1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
3 /* This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 /* A type-safe doubly-linked list class. */
10 * The classes LinkedList<T> and LinkedListElement<T> together form a
11 * convenient, type-safe doubly-linked list implementation.
13 * The class T which will be inserted into the linked list must inherit from
14 * LinkedListElement<T>. A given object may be in only one linked list at a
17 * A LinkedListElement automatically removes itself from the list upon
18 * destruction, and a LinkedList will fatally assert in debug builds if it's
19 * non-empty when it's destructed.
21 * For example, you might use LinkedList in a simple observer list class as
24 * class Observer : public LinkedListElement<Observer>
27 * void observe(char* aTopic) { ... }
30 * class ObserverContainer
33 * LinkedList<Observer> list;
36 * void addObserver(Observer* aObserver)
38 * // Will assert if |aObserver| is part of another list.
39 * list.insertBack(aObserver);
42 * void removeObserver(Observer* aObserver)
44 * // Will assert if |aObserver| is not part of some list.
46 * // Or, will assert if |aObserver| is not part of |list| specifically.
47 * // aObserver.removeFrom(list);
50 * void notifyObservers(char* aTopic)
52 * for (Observer* o = list.getFirst(); o != nullptr; o = o->getNext()) {
58 * Additionally, the class AutoCleanLinkedList<T> is a LinkedList<T> that will
59 * remove and delete each element still within itself upon destruction. Note
60 * that because each element is deleted, elements must have been allocated
64 #ifndef mozilla_LinkedList_h
65 #define mozilla_LinkedList_h
70 #include "mozilla/Assertions.h"
71 #include "mozilla/Attributes.h"
72 #include "mozilla/MemoryReporting.h"
73 #include "mozilla/RefPtr.h"
80 class LinkedListElement
;
85 * LinkedList supports refcounted elements using this adapter class. Clients
86 * using LinkedList<RefPtr<T>> will get a data structure that holds a strong
87 * reference to T as long as T is in the list.
90 struct LinkedListElementTraits
{
92 typedef const T
* ConstRawType
;
93 typedef T
* ClientType
;
94 typedef const T
* ConstClientType
;
96 // These static methods are called when an element is added to or removed from
97 // a linked list. It can be used to keep track ownership in lists that are
98 // supposed to own their elements. If elements are transferred from one list
99 // to another, no enter or exit calls happen since the elements still belong
101 static void enterList(LinkedListElement
<T
>* elt
) {}
102 static void exitList(LinkedListElement
<T
>* elt
) {}
104 // This method is called when AutoCleanLinkedList cleans itself
105 // during destruction. It can be used to call delete on elements if
106 // the list is the sole owner.
107 static void cleanElement(LinkedListElement
<T
>* elt
) { delete elt
->asT(); }
110 template <typename T
>
111 struct LinkedListElementTraits
<RefPtr
<T
>> {
113 typedef const T
* ConstRawType
;
114 typedef RefPtr
<T
> ClientType
;
115 typedef RefPtr
<const T
> ConstClientType
;
117 static void enterList(LinkedListElement
<RefPtr
<T
>>* elt
) {
118 elt
->asT()->AddRef();
120 static void exitList(LinkedListElement
<RefPtr
<T
>>* elt
) {
121 elt
->asT()->Release();
123 static void cleanElement(LinkedListElement
<RefPtr
<T
>>* elt
) {}
126 } /* namespace detail */
128 template <typename T
>
131 template <typename T
>
132 class LinkedListElement
{
133 typedef typename
detail::LinkedListElementTraits
<T
> Traits
;
134 typedef typename
Traits::RawType RawType
;
135 typedef typename
Traits::ConstRawType ConstRawType
;
136 typedef typename
Traits::ClientType ClientType
;
137 typedef typename
Traits::ConstClientType ConstClientType
;
140 * It's convenient that we return nullptr when getNext() or getPrevious()
141 * hits the end of the list, but doing so costs an extra word of storage in
142 * each linked list node (to keep track of whether |this| is the sentinel
143 * node) and a branch on this value in getNext/getPrevious.
