1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2 * vim: set ts=8 sts=2 et sw=2 tw=80:
3 * This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 /* ECMAScript conversion operations. */
9 #ifndef js_Conversions_h
10 #define js_Conversions_h
12 #include "mozilla/Casting.h"
13 #include "mozilla/Compiler.h"
14 #include "mozilla/FloatingPoint.h"
15 #include "mozilla/MathAlgorithms.h"
16 #include "mozilla/WrappingOperations.h"
19 #include <stddef.h> // size_t
20 #include <stdint.h> // {u,}int{8,16,32,64}_t
21 #include <type_traits>
24 #include "jstypes.h" // JS_PUBLIC_API
26 #include "js/RootingAPI.h"
31 /* DO NOT CALL THIS. Use JS::ToBoolean. */
32 extern JS_PUBLIC_API
bool ToBooleanSlow(JS::HandleValue v
);
34 /* DO NOT CALL THIS. Use JS::ToNumber. */
35 extern JS_PUBLIC_API
bool ToNumberSlow(JSContext
* cx
, JS::HandleValue v
,
38 /* DO NOT CALL THIS. Use JS::ToInt8. */
39 extern JS_PUBLIC_API
bool ToInt8Slow(JSContext
* cx
, JS::HandleValue v
,
42 /* DO NOT CALL THIS. Use JS::ToUint8. */
43 extern JS_PUBLIC_API
bool ToUint8Slow(JSContext
* cx
, JS::HandleValue v
,
46 /* DO NOT CALL THIS. Use JS::ToInt16. */
47 extern JS_PUBLIC_API
bool ToInt16Slow(JSContext
* cx
, JS::HandleValue v
,
50 /* DO NOT CALL THIS. Use JS::ToInt32. */
51 extern JS_PUBLIC_API
bool ToInt32Slow(JSContext
* cx
, JS::HandleValue v
,
54 /* DO NOT CALL THIS. Use JS::ToUint32. */
55 extern JS_PUBLIC_API
bool ToUint32Slow(JSContext
* cx
, JS::HandleValue v
,
58 /* DO NOT CALL THIS. Use JS::ToUint16. */
59 extern JS_PUBLIC_API
bool ToUint16Slow(JSContext
* cx
, JS::HandleValue v
,
62 /* DO NOT CALL THIS. Use JS::ToInt64. */
63 extern JS_PUBLIC_API
bool ToInt64Slow(JSContext
* cx
, JS::HandleValue v
,
66 /* DO NOT CALL THIS. Use JS::ToUint64. */
67 extern JS_PUBLIC_API
bool ToUint64Slow(JSContext
* cx
, JS::HandleValue v
,
70 /* DO NOT CALL THIS. Use JS::ToString. */
71 extern JS_PUBLIC_API JSString
* ToStringSlow(JSContext
* cx
, JS::HandleValue v
);
73 /* DO NOT CALL THIS. Use JS::ToObject. */
74 extern JS_PUBLIC_API JSObject
* ToObjectSlow(JSContext
* cx
, JS::HandleValue v
,
75 bool reportScanStack
);
85 * Assert that we're not doing GC on cx, that we're in a request as
86 * needed, and that the compartments for cx and v are correct.
87 * Also check that GC would be safe at this point.
89 extern JS_PUBLIC_API
void AssertArgumentsAreSane(JSContext
* cx
, HandleValue v
);
91 inline void AssertArgumentsAreSane(JSContext
* cx
, HandleValue v
) {}
97 * ES6 draft 20141224, 7.1.1, second algorithm.
99 * Most users shouldn't call this -- use JS::ToBoolean, ToNumber, or ToString
100 * instead. This will typically only be called from custom convert hooks that
101 * wish to fall back to the ES6 default conversion behavior shared by most
102 * objects in JS, codified as OrdinaryToPrimitive.
104 extern JS_PUBLIC_API
bool OrdinaryToPrimitive(JSContext
* cx
, HandleObject obj
,
106 MutableHandleValue vp
);
108 /* ES6 draft 20141224, 7.1.2. */
109 MOZ_ALWAYS_INLINE
bool ToBoolean(HandleValue v
) {
111 return v
.toBoolean();
114 return v
.toInt32() != 0;
116 if (v
.isNullOrUndefined()) {
120 double d
= v
.toDouble();
121 return !mozilla::IsNaN(d
) && d
!= 0;
127 /* The slow path handles strings, BigInts and objects. */
128 return js::ToBooleanSlow(v
);
131 /* ES6 draft 20141224, 7.1.3. */
132 MOZ_ALWAYS_INLINE
bool ToNumber(JSContext
* cx
, HandleValue v
, double* out
) {
133 detail::AssertArgumentsAreSane(cx
, v
);
139 return js::ToNumberSlow(cx
, v
, out
);
142 // ES2020 draft rev 6b05bc56ba4e3c7a2b9922c4282d9eb844426d9b
143 // 7.1.5 ToInteger ( argument )
145 // Specialized for double values.
