1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
3 /* This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 //---------------------------------------------------------------------------
9 //---------------------------------------------------------------------------
11 // This file defines HashMap<Key, Value> and HashSet<T>, hash tables that are
12 // fast and have a nice API.
14 // Both hash tables have two optional template parameters.
16 // - HashPolicy. This defines the operations for hashing and matching keys. The
17 // default HashPolicy is appropriate when both of the following two
18 // conditions are true.
20 // - The key type stored in the table (|Key| for |HashMap<Key, Value>|, |T|
21 // for |HashSet<T>|) is an integer, pointer, UniquePtr, float, or double.
23 // - The type used for lookups (|Lookup|) is the same as the key type. This
24 // is usually the case, but not always.
26 // There is also a |CStringHasher| policy for |char*| keys. If your keys
27 // don't match any of the above cases, you must provide your own hash policy;
28 // see the "Hash Policy" section below.
30 // - AllocPolicy. This defines how allocations are done by the table.
32 // - |MallocAllocPolicy| is the default and is usually appropriate; note that
33 // operations (such as insertions) that might cause allocations are
34 // fallible and must be checked for OOM. These checks are enforced by the
35 // use of MOZ_MUST_USE.
37 // - |InfallibleAllocPolicy| is another possibility; it allows the
38 // abovementioned OOM checks to be done with MOZ_ALWAYS_TRUE().
40 // Note that entry storage allocation is lazy, and not done until the first
41 // lookupForAdd(), put(), or putNew() is performed.
43 // See AllocPolicy.h for more details.
45 // Documentation on how to use HashMap and HashSet, including examples, is
46 // present within those classes. Search for "class HashMap" and "class
49 // Both HashMap and HashSet are implemented on top of a third class, HashTable.
50 // You only need to look at HashTable if you want to understand the
53 // How does mozilla::HashTable (this file) compare with PLDHashTable (and its
54 // subclasses, such as nsTHashtable)?
56 // - mozilla::HashTable is a lot faster, largely because it uses templates
57 // throughout *and* inlines everything. PLDHashTable inlines operations much
58 // less aggressively, and also uses "virtual ops" for operations like hashing
59 // and matching entries that require function calls.
61 // - Correspondingly, mozilla::HashTable use is likely to increase executable
62 // size much more than PLDHashTable.
64 // - mozilla::HashTable has a nicer API, with a proper HashSet vs. HashMap
67 // - mozilla::HashTable requires more explicit OOM checking. As mentioned
68 // above, the use of |InfallibleAllocPolicy| can simplify things.
70 // - mozilla::HashTable has a default capacity on creation of 32 and a minimum
71 // capacity of 4. PLDHashTable has a default capacity on creation of 8 and a
72 // minimum capacity of 8.
74 #ifndef mozilla_HashTable_h
75 #define mozilla_HashTable_h
77 #include "mozilla/AllocPolicy.h"
78 #include "mozilla/Assertions.h"
79 #include "mozilla/Attributes.h"
80 #include "mozilla/Casting.h"
81 #include "mozilla/HashFunctions.h"
82 #include "mozilla/MathAlgorithms.h"
83 #include "mozilla/MemoryChecking.h"
84 #include "mozilla/MemoryReporting.h"
85 #include "mozilla/Move.h"
86 #include "mozilla/Opaque.h"
87 #include "mozilla/PodOperations.h"
88 #include "mozilla/ReentrancyGuard.h"
89 #include "mozilla/TypeTraits.h"
90 #include "mozilla/UniquePtr.h"
97 template<class, class>
103 class HashTableEntry
;
105 template<class T
, class HashPolicy
, class AllocPolicy
>
108 } // namespace detail
110 // The "generation" of a hash table is an opaque value indicating the state of
111 // modification of the hash table through its lifetime. If the generation of
112 // a hash table compares equal at times T1 and T2, then lookups in the hash
113 // table, pointers to (or into) hash table entries, etc. at time T1 are valid
114 // at time T2. If the generation compares unequal, these computations are all
115 // invalid and must be performed again to be used.
117 // Generations are meaningfully comparable only with respect to a single hash
118 // table. It's always nonsensical to compare the generation of distinct hash
120 using Generation
= Opaque
<uint64_t>;
122 //---------------------------------------------------------------------------
124 //---------------------------------------------------------------------------
126 // HashMap is a fast hash-based map from keys to values.
128 // Template parameter requirements:
129 // - Key/Value: movable, destructible, assignable.
130 // - HashPolicy: see the "Hash Policy" section below.
131 // - AllocPolicy: see AllocPolicy.h.
134 // - HashMap is not reentrant: Key/Value/HashPolicy/AllocPolicy members
135 // called by HashMap must not call back into the same HashMap object.
139 class HashPolicy
= DefaultHasher
<Key
>,
140 class AllocPolicy
= MallocAllocPolicy
>
143 // -- Implementation details -----------------------------------------------
145 // HashMap is not copyable or assignable.
146 HashMap(const HashMap
& hm
) = delete;
147 HashMap
& operator=(const HashMap
& hm
) = delete;
149 using TableEntry
= HashMapEntry
<Key
, Value
>;
151 struct MapHashPolicy
: HashPolicy
153 using Base
= HashPolicy
;
156 static const Key
& getKey(TableEntry
& aEntry
) { return aEntry
.key(); }
158 static void setKey(TableEntry
& aEntry
, Key
& aKey
)
160 HashPolicy::rekey(aEntry
.mutableKey(), aKey
);
164 using Impl
= detail::HashTable
<TableEntry
, MapHashPolicy
, AllocPolicy
>;
167 friend class Impl::Enum
;
170 using Lookup
= typename
HashPolicy::Lookup
;
171 using Entry
= TableEntry
;
173 // -- Initialization -------------------------------------------------------
175 explicit HashMap(AllocPolicy aAllocPolicy
= AllocPolicy(),
176 uint32_t aLen
= Impl::sDefaultLen
)
177 : mImpl(aAllocPolicy
, aLen
)
181 explicit HashMap(uint32_t aLen
)
182 : mImpl(AllocPolicy(), aLen
)
186 // HashMap is movable.
187 HashMap(HashMap
&& aRhs
)
188 : mImpl(std::move(aRhs
.mImpl
))
191 void operator=(HashMap
&& aRhs
)
193 MOZ_ASSERT(this != &aRhs
, "self-move assignment is prohibited");
194 mImpl
= std::move(aRhs
.mImpl
);
197 // -- Status and sizing ----------------------------------------------------
199 // The map's current generation.
200 Generation
generation() const { return mImpl
.generation(); }
203 bool empty() const { return mImpl
.empty(); }
205 // Number of keys/values in the map.
206 uint32_t count() const { return mImpl
.count(); }
208 // Number of key/value slots in the map. Note: resize will happen well before
209 // count() == capacity().
210 uint32_t capacity() const { return mImpl
.capacity(); }
212 // The size of the map's entry storage, in bytes. If the keys/values contain
213 // pointers to other heap blocks, you must iterate over the map and measure
214 // them separately; hence the "shallow" prefix.
215 size_t shallowSizeOfExcludingThis(MallocSizeOf aMallocSizeOf
) const
217 return mImpl
.shallowSizeOfExcludingThis(aMallocSizeOf
);
219 size_t shallowSizeOfIncludingThis(MallocSizeOf aMallocSizeOf
) const
221 return aMallocSizeOf(this) +
222 mImpl
.shallowSizeOfExcludingThis(aMallocSizeOf
);
225 // Attempt to minimize the capacity(). If the table is empty, this will free
226 // the empty storage and upon regrowth it will be given the minimum capacity.
227 void compact() { mImpl
.compact(); }
229 // Attempt to reserve enough space to fit at least |aLen| elements. Does
230 // nothing if the map already has sufficient capacity.
231 MOZ_MUST_USE
bool reserve(uint32_t aLen
) { return mImpl
.reserve(aLen
); }
233 // -- Lookups --------------------------------------------------------------
235 // Does the map contain a key/value matching |aLookup|?
236 bool has(const Lookup
& aLookup
) const
238 return mImpl
.lookup(aLookup
).found();
241 // Return a Ptr indicating whether a key/value matching |aLookup| is
242 // present in the map. E.g.:
244 // using HM = HashMap<int,char>;
246 // if (HM::Ptr p = h.lookup(3)) {
247 // assert(p->key() == 3);
248 // char val = p->value();
251 using Ptr
= typename
Impl::Ptr
;
252 MOZ_ALWAYS_INLINE Ptr
lookup(const Lookup
& aLookup
) const
254 return mImpl
.lookup(aLookup
);
257 // Like lookup(), but does not assert if two threads call it at the same
258 // time. Only use this method when none of the threads will modify the map.
