Bug 1876335 - use GRADLE_MAVEN_REPOSITORIES in more places. r=owlish,geckoview-review...
[gecko.git] / gfx / 2d / BlurSSE2.cpp
blob69a30367baca92fa07f4b9503ef5b2e724acac07
1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
3 /* This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 #include "Blur.h"
9 #include "SSEHelpers.h"
11 #include <string.h>
13 namespace mozilla::gfx {
15 MOZ_ALWAYS_INLINE
16 __m128i Divide(__m128i aValues, __m128i aDivisor) {
17 const __m128i mask = _mm_setr_epi32(0x0, 0xffffffff, 0x0, 0xffffffff);
18 static const union {
19 int64_t i64[2];
20 __m128i m;
21 } roundingAddition = {{int64_t(1) << 31, int64_t(1) << 31}};
23 __m128i multiplied31 = _mm_mul_epu32(aValues, aDivisor);
24 __m128i multiplied42 = _mm_mul_epu32(_mm_srli_epi64(aValues, 32), aDivisor);
26 // Add 1 << 31 before shifting or masking the lower 32 bits away, so that the
27 // result is rounded.
28 __m128i p_3_1 =
29 _mm_srli_epi64(_mm_add_epi64(multiplied31, roundingAddition.m), 32);
30 __m128i p4_2_ =
31 _mm_and_si128(_mm_add_epi64(multiplied42, roundingAddition.m), mask);
32 __m128i p4321 = _mm_or_si128(p_3_1, p4_2_);
33 return p4321;
36 MOZ_ALWAYS_INLINE
37 __m128i BlurFourPixels(const __m128i& aTopLeft, const __m128i& aTopRight,
38 const __m128i& aBottomRight, const __m128i& aBottomLeft,
39 const __m128i& aDivisor) {
40 __m128i values = _mm_add_epi32(
41 _mm_sub_epi32(_mm_sub_epi32(aBottomRight, aTopRight), aBottomLeft),
42 aTopLeft);
43 return Divide(values, aDivisor);
46 MOZ_ALWAYS_INLINE
47 void LoadIntegralRowFromRow(uint32_t* aDest, const uint8_t* aSource,
48 int32_t aSourceWidth, int32_t aLeftInflation,
49 int32_t aRightInflation) {
50 int32_t currentRowSum = 0;
52 for (int x = 0; x < aLeftInflation; x++) {
53 currentRowSum += aSource[0];
54 aDest[x] = currentRowSum;
56 for (int x = aLeftInflation; x < (aSourceWidth + aLeftInflation); x++) {
57 currentRowSum += aSource[(x - aLeftInflation)];
58 aDest[x] = currentRowSum;
60 for (int x = (aSourceWidth + aLeftInflation);
61 x < (aSourceWidth + aLeftInflation + aRightInflation); x++) {
62 currentRowSum += aSource[aSourceWidth - 1];
63 aDest[x] = currentRowSum;
67 // This function calculates an integral of four pixels stored in the 4
68 // 32-bit integers on aPixels. i.e. for { 30, 50, 80, 100 } this returns
69 // { 30, 80, 160, 260 }. This seems to be the fastest way to do this after
70 // much testing.