146 inline double ToInteger(double d
) {
151 if (!mozilla::IsFinite(d
)) {
152 if (mozilla::IsNaN(d
)) {
158 return std::trunc(d
) + (+0.0); // Add zero to convert -0 to +0.
161 /* ES6 draft 20141224, 7.1.5. */
162 MOZ_ALWAYS_INLINE
bool ToInt32(JSContext
* cx
, JS::HandleValue v
, int32_t* out
) {
163 detail::AssertArgumentsAreSane(cx
, v
);
169 return js::ToInt32Slow(cx
, v
, out
);
172 /* ES6 draft 20141224, 7.1.6. */
173 MOZ_ALWAYS_INLINE
bool ToUint32(JSContext
* cx
, HandleValue v
, uint32_t* out
) {
174 detail::AssertArgumentsAreSane(cx
, v
);
177 *out
= uint32_t(v
.toInt32());
180 return js::ToUint32Slow(cx
, v
, out
);
183 /* ES6 draft 20141224, 7.1.7. */
184 MOZ_ALWAYS_INLINE
bool ToInt16(JSContext
* cx
, JS::HandleValue v
, int16_t* out
) {
185 detail::AssertArgumentsAreSane(cx
, v
);
188 *out
= int16_t(v
.toInt32());
191 return js::ToInt16Slow(cx
, v
, out
);
194 /* ES6 draft 20141224, 7.1.8. */
195 MOZ_ALWAYS_INLINE
bool ToUint16(JSContext
* cx
, HandleValue v
, uint16_t* out
) {
196 detail::AssertArgumentsAreSane(cx
, v
);
199 *out
= uint16_t(v
.toInt32());
202 return js::ToUint16Slow(cx
, v
, out
);
205 /* ES6 draft 20141224, 7.1.9 */
206 MOZ_ALWAYS_INLINE
bool ToInt8(JSContext
* cx
, JS::HandleValue v
, int8_t* out
) {
207 detail::AssertArgumentsAreSane(cx
, v
);
210 *out
= int8_t(v
.toInt32());
213 return js::ToInt8Slow(cx
, v
, out
);
216 /* ES6 ECMA-262, 7.1.10 */
217 MOZ_ALWAYS_INLINE
bool ToUint8(JSContext
* cx
, JS::HandleValue v
, uint8_t* out
) {
218 detail::AssertArgumentsAreSane(cx
, v
);
221 *out
= uint8_t(v
.toInt32());
224 return js::ToUint8Slow(cx
, v
, out
);
228 * Non-standard, with behavior similar to that of ToInt32, except in its
229 * producing an int64_t.
231 MOZ_ALWAYS_INLINE
bool ToInt64(JSContext
* cx
, HandleValue v
, int64_t* out
) {
232 detail::AssertArgumentsAreSane(cx
, v
);
235 *out
= int64_t(v
.toInt32());
238 return js::ToInt64Slow(cx
, v
, out
);
242 * Non-standard, with behavior similar to that of ToUint32, except in its
243 * producing a uint64_t.
245 MOZ_ALWAYS_INLINE
bool ToUint64(JSContext
* cx
, HandleValue v
, uint64_t* out
) {
246 detail::AssertArgumentsAreSane(cx
, v
);
249 *out
= uint64_t(v
.toInt32());
252 return js::ToUint64Slow(cx
, v
, out
);
255 /* ES6 draft 20141224, 7.1.12. */
256 MOZ_ALWAYS_INLINE JSString
* ToString(JSContext
* cx
, HandleValue v
) {
257 detail::AssertArgumentsAreSane(cx
, v
);
262 return js::ToStringSlow(cx
, v
);
265 /* ES6 draft 20141224, 7.1.13. */
266 inline JSObject
* ToObject(JSContext
* cx
, HandleValue v
) {
267 detail::AssertArgumentsAreSane(cx
, v
);
270 return &v
.toObject();
272 return js::ToObjectSlow(cx
, v
, false);
276 * Convert a double value to UnsignedInteger (an unsigned integral type) using
277 * ECMAScript-style semantics (that is, in like manner to how ECMAScript's
278 * ToInt32 converts to int32_t).