259 MOZ_ALWAYS_INLINE Ptr
readonlyThreadsafeLookup(const Lookup
& aLookup
) const
261 return mImpl
.readonlyThreadsafeLookup(aLookup
);
264 // -- Insertions -----------------------------------------------------------
266 // Overwrite existing value with |aValue|, or add it if not present. Returns
268 template<typename KeyInput
, typename ValueInput
>
269 MOZ_MUST_USE
bool put(KeyInput
&& aKey
, ValueInput
&& aValue
)
271 AddPtr p
= lookupForAdd(aKey
);
273 p
->value() = std::forward
<ValueInput
>(aValue
);
277 p
, std::forward
<KeyInput
>(aKey
), std::forward
<ValueInput
>(aValue
));
280 // Like put(), but slightly faster. Must only be used when the given key is
281 // not already present. (In debug builds, assertions check this.)
282 template<typename KeyInput
, typename ValueInput
>
283 MOZ_MUST_USE
bool putNew(KeyInput
&& aKey
, ValueInput
&& aValue
)
286 aKey
, std::forward
<KeyInput
>(aKey
), std::forward
<ValueInput
>(aValue
));
289 // Like putNew(), but should be only used when the table is known to be big
290 // enough for the insertion, and hashing cannot fail. Typically this is used
291 // to populate an empty map with known-unique keys after reserving space with
294 // using HM = HashMap<int,char>;
296 // if (!h.reserve(3)) {
299 // h.putNewInfallible(1, 'a'); // unique key
300 // h.putNewInfallible(2, 'b'); // unique key
301 // h.putNewInfallible(3, 'c'); // unique key
303 template<typename KeyInput
, typename ValueInput
>
304 void putNewInfallible(KeyInput
&& aKey
, ValueInput
&& aValue
)
306 mImpl
.putNewInfallible(
307 aKey
, std::forward
<KeyInput
>(aKey
), std::forward
<ValueInput
>(aValue
));
310 // Like |lookup(l)|, but on miss, |p = lookupForAdd(l)| allows efficient
311 // insertion of Key |k| (where |HashPolicy::match(k,l) == true|) using
312 // |add(p,k,v)|. After |add(p,k,v)|, |p| points to the new key/value. E.g.:
314 // using HM = HashMap<int,char>;
316 // HM::AddPtr p = h.lookupForAdd(3);
318 // if (!h.add(p, 3, 'a')) {
322 // assert(p->key() == 3);
323 // char val = p->value();
325 // N.B. The caller must ensure that no mutating hash table operations occur
326 // between a pair of lookupForAdd() and add() calls. To avoid looking up the
327 // key a second time, the caller may use the more efficient relookupOrAdd()
328 // method. This method reuses part of the hashing computation to more
329 // efficiently insert the key if it has not been added. For example, a
330 // mutation-handling version of the previous example:
332 // HM::AddPtr p = h.lookupForAdd(3);
334 // call_that_may_mutate_h();
335 // if (!h.relookupOrAdd(p, 3, 'a')) {
339 // assert(p->key() == 3);
340 // char val = p->value();
342 using AddPtr
= typename
Impl::AddPtr
;
343 MOZ_ALWAYS_INLINE AddPtr
lookupForAdd(const Lookup
& aLookup
)
345 return mImpl
.lookupForAdd(aLookup
);
348 // Add a key/value. Returns false on OOM.
349 template<typename KeyInput
, typename ValueInput
>
350 MOZ_MUST_USE
bool add(AddPtr
& aPtr
, KeyInput
&& aKey
, ValueInput
&& aValue
)
353 aPtr
, std::forward
<KeyInput
>(aKey
), std::forward
<ValueInput
>(aValue
));
356 // See the comment above lookupForAdd() for details.
357 template<typename KeyInput
, typename ValueInput
>
358 MOZ_MUST_USE
bool relookupOrAdd(AddPtr
& aPtr
,
362 return mImpl
.relookupOrAdd(aPtr
,
364 std::forward
<KeyInput
>(aKey
),
365 std::forward
<ValueInput
>(aValue
));
368 // -- Removal --------------------------------------------------------------
370 // Lookup and remove the key/value matching |aLookup|, if present.
371 void remove(const Lookup
& aLookup
)
373 if (Ptr p
= lookup(aLookup
)) {
378 // Remove a previously found key/value (assuming aPtr.found()). The map must
379 // not have been mutated in the interim.
380 void remove(Ptr aPtr
) { mImpl
.remove(aPtr
); }
382 // Remove all keys/values without changing the capacity.
383 void clear() { mImpl
.clear(); }
385 // Like clear() followed by compact().
386 void clearAndCompact() { mImpl
.clearAndCompact(); }
388 // -- Rekeying -------------------------------------------------------------
390 // Infallibly rekey one entry, if necessary. Requires that template
391 // parameters Key and HashPolicy::Lookup are the same type.
392 void rekeyIfMoved(const Key
& aOldKey
, const Key
& aNewKey
)
394 if (aOldKey
!= aNewKey
) {
395 rekeyAs(aOldKey
, aNewKey
, aNewKey
);
399 // Infallibly rekey one entry if present, and return whether that happened.
400 bool rekeyAs(const Lookup
& aOldLookup
,
401 const Lookup
& aNewLookup
,
404 if (Ptr p
= lookup(aOldLookup
)) {
405 mImpl
.rekeyAndMaybeRehash(p
, aNewLookup
, aNewKey
);
411 // -- Iteration ------------------------------------------------------------
413 // |iter()| returns an Iterator:
415 // HashMap<int, char> h;
416 // for (auto iter = h.iter(); !iter.done(); iter.next()) {
417 // char c = iter.get().value();
420 using Iterator
= typename
Impl::Iterator
;
421 Iterator
iter() const { return mImpl
.iter(); }
423 // |modIter()| returns a ModIterator:
425 // HashMap<int, char> h;
426 // for (auto iter = h.modIter(); !iter.done(); iter.next()) {
427 // if (iter.get().value() == 'l') {
432 // Table resize may occur in ModIterator's destructor.
433 using ModIterator
= typename
Impl::ModIterator
;
434 ModIterator
modIter() { return mImpl
.modIter(); }
436 // These are similar to Iterator/ModIterator/iter(), but use different
438 using Range
= typename
Impl::Range
;
439 using Enum
= typename
Impl::Enum
;
440 Range
all() const { return mImpl
.all(); }
443 //---------------------------------------------------------------------------
445 //---------------------------------------------------------------------------
447 // HashSet is a fast hash-based set of values.
449 // Template parameter requirements:
450 // - T: movable, destructible, assignable.
451 // - HashPolicy: see the "Hash Policy" section below.
452 // - AllocPolicy: see AllocPolicy.h
455 // - HashSet is not reentrant: T/HashPolicy/AllocPolicy members called by
456 // HashSet must not call back into the same HashSet object.
459 class HashPolicy
= DefaultHasher
<T
>,
460 class AllocPolicy
= MallocAllocPolicy
>
463 // -- Implementation details -----------------------------------------------
465 // HashSet is not copyable or assignable.
466 HashSet(const HashSet
& hs
) = delete;
467 HashSet
& operator=(const HashSet
& hs
) = delete;
469 struct SetHashPolicy
: HashPolicy
471 using Base
= HashPolicy
;
474 static const KeyType
& getKey(const T
& aT
) { return aT
; }
476 static void setKey(T
& aT
, KeyType
& aKey
) { HashPolicy::rekey(aT
, aKey
); }
479 using Impl
= detail::HashTable
<const T
, SetHashPolicy
, AllocPolicy
>;
482 friend class Impl::Enum
;
485 using Lookup
= typename
HashPolicy::Lookup
;
488 // -- Initialization -------------------------------------------------------
490 explicit HashSet(AllocPolicy aAllocPolicy
= AllocPolicy(),
491 uint32_t aLen
= Impl::sDefaultLen
)
492 : mImpl(aAllocPolicy
, aLen
)
496 explicit HashSet(uint32_t aLen
)
497 : mImpl(AllocPolicy(), aLen
)
501 // HashSet is movable.
502 HashSet(HashSet
&& aRhs
)
503 : mImpl(std::move(aRhs
.mImpl
))
506 void operator=(HashSet
&& aRhs
)
508 MOZ_ASSERT(this != &aRhs
, "self-move assignment is prohibited");
509 mImpl
= std::move(aRhs
.mImpl
);
512 // -- Status and sizing ----------------------------------------------------
514 // The set's current generation.