145 * We could get rid of the extra word of storage by shoving the "is
146 * sentinel" bit into one of the pointers, although this would, of course,
147 * have performance implications of its own.
149 * But the goal here isn't to win an award for the fastest or slimmest
150 * linked list; rather, we want a *convenient* linked list. So we won't
151 * waste time guessing which micro-optimization strategy is best.
154 * Speaking of unnecessary work, it's worth addressing here why we wrote
155 * mozilla::LinkedList in the first place, instead of using stl::list.
157 * The key difference between mozilla::LinkedList and stl::list is that
158 * mozilla::LinkedList stores the mPrev/mNext pointers in the object itself,
159 * while stl::list stores the mPrev/mNext pointers in a list element which
160 * itself points to the object being stored.
162 * mozilla::LinkedList's approach makes it harder to store an object in more
163 * than one list. But the upside is that you can call next() / prev() /
164 * remove() directly on the object. With stl::list, you'd need to store a
165 * pointer to its iterator in the object in order to accomplish this. Not
166 * only would this waste space, but you'd have to remember to update that
167 * pointer every time you added or removed the object from a list.
169 * In-place, constant-time removal is a killer feature of doubly-linked
170 * lists, and supporting this painlessly was a key design criterion.
174 LinkedListElement
* mNext
;
175 LinkedListElement
* mPrev
;
176 const bool mIsSentinel
;
179 LinkedListElement() : mNext(this), mPrev(this), mIsSentinel(false) {}
182 * Moves |aOther| into |*this|. If |aOther| is already in a list, then
183 * |aOther| is removed from the list and replaced by |*this|.
185 LinkedListElement(LinkedListElement
<T
>&& aOther
)
186 : mIsSentinel(aOther
.mIsSentinel
) {
187 adjustLinkForMove(std::move(aOther
));
190 LinkedListElement
& operator=(LinkedListElement
<T
>&& aOther
) {
191 MOZ_ASSERT(mIsSentinel
== aOther
.mIsSentinel
, "Mismatch NodeKind!");
192 MOZ_ASSERT(!isInList(),
193 "Assigning to an element in a list messes up that list!");
194 adjustLinkForMove(std::move(aOther
));
198 ~LinkedListElement() {
199 if (!mIsSentinel
&& isInList()) {
205 * Get the next element in the list, or nullptr if this is the last element
208 RawType
getNext() { return mNext
->asT(); }
209 ConstRawType
getNext() const { return mNext
->asT(); }
212 * Get the previous element in the list, or nullptr if this is the first
213 * element in the list.
215 RawType
getPrevious() { return mPrev
->asT(); }
216 ConstRawType
getPrevious() const { return mPrev
->asT(); }
219 * Insert aElem after this element in the list. |this| must be part of a
220 * linked list when you call setNext(); otherwise, this method will assert.
222 void setNext(RawType aElem
) {
223 MOZ_ASSERT(isInList());
224 setNextUnsafe(aElem
);
228 * Insert aElem before this element in the list. |this| must be part of a
229 * linked list when you call setPrevious(); otherwise, this method will
232 void setPrevious(RawType aElem
) {
233 MOZ_ASSERT(isInList());
234 setPreviousUnsafe(aElem
);
238 * Remove this element from the list which contains it. If this element is
239 * not currently part of a linked list, this method asserts.
242 MOZ_ASSERT(isInList());
244 mPrev
->mNext
= mNext
;
245 mNext
->mPrev
= mPrev
;
249 Traits::exitList(this);
253 * Remove this element from the list containing it. Returns a pointer to the
254 * element that follows this element (before it was removed). This method
255 * asserts if the element does not belong to a list. Note: In a refcounted
256 * list, |this| may be destroyed.