280 * If d is infinite or NaN, return 0.
281 * Otherwise compute d2 = sign(d) * floor(abs(d)), and return the
282 * UnsignedInteger value congruent to d2 % 2**(bit width of UnsignedInteger).
284 * The algorithm below is inspired by that found in
285 * <https://trac.webkit.org/changeset/67825/webkit/trunk/JavaScriptCore/runtime/JSValue.cpp>
286 * but has been generalized to all integer widths.
288 template <typename UnsignedInteger
>
289 inline UnsignedInteger
ToUnsignedInteger(double d
) {
290 static_assert(std::is_unsigned_v
<UnsignedInteger
>,
291 "UnsignedInteger must be an unsigned type");
293 uint64_t bits
= mozilla::BitwiseCast
<uint64_t>(d
);
294 unsigned DoubleExponentShift
= mozilla::FloatingPoint
<double>::kExponentShift
;
296 // Extract the exponent component. (Be careful here! It's not technically
297 // the exponent in NaN, infinities, and subnormals.)
299 int_fast16_t((bits
& mozilla::FloatingPoint
<double>::kExponentBits
) >>
300 DoubleExponentShift
) -
301 int_fast16_t(mozilla::FloatingPoint
<double>::kExponentBias
);
303 // If the exponent's less than zero, abs(d) < 1, so the result is 0. (This
304 // also handles subnormals.)
309 uint_fast16_t exponent
= mozilla::AssertedCast
<uint_fast16_t>(exp
);
311 // If the exponent is greater than or equal to the bits of precision of a
312 // double plus UnsignedInteger's width, the number is either infinite, NaN,
313 // or too large to have lower-order bits in the congruent value. (Example:
314 // 2**84 is exactly representable as a double. The next exact double is
315 // 2**84 + 2**32. Thus if UnsignedInteger is uint32_t, an exponent >= 84
316 // implies floor(abs(d)) == 0 mod 2**32.) Return 0 in all these cases.
317 constexpr size_t ResultWidth
= CHAR_BIT
* sizeof(UnsignedInteger
);
318 if (exponent
>= DoubleExponentShift
+ ResultWidth
) {
322 // The significand contains the bits that will determine the final result.
323 // Shift those bits left or right, according to the exponent, to their
324 // locations in the unsigned binary representation of floor(abs(d)).
325 static_assert(sizeof(UnsignedInteger
) <= sizeof(uint64_t),
326 "left-shifting below would lose upper bits");
327 UnsignedInteger result
=
328 (exponent
> DoubleExponentShift
)
329 ? UnsignedInteger(bits
<< (exponent
- DoubleExponentShift
))
330 : UnsignedInteger(bits
>> (DoubleExponentShift
- exponent
));
332 // Two further complications remain. First, |result| may contain bogus
333 // sign/exponent bits. Second, IEEE-754 numbers' significands (excluding
334 // subnormals, but we already handled those) have an implicit leading 1
335 // which may affect the final result.
337 // It may appear that there's complexity here depending on how ResultWidth
338 // and DoubleExponentShift relate, but it turns out there's not.
340 // Assume ResultWidth < DoubleExponentShift:
341 // Only right-shifts leave bogus bits in |result|. For this to happen,
342 // we must right-shift by > |DoubleExponentShift - ResultWidth|, implying
343 // |exponent < ResultWidth|.
344 // The implicit leading bit only matters if it appears in the final
345 // result -- if |2**exponent mod 2**ResultWidth != 0|. This implies
346 // |exponent < ResultWidth|.
347 // Otherwise assume ResultWidth >= DoubleExponentShift:
348 // Any left-shift less than |ResultWidth - DoubleExponentShift| leaves
349 // bogus bits in |result|. This implies |exponent < ResultWidth|. Any
350 // right-shift less than |ResultWidth| does too, which implies
351 // |DoubleExponentShift - ResultWidth < exponent|. By assumption, then,
352 // |exponent| is negative, but we excluded that above. So bogus bits
353 // need only |exponent < ResultWidth|.
354 // The implicit leading bit matters identically to the other case, so
355 // again, |exponent < ResultWidth|.
356 if (exponent
< ResultWidth
) {
357 const auto implicitOne
=
358 static_cast<UnsignedInteger
>(UnsignedInteger
{1} << exponent
);
359 result
&= implicitOne
- 1; // remove bogus bits
360 result
+= implicitOne
; // add the implicit bit
363 // Compute the congruent value in the signed range.