71 MOZ_ALWAYS_INLINE
72 __m128i AccumulatePixelSums(__m128i aPixels) {
73 __m128i sumPixels = aPixels;
74 __m128i currentPixels = _mm_slli_si128(aPixels, 4);
75 sumPixels = _mm_add_epi32(sumPixels, currentPixels);
76 currentPixels = _mm_unpacklo_epi64(_mm_setzero_si128(), sumPixels);
78 return _mm_add_epi32(sumPixels, currentPixels);
81 MOZ_ALWAYS_INLINE void GenerateIntegralImage_SSE2(
82 int32_t aLeftInflation, int32_t aRightInflation, int32_t aTopInflation,
83 int32_t aBottomInflation, uint32_t* aIntegralImage,
84 size_t aIntegralImageStride, uint8_t* aSource, int32_t aSourceStride,
85 const IntSize& aSize) {
86 MOZ_ASSERT(!(aLeftInflation & 3));
88 uint32_t stride32bit = aIntegralImageStride / 4;
90 IntSize integralImageSize(aSize.width + aLeftInflation + aRightInflation,
91 aSize.height + aTopInflation + aBottomInflation);
93 LoadIntegralRowFromRow(aIntegralImage, aSource, aSize.width, aLeftInflation,
94 aRightInflation);
96 for (int y = 1; y < aTopInflation + 1; y++) {
97 uint32_t* intRow = aIntegralImage + (y * stride32bit);
98 uint32_t* intPrevRow = aIntegralImage + (y - 1) * stride32bit;
99 uint32_t* intFirstRow = aIntegralImage;
101 for (int x = 0; x < integralImageSize.width; x += 4) {
102 __m128i firstRow = _mm_load_si128((__m128i*)(intFirstRow + x));
103 __m128i previousRow = _mm_load_si128((__m128i*)(intPrevRow + x));
104 _mm_store_si128((__m128i*)(intRow + x),
105 _mm_add_epi32(firstRow, previousRow));
109 for (int y = aTopInflation + 1; y < (aSize.height + aTopInflation); y++) {
110 __m128i currentRowSum = _mm_setzero_si128();
111 uint32_t* intRow = aIntegralImage + (y * stride32bit);
112 uint32_t* intPrevRow = aIntegralImage + (y - 1) * stride32bit;
113 uint8_t* sourceRow = aSource + aSourceStride * (y - aTopInflation);
115 uint32_t pixel = sourceRow[0];
116 for (int x = 0; x < aLeftInflation; x += 4) {
117 __m128i sumPixels = AccumulatePixelSums(
118 _mm_shuffle_epi32(_mm_set1_epi32(pixel), _MM_SHUFFLE(0, 0, 0, 0)));
120 sumPixels = _mm_add_epi32(sumPixels, currentRowSum);
122 currentRowSum = _mm_shuffle_epi32(sumPixels, _MM_SHUFFLE(3, 3, 3, 3));
124 _mm_store_si128(
125 (__m128i*)(intRow + x),
126 _mm_add_epi32(sumPixels, _mm_load_si128((__m128i*)(intPrevRow + x))));
128 for (int x = aLeftInflation; x < (aSize.width + aLeftInflation); x += 4) {
129 uint32_t pixels = *(uint32_t*)(sourceRow + (x - aLeftInflation));
131 // It's important to shuffle here. When we exit this loop currentRowSum
132 // has to be set to sumPixels, so that the following loop can get the
133 // correct pixel for the currentRowSum. The highest order pixel in
134 // currentRowSum could've originated from accumulation in the stride.
135 currentRowSum = _mm_shuffle_epi32(currentRowSum, _MM_SHUFFLE(3, 3, 3, 3));
137 __m128i sumPixels = AccumulatePixelSums(_mm_unpacklo_epi16(
138 _mm_unpacklo_epi8(_mm_set1_epi32(pixels), _mm_setzero_si128()),
139 _mm_setzero_si128()));
140 sumPixels = _mm_add_epi32(sumPixels, currentRowSum);
142 currentRowSum = sumPixels;
144 _mm_store_si128(
145 (__m128i*)(intRow + x),
146 _mm_add_epi32(sumPixels, _mm_load_si128((__m128i*)(intPrevRow + x))));
149 pixel = sourceRow[aSize.width - 1];
150 int x = (aSize.width + aLeftInflation);
151 if ((aSize.width & 3)) {
152 // Deal with unaligned portion. Get the correct pixel from currentRowSum,
153 // see explanation above.
154 uint32_t intCurrentRowSum =
155 ((uint32_t*)&currentRowSum)[(aSize.width % 4) - 1];
156 for (; x < integralImageSize.width; x++) {
157 // We could be unaligned here!
158 if (!(x & 3)) {
159 // aligned!