258 RawType
removeAndGetNext() {
259 RawType r
= getNext();
265 * Remove this element from the list containing it. Returns a pointer to the
266 * previous element in the containing list (before the removal). This method
267 * asserts if the element does not belong to a list. Note: In a refcounted
268 * list, |this| may be destroyed.
270 RawType
removeAndGetPrevious() {
271 RawType r
= getPrevious();
277 * Identical to remove(), but also asserts in debug builds that this element
280 void removeFrom(const LinkedList
<T
>& aList
) {
281 aList
.assertContains(asT());
286 * Return true if |this| part is of a linked list, and false otherwise.
288 bool isInList() const {
289 MOZ_ASSERT((mNext
== this) == (mPrev
== this));
290 return mNext
!= this;
294 friend class LinkedList
<T
>;
295 friend struct detail::LinkedListElementTraits
<T
>;
297 enum class NodeKind
{ Normal
, Sentinel
};
299 explicit LinkedListElement(NodeKind nodeKind
)
300 : mNext(this), mPrev(this), mIsSentinel(nodeKind
== NodeKind::Sentinel
) {}
303 * Return |this| cast to T* if we're a normal node, or return nullptr if
304 * we're a sentinel node.
306 RawType
asT() { return mIsSentinel
? nullptr : static_cast<RawType
>(this); }
307 ConstRawType
asT() const {
308 return mIsSentinel
? nullptr : static_cast<ConstRawType
>(this);
312 * Insert aElem after this element, but don't check that this element is in
313 * the list. This is called by LinkedList::insertFront().
315 void setNextUnsafe(RawType aElem
) {
316 LinkedListElement
* listElem
= static_cast<LinkedListElement
*>(aElem
);
317 MOZ_RELEASE_ASSERT(!listElem
->isInList());
319 listElem
->mNext
= this->mNext
;
320 listElem
->mPrev
= this;
321 this->mNext
->mPrev
= listElem
;
322 this->mNext
= listElem
;
324 Traits::enterList(aElem
);
328 * Insert aElem before this element, but don't check that this element is in
329 * the list. This is called by LinkedList::insertBack().
331 void setPreviousUnsafe(RawType aElem
) {
332 LinkedListElement
<T
>* listElem
= static_cast<LinkedListElement
<T
>*>(aElem
);
333 MOZ_RELEASE_ASSERT(!listElem
->isInList());
335 listElem
->mNext
= this;
336 listElem
->mPrev
= this->mPrev
;
337 this->mPrev
->mNext
= listElem
;
338 this->mPrev
= listElem
;
340 Traits::enterList(aElem
);
344 * Transfers the elements [aBegin, aEnd) before the "this" list element.
346 void transferBeforeUnsafe(LinkedListElement
<T
>& aBegin
,
347 LinkedListElement
<T
>& aEnd
) {
348 MOZ_RELEASE_ASSERT(!aBegin
.mIsSentinel
);
349 if (!aBegin
.isInList() || !aEnd
.isInList()) {
353 auto otherPrev
= aBegin
.mPrev
;
355 aBegin
.mPrev
= this->mPrev
;
356 this->mPrev
->mNext
= &aBegin
;
357 this->mPrev
= aEnd
.mPrev
;
358 aEnd
.mPrev
->mNext
= this;
360 // Patch the gap in the source list
361 otherPrev
->mNext
= &aEnd
;
362 aEnd
.mPrev
= otherPrev
;
366 * Adjust mNext and mPrev for implementing move constructor and move
369 void adjustLinkForMove(LinkedListElement
<T
>&& aOther
) {
370 if (!aOther
.isInList()) {
377 Traits::enterList(this);
380 MOZ_ASSERT(aOther
.mNext
->mPrev
== &aOther
);
381 MOZ_ASSERT(aOther
.mPrev
->mNext
== &aOther
);
384 * Initialize |this| with |aOther|'s mPrev/mNext pointers, and adjust those
385 * element to point to this one.
