4 * This file was part of the Independent JPEG Group's software:
5 * Developed 1997-2015 by Guido Vollbeding.
6 * libjpeg-turbo Modifications:
7 * Copyright (C) 2015-2020, 2022, D. R. Commander.
8 * For conditions of distribution and use, see the accompanying README.ijg
11 * This file contains portable arithmetic entropy encoding routines for JPEG
12 * (implementing Recommendation ITU-T T.81 | ISO/IEC 10918-1).
14 * Both sequential and progressive modes are supported in this single module.
16 * Suspension is not currently supported in this module.
18 * NOTE: All referenced figures are from
19 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
22 #define JPEG_INTERNALS
27 #define NEG_1 ((unsigned int)-1)
30 /* Expanded entropy decoder object for arithmetic decoding. */
33 struct jpeg_entropy_decoder pub
; /* public fields */
35 JLONG c
; /* C register, base of coding interval + input bit buffer */
36 JLONG a
; /* A register, normalized size of coding interval */
37 int ct
; /* bit shift counter, # of bits left in bit buffer part of C */
41 int last_dc_val
[MAX_COMPS_IN_SCAN
]; /* last DC coef for each component */
42 int dc_context
[MAX_COMPS_IN_SCAN
]; /* context index for DC conditioning */
44 unsigned int restarts_to_go
; /* MCUs left in this restart interval */
46 /* Pointers to statistics areas (these workspaces have image lifespan) */
47 unsigned char *dc_stats
[NUM_ARITH_TBLS
];
48 unsigned char *ac_stats
[NUM_ARITH_TBLS
];
50 /* Statistics bin for coding with fixed probability 0.5 */
51 unsigned char fixed_bin
[4];
52 } arith_entropy_decoder
;
54 typedef arith_entropy_decoder
*arith_entropy_ptr
;
56 /* The following two definitions specify the allocation chunk size
57 * for the statistics area.
58 * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
59 * 49 statistics bins for DC, and 245 statistics bins for AC coding.
61 * We use a compact representation with 1 byte per statistics bin,
62 * thus the numbers directly represent byte sizes.
63 * This 1 byte per statistics bin contains the meaning of the MPS
64 * (more probable symbol) in the highest bit (mask 0x80), and the
65 * index into the probability estimation state machine table
66 * in the lower bits (mask 0x7F).
69 #define DC_STAT_BINS 64
70 #define AC_STAT_BINS 256
74 get_byte(j_decompress_ptr cinfo
)
75 /* Read next input byte; we do not support suspension in this module. */
77 struct jpeg_source_mgr
*src
= cinfo
->src
;
79 if (src
->bytes_in_buffer
== 0)
80 if (!(*src
->fill_input_buffer
) (cinfo
))
81 ERREXIT(cinfo
, JERR_CANT_SUSPEND
);
82 src
->bytes_in_buffer
--;
83 return *src
->next_input_byte
++;
88 * The core arithmetic decoding routine (common in JPEG and JBIG).
89 * This needs to go as fast as possible.
90 * Machine-dependent optimization facilities
91 * are not utilized in this portable implementation.
92 * However, this code should be fairly efficient and
93 * may be a good base for further optimizations anyway.
95 * Return value is 0 or 1 (binary decision).
97 * Note: I've changed the handling of the code base & bit
98 * buffer register C compared to other implementations
99 * based on the standards layout & procedures.
100 * While it also contains both the actual base of the
101 * coding interval (16 bits) and the next-bits buffer,
102 * the cut-point between these two parts is floating
103 * (instead of fixed) with the bit shift counter CT.
104 * Thus, we also need only one (variable instead of
105 * fixed size) shift for the LPS/MPS decision, and
106 * we can do away with any renormalization update
107 * of C (except for new data insertion, of course).
109 * I've also introduced a new scheme for accessing
110 * the probability estimation state machine table,
111 * derived from Markus Kuhn's JBIG implementation.