364 return (bits
& mozilla::FloatingPoint
<double>::kSignBit
) ? ~result
+ 1
368 template <typename SignedInteger
>
369 inline SignedInteger
ToSignedInteger(double d
) {
370 static_assert(std::is_signed_v
<SignedInteger
>,
371 "SignedInteger must be a signed type");
373 using UnsignedInteger
= std::make_unsigned_t
<SignedInteger
>;
374 UnsignedInteger u
= ToUnsignedInteger
<UnsignedInteger
>(d
);
376 return mozilla::WrapToSigned(u
);
379 // clang crashes compiling this when targeting arm:
380 // https://llvm.org/bugs/show_bug.cgi?id=22974
381 #if defined(__arm__) && MOZ_IS_GCC
384 inline int32_t ToSignedInteger
<int32_t>(double d
) {
390 // We use a pure integer solution here. In the 'softfp' ABI, the argument
391 // will start in r0 and r1, and VFP can't do all of the necessary ECMA
392 // conversions by itself so some integer code will be required anyway. A
393 // hybrid solution is faster on A9, but this pure integer solution is
394 // notably faster for A8.
396 // %0 is the result register, and may alias either of the %[QR]1
398 // %Q4 holds the lower part of the mantissa.
399 // %R4 holds the sign, exponent, and the upper part of the mantissa.
400 // %1, %2 and %3 are used as temporary values.
402 // Extract the exponent.
403 " mov %1, %R4, LSR #20\n"
404 " bic %1, %1, #(1 << 11)\n" // Clear the sign.
406 // Set the implicit top bit of the mantissa. This clobbers a bit of the
407 // exponent, but we have already extracted that.
408 " orr %R4, %R4, #(1 << 20)\n"
411 // We should return zero in the following special cases:
412 // - Exponent is 0x000 - 1023: +/-0 or subnormal.
413 // - Exponent is 0x7ff - 1023: +/-INFINITY or NaN
414 // - This case is implicitly handled by the standard code path
415 // anyway, as shifting the mantissa up by the exponent will
418 // The result is composed of the mantissa, prepended with '1' and
419 // bit-shifted left by the (decoded) exponent. Note that because the
420 // r1[20] is the bit with value '1', r1 is effectively already shifted
421 // (left) by 20 bits, and r0 is already shifted by 52 bits.
423 // Adjust the exponent to remove the encoding offset. If the decoded
424 // exponent is negative, quickly bail out with '0' as such values round to
425 // zero anyway. This also catches +/-0 and subnormals.
426 " sub %1, %1, #0xff\n"
427 " subs %1, %1, #0x300\n"
430 // %1 = (decoded) exponent >= 0
431 // %R4 = upper mantissa and sign
433 // ---- Lower Mantissa ----
434 " subs %3, %1, #52\n" // Calculate exp-52
437 // Shift r0 left by exp-52.
438 // Ensure that we don't overflow ARM's 8-bit shift operand range.
439 // We need to handle anything up to an 11-bit value here as we know that
440 // 52 <= exp <= 1024 (0x400). Any shift beyond 31 bits results in zero
441 // anyway, so as long as we don't touch the bottom 5 bits, we can use
442 // a logical OR to push long shifts into the 32 <= (exp&0xff) <= 255
444 " bic %2, %3, #0xff\n"
445 " orr %3, %3, %2, LSR #3\n"
446 // We can now perform a straight shift, avoiding the need for any
447 // conditional instructions or extra branches.
448 " mov %Q4, %Q4, LSL %3\n"
450 "1:\n" // Shift r0 right by 52-exp.
451 // We know that 0 <= exp < 52, and we can shift up to 255 bits so
452 // 52-exp will always be a valid shift and we can sk%3 the range
453 // check for this case.
455 " mov %Q4, %Q4, LSR %3\n"
457 // %1 = (decoded) exponent
458 // %R4 = upper mantissa and sign
459 // %Q4 = partially-converted integer
462 // ---- Upper Mantissa ----
463 // This is much the same as the lower mantissa, with a few different
464 // boundary checks and some masking to hide the exponent & sign bit in the
466 // Note that the upper mantissa is pre-shifted by 20 in %R4, but we shift
467 // it left more to remove the sign and exponent so it is effectively
468 // pre-shifted by 31 bits.
469 " subs %3, %1, #31\n" // Calculate exp-31
470 " mov %1, %R4, LSL #11\n" // Re-use %1 as a temporary register.
473 // Shift %R4 left by exp-31.
474 // Avoid overflowing the 8-bit shift range, as before.