387 mNext
= aOther
.mNext
;
388 mPrev
= aOther
.mPrev
;
394 * Adjust |aOther| so it doesn't think it's in a list. This makes it
395 * safely destructable.
397 aOther
.mNext
= &aOther
;
398 aOther
.mPrev
= &aOther
;
401 Traits::exitList(&aOther
);
405 LinkedListElement
& operator=(const LinkedListElement
<T
>& aOther
) = delete;
406 LinkedListElement(const LinkedListElement
<T
>& aOther
) = delete;
409 template <typename T
>
412 typedef typename
detail::LinkedListElementTraits
<T
> Traits
;
413 typedef typename
Traits::RawType RawType
;
414 typedef typename
Traits::ConstRawType ConstRawType
;
415 typedef typename
Traits::ClientType ClientType
;
416 typedef typename
Traits::ConstClientType ConstClientType
;
417 typedef LinkedListElement
<T
>* ElementType
;
418 typedef const LinkedListElement
<T
>* ConstElementType
;
420 LinkedListElement
<T
> sentinel
;
423 template <typename Type
, typename Element
>
428 using iterator_category
= std::forward_iterator_tag
;
429 using value_type
= T
;
430 using difference_type
= std::ptrdiff_t;
432 using reference
= T
&;
434 explicit Iterator(Type aCurrent
) : mCurrent(aCurrent
) {}
436 Type
operator*() const { return mCurrent
; }
438 const Iterator
& operator++() {
439 mCurrent
= static_cast<Element
>(mCurrent
)->getNext();
443 bool operator!=(const Iterator
& aOther
) const {
444 return mCurrent
!= aOther
.mCurrent
;
448 LinkedList() : sentinel(LinkedListElement
<T
>::NodeKind::Sentinel
) {}
450 LinkedList(LinkedList
<T
>&& aOther
) : sentinel(std::move(aOther
.sentinel
)) {}
452 LinkedList
& operator=(LinkedList
<T
>&& aOther
) {
453 MOZ_ASSERT(isEmpty(),
454 "Assigning to a non-empty list leaks elements in that list!");
455 sentinel
= std::move(aOther
.sentinel
);
462 MOZ_CRASH_UNSAFE_PRINTF(
463 "%s has a buggy user: "
464 "it should have removed all this list's elements before "
465 "the list's destruction",
466 __PRETTY_FUNCTION__
);
472 * Add aElem to the front of the list.
474 void insertFront(RawType aElem
) {
475 /* Bypass setNext()'s this->isInList() assertion. */
476 sentinel
.setNextUnsafe(aElem
);
480 * Add aElem to the back of the list.
482 void insertBack(RawType aElem
) { sentinel
.setPreviousUnsafe(aElem
); }
485 * Move all elements from another list to the back
487 void extendBack(LinkedList
<T
>&& aOther
) {
488 MOZ_RELEASE_ASSERT(this != &aOther
);
489 if (aOther
.isEmpty()) {
492 sentinel
.transferBeforeUnsafe(**aOther
.begin(), aOther
.sentinel
);
496 * Move elements from another list to the specified position
498 void splice(size_t aDestinationPos
, LinkedList
<T
>& aListFrom
,
499 size_t aSourceStart
, size_t aSourceLen
) {
500 MOZ_RELEASE_ASSERT(this != &aListFrom
);
501 if (aListFrom
.isEmpty() || !aSourceLen
) {
505 const auto safeForward
= [](LinkedList
<T
>& aList
,
506 LinkedListElement
<T
>& aBegin
,
507 size_t aPos
) -> LinkedListElement
<T
>& {
508 auto* iter
= &aBegin
;
509 for (size_t i
= 0; i
< aPos
; ++i
, (iter
= iter
->mNext
)) {
510 if (iter
->mIsSentinel
) {
518 safeForward(aListFrom
, *aListFrom
.sentinel
.mNext
, aSourceStart
);
519 if (sourceBegin
.mIsSentinel
) {
522 auto& sourceEnd
= safeForward(aListFrom
, sourceBegin
, aSourceLen
);
523 auto& destination
= safeForward(*this, *sentinel
.mNext
, aDestinationPos
);
525 destination
.transferBeforeUnsafe(sourceBegin
, sourceEnd
);
529 * Get the first element of the list, or nullptr if the list is empty.
