1 /* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* This Source Code Form is subject to the terms of the Mozilla Public
3 * License, v. 2.0. If a copy of the MPL was not distributed with this
4 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 * SurfaceCache is a service for caching temporary surfaces in imagelib.
10 #include "SurfaceCache.h"
15 #include "ISurfaceProvider.h"
17 #include "LookupResult.h"
18 #include "ShutdownTracker.h"
19 #include "gfx2DGlue.h"
20 #include "gfxPlatform.h"
22 #include "mozilla/Assertions.h"
23 #include "mozilla/Attributes.h"
24 #include "mozilla/CheckedInt.h"
25 #include "mozilla/DebugOnly.h"
26 #include "mozilla/Likely.h"
27 #include "mozilla/RefPtr.h"
28 #include "mozilla/StaticMutex.h"
29 #include "mozilla/StaticPrefs_image.h"
30 #include "mozilla/StaticPtr.h"
31 #include "mozilla/Tuple.h"
32 #include "nsExpirationTracker.h"
33 #include "nsHashKeys.h"
34 #include "nsIMemoryReporter.h"
35 #include "nsRefPtrHashtable.h"
38 #include "Orientation.h"
50 MOZ_DEFINE_MALLOC_SIZE_OF(SurfaceCacheMallocSizeOf
)
53 class SurfaceCacheImpl
;
55 ///////////////////////////////////////////////////////////////////////////////
57 ///////////////////////////////////////////////////////////////////////////////
59 // The single surface cache instance.
60 static StaticRefPtr
<SurfaceCacheImpl
> sInstance
;
62 // The mutex protecting the surface cache.
63 static StaticMutex sInstanceMutex
;
65 ///////////////////////////////////////////////////////////////////////////////
66 // SurfaceCache Implementation
67 ///////////////////////////////////////////////////////////////////////////////
70 * Cost models the cost of storing a surface in the cache. Right now, this is
71 * simply an estimate of the size of the surface in bytes, but in the future it
72 * may be worth taking into account the cost of rematerializing the surface as
77 static Cost
ComputeCost(const IntSize
& aSize
, uint32_t aBytesPerPixel
) {
78 MOZ_ASSERT(aBytesPerPixel
== 1 || aBytesPerPixel
== 4);
79 return aSize
.width
* aSize
.height
* aBytesPerPixel
;
83 * Since we want to be able to make eviction decisions based on cost, we need to
84 * be able to look up the CachedSurface which has a certain cost as well as the
85 * cost associated with a certain CachedSurface. To make this possible, in data
86 * structures we actually store a CostEntry, which contains a weak pointer to
87 * its associated surface.
89 * To make usage of the weak pointer safe, SurfaceCacheImpl always calls
90 * StartTracking after a surface is stored in the cache and StopTracking before
95 CostEntry(NotNull
<CachedSurface
*> aSurface
, Cost aCost
)
96 : mSurface(aSurface
), mCost(aCost
) {}
98 NotNull
<CachedSurface
*> Surface() const { return mSurface
; }
99 Cost
GetCost() const { return mCost
; }
101 bool operator==(const CostEntry
& aOther
) const {
102 return mSurface
== aOther
.mSurface
&& mCost
== aOther
.mCost
;
105 bool operator<(const CostEntry
& aOther
) const {
106 return mCost
< aOther
.mCost
||
107 (mCost
== aOther
.mCost
&& mSurface
< aOther
.mSurface
);
111 NotNull
<CachedSurface
*> mSurface
;
116 * A CachedSurface associates a surface with a key that uniquely identifies that
119 class CachedSurface
{
123 MOZ_DECLARE_REFCOUNTED_TYPENAME(CachedSurface
)
124 NS_INLINE_DECL_THREADSAFE_REFCOUNTING(CachedSurface
)
126 explicit CachedSurface(NotNull
<ISurfaceProvider
*> aProvider
)
127 : mProvider(aProvider
), mIsLocked(false) {}
129 DrawableSurface
GetDrawableSurface() const {
130 if (MOZ_UNLIKELY(IsPlaceholder())) {
131 MOZ_ASSERT_UNREACHABLE("Called GetDrawableSurface() on a placeholder");
132 return DrawableSurface();
135 return mProvider
->Surface();
138 void SetLocked(bool aLocked
) {
139 if (IsPlaceholder()) {
140 return; // Can't lock a placeholder.