115 arith_decode(j_decompress_ptr cinfo
, unsigned char *st
)
117 register arith_entropy_ptr e
= (arith_entropy_ptr
)cinfo
->entropy
;
118 register unsigned char nl
, nm
;
119 register JLONG qe
, temp
;
120 register int sv
, data
;
122 /* Renormalization & data input per section D.2.6 */
123 while (e
->a
< 0x8000L
) {
125 /* Need to fetch next data byte */
126 if (cinfo
->unread_marker
)
127 data
= 0; /* stuff zero data */
129 data
= get_byte(cinfo
); /* read next input byte */
130 if (data
== 0xFF) { /* zero stuff or marker code */
131 do data
= get_byte(cinfo
);
132 while (data
== 0xFF); /* swallow extra 0xFF bytes */
134 data
= 0xFF; /* discard stuffed zero byte */
136 /* Note: Different from the Huffman decoder, hitting
137 * a marker while processing the compressed data
138 * segment is legal in arithmetic coding.
139 * The convention is to supply zero data
140 * then until decoding is complete.
142 cinfo
->unread_marker
= data
;
147 e
->c
= (e
->c
<< 8) | data
; /* insert data into C register */
148 if ((e
->ct
+= 8) < 0) /* update bit shift counter */
149 /* Need more initial bytes */
151 /* Got 2 initial bytes -> re-init A and exit loop */
152 e
->a
= 0x8000L
; /* => e->a = 0x10000L after loop exit */
157 /* Fetch values from our compact representation of Table D.2:
158 * Qe values and probability estimation state machine
161 qe
= jpeg_aritab
[sv
& 0x7F]; /* => Qe_Value */
162 nl
= qe
& 0xFF; qe
>>= 8; /* Next_Index_LPS + Switch_MPS */
163 nm
= qe
& 0xFF; qe
>>= 8; /* Next_Index_MPS */
165 /* Decode & estimation procedures per sections D.2.4 & D.2.5 */
171 /* Conditional LPS (less probable symbol) exchange */
174 *st
= (sv
& 0x80) ^ nm
; /* Estimate_after_MPS */
177 *st
= (sv
& 0x80) ^ nl
; /* Estimate_after_LPS */
178 sv
^= 0x80; /* Exchange LPS/MPS */
180 } else if (e
->a
< 0x8000L
) {
181 /* Conditional MPS (more probable symbol) exchange */
183 *st
= (sv
& 0x80) ^ nl
; /* Estimate_after_LPS */
184 sv
^= 0x80; /* Exchange LPS/MPS */
186 *st
= (sv
& 0x80) ^ nm
; /* Estimate_after_MPS */
195 * Check for a restart marker & resynchronize decoder.
199 process_restart(j_decompress_ptr cinfo
)
201 arith_entropy_ptr entropy
= (arith_entropy_ptr
)cinfo
->entropy
;
203 jpeg_component_info
*compptr
;
205 /* Advance past the RSTn marker */
206 if (!(*cinfo
->marker
->read_restart_marker
) (cinfo
))
207 ERREXIT(cinfo
, JERR_CANT_SUSPEND
);
209 /* Re-initialize statistics areas */
210 for (ci
= 0; ci
< cinfo
->comps_in_scan
; ci
++) {
211 compptr
= cinfo
->cur_comp_info
[ci
];
212 if (!cinfo
->progressive_mode
|| (cinfo
->Ss
== 0 && cinfo
->Ah
== 0)) {
213 memset(entropy
->dc_stats
[compptr
->dc_tbl_no
], 0, DC_STAT_BINS
);
214 /* Reset DC predictions to 0 */
215 entropy
->last_dc_val
[ci
] = 0;
216 entropy
->dc_context
[ci
] = 0;
218 if (!cinfo
->progressive_mode
|| cinfo
->Ss
) {
219 memset(entropy
->ac_stats
[compptr
->ac_tbl_no
], 0, AC_STAT_BINS
);
223 /* Reset arithmetic decoding variables */
226 entropy
->ct
= -16; /* force reading 2 initial bytes to fill C */
228 /* Reset restart counter */
229 entropy
->restarts_to_go
= cinfo
->restart_interval
;
234 * Arithmetic MCU decoding.
235 * Each of these routines decodes and returns one MCU's worth of
236 * arithmetic-compressed coefficients.
237 * The coefficients are reordered from zigzag order into natural array order,
238 * but are not dequantized.