531 RawType
getFirst() { return sentinel
.getNext(); }
532 ConstRawType
getFirst() const { return sentinel
.getNext(); }
535 * Get the last element of the list, or nullptr if the list is empty.
537 RawType
getLast() { return sentinel
.getPrevious(); }
538 ConstRawType
getLast() const { return sentinel
.getPrevious(); }
541 * Get and remove the first element of the list. If the list is empty,
544 ClientType
popFirst() {
545 ClientType ret
= sentinel
.getNext();
547 static_cast<LinkedListElement
<T
>*>(RawType(ret
))->remove();
553 * Get and remove the last element of the list. If the list is empty,
556 ClientType
popLast() {
557 ClientType ret
= sentinel
.getPrevious();
559 static_cast<LinkedListElement
<T
>*>(RawType(ret
))->remove();
565 * Return true if the list is empty, or false otherwise.
567 bool isEmpty() const { return !sentinel
.isInList(); }
570 * Returns whether the given element is in the list.
572 bool contains(ConstRawType aElm
) const {
573 return std::find(begin(), end(), aElm
) != end();
577 * Remove all the elements from the list.
579 * This runs in time linear to the list's length, because we have to mark
580 * each element as not in the list.
588 * Return the length of elements in the list.
590 size_t length() const { return std::distance(begin(), end()); }
593 * Allow range-based iteration:
595 * for (MyElementType* elt : myList) { ... }
597 Iterator
<RawType
, ElementType
> begin() {
598 return Iterator
<RawType
, ElementType
>(getFirst());
600 Iterator
<ConstRawType
, ConstElementType
> begin() const {
601 return Iterator
<ConstRawType
, ConstElementType
>(getFirst());
603 Iterator
<RawType
, ElementType
> end() {
604 return Iterator
<RawType
, ElementType
>(nullptr);
606 Iterator
<ConstRawType
, ConstElementType
> end() const {
607 return Iterator
<ConstRawType
, ConstElementType
>(nullptr);
611 * Measures the memory consumption of the list excluding |this|. Note that
612 * it only measures the list elements themselves. If the list elements
613 * contain pointers to other memory blocks, those blocks must be measured
614 * separately during a subsequent iteration over the list.
616 size_t sizeOfExcludingThis(MallocSizeOf aMallocSizeOf
) const {
618 ConstRawType t
= getFirst();
620 n
+= aMallocSizeOf(t
);
621 t
= static_cast<const LinkedListElement
<T
>*>(t
)->getNext();
627 * Like sizeOfExcludingThis(), but measures |this| as well.
629 size_t sizeOfIncludingThis(MallocSizeOf aMallocSizeOf
) const {
630 return aMallocSizeOf(this) + sizeOfExcludingThis(aMallocSizeOf
);
634 * In a debug build, make sure that the list is sane (no cycles, consistent
635 * mNext/mPrev pointers, only one sentinel). Has no effect in release builds.
637 void debugAssertIsSane() const {
639 const LinkedListElement
<T
>* slow
;
640 const LinkedListElement
<T
>* fast1
;
641 const LinkedListElement
<T
>* fast2
;
644 * Check for cycles in the forward singly-linked list using the
645 * tortoise/hare algorithm.