143 // Update both our state and our provider's state. Some surface providers
144 // are permanently locked; maintaining our own locking state enables us to
145 // respect SetLocked() even when it's meaningless from the provider's
148 mProvider
->SetLocked(aLocked
);
151 bool IsLocked() const {
152 return !IsPlaceholder() && mIsLocked
&& mProvider
->IsLocked();
155 void SetCannotSubstitute() {
156 mProvider
->Availability().SetCannotSubstitute();
158 bool CannotSubstitute() const {
159 return mProvider
->Availability().CannotSubstitute();
162 bool IsPlaceholder() const {
163 return mProvider
->Availability().IsPlaceholder();
165 bool IsDecoded() const { return !IsPlaceholder() && mProvider
->IsFinished(); }
167 ImageKey
GetImageKey() const { return mProvider
->GetImageKey(); }
168 const SurfaceKey
& GetSurfaceKey() const { return mProvider
->GetSurfaceKey(); }
169 nsExpirationState
* GetExpirationState() { return &mExpirationState
; }
171 CostEntry
GetCostEntry() {
172 return image::CostEntry(WrapNotNull(this), mProvider
->LogicalSizeInBytes());
175 size_t ShallowSizeOfIncludingThis(MallocSizeOf aMallocSizeOf
) const {
176 return aMallocSizeOf(this) + aMallocSizeOf(mProvider
.get());
179 // A helper type used by SurfaceCacheImpl::CollectSizeOfSurfaces.
180 struct MOZ_STACK_CLASS SurfaceMemoryReport
{
181 SurfaceMemoryReport(nsTArray
<SurfaceMemoryCounter
>& aCounters
,
182 MallocSizeOf aMallocSizeOf
)
183 : mCounters(aCounters
), mMallocSizeOf(aMallocSizeOf
) {}
185 void Add(NotNull
<CachedSurface
*> aCachedSurface
, bool aIsFactor2
) {
186 if (aCachedSurface
->IsPlaceholder()) {
190 // Record the memory used by the ISurfaceProvider. This may not have a
191 // straightforward relationship to the size of the surface that
192 // DrawableRef() returns if the surface is generated dynamically. (i.e.,
193 // for surfaces with PlaybackType::eAnimated.)
194 aCachedSurface
->mProvider
->AddSizeOfExcludingThis(
195 mMallocSizeOf
, [&](ISurfaceProvider::AddSizeOfCbData
& aMetadata
) {
196 SurfaceMemoryCounter
counter(
197 aCachedSurface
->GetSurfaceKey(), aMetadata
.mSurface
,
198 aCachedSurface
->IsLocked(), aCachedSurface
->CannotSubstitute(),
199 aIsFactor2
, aMetadata
.mFinished
);
201 counter
.Values().SetDecodedHeap(aMetadata
.mHeapBytes
);
202 counter
.Values().SetDecodedNonHeap(aMetadata
.mNonHeapBytes
);
203 counter
.Values().SetDecodedUnknown(aMetadata
.mUnknownBytes
);
204 counter
.Values().SetExternalHandles(aMetadata
.mExternalHandles
);
205 counter
.Values().SetFrameIndex(aMetadata
.mIndex
);
206 counter
.Values().SetExternalId(aMetadata
.mExternalId
);
207 counter
.Values().SetSurfaceTypes(aMetadata
.mTypes
);
209 mCounters
.AppendElement(counter
);
214 nsTArray
<SurfaceMemoryCounter
>& mCounters
;
215 MallocSizeOf mMallocSizeOf
;
219 nsExpirationState mExpirationState
;
220 NotNull
<RefPtr
<ISurfaceProvider
>> mProvider
;
224 static int64_t AreaOfIntSize(const IntSize
& aSize
) {
225 return static_cast<int64_t>(aSize
.width
) * static_cast<int64_t>(aSize
.height
);
229 * An ImageSurfaceCache is a per-image surface cache. For correctness we must be
230 * able to remove all surfaces associated with an image when the image is
231 * destroyed or invalidated. Since this will happen frequently, it makes sense
232 * to make it cheap by storing the surfaces for each image separately.