160 currentRowSum = _mm_set1_epi32(intCurrentRowSum);
161 break;
163 intCurrentRowSum += pixel;
164 intRow[x] = intPrevRow[x] + intCurrentRowSum;
166 } else {
167 currentRowSum = _mm_shuffle_epi32(currentRowSum, _MM_SHUFFLE(3, 3, 3, 3));
169 for (; x < integralImageSize.width; x += 4) {
170 __m128i sumPixels = AccumulatePixelSums(_mm_set1_epi32(pixel));
172 sumPixels = _mm_add_epi32(sumPixels, currentRowSum);
174 currentRowSum = _mm_shuffle_epi32(sumPixels, _MM_SHUFFLE(3, 3, 3, 3));
176 _mm_store_si128(
177 (__m128i*)(intRow + x),
178 _mm_add_epi32(sumPixels, _mm_load_si128((__m128i*)(intPrevRow + x))));
182 if (aBottomInflation) {
183 // Store the last valid row of our source image in the last row of
184 // our integral image. This will be overwritten with the correct values
185 // in the upcoming loop.
186 LoadIntegralRowFromRow(
187 aIntegralImage + (integralImageSize.height - 1) * stride32bit,
188 aSource + (aSize.height - 1) * aSourceStride, aSize.width,
189 aLeftInflation, aRightInflation);
191 for (int y = aSize.height + aTopInflation; y < integralImageSize.height;
192 y++) {
193 __m128i* intRow = (__m128i*)(aIntegralImage + (y * stride32bit));
194 __m128i* intPrevRow = (__m128i*)(aIntegralImage + (y - 1) * stride32bit);
195 __m128i* intLastRow =
196 (__m128i*)(aIntegralImage +
197 (integralImageSize.height - 1) * stride32bit);
199 for (int x = 0; x < integralImageSize.width; x += 4) {
200 _mm_store_si128(intRow + (x / 4),
201 _mm_add_epi32(_mm_load_si128(intLastRow + (x / 4)),
202 _mm_load_si128(intPrevRow + (x / 4))));
209 * Attempt to do an in-place box blur using an integral image.
211 void AlphaBoxBlur::BoxBlur_SSE2(uint8_t* aData, int32_t aLeftLobe,
212 int32_t aRightLobe, int32_t aTopLobe,
213 int32_t aBottomLobe, uint32_t* aIntegralImage,
214 size_t aIntegralImageStride) const {
215 IntSize size = GetSize();
217 MOZ_ASSERT(size.height > 0);
219 // Our 'left' or 'top' lobe will include the current pixel. i.e. when
220 // looking at an integral image the value of a pixel at 'x,y' is calculated
221 // using the value of the integral image values above/below that.
222 aLeftLobe++;
223 aTopLobe++;
224 int32_t boxSize = (aLeftLobe + aRightLobe) * (aTopLobe + aBottomLobe);
226 MOZ_ASSERT(boxSize > 0);
228 if (boxSize == 1) {
229 return;
232 uint32_t reciprocal = uint32_t((uint64_t(1) << 32) / boxSize);
234 uint32_t stride32bit = aIntegralImageStride / 4;
235 int32_t leftInflation = RoundUpToMultipleOf4(aLeftLobe).value();
237 GenerateIntegralImage_SSE2(leftInflation, aRightLobe, aTopLobe, aBottomLobe,
238 aIntegralImage, aIntegralImageStride, aData,
239 mStride, size);
241 __m128i divisor = _mm_set1_epi32(reciprocal);
243 // This points to the start of the rectangle within the IntegralImage that
244 // overlaps the surface being blurred.
245 uint32_t* innerIntegral =
246 aIntegralImage + (aTopLobe * stride32bit) + leftInflation;
248 IntRect skipRect = mSkipRect;
249 int32_t stride = mStride;
250 uint8_t* data = aData;
251 for (int32_t y = 0; y < size.height; y++) {
252 // Not using ContainsY(y) because we do not skip y == skipRect.Y()
253 // although that may not be done on purpose
254 bool inSkipRectY = y > skipRect.Y() && y < skipRect.YMost();
256 uint32_t* topLeftBase =
257 innerIntegral + ((y - aTopLobe) * ptrdiff_t(stride32bit) - aLeftLobe);
258 uint32_t* topRightBase =
259 innerIntegral + ((y - aTopLobe) * ptrdiff_t(stride32bit) + aRightLobe);
260 uint32_t* bottomRightBase =
261 innerIntegral +
262 ((y + aBottomLobe) * ptrdiff_t(stride32bit) + aRightLobe);
263 uint32_t* bottomLeftBase =
264 innerIntegral +
265 ((y + aBottomLobe) * ptrdiff_t(stride32bit) - aLeftLobe);
267 int32_t x = 0;
268 // Process 16 pixels at a time for as long as possible.