647 for (slow
= sentinel
.mNext
, fast1
= sentinel
.mNext
->mNext
,
648 fast2
= sentinel
.mNext
->mNext
->mNext
;
649 slow
!= &sentinel
&& fast1
!= &sentinel
&& fast2
!= &sentinel
;
650 slow
= slow
->mNext
, fast1
= fast2
->mNext
, fast2
= fast1
->mNext
) {
651 MOZ_ASSERT(slow
!= fast1
);
652 MOZ_ASSERT(slow
!= fast2
);
655 /* Check for cycles in the backward singly-linked list. */
656 for (slow
= sentinel
.mPrev
, fast1
= sentinel
.mPrev
->mPrev
,
657 fast2
= sentinel
.mPrev
->mPrev
->mPrev
;
658 slow
!= &sentinel
&& fast1
!= &sentinel
&& fast2
!= &sentinel
;
659 slow
= slow
->mPrev
, fast1
= fast2
->mPrev
, fast2
= fast1
->mPrev
) {
660 MOZ_ASSERT(slow
!= fast1
);
661 MOZ_ASSERT(slow
!= fast2
);
665 * Check that |sentinel| is the only node in the list with
666 * mIsSentinel == true.
668 for (const LinkedListElement
<T
>* elem
= sentinel
.mNext
; elem
!= &sentinel
;
669 elem
= elem
->mNext
) {
670 MOZ_ASSERT(!elem
->mIsSentinel
);
673 /* Check that the mNext/mPrev pointers match up. */
674 const LinkedListElement
<T
>* prev
= &sentinel
;
675 const LinkedListElement
<T
>* cur
= sentinel
.mNext
;
677 MOZ_ASSERT(cur
->mPrev
== prev
);
678 MOZ_ASSERT(prev
->mNext
== cur
);
682 } while (cur
!= &sentinel
);
683 # endif /* ifdef DEBUG */
687 friend class LinkedListElement
<T
>;
689 void assertContains(const RawType aValue
) const {
691 for (ConstRawType elem
= getFirst(); elem
; elem
= elem
->getNext()) {
692 if (elem
== aValue
) {
696 MOZ_CRASH("element wasn't found in this list!");
700 LinkedList
& operator=(const LinkedList
<T
>& aOther
) = delete;
701 LinkedList(const LinkedList
<T
>& aOther
) = delete;
704 template <typename T
>
705 inline void ImplCycleCollectionUnlink(LinkedList
<RefPtr
<T
>>& aField
) {
709 template <typename T
>
710 inline void ImplCycleCollectionTraverse(
711 nsCycleCollectionTraversalCallback
& aCallback
,
712 LinkedList
<RefPtr
<T
>>& aField
, const char* aName
, uint32_t aFlags
= 0) {
713 typedef typename
detail::LinkedListElementTraits
<T
> Traits
;
714 typedef typename
Traits::RawType RawType
;
715 for (RawType element
: aField
) {
716 // RefPtr is stored as a raw pointer in LinkedList.
717 // So instead of creating a new RefPtr from the raw
718 // pointer (which is not allowed), we simply call
719 // CycleCollectionNoteChild against the raw pointer
720 CycleCollectionNoteChild(aCallback
, element
, aName
, aFlags
);
724 template <typename T
>
725 class AutoCleanLinkedList
: public LinkedList
<T
> {
727 using Traits
= detail::LinkedListElementTraits
<T
>;
728 using ClientType
= typename
detail::LinkedListElementTraits
<T
>::ClientType
;
731 AutoCleanLinkedList() = default;
732 AutoCleanLinkedList(AutoCleanLinkedList
&&) = default;
733 ~AutoCleanLinkedList() { clear(); }
735 AutoCleanLinkedList
& operator=(AutoCleanLinkedList
&& aOther
) = default;
738 while (ClientType element
= this->popFirst()) {
739 Traits::cleanElement(element
);
744 } /* namespace mozilla */
746 #endif /* __cplusplus */
748 #endif /* mozilla_LinkedList_h */