515 Generation
generation() const { return mImpl
.generation(); }
518 bool empty() const { return mImpl
.empty(); }
520 // Number of elements in the set.
521 uint32_t count() const { return mImpl
.count(); }
523 // Number of element slots in the set. Note: resize will happen well before
524 // count() == capacity().
525 uint32_t capacity() const { return mImpl
.capacity(); }
527 // The size of the set's entry storage, in bytes. If the elements contain
528 // pointers to other heap blocks, you must iterate over the set and measure
529 // them separately; hence the "shallow" prefix.
530 size_t shallowSizeOfExcludingThis(MallocSizeOf aMallocSizeOf
) const
532 return mImpl
.shallowSizeOfExcludingThis(aMallocSizeOf
);
534 size_t shallowSizeOfIncludingThis(MallocSizeOf aMallocSizeOf
) const
536 return aMallocSizeOf(this) +
537 mImpl
.shallowSizeOfExcludingThis(aMallocSizeOf
);
540 // Attempt to minimize the capacity(). If the table is empty, this will free
541 // the empty storage and upon regrowth it will be given the minimum capacity.
542 void compact() { mImpl
.compact(); }
544 // Attempt to reserve enough space to fit at least |aLen| elements. Does
545 // nothing if the map already has sufficient capacity.
546 MOZ_MUST_USE
bool reserve(uint32_t aLen
) { return mImpl
.reserve(aLen
); }
548 // -- Lookups --------------------------------------------------------------
550 // Does the set contain an element matching |aLookup|?
551 bool has(const Lookup
& aLookup
) const
553 return mImpl
.lookup(aLookup
).found();
556 // Return a Ptr indicating whether an element matching |aLookup| is present
559 // using HS = HashSet<int>;
561 // if (HS::Ptr p = h.lookup(3)) {
562 // assert(*p == 3); // p acts like a pointer to int
565 using Ptr
= typename
Impl::Ptr
;
566 MOZ_ALWAYS_INLINE Ptr
lookup(const Lookup
& aLookup
) const
568 return mImpl
.lookup(aLookup
);
571 // Like lookup(), but does not assert if two threads call it at the same
572 // time. Only use this method when none of the threads will modify the set.
573 MOZ_ALWAYS_INLINE Ptr
readonlyThreadsafeLookup(const Lookup
& aLookup
) const
575 return mImpl
.readonlyThreadsafeLookup(aLookup
);
578 // -- Insertions -----------------------------------------------------------
580 // Add |aU| if it is not present already. Returns false on OOM.
582 MOZ_MUST_USE
bool put(U
&& aU
)
584 AddPtr p
= lookupForAdd(aU
);
585 return p
? true : add(p
, std::forward
<U
>(aU
));
588 // Like put(), but slightly faster. Must only be used when the given element
589 // is not already present. (In debug builds, assertions check this.)
591 MOZ_MUST_USE
bool putNew(U
&& aU
)
593 return mImpl
.putNew(aU
, std::forward
<U
>(aU
));
596 // Like the other putNew(), but for when |Lookup| is different to |T|.
598 MOZ_MUST_USE
bool putNew(const Lookup
& aLookup
, U
&& aU
)
600 return mImpl
.putNew(aLookup
, std::forward
<U
>(aU
));
603 // Like putNew(), but should be only used when the table is known to be big
604 // enough for the insertion, and hashing cannot fail. Typically this is used
605 // to populate an empty set with known-unique elements after reserving space
606 // with reserve(), e.g.
608 // using HS = HashMap<int>;
610 // if (!h.reserve(3)) {
613 // h.putNewInfallible(1); // unique element
614 // h.putNewInfallible(2); // unique element
615 // h.putNewInfallible(3); // unique element
618 void putNewInfallible(const Lookup
& aLookup
, U
&& aU
)
620 mImpl
.putNewInfallible(aLookup
, std::forward
<U
>(aU
));
623 // Like |lookup(l)|, but on miss, |p = lookupForAdd(l)| allows efficient
624 // insertion of T value |t| (where |HashPolicy::match(t,l) == true|) using
625 // |add(p,t)|. After |add(p,t)|, |p| points to the new element. E.g.:
627 // using HS = HashSet<int>;
629 // HS::AddPtr p = h.lookupForAdd(3);
631 // if (!h.add(p, 3)) {
635 // assert(*p == 3); // p acts like a pointer to int
637 // N.B. The caller must ensure that no mutating hash table operations occur
638 // between a pair of lookupForAdd() and add() calls. To avoid looking up the
639 // key a second time, the caller may use the more efficient relookupOrAdd()
640 // method. This method reuses part of the hashing computation to more
641 // efficiently insert the key if it has not been added. For example, a
642 // mutation-handling version of the previous example:
644 // HS::AddPtr p = h.lookupForAdd(3);
646 // call_that_may_mutate_h();
647 // if (!h.relookupOrAdd(p, 3, 3)) {
653 // Note that relookupOrAdd(p,l,t) performs Lookup using |l| and adds the
654 // entry |t|, where the caller ensures match(l,t).
655 using AddPtr
= typename
Impl::AddPtr
;
656 MOZ_ALWAYS_INLINE AddPtr
lookupForAdd(const Lookup
& aLookup
)
658 return mImpl
.lookupForAdd(aLookup
);
661 // Add an element. Returns false on OOM.
663 MOZ_MUST_USE
bool add(AddPtr
& aPtr
, U
&& aU
)
665 return mImpl
.add(aPtr
, std::forward
<U
>(aU
));
668 // See the comment above lookupForAdd() for details.
670 MOZ_MUST_USE
bool relookupOrAdd(AddPtr
& aPtr
, const Lookup
& aLookup
, U
&& aU
)
672 return mImpl
.relookupOrAdd(aPtr
, aLookup
, std::forward
<U
>(aU
));
675 // -- Removal --------------------------------------------------------------
677 // Lookup and remove the element matching |aLookup|, if present.
678 void remove(const Lookup
& aLookup
)
680 if (Ptr p
= lookup(aLookup
)) {
685 // Remove a previously found element (assuming aPtr.found()). The set must
686 // not have been mutated in the interim.
687 void remove(Ptr aPtr
) { mImpl
.remove(aPtr
); }
689 // Remove all keys/values without changing the capacity.
690 void clear() { mImpl
.clear(); }
692 // Like clear() followed by compact().
693 void clearAndCompact() { mImpl
.clearAndCompact(); }
695 // -- Rekeying -------------------------------------------------------------
697 // Infallibly rekey one entry, if present. Requires that template parameters
698 // T and HashPolicy::Lookup are the same type.
699 void rekeyIfMoved(const Lookup
& aOldValue
, const T
& aNewValue
)
701 if (aOldValue
!= aNewValue
) {
702 rekeyAs(aOldValue
, aNewValue
, aNewValue
);
706 // Infallibly rekey one entry if present, and return whether that happened.
707 bool rekeyAs(const Lookup
& aOldLookup
,
708 const Lookup
& aNewLookup
,
711 if (Ptr p
= lookup(aOldLookup
)) {
712 mImpl
.rekeyAndMaybeRehash(p
, aNewLookup
, aNewValue
);
718 // Infallibly replace the current key at |aPtr| with an equivalent key.
719 // Specifically, both HashPolicy::hash and HashPolicy::match must return
720 // identical results for the new and old key when applied against all
721 // possible matching values.
722 void replaceKey(Ptr aPtr
, const T
& aNewValue
)
724 MOZ_ASSERT(aPtr
.found());
725 MOZ_ASSERT(*aPtr
!= aNewValue
);
726 MOZ_ASSERT(HashPolicy::hash(*aPtr
) == HashPolicy::hash(aNewValue
));
727 MOZ_ASSERT(HashPolicy::match(*aPtr
, aNewValue
));
728 const_cast<T
&>(*aPtr
) = aNewValue
;
731 // -- Iteration ------------------------------------------------------------
733 // |iter()| returns an Iterator:
736 // for (auto iter = h.iter(); !iter.done(); iter.next()) {
737 // int i = iter.get();
740 using Iterator
= typename
Impl::Iterator
;
741 Iterator
iter() const { return mImpl
.iter(); }
743 // |modIter()| returns a ModIterator:
746 // for (auto iter = h.modIter(); !iter.done(); iter.next()) {
747 // if (iter.get() == 42) {
752 // Table resize may occur in ModIterator's destructor.