234 * ImageSurfaceCache also keeps track of whether its associated image is locked
237 * The cache may also enter "factor of 2" mode which occurs when the number of
238 * surfaces in the cache exceeds the "image.cache.factor2.threshold-surfaces"
239 * pref plus the number of native sizes of the image. When in "factor of 2"
240 * mode, the cache will strongly favour sizes which are a factor of 2 of the
241 * largest native size. It accomplishes this by suggesting a factor of 2 size
242 * when lookups fail and substituting the nearest factor of 2 surface to the
243 * ideal size as the "best" available (as opposed to substitution but not
244 * found). This allows us to minimize memory consumption and CPU time spent
245 * decoding when a website requires many variants of the same surface.
247 class ImageSurfaceCache
{
248 ~ImageSurfaceCache() {}
251 explicit ImageSurfaceCache(const ImageKey aImageKey
)
254 mFactor2Pruned(false),
255 mIsVectorImage(aImageKey
->GetType() == imgIContainer::TYPE_VECTOR
) {}
257 MOZ_DECLARE_REFCOUNTED_TYPENAME(ImageSurfaceCache
)
258 NS_INLINE_DECL_THREADSAFE_REFCOUNTING(ImageSurfaceCache
)
260 typedef nsRefPtrHashtable
<nsGenericHashKey
<SurfaceKey
>, CachedSurface
>
263 auto Values() const { return mSurfaces
.Values(); }
264 uint32_t Count() const { return mSurfaces
.Count(); }
265 bool IsEmpty() const { return mSurfaces
.Count() == 0; }
267 size_t ShallowSizeOfIncludingThis(MallocSizeOf aMallocSizeOf
) const {
268 size_t bytes
= aMallocSizeOf(this) +
269 mSurfaces
.ShallowSizeOfExcludingThis(aMallocSizeOf
);
270 for (const auto& value
: Values()) {
271 bytes
+= value
->ShallowSizeOfIncludingThis(aMallocSizeOf
);
276 [[nodiscard
]] bool Insert(NotNull
<CachedSurface
*> aSurface
) {
277 MOZ_ASSERT(!mLocked
|| aSurface
->IsPlaceholder() || aSurface
->IsLocked(),
278 "Inserting an unlocked surface for a locked image");
279 return mSurfaces
.InsertOrUpdate(aSurface
->GetSurfaceKey(),
280 RefPtr
<CachedSurface
>{aSurface
}, fallible
);
283 already_AddRefed
<CachedSurface
> Remove(NotNull
<CachedSurface
*> aSurface
) {
284 MOZ_ASSERT(mSurfaces
.GetWeak(aSurface
->GetSurfaceKey()),
285 "Should not be removing a surface we don't have");
287 RefPtr
<CachedSurface
> surface
;
288 mSurfaces
.Remove(aSurface
->GetSurfaceKey(), getter_AddRefs(surface
));
290 return surface
.forget();
293 already_AddRefed
<CachedSurface
> Lookup(const SurfaceKey
& aSurfaceKey
,
295 RefPtr
<CachedSurface
> surface
;
296 mSurfaces
.Get(aSurfaceKey
, getter_AddRefs(surface
));
300 // We don't want to allow factor of 2 mode pruning to release surfaces
301 // for which the callers will accept no substitute.
302 surface
->SetCannotSubstitute();
303 } else if (!mFactor2Mode
) {
304 // If no exact match is found, and this is for use rather than internal
305 // accounting (i.e. insert and removal), we know this will trigger a
306 // decode. Make sure we switch now to factor of 2 mode if necessary.
307 MaybeSetFactor2Mode();
311 return surface
.forget();
315 * @returns A tuple containing the best matching CachedSurface if available,
316 * a MatchType describing how the CachedSurface was selected, and
317 * an IntSize which is the size the caller should choose to decode
318 * at should it attempt to do so.
