825 sInstance->ReleaseImageOnMainThread(std::move(aImage), lock);
1826 } else {
1827 NS_ReleaseOnMainThread("SurfaceCache::ReleaseImageOnMainThread",
1828 std::move(aImage), /* aAlwaysProxy */ true);
1832 /* static */
1833 void SurfaceCache::ClearReleasingImages() {
1834 MOZ_ASSERT(NS_IsMainThread());
1836 nsTArray<RefPtr<image::Image>> images;
1838 StaticMutexAutoLock lock(sInstanceMutex);
1839 if (sInstance) {
1840 sInstance->TakeReleasingImages(images, lock);
1845 } // namespace image
1846 } // namespace mozilla