753 using ModIterator
= typename
Impl::ModIterator
;
754 ModIterator
modIter() { return mImpl
.modIter(); }
756 // These are similar to Iterator/ModIterator/iter(), but use different
758 using Range
= typename
Impl::Range
;
759 using Enum
= typename
Impl::Enum
;
760 Range
all() const { return mImpl
.all(); }
763 //---------------------------------------------------------------------------
765 //---------------------------------------------------------------------------
767 // A hash policy |HP| for a hash table with key-type |Key| must provide:
769 // - a type |HP::Lookup| to use to lookup table entries;
771 // - a static member function |HP::hash| that hashes lookup values:
773 // static mozilla::HashNumber hash(const Lookup&);
775 // - a static member function |HP::match| that tests equality of key and
778 // static bool match(const Key&, const Lookup&);
780 // Normally, Lookup = Key. In general, though, different values and types of
781 // values can be used to lookup and store. If a Lookup value |l| is not equal
782 // to the added Key value |k|, the user must ensure that |HP::match(k,l)| is
785 // mozilla::HashSet<Key, HP>::AddPtr p = h.lookup(l);
787 // assert(HP::match(k, l)); // must hold
791 // A pointer hashing policy that uses HashGeneric() to create good hashes for
792 // pointers. Note that we don't shift out the lowest k bits because we don't
793 // want to assume anything about the alignment of the pointers.
794 template<typename Key
>
799 static HashNumber
hash(const Lookup
& aLookup
)
801 size_t word
= reinterpret_cast<size_t>(aLookup
);
802 return HashGeneric(word
);
805 static bool match(const Key
& aKey
, const Lookup
& aLookup
)
807 return aKey
== aLookup
;
810 static void rekey(Key
& aKey
, const Key
& aNewKey
) { aKey
= aNewKey
; }
813 // The default hash policy, which only works with integers.
819 static HashNumber
hash(const Lookup
& aLookup
)
821 // Just convert the integer to a HashNumber and use that as is. (This
822 // discards the high 32-bits of 64-bit integers!) ScrambleHashCode() is
823 // subsequently called on the value to improve the distribution.
827 static bool match(const Key
& aKey
, const Lookup
& aLookup
)
829 // Use builtin or overloaded operator==.
830 return aKey
== aLookup
;
833 static void rekey(Key
& aKey
, const Key
& aNewKey
) { aKey
= aNewKey
; }
836 // A DefaultHasher specialization for pointers.
838 struct DefaultHasher
<T
*> : PointerHasher
<T
*>
842 // A DefaultHasher specialization for mozilla::UniquePtr.
843 template<class T
, class D
>
844 struct DefaultHasher
<UniquePtr
<T
, D
>>
846 using Key
= UniquePtr
<T
, D
>;
848 using PtrHasher
= PointerHasher
<T
*>;
850 static HashNumber
hash(const Lookup
& aLookup
)
852 return PtrHasher::hash(aLookup
.get());
855 static bool match(const Key
& aKey
, const Lookup
& aLookup
)
857 return PtrHasher::match(aKey
.get(), aLookup
.get());
860 static void rekey(UniquePtr
<T
, D
>& aKey
, UniquePtr
<T
, D
>&& aNewKey
)
862 aKey
= std::move(aNewKey
);
866 // A DefaultHasher specialization for doubles.
868 struct DefaultHasher
<double>
873 static HashNumber
hash(const Lookup
& aLookup
)
875 // Just xor the high bits with the low bits, and then treat the bits of the
876 // result as a uint32_t.
877 static_assert(sizeof(HashNumber
) == 4,
878 "subsequent code assumes a four-byte hash");
879 uint64_t u
= BitwiseCast
<uint64_t>(aLookup
);
880 return HashNumber(u
^ (u
>> 32));
883 static bool match(const Key
& aKey
, const Lookup
& aLookup
)
885 return BitwiseCast
<uint64_t>(aKey
) == BitwiseCast
<uint64_t>(aLookup
);
889 // A DefaultHasher specialization for floats.
891 struct DefaultHasher
<float>
896 static HashNumber
hash(const Lookup
& aLookup
)
898 // Just use the value as if its bits form an integer. ScrambleHashCode() is
899 // subsequently called on the value to improve the distribution.
900 static_assert(sizeof(HashNumber
) == 4,
901 "subsequent code assumes a four-byte hash");
902 return HashNumber(BitwiseCast
<uint32_t>(aLookup
));
905 static bool match(const Key
& aKey
, const Lookup
& aLookup
)
907 return BitwiseCast
<uint32_t>(aKey
) == BitwiseCast
<uint32_t>(aLookup
);
911 // A hash policy for C strings.
914 using Key
= const char*;
915 using Lookup
= const char*;
917 static HashNumber
hash(const Lookup
& aLookup
) { return HashString(aLookup
); }
919 static bool match(const Key
& aKey
, const Lookup
& aLookup
)
921 return strcmp(aKey
, aLookup
) == 0;
925 //---------------------------------------------------------------------------
926 // Fallible Hashing Interface
927 //---------------------------------------------------------------------------
929 // Most of the time generating a hash code is infallible so this class provides
930 // default methods that always succeed. Specialize this class for your own hash
931 // policy to provide fallible hashing.
933 // This is used by MovableCellHasher to handle the fact that generating a unique
934 // ID for cell pointer may fail due to OOM.
935 template<typename HashPolicy
>
936 struct FallibleHashMethods
938 // Return true if a hashcode is already available for its argument. Once
939 // this returns true for a specific argument it must continue to do so.
940 template<typename Lookup
>
941 static bool hasHash(Lookup
&& aLookup
)
946 // Fallible method to ensure a hashcode exists for its argument and create
947 // one if not. Returns false on error, e.g. out of memory.
948 template<typename Lookup
>
949 static bool ensureHash(Lookup
&& aLookup
)
955 template<typename HashPolicy
, typename Lookup
>
957 HasHash(Lookup
&& aLookup
)
959 return FallibleHashMethods
<typename
HashPolicy::Base
>::hasHash(
960 std::forward
<Lookup
>(aLookup
));
963 template<typename HashPolicy
, typename Lookup
>
965 EnsureHash(Lookup
&& aLookup
)
967 return FallibleHashMethods
<typename
HashPolicy::Base
>::ensureHash(
968 std::forward
<Lookup
>(aLookup
));
971 //---------------------------------------------------------------------------
972 // Implementation Details (HashMapEntry, HashTableEntry, HashTable)
973 //---------------------------------------------------------------------------
975 // Both HashMap and HashSet are implemented by a single HashTable that is even
976 // more heavily parameterized than the other two. This leaves HashTable gnarly
977 // and extremely coupled to HashMap and HashSet; thus code should not use
978 // HashTable directly.
980 template<class Key
, class Value
>
986 template<class, class, class>
987 friend class detail::HashTable
;
989 friend class detail::HashTableEntry
;
990 template<class, class, class, class>
991 friend class HashMap
;
994 template<typename KeyInput
, typename ValueInput
>
995 HashMapEntry(KeyInput
&& aKey
, ValueInput
&& aValue
)
996 : key_(std::forward
<KeyInput
>(aKey
))
997 , value_(std::forward
<ValueInput
>(aValue
))
1001 HashMapEntry(HashMapEntry
&& aRhs
)
1002 : key_(std::move(aRhs
.key_
))
1003 , value_(std::move(aRhs
.value_
))
1007 void operator=(HashMapEntry
&& aRhs
)
1009 key_
= std::move(aRhs
.key_
);
1010 value_
= std::move(aRhs
.value_
);
1013 using KeyType
= Key
;
1014 using ValueType
= Value
;
1016 const Key
& key() const { return key_
; }
1018 // Use this method with caution! If the key is changed such that its hash
1019 // value also changes, the map will be left in an invalid state.
1020 Key
& mutableKey() { return key_
; }
1022 const Value
& value() const { return value_
; }
1023 Value
& value() { return value_
; }
1026 HashMapEntry(const HashMapEntry
&) = delete;
1027 void operator=(const HashMapEntry
&) = delete;
1030 template<typename K
, typename V
>
1031 struct IsPod
<HashMapEntry
<K
, V
>>
1032 : IntegralConstant
<bool, IsPod
<K
>::value
&& IsPod
<V
>::value
>
1038 template<class T
, class HashPolicy
, class AllocPolicy
>
1041 template<typename T
>
1042 class HashTableEntry
1045 using NonConstT
= typename RemoveConst
<T
>::Type
;
1047 static const HashNumber sFreeKey
= 0;
1048 static const HashNumber sRemovedKey
= 1;
1049 static const HashNumber sCollisionBit
= 1;
1051 HashNumber mKeyHash
= sFreeKey
;
1052 alignas(NonConstT
) unsigned char mValueData
[sizeof(NonConstT
)];
1055 template<class, class, class>
1056 friend class HashTable
;
1058 // Some versions of GCC treat it as a -Wstrict-aliasing violation (ergo a
1059 // -Werror compile error) to reinterpret_cast<> |mValueData| to |T*|, even
1060 // through |void*|. Placing the latter cast in these separate functions
1061 // breaks the chain such that affected GCC versions no longer warn/error.