320 Tuple
<already_AddRefed
<CachedSurface
>, MatchType
, IntSize
> LookupBestMatch(
321 const SurfaceKey
& aIdealKey
) {
322 // Try for an exact match first.
323 RefPtr
<CachedSurface
> exactMatch
;
324 mSurfaces
.Get(aIdealKey
, getter_AddRefs(exactMatch
));
326 if (exactMatch
->IsDecoded()) {
327 return MakeTuple(exactMatch
.forget(), MatchType::EXACT
, IntSize());
329 } else if (!mFactor2Mode
) {
330 // If no exact match is found, and we are not in factor of 2 mode, then
331 // we know that we will trigger a decode because at best we will provide
332 // a substitute. Make sure we switch now to factor of 2 mode if necessary.
333 MaybeSetFactor2Mode();
336 // Try for a best match second, if using compact.
337 IntSize suggestedSize
= SuggestedSize(aIdealKey
.Size());
338 if (suggestedSize
!= aIdealKey
.Size()) {
340 SurfaceKey compactKey
= aIdealKey
.CloneWithSize(suggestedSize
);
341 mSurfaces
.Get(compactKey
, getter_AddRefs(exactMatch
));
342 if (exactMatch
&& exactMatch
->IsDecoded()) {
343 MOZ_ASSERT(suggestedSize
!= aIdealKey
.Size());
344 return MakeTuple(exactMatch
.forget(),
345 MatchType::SUBSTITUTE_BECAUSE_BEST
, suggestedSize
);
350 // There's no perfect match, so find the best match we can.
351 RefPtr
<CachedSurface
> bestMatch
;
352 for (const auto& value
: Values()) {
353 NotNull
<CachedSurface
*> current
= WrapNotNull(value
);
354 const SurfaceKey
& currentKey
= current
->GetSurfaceKey();
356 // We never match a placeholder.
357 if (current
->IsPlaceholder()) {
360 // Matching the playback type and SVG context is required.
361 if (currentKey
.Playback() != aIdealKey
.Playback() ||
362 currentKey
.SVGContext() != aIdealKey
.SVGContext()) {
365 // Matching the flags is required.
366 if (currentKey
.Flags() != aIdealKey
.Flags()) {
369 // Anything is better than nothing! (Within the constraints we just
370 // checked, of course.)
376 MOZ_ASSERT(bestMatch
, "Should have a current best match");
378 // Always prefer completely decoded surfaces.
379 bool bestMatchIsDecoded
= bestMatch
->IsDecoded();
380 if (bestMatchIsDecoded
&& !current
->IsDecoded()) {
383 if (!bestMatchIsDecoded
&& current
->IsDecoded()) {
388 SurfaceKey bestMatchKey
= bestMatch
->GetSurfaceKey();
389 if (CompareArea(aIdealKey
.Size(), bestMatchKey
.Size(),
390 currentKey
.Size())) {
398 // No exact match, neither ideal nor factor of 2.
399 MOZ_ASSERT(suggestedSize
!= bestMatch
->GetSurfaceKey().Size(),
400 "No exact match despite the fact the sizes match!");
401 matchType
= MatchType::SUBSTITUTE_BECAUSE_NOT_FOUND
;
402 } else if (exactMatch
!= bestMatch
) {
403 // The exact match is still decoding, but we found a substitute.
404 matchType
= MatchType::SUBSTITUTE_BECAUSE_PENDING
;
405 } else if (aIdealKey
.Size() != bestMatch
->GetSurfaceKey().Size()) {
406 // The best factor of 2 match is still decoding, but the best we've got.
407 MOZ_ASSERT(suggestedSize
!= aIdealKey
.Size());
408 MOZ_ASSERT(mFactor2Mode
|| mIsVectorImage
);
409 matchType
= MatchType::SUBSTITUTE_BECAUSE_BEST
;
411 // The exact match is still decoding, but it's the best we've got.
412 matchType
= MatchType::EXACT
;
416 // We found an "exact match"; it must have been a placeholder.
417 MOZ_ASSERT(exactMatch
->IsPlaceholder());
418 matchType
= MatchType::PENDING
;
420 // We couldn't find an exact match *or* a substitute.