240 * The i'th block of the MCU is stored into the block pointed to by
241 * MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
245 * MCU decoding for DC initial scan (either spectral selection,
246 * or first pass of successive approximation).
250 decode_mcu_DC_first(j_decompress_ptr cinfo
, JBLOCKROW
*MCU_data
)
252 arith_entropy_ptr entropy
= (arith_entropy_ptr
)cinfo
->entropy
;
255 int blkn
, ci
, tbl
, sign
;
258 /* Process restart marker if needed */
259 if (cinfo
->restart_interval
) {
260 if (entropy
->restarts_to_go
== 0)
261 process_restart(cinfo
);
262 entropy
->restarts_to_go
--;
265 if (entropy
->ct
== -1) return TRUE
; /* if error do nothing */
267 /* Outer loop handles each block in the MCU */
269 for (blkn
= 0; blkn
< cinfo
->blocks_in_MCU
; blkn
++) {
270 block
= MCU_data
[blkn
];
271 ci
= cinfo
->MCU_membership
[blkn
];
272 tbl
= cinfo
->cur_comp_info
[ci
]->dc_tbl_no
;
274 /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
276 /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
277 st
= entropy
->dc_stats
[tbl
] + entropy
->dc_context
[ci
];
279 /* Figure F.19: Decode_DC_DIFF */
280 if (arith_decode(cinfo
, st
) == 0)
281 entropy
->dc_context
[ci
] = 0;
283 /* Figure F.21: Decoding nonzero value v */
284 /* Figure F.22: Decoding the sign of v */
285 sign
= arith_decode(cinfo
, st
+ 1);
287 /* Figure F.23: Decoding the magnitude category of v */
288 if ((m
= arith_decode(cinfo
, st
)) != 0) {
289 st
= entropy
->dc_stats
[tbl
] + 20; /* Table F.4: X1 = 20 */
290 while (arith_decode(cinfo
, st
)) {
291 if ((m
<<= 1) == 0x8000) {
292 WARNMS(cinfo
, JWRN_ARITH_BAD_CODE
);
293 entropy
->ct
= -1; /* magnitude overflow */
299 /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
300 if (m
< (int)((1L << cinfo
->arith_dc_L
[tbl
]) >> 1))
301 entropy
->dc_context
[ci
] = 0; /* zero diff category */
302 else if (m
> (int)((1L << cinfo
->arith_dc_U
[tbl
]) >> 1))
303 entropy
->dc_context
[ci
] = 12 + (sign
* 4); /* large diff category */
305 entropy
->dc_context
[ci
] = 4 + (sign
* 4); /* small diff category */
307 /* Figure F.24: Decoding the magnitude bit pattern of v */
310 if (arith_decode(cinfo
, st
)) v
|= m
;
311 v
+= 1; if (sign
) v
= -v
;
312 entropy
->last_dc_val
[ci
] = (entropy
->last_dc_val
[ci
] + v
) & 0xffff;
315 /* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */
316 (*block
)[0] = (JCOEF
)LEFT_SHIFT(entropy
->last_dc_val
[ci
], cinfo
->Al
);
324 * MCU decoding for AC initial scan (either spectral selection,
325 * or first pass of successive approximation).