475 " bic %2, %3, #0xff\n"
476 " orr %3, %3, %2, LSR #3\n"
477 // Perform the shift.
478 " mov %2, %1, LSL %3\n"
480 "3:\n" // Shift r1 right by 31-exp.
481 // We know that 0 <= exp < 31, and we can shift up to 255 bits so
482 // 31-exp will always be a valid shift and we can skip the range
483 // check for this case.
484 " rsb %3, %3, #0\n" // Calculate 31-exp from -(exp-31)
485 " mov %2, %1, LSR %3\n" // Thumb-2 can't do "LSR %3" in "orr".
487 // %Q4 = partially-converted integer (lower)
488 // %R4 = upper mantissa and sign
489 // %2 = partially-converted integer (upper)
492 // Combine the converted parts.
493 " orr %Q4, %Q4, %2\n"
494 // Negate the result if we have to, and move it to %0 in the process. To
495 // avoid conditionals, we can do this by inverting on %R4[31], then adding
497 " eor %Q4, %Q4, %R4, ASR #31\n"
498 " add %0, %Q4, %R4, LSR #31\n"
501 // +/-INFINITY, +/-0, subnormals, NaNs, and anything else out-of-range
502 // that will result in a conversion of '0'.
505 : "=r"(i
), "=&r"(tmp0
), "=&r"(tmp1
), "=&r"(tmp2
), "=&r"(d
)
511 #endif // defined (__arm__) && MOZ_IS_GCC
515 template <typename IntegerType
,
516 bool IsUnsigned
= std::is_unsigned_v
<IntegerType
>>
517 struct ToSignedOrUnsignedInteger
;
519 template <typename IntegerType
>
520 struct ToSignedOrUnsignedInteger
<IntegerType
, true> {
521 static IntegerType
compute(double d
) {
522 return ToUnsignedInteger
<IntegerType
>(d
);
526 template <typename IntegerType
>
527 struct ToSignedOrUnsignedInteger
<IntegerType
, false> {
528 static IntegerType
compute(double d
) {
529 return ToSignedInteger
<IntegerType
>(d
);
533 } // namespace detail
535 template <typename IntegerType
>
536 inline IntegerType
ToSignedOrUnsignedInteger(double d
) {
537 return detail::ToSignedOrUnsignedInteger
<IntegerType
>::compute(d
);
541 inline int8_t ToInt8(double d
) { return ToSignedInteger
<int8_t>(d
); }
543 /* ECMA-262 7.1.10 ToUInt8() specialized for doubles. */
544 inline int8_t ToUint8(double d
) { return ToUnsignedInteger
<uint8_t>(d
); }
547 inline int16_t ToInt16(double d
) { return ToSignedInteger
<int16_t>(d
); }
549 inline uint16_t ToUint16(double d
) { return ToUnsignedInteger
<uint16_t>(d
); }
551 /* ES5 9.5 ToInt32 (specialized for doubles). */
552 inline int32_t ToInt32(double d
) { return ToSignedInteger
<int32_t>(d
); }
554 /* ES5 9.6 (specialized for doubles). */
555 inline uint32_t ToUint32(double d
) { return ToUnsignedInteger
<uint32_t>(d
); }
558 inline int64_t ToInt64(double d
) { return ToSignedInteger
<int64_t>(d
); }
561 inline uint64_t ToUint64(double d
) { return ToUnsignedInteger
<uint64_t>(d
); }
564 * An amount of space large enough to store the null-terminated result of
565 * |ToString| on any Number.
567 * The <https://tc39.es/ecma262/#sec-tostring-applied-to-the-number-type>
568 * |NumberToString| algorithm is specified in terms of results, not an
569 * algorithm. It is extremely unclear from the algorithm's definition what its
570 * longest output can be. |-(2**-19 - 2**-72)| requires 25 + 1 characters and
571 * is believed to be at least *very close* to the upper bound, so we round that
572 * *very generously* upward to a 64-bit pointer-size boundary (to be extra
573 * cautious) and assume that's adequate.
575 * If you can supply better reasoning for a tighter bound, file a bug to improve
578 static constexpr size_t MaximumNumberToStringLength
= 31 + 1;
581 * Store in |out| the null-terminated, base-10 result of |ToString| applied to
582 * |d| per <https://tc39.es/ecma262/#sec-tostring-applied-to-the-number-type>.
583 * (This will produce "NaN", "-Infinity", or "Infinity" for non-finite |d|.)
585 extern JS_PUBLIC_API
void NumberToString(
586 double d
, char (&out
)[MaximumNumberToStringLength
]);
590 #endif /* js_Conversions_h */