421 matchType
= MatchType::NOT_FOUND
;
425 return MakeTuple(bestMatch
.forget(), matchType
, suggestedSize
);
428 void MaybeSetFactor2Mode() {
429 MOZ_ASSERT(!mFactor2Mode
);
431 // Typically an image cache will not have too many size-varying surfaces, so
432 // if we exceed the given threshold, we should consider using a subset.
433 int32_t thresholdSurfaces
=
434 StaticPrefs::image_cache_factor2_threshold_surfaces();
435 if (thresholdSurfaces
< 0 ||
436 mSurfaces
.Count() <= static_cast<uint32_t>(thresholdSurfaces
)) {
440 // Determine how many native surfaces this image has. If it is zero, and it
441 // is a vector image, then we should impute a single native size. Otherwise,
442 // it may be zero because we don't know yet, or the image has an error, or
443 // it isn't supported.
444 NotNull
<CachedSurface
*> current
=
445 WrapNotNull(mSurfaces
.ConstIter().UserData());
446 Image
* image
= static_cast<Image
*>(current
->GetImageKey());
447 size_t nativeSizes
= image
->GetNativeSizesLength();
448 if (mIsVectorImage
) {
449 MOZ_ASSERT(nativeSizes
== 0);
451 } else if (nativeSizes
== 0) {
455 // Increase the threshold by the number of native sizes. This ensures that
456 // we do not prevent decoding of the image at all its native sizes. It does
457 // not guarantee we will provide a surface at that size however (i.e. many
458 // other sized surfaces are requested, in addition to the native sizes).
459 thresholdSurfaces
+= nativeSizes
;
460 if (mSurfaces
.Count() <= static_cast<uint32_t>(thresholdSurfaces
)) {
464 // Get our native size. While we know the image should be fully decoded,
465 // if it is an SVG, it is valid to have a zero size. We can't do compacting
466 // in that case because we need to know the width/height ratio to define a
469 if (NS_FAILED(image
->GetWidth(&nativeSize
.width
)) ||
470 NS_FAILED(image
->GetHeight(&nativeSize
.height
)) ||
471 nativeSize
.IsEmpty()) {
475 // We have a valid size, we can change modes.
479 template <typename Function
>
480 void Prune(Function
&& aRemoveCallback
) {
481 if (!mFactor2Mode
|| mFactor2Pruned
) {
485 // Attempt to discard any surfaces which are not factor of 2 and the best
486 // factor of 2 match exists.
487 bool hasNotFactorSize
= false;
488 for (auto iter
= mSurfaces
.Iter(); !iter
.Done(); iter
.Next()) {
489 NotNull
<CachedSurface
*> current
= WrapNotNull(iter
.UserData());
490 const SurfaceKey
& currentKey
= current
->GetSurfaceKey();
491 const IntSize
& currentSize
= currentKey
.Size();
493 // First we check if someone requested this size and would not accept
494 // an alternatively sized surface.
495 if (current
->CannotSubstitute()) {
499 // Next we find the best factor of 2 size for this surface. If this
500 // surface is a factor of 2 size, then we want to keep it.
501 IntSize bestSize
= SuggestedSize(currentSize
);
502 if (bestSize
== currentSize
) {
506 // Check the cache for a surface with the same parameters except for the
507 // size which uses the closest factor of 2 size.
508 SurfaceKey compactKey
= currentKey
.CloneWithSize(bestSize
);
509 RefPtr
<CachedSurface
> compactMatch
;
510 mSurfaces
.Get(compactKey
, getter_AddRefs(compactMatch
));
511 if (compactMatch
&& compactMatch
->IsDecoded()) {
512 aRemoveCallback(current
);
515 hasNotFactorSize
= true;
519 // We have no surfaces that are not factor of 2 sized, so we can stop
520 // pruning henceforth, because we avoid the insertion of new surfaces that
521 // don't match our sizing set (unless the caller won't accept a
523 if (!hasNotFactorSize
) {
524 mFactor2Pruned
= true;
527 // We should never leave factor of 2 mode due to pruning in of itself, but
528 // if we discarded surfaces due to the volatile buffers getting released,
533 IntSize
SuggestedSize(const IntSize
& aSize
) const {
534 IntSize suggestedSize
= SuggestedSizeInternal(aSize
);
535 if (mIsVectorImage
) {
536 suggestedSize
= SurfaceCache::ClampVectorSize(suggestedSize
);
538 return suggestedSize
;
541 IntSize
SuggestedSizeInternal(const IntSize
& aSize
) const {
542 // When not in factor of 2 mode, we can always decode at the given size.