329 decode_mcu_AC_first(j_decompress_ptr cinfo
, JBLOCKROW
*MCU_data
)
331 arith_entropy_ptr entropy
= (arith_entropy_ptr
)cinfo
->entropy
;
337 /* Process restart marker if needed */
338 if (cinfo
->restart_interval
) {
339 if (entropy
->restarts_to_go
== 0)
340 process_restart(cinfo
);
341 entropy
->restarts_to_go
--;
344 if (entropy
->ct
== -1) return TRUE
; /* if error do nothing */
346 /* There is always only one block per MCU */
348 tbl
= cinfo
->cur_comp_info
[0]->ac_tbl_no
;
350 /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
352 /* Figure F.20: Decode_AC_coefficients */
353 for (k
= cinfo
->Ss
; k
<= cinfo
->Se
; k
++) {
354 st
= entropy
->ac_stats
[tbl
] + 3 * (k
- 1);
355 if (arith_decode(cinfo
, st
)) break; /* EOB flag */
356 while (arith_decode(cinfo
, st
+ 1) == 0) {
359 WARNMS(cinfo
, JWRN_ARITH_BAD_CODE
);
360 entropy
->ct
= -1; /* spectral overflow */
364 /* Figure F.21: Decoding nonzero value v */
365 /* Figure F.22: Decoding the sign of v */
366 sign
= arith_decode(cinfo
, entropy
->fixed_bin
);
368 /* Figure F.23: Decoding the magnitude category of v */
369 if ((m
= arith_decode(cinfo
, st
)) != 0) {
370 if (arith_decode(cinfo
, st
)) {
372 st
= entropy
->ac_stats
[tbl
] +
373 (k
<= cinfo
->arith_ac_K
[tbl
] ? 189 : 217);
374 while (arith_decode(cinfo
, st
)) {
375 if ((m
<<= 1) == 0x8000) {
376 WARNMS(cinfo
, JWRN_ARITH_BAD_CODE
);
377 entropy
->ct
= -1; /* magnitude overflow */
385 /* Figure F.24: Decoding the magnitude bit pattern of v */
388 if (arith_decode(cinfo
, st
)) v
|= m
;
389 v
+= 1; if (sign
) v
= -v
;
390 /* Scale and output coefficient in natural (dezigzagged) order */
391 (*block
)[jpeg_natural_order
[k
]] = (JCOEF
)((unsigned)v
<< cinfo
->Al
);
399 * MCU decoding for DC successive approximation refinement scan.
403 decode_mcu_DC_refine(j_decompress_ptr cinfo
, JBLOCKROW
*MCU_data
)
405 arith_entropy_ptr entropy
= (arith_entropy_ptr
)cinfo
->entropy
;
409 /* Process restart marker if needed */
410 if (cinfo
->restart_interval
) {
411 if (entropy
->restarts_to_go
== 0)
412 process_restart(cinfo
);
413 entropy
->restarts_to_go
--;
416 st
= entropy
->fixed_bin
; /* use fixed probability estimation */
417 p1
= 1 << cinfo
->Al
; /* 1 in the bit position being coded */
419 /* Outer loop handles each block in the MCU */
421 for (blkn
= 0; blkn
< cinfo
->blocks_in_MCU
; blkn
++) {
422 /* Encoded data is simply the next bit of the two's-complement DC value */
423 if (arith_decode(cinfo
, st
))
424 MCU_data
[blkn
][0][0] |= p1
;
432 * MCU decoding for AC successive approximation refinement scan.
436 decode_mcu_AC_refine(j_decompress_ptr cinfo
, JBLOCKROW
*MCU_data
)
438 arith_entropy_ptr entropy
= (arith_entropy_ptr
)cinfo
->entropy
;
445 /* Process restart marker if needed */
446 if (cinfo
->restart_interval
) {
447 if (entropy
->restarts_to_go
== 0)
448 process_restart(cinfo
);
449 entropy
->restarts_to_go
--;
452 if (entropy
->ct
== -1) return TRUE
; /* if error do nothing */
454 /* There is always only one block per MCU */
456 tbl
= cinfo
->cur_comp_info
[0]->ac_tbl_no
;
458 p1
= 1 << cinfo
->Al
; /* 1 in the bit position being coded */
459 m1
= (NEG_1
) << cinfo
->Al
; /* -1 in the bit position being coded */
461 /* Establish EOBx (previous stage end-of-block) index */
462 for (kex
= cinfo
->Se
; kex
> 0; kex
--)
463 if ((*block
)[jpeg_natural_order
[kex
]]) break;
465 for (k
= cinfo
->Ss
; k
<= cinfo
->Se
; k
++) {
466 st
= entropy
->ac_stats
[tbl
] + 3 * (k
- 1);
468 if (arith_decode(cinfo
, st
)) break; /* EOB flag */
470 thiscoef
= *block
+ jpeg_natural_order
[k
];
471 if (*thiscoef
) { /* previously nonzero coef */
472 if (arith_decode(cinfo
, st
+ 2)) {
474 *thiscoef
+= (JCOEF
)m1
;
476 *thiscoef
+= (JCOEF
)p1
;
480 if (arith_decode(cinfo
, st
+ 1)) { /* newly nonzero coef */
481 if (arith_decode(cinfo
, entropy
->fixed_bin
))
482 *thiscoef
= (JCOEF
)m1
;
484 *thiscoef
= (JCOEF
)p1
;
489 WARNMS(cinfo
, JWRN_ARITH_BAD_CODE
);
490 entropy
->ct
= -1; /* spectral overflow */
501 * Decode one MCU's worth of arithmetic-compressed coefficients.