1062 void* rawValuePtr() { return mValueData
; }
1064 static bool isLiveHash(HashNumber hash
) { return hash
> sRemovedKey
; }
1066 HashTableEntry(const HashTableEntry
&) = delete;
1067 void operator=(const HashTableEntry
&) = delete;
1069 NonConstT
* valuePtr() { return reinterpret_cast<NonConstT
*>(rawValuePtr()); }
1071 void destroyStoredT()
1073 NonConstT
* ptr
= valuePtr();
1075 MOZ_MAKE_MEM_UNDEFINED(ptr
, sizeof(*ptr
));
1079 HashTableEntry() = default;
1087 MOZ_MAKE_MEM_UNDEFINED(this, sizeof(*this));
1092 MOZ_ASSERT(isLive());
1096 void swap(HashTableEntry
* aOther
)
1098 if (this == aOther
) {
1101 MOZ_ASSERT(isLive());
1102 if (aOther
->isLive()) {
1103 Swap(*valuePtr(), *aOther
->valuePtr());
1105 *aOther
->valuePtr() = std::move(*valuePtr());
1108 Swap(mKeyHash
, aOther
->mKeyHash
);
1113 MOZ_ASSERT(isLive());
1117 NonConstT
& getMutable()
1119 MOZ_ASSERT(isLive());
1123 bool isFree() const { return mKeyHash
== sFreeKey
; }
1127 MOZ_ASSERT(isLive());
1128 mKeyHash
= sFreeKey
;
1137 MOZ_MAKE_MEM_UNDEFINED(this, sizeof(*this));
1138 mKeyHash
= sFreeKey
;
1141 bool isRemoved() const { return mKeyHash
== sRemovedKey
; }
1145 MOZ_ASSERT(isLive());
1146 mKeyHash
= sRemovedKey
;
1150 bool isLive() const { return isLiveHash(mKeyHash
); }
1154 MOZ_ASSERT(isLive());
1155 mKeyHash
|= sCollisionBit
;
1158 void unsetCollision() { mKeyHash
&= ~sCollisionBit
; }
1160 bool hasCollision() const { return mKeyHash
& sCollisionBit
; }
1162 bool matchHash(HashNumber hn
) { return (mKeyHash
& ~sCollisionBit
) == hn
; }
1164 HashNumber
getKeyHash() const { return mKeyHash
& ~sCollisionBit
; }
1166 template<typename
... Args
>
1167 void setLive(HashNumber aHashNumber
, Args
&&... aArgs
)
1169 MOZ_ASSERT(!isLive());
1170 mKeyHash
= aHashNumber
;
1171 new (valuePtr()) T(std::forward
<Args
>(aArgs
)...);
1172 MOZ_ASSERT(isLive());
1176 template<class T
, class HashPolicy
, class AllocPolicy
>
1177 class HashTable
: private AllocPolicy
1179 friend class mozilla::ReentrancyGuard
;
1181 using NonConstT
= typename RemoveConst
<T
>::Type
;
1182 using Key
= typename
HashPolicy::KeyType
;
1183 using Lookup
= typename
HashPolicy::Lookup
;
1186 using Entry
= HashTableEntry
<T
>;
1188 // A nullable pointer to a hash table element. A Ptr |p| can be tested
1189 // either explicitly |if (p.found()) p->...| or using boolean conversion
1190 // |if (p) p->...|. Ptr objects must not be used after any mutating hash
1191 // table operations unless |generation()| is tested.
1194 friend class HashTable
;
1198 const HashTable
* mTable
;
1199 Generation mGeneration
;
1203 Ptr(Entry
& aEntry
, const HashTable
& aTable
)
1207 , mGeneration(aTable
.generation())
1212 // This constructor is used only by AddPtr() within lookupForAdd().
1213 explicit Ptr(const HashTable
& aTable
)
1217 , mGeneration(aTable
.generation())
1222 bool isValid() const { return !!mEntry
; }
1240 MOZ_ASSERT(mGeneration
== mTable
->generation());
1242 return mEntry
->isLive();
1245 explicit operator bool() const { return found(); }
1247 bool operator==(const Ptr
& aRhs
) const
1249 MOZ_ASSERT(found() && aRhs
.found());
1250 return mEntry
== aRhs
.mEntry
;
1253 bool operator!=(const Ptr
& aRhs
) const
1256 MOZ_ASSERT(mGeneration
== mTable
->generation());
1258 return !(*this == aRhs
);
1261 T
& operator*() const
1264 MOZ_ASSERT(found());
1265 MOZ_ASSERT(mGeneration
== mTable
->generation());
1267 return mEntry
->get();
1270 T
* operator->() const
1273 MOZ_ASSERT(found());
1274 MOZ_ASSERT(mGeneration
== mTable
->generation());
1276 return &mEntry
->get();
1280 // A Ptr that can be used to add a key after a failed lookup.
1281 class AddPtr
: public Ptr
1283 friend class HashTable
;
1285 HashNumber mKeyHash
;
1287 uint64_t mMutationCount
;
1290 AddPtr(Entry
& aEntry
, const HashTable
& aTable
, HashNumber aHashNumber
)
1291 : Ptr(aEntry
, aTable
)
1292 , mKeyHash(aHashNumber
)
1294 , mMutationCount(aTable
.mMutationCount
)
1299 // This constructor is used when lookupForAdd() is performed on a table
1300 // lacking entry storage; it leaves mEntry null but initializes everything
1302 AddPtr(const HashTable
& aTable
, HashNumber aHashNumber
)
1304 , mKeyHash(aHashNumber
)
1306 , mMutationCount(aTable
.mMutationCount
)
1309 MOZ_ASSERT(isLive());
1312 bool isLive() const { return isLiveHash(mKeyHash
); }
1321 // A hash table iterator that (mostly) doesn't allow table modifications.
1322 // As with Ptr/AddPtr, Iterator objects must not be used after any mutating
1323 // hash table operation unless the |generation()| is tested.
1327 friend class HashTable
;
1329 explicit Iterator(const HashTable
& aTable
)
1330 : mCur(aTable
.mTable
)
1331 , mEnd(aTable
.mTable
+ aTable
.capacity())
1334 , mMutationCount(aTable
.mMutationCount
)
1335 , mGeneration(aTable
.generation())
1339 while (mCur
< mEnd
&& !mCur
->isLive()) {
1347 const HashTable
& mTable
;
1348 uint64_t mMutationCount
;
1349 Generation mGeneration
;
1357 MOZ_ASSERT(mGeneration
== mTable
.generation());
1358 MOZ_ASSERT(mMutationCount
== mTable
.mMutationCount
);
1360 return mCur
== mEnd
;
1365 MOZ_ASSERT(!done());
1367 MOZ_ASSERT(mValidEntry
);
1368 MOZ_ASSERT(mGeneration
== mTable
.generation());
1369 MOZ_ASSERT(mMutationCount
== mTable
.mMutationCount
);
1376 MOZ_ASSERT(!done());
1378 MOZ_ASSERT(mGeneration
== mTable
.generation());
1379 MOZ_ASSERT(mMutationCount
== mTable
.mMutationCount
);
1381 while (++mCur
< mEnd
&& !mCur
->isLive()) {
1390 // A hash table iterator that permits modification, removal and rekeying.
1391 // Since rehashing when elements were removed during enumeration would be
1392 // bad, it is postponed until the ModIterator is destructed. Since the
1393 // ModIterator's destructor touches the hash table, the user must ensure
1394 // that the hash table is still alive when the destructor runs.
1395 class ModIterator
: public Iterator
1397 friend class HashTable
;
1403 // ModIterator is movable but not copyable.
1404 ModIterator(const ModIterator
&) = delete;
1405 void operator=(const ModIterator
&) = delete;
1408 explicit ModIterator(HashTable
& aTable
)
1417 MOZ_IMPLICIT
ModIterator(ModIterator
&& aOther
)
1419 , mTable(aOther
.mTable
)
1420 , mRekeyed(aOther
.mRekeyed
)
1421 , mRemoved(aOther
.mRemoved
)
1423 aOther
.mRekeyed
= false;
1424 aOther
.mRemoved
= false;
1427 // Removes the current element from the table, leaving |get()|
1428 // invalid until the next call to |next()|.