547 // We cannot enter factor of 2 mode unless we have a minimum number of
548 // surfaces, and we should have left it if the cache was emptied.
549 if (MOZ_UNLIKELY(IsEmpty())) {
550 MOZ_ASSERT_UNREACHABLE("Should not be empty and in factor of 2 mode!");
554 // This bit of awkwardness gets the largest native size of the image.
555 NotNull
<CachedSurface
*> firstSurface
=
556 WrapNotNull(mSurfaces
.ConstIter().UserData());
557 Image
* image
= static_cast<Image
*>(firstSurface
->GetImageKey());
559 if (NS_FAILED(image
->GetWidth(&factorSize
.width
)) ||
560 NS_FAILED(image
->GetHeight(&factorSize
.height
)) ||
561 factorSize
.IsEmpty()) {
562 // We should not have entered factor of 2 mode without a valid size, and
563 // several successfully decoded surfaces. Note that valid vector images
564 // may have a default size of 0x0, and those are not yet supported.
565 MOZ_ASSERT_UNREACHABLE("Expected valid native size!");
569 if (image
->GetOrientation().SwapsWidthAndHeight()) {
570 std::swap(factorSize
.width
, factorSize
.height
);
573 if (mIsVectorImage
) {
574 // Ensure the aspect ratio matches the native size before forcing the
575 // caller to accept a factor of 2 size. The difference between the aspect
578 // delta = nativeWidth/nativeHeight - desiredWidth/desiredHeight
580 // delta*nativeHeight*desiredHeight = nativeWidth*desiredHeight
581 // - desiredWidth*nativeHeight
583 // Using the maximum accepted delta as a constant, we can avoid the
584 // floating point division and just compare after some integer ops.
586 factorSize
.width
* aSize
.height
- aSize
.width
* factorSize
.height
;
587 int32_t maxDelta
= (factorSize
.height
* aSize
.height
) >> 4;
588 if (delta
> maxDelta
|| delta
< -maxDelta
) {
592 // If the requested size is bigger than the native size, we actually need
593 // to grow the native size instead of shrinking it.
594 if (factorSize
.width
< aSize
.width
) {
596 IntSize
candidate(factorSize
.width
* 2, factorSize
.height
* 2);
597 if (!SurfaceCache::IsLegalSize(candidate
)) {
601 factorSize
= candidate
;
602 } while (factorSize
.width
< aSize
.width
);
607 // Otherwise we can find the best fit as normal.
610 // Start with the native size as the best first guess.
611 IntSize bestSize
= factorSize
;
612 factorSize
.width
/= 2;
613 factorSize
.height
/= 2;
615 while (!factorSize
.IsEmpty()) {
616 if (!CompareArea(aSize
, bestSize
, factorSize
)) {
617 // This size is not better than the last. Since we proceed from largest
618 // to smallest, we know that the next size will not be better if the
619 // previous size was rejected. Break early.
623 // The current factor of 2 size is better than the last selected size.
624 bestSize
= factorSize
;
625 factorSize
.width
/= 2;
626 factorSize
.height
/= 2;
632 bool CompareArea(const IntSize
& aIdealSize
, const IntSize
& aBestSize
,
633 const IntSize
& aSize
) const {
634 // Compare sizes. We use an area-based heuristic here instead of computing a
635 // truly optimal answer, since it seems very unlikely to make a difference
636 // for realistic sizes.
637 int64_t idealArea
= AreaOfIntSize(aIdealSize
);
638 int64_t currentArea
= AreaOfIntSize(aSize
);
639 int64_t bestMatchArea
= AreaOfIntSize(aBestSize
);
641 // If the best match is smaller than the ideal size, prefer bigger sizes.