505 decode_mcu(j_decompress_ptr cinfo
, JBLOCKROW
*MCU_data
)
507 arith_entropy_ptr entropy
= (arith_entropy_ptr
)cinfo
->entropy
;
508 jpeg_component_info
*compptr
;
511 int blkn
, ci
, tbl
, sign
, k
;
514 /* Process restart marker if needed */
515 if (cinfo
->restart_interval
) {
516 if (entropy
->restarts_to_go
== 0)
517 process_restart(cinfo
);
518 entropy
->restarts_to_go
--;
521 if (entropy
->ct
== -1) return TRUE
; /* if error do nothing */
523 /* Outer loop handles each block in the MCU */
525 for (blkn
= 0; blkn
< cinfo
->blocks_in_MCU
; blkn
++) {
526 block
= MCU_data
? MCU_data
[blkn
] : NULL
;
527 ci
= cinfo
->MCU_membership
[blkn
];
528 compptr
= cinfo
->cur_comp_info
[ci
];
530 /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
532 tbl
= compptr
->dc_tbl_no
;
534 /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
535 st
= entropy
->dc_stats
[tbl
] + entropy
->dc_context
[ci
];
537 /* Figure F.19: Decode_DC_DIFF */
538 if (arith_decode(cinfo
, st
) == 0)
539 entropy
->dc_context
[ci
] = 0;
541 /* Figure F.21: Decoding nonzero value v */
542 /* Figure F.22: Decoding the sign of v */
543 sign
= arith_decode(cinfo
, st
+ 1);
545 /* Figure F.23: Decoding the magnitude category of v */
546 if ((m
= arith_decode(cinfo
, st
)) != 0) {
547 st
= entropy
->dc_stats
[tbl
] + 20; /* Table F.4: X1 = 20 */
548 while (arith_decode(cinfo
, st
)) {
549 if ((m
<<= 1) == 0x8000) {
550 WARNMS(cinfo
, JWRN_ARITH_BAD_CODE
);
551 entropy
->ct
= -1; /* magnitude overflow */
557 /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
558 if (m
< (int)((1L << cinfo
->arith_dc_L
[tbl
]) >> 1))
559 entropy
->dc_context
[ci
] = 0; /* zero diff category */
560 else if (m
> (int)((1L << cinfo
->arith_dc_U
[tbl
]) >> 1))
561 entropy
->dc_context
[ci
] = 12 + (sign
* 4); /* large diff category */
563 entropy
->dc_context
[ci
] = 4 + (sign
* 4); /* small diff category */
565 /* Figure F.24: Decoding the magnitude bit pattern of v */
568 if (arith_decode(cinfo
, st
)) v
|= m
;
569 v
+= 1; if (sign
) v
= -v
;
570 entropy
->last_dc_val
[ci
] = (entropy
->last_dc_val
[ci
] + v
) & 0xffff;
574 (*block
)[0] = (JCOEF
)entropy
->last_dc_val
[ci
];
576 /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
578 tbl
= compptr
->ac_tbl_no
;
580 /* Figure F.20: Decode_AC_coefficients */
581 for (k
= 1; k
<= DCTSIZE2
- 1; k
++) {
582 st
= entropy
->ac_stats
[tbl
] + 3 * (k
- 1);
583 if (arith_decode(cinfo
, st
)) break; /* EOB flag */
584 while (arith_decode(cinfo
, st
+ 1) == 0) {
586 if (k
> DCTSIZE2
- 1) {
587 WARNMS(cinfo
, JWRN_ARITH_BAD_CODE
);
588 entropy
->ct
= -1; /* spectral overflow */
592 /* Figure F.21: Decoding nonzero value v */
593 /* Figure F.22: Decoding the sign of v */
594 sign
= arith_decode(cinfo
, entropy
->fixed_bin
);
596 /* Figure F.23: Decoding the magnitude category of v */
597 if ((m
= arith_decode(cinfo
, st
)) != 0) {
598 if (arith_decode(cinfo
, st
)) {
600 st
= entropy
->ac_stats
[tbl
] +
601 (k
<= cinfo
->arith_ac_K
[tbl
] ? 189 : 217);
602 while (arith_decode(cinfo
, st
)) {
603 if ((m
<<= 1) == 0x8000) {
604 WARNMS(cinfo
, JWRN_ARITH_BAD_CODE
);
605 entropy
->ct
= -1; /* magnitude overflow */
613 /* Figure F.24: Decoding the magnitude bit pattern of v */
616 if (arith_decode(cinfo
, st
)) v
|= m
;
617 v
+= 1; if (sign
) v
= -v
;
619 (*block
)[jpeg_natural_order
[k
]] = (JCOEF
)v
;
628 * Initialize for an arithmetic-compressed scan.