269 for (; x <= size.width - 16; x += 16) {
270 // Not using ContainsX(x) because we do not skip x == skipRect.X()
271 // although that may not be done on purpose
272 if (inSkipRectY && x > skipRect.X() && x < skipRect.XMost()) {
273 x = skipRect.XMost() - 16;
274 // Trigger early jump on coming loop iterations, this will be reset
275 // next line anyway.
276 inSkipRectY = false;
277 continue;
280 __m128i topLeft;
281 __m128i topRight;
282 __m128i bottomRight;
283 __m128i bottomLeft;
285 topLeft = loadUnaligned128((__m128i*)(topLeftBase + x));
286 topRight = loadUnaligned128((__m128i*)(topRightBase + x));
287 bottomRight = loadUnaligned128((__m128i*)(bottomRightBase + x));
288 bottomLeft = loadUnaligned128((__m128i*)(bottomLeftBase + x));
289 __m128i result1 =
290 BlurFourPixels(topLeft, topRight, bottomRight, bottomLeft, divisor);
292 topLeft = loadUnaligned128((__m128i*)(topLeftBase + x + 4));
293 topRight = loadUnaligned128((__m128i*)(topRightBase + x + 4));
294 bottomRight = loadUnaligned128((__m128i*)(bottomRightBase + x + 4));
295 bottomLeft = loadUnaligned128((__m128i*)(bottomLeftBase + x + 4));
296 __m128i result2 =
297 BlurFourPixels(topLeft, topRight, bottomRight, bottomLeft, divisor);
299 topLeft = loadUnaligned128((__m128i*)(topLeftBase + x + 8));
300 topRight = loadUnaligned128((__m128i*)(topRightBase + x + 8));
301 bottomRight = loadUnaligned128((__m128i*)(bottomRightBase + x + 8));
302 bottomLeft = loadUnaligned128((__m128i*)(bottomLeftBase + x + 8));
303 __m128i result3 =
304 BlurFourPixels(topLeft, topRight, bottomRight, bottomLeft, divisor);
306 topLeft = loadUnaligned128((__m128i*)(topLeftBase + x + 12));
307 topRight = loadUnaligned128((__m128i*)(topRightBase + x + 12));
308 bottomRight = loadUnaligned128((__m128i*)(bottomRightBase + x + 12));
309 bottomLeft = loadUnaligned128((__m128i*)(bottomLeftBase + x + 12));
310 __m128i result4 =
311 BlurFourPixels(topLeft, topRight, bottomRight, bottomLeft, divisor);
313 __m128i final = _mm_packus_epi16(_mm_packs_epi32(result1, result2),
314 _mm_packs_epi32(result3, result4));
316 _mm_storeu_si128((__m128i*)(data + stride * y + x), final);
319 // Process the remaining pixels 4 bytes at a time.
320 for (; x < size.width; x += 4) {
321 // Not using Containsx(x) because we do not skip x == skipRect.X()
322 // although that may not be done on purpose
323 if (inSkipRectY && x > skipRect.X() && x < skipRect.XMost()) {
324 x = skipRect.XMost() - 4;
325 // Trigger early jump on coming loop iterations, this will be reset
326 // next line anyway.
327 inSkipRectY = false;
328 continue;
330 __m128i topLeft = loadUnaligned128((__m128i*)(topLeftBase + x));
331 __m128i topRight = loadUnaligned128((__m128i*)(topRightBase + x));
332 __m128i bottomRight = loadUnaligned128((__m128i*)(bottomRightBase + x));
333 __m128i bottomLeft = loadUnaligned128((__m128i*)(bottomLeftBase + x));
335 __m128i result =
336 BlurFourPixels(topLeft, topRight, bottomRight, bottomLeft, divisor);
337 __m128i final = _mm_packus_epi16(
338 _mm_packs_epi32(result, _mm_setzero_si128()), _mm_setzero_si128());
340 *(uint32_t*)(data + stride * y + x) = _mm_cvtsi128_si32(final);
345 } // namespace mozilla::gfx