1431 mTable
.remove(*this->mCur
);
1434 this->mValidEntry
= false;
1435 this->mMutationCount
= mTable
.mMutationCount
;
1439 NonConstT
& getMutable()
1441 MOZ_ASSERT(!this->done());
1443 MOZ_ASSERT(this->mValidEntry
);
1444 MOZ_ASSERT(this->mGeneration
== this->Iterator::mTable
.generation());
1445 MOZ_ASSERT(this->mMutationCount
== this->Iterator::mTable
.mMutationCount
);
1447 return this->mCur
->getMutable();
1450 // Removes the current element and re-inserts it into the table with
1451 // a new key at the new Lookup position. |get()| is invalid after
1452 // this operation until the next call to |next()|.
1453 void rekey(const Lookup
& l
, const Key
& k
)
1455 MOZ_ASSERT(&k
!= &HashPolicy::getKey(this->mCur
->get()));
1456 Ptr
p(*this->mCur
, mTable
);
1457 mTable
.rekeyWithoutRehash(p
, l
, k
);
1460 this->mValidEntry
= false;
1461 this->mMutationCount
= mTable
.mMutationCount
;
1465 void rekey(const Key
& k
) { rekey(k
, k
); }
1467 // Potentially rehashes the table.
1472 mTable
.infallibleRehashIfOverloaded();
1481 // Range is similar to Iterator, but uses different terminology.
1484 friend class HashTable
;
1489 explicit Range(const HashTable
& table
)
1495 bool empty() const { return mIter
.done(); }
1497 T
& front() const { return mIter
.get(); }
1499 void popFront() { return mIter
.next(); }
1502 // Enum is similar to ModIterator, but uses different terminology.
1507 // Enum is movable but not copyable.
1508 Enum(const Enum
&) = delete;
1509 void operator=(const Enum
&) = delete;
1513 explicit Enum(Map
& map
)
1518 MOZ_IMPLICIT
Enum(Enum
&& other
)
1519 : mIter(std::move(other
.mIter
))
1523 bool empty() const { return mIter
.done(); }
1525 T
& front() const { return mIter
.get(); }
1527 void popFront() { return mIter
.next(); }
1529 void removeFront() { mIter
.remove(); }
1531 NonConstT
& mutableFront() { return mIter
.getMutable(); }
1533 void rekeyFront(const Lookup
& aLookup
, const Key
& aKey
)
1535 mIter
.rekey(aLookup
, aKey
);
1538 void rekeyFront(const Key
& aKey
) { mIter
.rekey(aKey
); }
1541 // HashTable is movable
1542 HashTable(HashTable
&& aRhs
)
1545 PodAssign(this, &aRhs
);
1546 aRhs
.mTable
= nullptr;
1548 void operator=(HashTable
&& aRhs
)
1550 MOZ_ASSERT(this != &aRhs
, "self-move assignment is prohibited");
1552 destroyTable(*this, mTable
, capacity());
1554 PodAssign(this, &aRhs
);
1555 aRhs
.mTable
= nullptr;
1559 // HashTable is not copyable or assignable
1560 HashTable(const HashTable
&) = delete;
1561 void operator=(const HashTable
&) = delete;
1563 static const uint32_t CAP_BITS
= 30;
1566 uint64_t mGen
: 56; // entry storage generation number
1567 uint64_t mHashShift
: 8; // multiplicative hash shift
1568 Entry
* mTable
; // entry storage
1569 uint32_t mEntryCount
; // number of entries in mTable
1570 uint32_t mRemovedCount
; // removed entry sentinels in mTable
1573 uint64_t mMutationCount
;
1574 mutable bool mEntered
;
1577 // The default initial capacity is 32 (enough to hold 16 elements), but it
1578 // can be as low as 4.
1579 static const uint32_t sDefaultLen
= 16;
1580 static const uint32_t sMinCapacity
= 4;
1581 static const uint32_t sMaxInit
= 1u << (CAP_BITS
- 1);
1582 static const uint32_t sMaxCapacity
= 1u << CAP_BITS
;
1584 // Hash-table alpha is conceptually a fraction, but to avoid floating-point
1585 // math we implement it as a ratio of integers.
1586 static const uint8_t sAlphaDenominator
= 4;
1587 static const uint8_t sMinAlphaNumerator
= 1; // min alpha: 1/4
1588 static const uint8_t sMaxAlphaNumerator
= 3; // max alpha: 3/4
1590 static const HashNumber sFreeKey
= Entry::sFreeKey
;
1591 static const HashNumber sRemovedKey
= Entry::sRemovedKey
;
1592 static const HashNumber sCollisionBit
= Entry::sCollisionBit
;
1594 static uint32_t bestCapacity(uint32_t aLen
)
1596 static_assert((sMaxInit
* sAlphaDenominator
) / sAlphaDenominator
==
1598 "multiplication in numerator below could overflow");
1599 static_assert(sMaxInit
* sAlphaDenominator
<=
1600 UINT32_MAX
- sMaxAlphaNumerator
,
1601 "numerator calculation below could potentially overflow");
1603 // Compute the smallest capacity allowing |aLen| elements to be
1604 // inserted without rehashing: ceil(aLen / max-alpha). (Ceiling
1605 // integral division: <http://stackoverflow.com/a/2745086>.)
1607 (aLen
* sAlphaDenominator
+ sMaxAlphaNumerator
- 1) / sMaxAlphaNumerator
;
1608 capacity
= (capacity
< sMinCapacity
)
1610 : RoundUpPow2(capacity
);
1612 MOZ_ASSERT(capacity
>= aLen
);
1613 MOZ_ASSERT(capacity
<= sMaxCapacity
);
1618 static uint32_t hashShift(uint32_t aLen
)
1620 // Reject all lengths whose initial computed capacity would exceed
1621 // sMaxCapacity. Round that maximum aLen down to the nearest power of two
1622 // for speedier code.
1623 if (MOZ_UNLIKELY(aLen
> sMaxInit
)) {
1624 MOZ_CRASH("initial length is too large");
1627 return kHashNumberBits
- mozilla::CeilingLog2(bestCapacity(aLen
));
1630 static bool isLiveHash(HashNumber aHash
) { return Entry::isLiveHash(aHash
); }
1632 static HashNumber
prepareHash(const Lookup
& aLookup
)
1634 HashNumber keyHash
= ScrambleHashCode(HashPolicy::hash(aLookup
));
1636 // Avoid reserved hash codes.
1637 if (!isLiveHash(keyHash
)) {
1638 keyHash
-= (sRemovedKey
+ 1);
1640 return keyHash
& ~sCollisionBit
;
1643 enum FailureBehavior
1645 DontReportFailure
= false,
1646 ReportFailure
= true
1649 static Entry
* createTable(AllocPolicy
& aAllocPolicy
,
1651 FailureBehavior aReportFailure
= ReportFailure
)
1653 Entry
* table
= aReportFailure
1654 ? aAllocPolicy
.template pod_malloc
<Entry
>(aCapacity
)
1655 : aAllocPolicy
.template maybe_pod_malloc
<Entry
>(aCapacity
);
1657 for (uint32_t i
= 0; i
< aCapacity
; i
++) {
1658 new (&table
[i
]) Entry();
1664 static void destroyTable(AllocPolicy
& aAllocPolicy
,
1668 Entry
* end
= aOldTable
+ aCapacity
;
1669 for (Entry
* e
= aOldTable
; e
< end
; ++e
) {
1672 aAllocPolicy
.free_(aOldTable
, aCapacity
);
1676 HashTable(AllocPolicy aAllocPolicy
, uint32_t aLen
)
1677 : AllocPolicy(aAllocPolicy
)
1679 , mHashShift(hashShift(aLen
))
1690 explicit HashTable(AllocPolicy aAllocPolicy
)
1691 : HashTable(aAllocPolicy
, sDefaultLen
)
1698 destroyTable(*this, mTable
, capacity());
1703 HashNumber
hash1(HashNumber aHash0
) const { return aHash0
>> mHashShift
; }
1708 HashNumber mSizeMask
;
1711 DoubleHash
hash2(HashNumber aCurKeyHash
) const
1713 uint32_t sizeLog2
= kHashNumberBits
- mHashShift
;
1714 DoubleHash dh
= { ((aCurKeyHash
<< sizeLog2
) >> mHashShift
) | 1,
1715 (HashNumber(1) << sizeLog2
) - 1 };
1719 static HashNumber
applyDoubleHash(HashNumber aHash1
,
1720 const DoubleHash
& aDoubleHash
)
1722 return (aHash1
- aDoubleHash
.mHash2
) & aDoubleHash
.mSizeMask
;
1725 static MOZ_ALWAYS_INLINE
bool match(Entry
& aEntry
, const Lookup
& aLookup
)
1727 return HashPolicy::match(HashPolicy::getKey(aEntry
.get()), aLookup
);
1736 // Warning: in order for readonlyThreadsafeLookup() to be safe this
1737 // function must not modify the table in any way when Reason==ForNonAdd.