632 start_pass(j_decompress_ptr cinfo
)
634 arith_entropy_ptr entropy
= (arith_entropy_ptr
)cinfo
->entropy
;
636 jpeg_component_info
*compptr
;
638 if (cinfo
->progressive_mode
) {
639 /* Validate progressive scan parameters */
640 if (cinfo
->Ss
== 0) {
644 /* need not check Ss/Se < 0 since they came from unsigned bytes */
645 if (cinfo
->Se
< cinfo
->Ss
|| cinfo
->Se
> DCTSIZE2
- 1)
647 /* AC scans may have only one component */
648 if (cinfo
->comps_in_scan
!= 1)
651 if (cinfo
->Ah
!= 0) {
652 /* Successive approximation refinement scan: must have Al = Ah-1. */
653 if (cinfo
->Ah
- 1 != cinfo
->Al
)
656 if (cinfo
->Al
> 13) { /* need not check for < 0 */
658 ERREXIT4(cinfo
, JERR_BAD_PROGRESSION
,
659 cinfo
->Ss
, cinfo
->Se
, cinfo
->Ah
, cinfo
->Al
);
661 /* Update progression status, and verify that scan order is legal.
662 * Note that inter-scan inconsistencies are treated as warnings
663 * not fatal errors ... not clear if this is right way to behave.
665 for (ci
= 0; ci
< cinfo
->comps_in_scan
; ci
++) {
666 int coefi
, cindex
= cinfo
->cur_comp_info
[ci
]->component_index
;
667 int *coef_bit_ptr
= &cinfo
->coef_bits
[cindex
][0];
668 int *prev_coef_bit_ptr
=
669 &cinfo
->coef_bits
[cindex
+ cinfo
->num_components
][0];
670 if (cinfo
->Ss
&& coef_bit_ptr
[0] < 0) /* AC without prior DC scan */
671 WARNMS2(cinfo
, JWRN_BOGUS_PROGRESSION
, cindex
, 0);
672 for (coefi
= MIN(cinfo
->Ss
, 1); coefi
<= MAX(cinfo
->Se
, 9); coefi
++) {
673 if (cinfo
->input_scan_number
> 1)
674 prev_coef_bit_ptr
[coefi
] = coef_bit_ptr
[coefi
];
676 prev_coef_bit_ptr
[coefi
] = 0;
678 for (coefi
= cinfo
->Ss
; coefi
<= cinfo
->Se
; coefi
++) {
679 int expected
= (coef_bit_ptr
[coefi
] < 0) ? 0 : coef_bit_ptr
[coefi
];
680 if (cinfo
->Ah
!= expected
)
681 WARNMS2(cinfo
, JWRN_BOGUS_PROGRESSION
, cindex
, coefi
);
682 coef_bit_ptr
[coefi
] = cinfo
->Al
;
685 /* Select MCU decoding routine */
686 if (cinfo
->Ah
== 0) {
688 entropy
->pub
.decode_mcu
= decode_mcu_DC_first
;
690 entropy
->pub
.decode_mcu
= decode_mcu_AC_first
;
693 entropy
->pub
.decode_mcu
= decode_mcu_DC_refine
;
695 entropy
->pub
.decode_mcu
= decode_mcu_AC_refine
;
698 /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
699 * This ought to be an error condition, but we make it a warning.