1738 template<LookupReason Reason
>
1739 MOZ_ALWAYS_INLINE Entry
& lookup(const Lookup
& aLookup
,
1740 HashNumber aKeyHash
) const
1742 MOZ_ASSERT(isLiveHash(aKeyHash
));
1743 MOZ_ASSERT(!(aKeyHash
& sCollisionBit
));
1746 // Compute the primary hash address.
1747 HashNumber h1
= hash1(aKeyHash
);
1748 Entry
* entry
= &mTable
[h1
];
1750 // Miss: return space for a new entry.
1751 if (entry
->isFree()) {
1755 // Hit: return entry.
1756 if (entry
->matchHash(aKeyHash
) && match(*entry
, aLookup
)) {
1760 // Collision: double hash.
1761 DoubleHash dh
= hash2(aKeyHash
);
1763 // Save the first removed entry pointer so we can recycle later.
1764 Entry
* firstRemoved
= nullptr;
1767 if (Reason
== ForAdd
&& !firstRemoved
) {
1768 if (MOZ_UNLIKELY(entry
->isRemoved())) {
1769 firstRemoved
= entry
;
1771 entry
->setCollision();
1775 h1
= applyDoubleHash(h1
, dh
);
1777 entry
= &mTable
[h1
];
1778 if (entry
->isFree()) {
1779 return firstRemoved
? *firstRemoved
: *entry
;
1782 if (entry
->matchHash(aKeyHash
) && match(*entry
, aLookup
)) {
1788 // This is a copy of lookup() hardcoded to the assumptions:
1789 // 1. the lookup is for an add;
1790 // 2. the key, whose |keyHash| has been passed, is not in the table.
1791 Entry
& findNonLiveEntry(HashNumber aKeyHash
)
1793 MOZ_ASSERT(!(aKeyHash
& sCollisionBit
));
1796 // We assume 'aKeyHash' has already been distributed.
1798 // Compute the primary hash address.
1799 HashNumber h1
= hash1(aKeyHash
);
1800 Entry
* entry
= &mTable
[h1
];
1802 // Miss: return space for a new entry.
1803 if (!entry
->isLive()) {
1807 // Collision: double hash.
1808 DoubleHash dh
= hash2(aKeyHash
);
1811 entry
->setCollision();
1813 h1
= applyDoubleHash(h1
, dh
);
1815 entry
= &mTable
[h1
];
1816 if (!entry
->isLive()) {
1829 RebuildStatus
changeTableSize(uint32_t newCapacity
,
1830 FailureBehavior aReportFailure
= ReportFailure
)
1832 MOZ_ASSERT(IsPowerOfTwo(newCapacity
));
1833 MOZ_ASSERT(!!mTable
== !!capacity());
1835 // Look, but don't touch, until we succeed in getting new entry store.
1836 Entry
* oldTable
= mTable
;
1837 uint32_t oldCapacity
= capacity();
1838 uint32_t newLog2
= mozilla::CeilingLog2(newCapacity
);
1840 if (MOZ_UNLIKELY(newCapacity
> sMaxCapacity
)) {
1841 if (aReportFailure
) {
1842 this->reportAllocOverflow();
1844 return RehashFailed
;
1847 Entry
* newTable
= createTable(*this, newCapacity
, aReportFailure
);
1849 return RehashFailed
;
1852 // We can't fail from here on, so update table parameters.
1853 mHashShift
= kHashNumberBits
- newLog2
;
1858 // Copy only live entries, leaving removed ones behind.
1859 Entry
* end
= oldTable
+ oldCapacity
;
1860 for (Entry
* src
= oldTable
; src
< end
; ++src
) {
1861 if (src
->isLive()) {
1862 HashNumber hn
= src
->getKeyHash();
1863 findNonLiveEntry(hn
).setLive(
1864 hn
, std::move(const_cast<typename
Entry::NonConstT
&>(src
->get())));
1870 // All entries have been destroyed, no need to destroyTable.
1871 this->free_(oldTable
, oldCapacity
);
1875 RebuildStatus
rehashIfOverloaded(
1876 FailureBehavior aReportFailure
= ReportFailure
)
1878 static_assert(sMaxCapacity
<= UINT32_MAX
/ sMaxAlphaNumerator
,
1879 "multiplication below could overflow");
1881 // Note: if capacity() is zero, this will always succeed, which is
1883 bool overloaded
= mEntryCount
+ mRemovedCount
>=
1884 capacity() * sMaxAlphaNumerator
/ sAlphaDenominator
;
1887 return NotOverloaded
;
1890 // Succeed if a quarter or more of all entries are removed. Note that this
1891 // always succeeds if capacity() == 0 (i.e. entry storage has not been
1892 // allocated), which is what we want, because it means changeTableSize()
1893 // will allocate the requested capacity rather than doubling it.
1894 bool manyRemoved
= mRemovedCount
>= (capacity() >> 2);
1895 uint32_t newCapacity
= manyRemoved
? rawCapacity() : rawCapacity() * 2;
1896 return changeTableSize(newCapacity
, aReportFailure
);
1899 void infallibleRehashIfOverloaded()
1901 if (rehashIfOverloaded(DontReportFailure
) == RehashFailed
) {
1902 rehashTableInPlace();
1906 void remove(Entry
& aEntry
)
1910 if (aEntry
.hasCollision()) {
1911 aEntry
.removeLive();
1922 void shrinkIfUnderloaded()
1924 static_assert(sMaxCapacity
<= UINT32_MAX
/ sMinAlphaNumerator
,
1925 "multiplication below could overflow");
1927 capacity() > sMinCapacity
&&
1928 mEntryCount
<= capacity() * sMinAlphaNumerator
/ sAlphaDenominator
;
1931 (void)changeTableSize(capacity() / 2, DontReportFailure
);
1935 // This is identical to changeTableSize(currentSize), but without requiring
1936 // a second table. We do this by recycling the collision bits to tell us if
1937 // the element is already inserted or still waiting to be inserted. Since
1938 // already-inserted elements win any conflicts, we get the same table as we
1939 // would have gotten through random insertion order.
1940 void rehashTableInPlace()
1944 for (uint32_t i
= 0; i
< capacity(); ++i
) {
1945 mTable
[i
].unsetCollision();
1947 for (uint32_t i
= 0; i
< capacity();) {
1948 Entry
* src
= &mTable
[i
];
1950 if (!src
->isLive() || src
->hasCollision()) {
1955 HashNumber keyHash
= src
->getKeyHash();
1956 HashNumber h1
= hash1(keyHash
);
1957 DoubleHash dh
= hash2(keyHash
);
1958 Entry
* tgt
= &mTable
[h1
];
1960 if (!tgt
->hasCollision()) {
1962 tgt
->setCollision();
1966 h1
= applyDoubleHash(h1
, dh
);
1971 // TODO: this algorithm leaves collision bits on *all* elements, even if
1972 // they are on no collision path. We have the option of setting the
1973 // collision bits correctly on a subsequent pass or skipping the rehash
1974 // unless we are totally filled with tombstones: benchmark to find out
1975 // which approach is best.
1978 // Note: |aLookup| may be a reference to a piece of |u|, so this function
1979 // must take care not to use |aLookup| after moving |u|.
1981 // Prefer to use putNewInfallible; this function does not check
1983 template<typename
... Args
>
1984 void putNewInfallibleInternal(const Lookup
& aLookup
, Args
&&... aArgs
)
1988 HashNumber keyHash
= prepareHash(aLookup
);
1989 Entry
* entry
= &findNonLiveEntry(keyHash
);
1992 if (entry
->isRemoved()) {
1994 keyHash
|= sCollisionBit
;
1997 entry
->setLive(keyHash
, std::forward
<Args
>(aArgs
)...);
2007 Entry
* end
= mTable
+ capacity();
2008 for (Entry
* e
= mTable
; e
< end
; ++e
) {
2018 // Resize the table down to the smallest capacity that doesn't overload the
2019 // table. Since we call shrinkIfUnderloaded() on every remove, you only need
2020 // to call this after a bulk removal of items done without calling remove().
2024 // Free the entry storage.