701 if (cinfo
->Ss
!= 0 || cinfo
->Se
!= DCTSIZE2
- 1 ||
702 cinfo
->Ah
!= 0 || cinfo
->Al
!= 0)
703 WARNMS(cinfo
, JWRN_NOT_SEQUENTIAL
);
704 /* Select MCU decoding routine */
705 entropy
->pub
.decode_mcu
= decode_mcu
;
708 /* Allocate & initialize requested statistics areas */
709 for (ci
= 0; ci
< cinfo
->comps_in_scan
; ci
++) {
710 compptr
= cinfo
->cur_comp_info
[ci
];
711 if (!cinfo
->progressive_mode
|| (cinfo
->Ss
== 0 && cinfo
->Ah
== 0)) {
712 tbl
= compptr
->dc_tbl_no
;
713 if (tbl
< 0 || tbl
>= NUM_ARITH_TBLS
)
714 ERREXIT1(cinfo
, JERR_NO_ARITH_TABLE
, tbl
);
715 if (entropy
->dc_stats
[tbl
] == NULL
)
716 entropy
->dc_stats
[tbl
] = (unsigned char *)(*cinfo
->mem
->alloc_small
)
717 ((j_common_ptr
)cinfo
, JPOOL_IMAGE
, DC_STAT_BINS
);
718 memset(entropy
->dc_stats
[tbl
], 0, DC_STAT_BINS
);
719 /* Initialize DC predictions to 0 */
720 entropy
->last_dc_val
[ci
] = 0;
721 entropy
->dc_context
[ci
] = 0;
723 if (!cinfo
->progressive_mode
|| cinfo
->Ss
) {
724 tbl
= compptr
->ac_tbl_no
;
725 if (tbl
< 0 || tbl
>= NUM_ARITH_TBLS
)
726 ERREXIT1(cinfo
, JERR_NO_ARITH_TABLE
, tbl
);
727 if (entropy
->ac_stats
[tbl
] == NULL
)
728 entropy
->ac_stats
[tbl
] = (unsigned char *)(*cinfo
->mem
->alloc_small
)
729 ((j_common_ptr
)cinfo
, JPOOL_IMAGE
, AC_STAT_BINS
);
730 memset(entropy
->ac_stats
[tbl
], 0, AC_STAT_BINS
);
734 /* Initialize arithmetic decoding variables */
737 entropy
->ct
= -16; /* force reading 2 initial bytes to fill C */
738 entropy
->pub
.insufficient_data
= FALSE
;
740 /* Initialize restart counter */
741 entropy
->restarts_to_go
= cinfo
->restart_interval
;
746 * Module initialization routine for arithmetic entropy decoding.
750 jinit_arith_decoder(j_decompress_ptr cinfo
)
752 arith_entropy_ptr entropy
;
755 entropy
= (arith_entropy_ptr
)
756 (*cinfo
->mem
->alloc_small
) ((j_common_ptr
)cinfo
, JPOOL_IMAGE
,
757 sizeof(arith_entropy_decoder
));
758 cinfo
->entropy
= (struct jpeg_entropy_decoder
*)entropy
;
759 entropy
->pub
.start_pass
= start_pass
;
761 /* Mark tables unallocated */
762 for (i
= 0; i
< NUM_ARITH_TBLS
; i
++) {
763 entropy
->dc_stats
[i
] = NULL
;
764 entropy
->ac_stats
[i
] = NULL
;
767 /* Initialize index for fixed probability estimation */
768 entropy
->fixed_bin
[0] = 113;
770 if (cinfo
->progressive_mode
) {
771 /* Create progression status table */
772 int *coef_bit_ptr
, ci
;
773 cinfo
->coef_bits
= (int (*)[DCTSIZE2
])
774 (*cinfo
->mem
->alloc_small
) ((j_common_ptr
)cinfo
, JPOOL_IMAGE
,
775 cinfo
->num_components
* 2 * DCTSIZE2
*
777 coef_bit_ptr
= &cinfo
->coef_bits
[0][0];
778 for (ci
= 0; ci
< cinfo
->num_components
; ci
++)
779 for (i
= 0; i
< DCTSIZE2
; i
++)
780 *coef_bit_ptr
++ = -1;