2025 this->free_(mTable
, capacity());
2027 mHashShift
= hashShift(0); // gives minimum capacity on regrowth
2033 uint32_t bestCapacity
= this->bestCapacity(mEntryCount
);
2034 MOZ_ASSERT(bestCapacity
<= capacity());
2036 if (bestCapacity
< capacity()) {
2037 (void)changeTableSize(bestCapacity
, DontReportFailure
);
2041 void clearAndCompact()
2047 MOZ_MUST_USE
bool reserve(uint32_t aLen
)
2053 uint32_t bestCapacity
= this->bestCapacity(aLen
);
2054 if (bestCapacity
<= capacity()) {
2055 return true; // Capacity is already sufficient.
2058 RebuildStatus status
= changeTableSize(bestCapacity
, ReportFailure
);
2059 MOZ_ASSERT(status
!= NotOverloaded
);
2060 return status
!= RehashFailed
;
2063 Iterator
iter() const
2065 return Iterator(*this);
2068 ModIterator
modIter()
2070 return ModIterator(*this);
2075 return Range(*this);
2080 return mEntryCount
== 0;
2083 uint32_t count() const
2088 uint32_t rawCapacity() const
2090 return 1u << (kHashNumberBits
- mHashShift
);
2093 uint32_t capacity() const
2095 return mTable
? rawCapacity() : 0;
2098 Generation
generation() const
2100 return Generation(mGen
);
2103 size_t shallowSizeOfExcludingThis(MallocSizeOf aMallocSizeOf
) const
2105 return aMallocSizeOf(mTable
);
2108 size_t shallowSizeOfIncludingThis(MallocSizeOf aMallocSizeOf
) const
2110 return aMallocSizeOf(this) + shallowSizeOfExcludingThis(aMallocSizeOf
);
2113 MOZ_ALWAYS_INLINE Ptr
readonlyThreadsafeLookup(const Lookup
& aLookup
) const
2115 if (!mTable
|| !HasHash
<HashPolicy
>(aLookup
)) {
2118 HashNumber keyHash
= prepareHash(aLookup
);
2119 return Ptr(lookup
<ForNonAdd
>(aLookup
, keyHash
), *this);
2122 MOZ_ALWAYS_INLINE Ptr
lookup(const Lookup
& aLookup
) const
2124 ReentrancyGuard
g(*this);
2125 return readonlyThreadsafeLookup(aLookup
);
2128 MOZ_ALWAYS_INLINE AddPtr
lookupForAdd(const Lookup
& aLookup
)
2130 ReentrancyGuard
g(*this);
2131 if (!EnsureHash
<HashPolicy
>(aLookup
)) {
2135 HashNumber keyHash
= prepareHash(aLookup
);
2138 return AddPtr(*this, keyHash
);
2141 // Directly call the constructor in the return statement to avoid
2142 // excess copying when building with Visual Studio 2017.
2144 return AddPtr(lookup
<ForAdd
>(aLookup
, keyHash
), *this, keyHash
);
2147 template<typename
... Args
>
2148 MOZ_MUST_USE
bool add(AddPtr
& aPtr
, Args
&&... aArgs
)
2150 ReentrancyGuard
g(*this);
2151 MOZ_ASSERT_IF(aPtr
.isValid(), mTable
);
2152 MOZ_ASSERT_IF(aPtr
.isValid(), aPtr
.mTable
== this);
2153 MOZ_ASSERT(!aPtr
.found());
2154 MOZ_ASSERT(!(aPtr
.mKeyHash
& sCollisionBit
));
2156 // Check for error from ensureHash() here.
2157 if (!aPtr
.isLive()) {
2161 MOZ_ASSERT(aPtr
.mGeneration
== generation());
2163 MOZ_ASSERT(aPtr
.mMutationCount
== mMutationCount
);
2166 if (!aPtr
.isValid()) {
2167 MOZ_ASSERT(!mTable
&& mEntryCount
== 0);
2168 uint32_t newCapacity
= rawCapacity();
2169 RebuildStatus status
= changeTableSize(newCapacity
, ReportFailure
);
2170 MOZ_ASSERT(status
!= NotOverloaded
);
2171 if (status
== RehashFailed
) {
2174 aPtr
.mEntry
= &findNonLiveEntry(aPtr
.mKeyHash
);
2176 } else if (aPtr
.mEntry
->isRemoved()) {
2177 // Changing an entry from removed to live does not affect whether we are
2178 // overloaded and can be handled separately.
2179 if (!this->checkSimulatedOOM()) {
2183 aPtr
.mKeyHash
|= sCollisionBit
;
2186 // Preserve the validity of |aPtr.mEntry|.
2187 RebuildStatus status
= rehashIfOverloaded();
2188 if (status
== RehashFailed
) {
2191 if (status
== NotOverloaded
&& !this->checkSimulatedOOM()) {
2194 if (status
== Rehashed
) {
2195 aPtr
.mEntry
= &findNonLiveEntry(aPtr
.mKeyHash
);
2199 aPtr
.mEntry
->setLive(aPtr
.mKeyHash
, std::forward
<Args
>(aArgs
)...);
2203 aPtr
.mGeneration
= generation();
2204 aPtr
.mMutationCount
= mMutationCount
;
2209 // Note: |aLookup| may be a reference to a piece of |u|, so this function
2210 // must take care not to use |aLookup| after moving |u|.
2211 template<typename
... Args
>
2212 void putNewInfallible(const Lookup
& aLookup
, Args
&&... aArgs
)
2214 MOZ_ASSERT(!lookup(aLookup
).found());
2215 ReentrancyGuard
g(*this);
2216 putNewInfallibleInternal(aLookup
, std::forward
<Args
>(aArgs
)...);
2219 // Note: |aLookup| may be alias arguments in |aArgs|, so this function must
2220 // take care not to use |aLookup| after moving |aArgs|.
2221 template<typename
... Args
>
2222 MOZ_MUST_USE
bool putNew(const Lookup
& aLookup
, Args
&&... aArgs
)
2224 if (!this->checkSimulatedOOM()) {
2227 if (!EnsureHash
<HashPolicy
>(aLookup
)) {
2230 if (rehashIfOverloaded() == RehashFailed
) {
2233 putNewInfallible(aLookup
, std::forward
<Args
>(aArgs
)...);
2237 // Note: |aLookup| may be a reference to a piece of |u|, so this function
2238 // must take care not to use |aLookup| after moving |u|.
2239 template<typename
... Args
>
2240 MOZ_MUST_USE
bool relookupOrAdd(AddPtr
& aPtr
,
2241 const Lookup
& aLookup
,
2244 // Check for error from ensureHash() here.
2245 if (!aPtr
.isLive()) {
2249 aPtr
.mGeneration
= generation();
2250 aPtr
.mMutationCount
= mMutationCount
;
2253 ReentrancyGuard
g(*this);
2254 // Check that aLookup has not been destroyed.
2255 MOZ_ASSERT(prepareHash(aLookup
) == aPtr
.mKeyHash
);
2256 aPtr
.mEntry
= &lookup
<ForAdd
>(aLookup
, aPtr
.mKeyHash
);
2261 // Clear aPtr so it's invalid; add() will allocate storage and redo the
2263 aPtr
.mEntry
= nullptr;
2265 return add(aPtr
, std::forward
<Args
>(aArgs
)...);
2268 void remove(Ptr aPtr
)
2271 ReentrancyGuard
g(*this);
2272 MOZ_ASSERT(aPtr
.found());
2273 MOZ_ASSERT(aPtr
.mGeneration
== generation());
2274 remove(*aPtr
.mEntry
);
2275 shrinkIfUnderloaded();
2278 void rekeyWithoutRehash(Ptr aPtr
, const Lookup
& aLookup
, const Key
& aKey
)
2281 ReentrancyGuard
g(*this);
2282 MOZ_ASSERT(aPtr
.found());
2283 MOZ_ASSERT(aPtr
.mGeneration
== generation());
2284 typename HashTableEntry
<T
>::NonConstT
t(std::move(*aPtr
));
2285 HashPolicy::setKey(t
, const_cast<Key
&>(aKey
));
2286 remove(*aPtr
.mEntry
);
2287 putNewInfallibleInternal(aLookup
, std::move(t
));
2290 void rekeyAndMaybeRehash(Ptr aPtr
, const Lookup
& aLookup
, const Key
& aKey
)
2292 rekeyWithoutRehash(aPtr
, aLookup
, aKey
);
2293 infallibleRehashIfOverloaded();
2297 } // namespace detail
2298 } // namespace mozilla
2300 #endif /* mozilla_HashTable_h */