642 if (bestMatchArea
< idealArea
) {
643 if (currentArea
> bestMatchArea
) {
649 // Other, prefer sizes closer to the ideal size, but still not smaller.
650 if (idealArea
<= currentArea
&& currentArea
< bestMatchArea
) {
654 // This surface isn't an improvement over the current best match.
658 template <typename Function
>
659 void CollectSizeOfSurfaces(nsTArray
<SurfaceMemoryCounter
>& aCounters
,
660 MallocSizeOf aMallocSizeOf
,
661 Function
&& aRemoveCallback
) {
662 CachedSurface::SurfaceMemoryReport
report(aCounters
, aMallocSizeOf
);
663 for (auto iter
= mSurfaces
.Iter(); !iter
.Done(); iter
.Next()) {
664 NotNull
<CachedSurface
*> surface
= WrapNotNull(iter
.UserData());
666 // We don't need the drawable surface for ourselves, but adding a surface
667 // to the report will trigger this indirectly. If the surface was
668 // discarded by the OS because it was in volatile memory, we should remove
669 // it from the cache immediately rather than include it in the report.
670 DrawableSurface drawableSurface
;
671 if (!surface
->IsPlaceholder()) {
672 drawableSurface
= surface
->GetDrawableSurface();
673 if (!drawableSurface
) {
674 aRemoveCallback(surface
);
680 const IntSize
& size
= surface
->GetSurfaceKey().Size();
681 bool factor2Size
= false;
683 factor2Size
= (size
== SuggestedSize(size
));
685 report
.Add(surface
, factor2Size
);
691 void SetLocked(bool aLocked
) { mLocked
= aLocked
; }
692 bool IsLocked() const { return mLocked
; }
695 void AfterMaybeRemove() {
696 if (IsEmpty() && mFactor2Mode
) {
697 // The last surface for this cache was removed. This can happen if the
698 // surface was stored in a volatile buffer and got purged, or the surface
699 // expired from the cache. If the cache itself lingers for some reason
700 // (e.g. in the process of performing a lookup, the cache itself is
701 // locked), then we need to reset the factor of 2 state because it
702 // requires at least one surface present to get the native size
703 // information from the image.
704 mFactor2Mode
= mFactor2Pruned
= false;
708 SurfaceTable mSurfaces
;
712 // True in "factor of 2" mode.
715 // True if all non-factor of 2 surfaces have been removed from the cache. Note
716 // that this excludes unsubstitutable sizes.
719 // True if the surfaces are produced from a vector image. If so, it must match
720 // the aspect ratio when using factor of 2 mode.
725 * SurfaceCacheImpl is responsible for determining which surfaces will be cached
726 * and managing the surface cache data structures. Rather than interact with
727 * SurfaceCacheImpl directly, client code interacts with SurfaceCache, which
728 * maintains high-level invariants and encapsulates the details of the surface
729 * cache's implementation.
731 class SurfaceCacheImpl final
: public nsIMemoryReporter
{
735 SurfaceCacheImpl(uint32_t aSurfaceCacheExpirationTimeMS
,
736 uint32_t aSurfaceCacheDiscardFactor
,
737 uint32_t aSurfaceCacheSize
)
738 : mExpirationTracker(aSurfaceCacheExpirationTimeMS
),
739 mMemoryPressureObserver(new MemoryPressureObserver
),
740 mDiscardFactor(aSurfaceCacheDiscardFactor
),
741 mMaxCost(aSurfaceCacheSize
),
742 mAvailableCost(aSurfaceCacheSize
),
745 mAlreadyPresentCount(0),
746 mTableFailureCount(0),
747 mTrackingFailureCount(0) {
748 nsCOMPtr
<nsIObserverService
> os
= services::GetObserverService();
750 os
->AddObserver(mMemoryPressureObserver
, "memory-pressure", false);
755 virtual ~SurfaceCacheImpl() {
756 nsCOMPtr
<nsIObserverService
> os
= services::GetObserverService();
758 os
->RemoveObserver(mMemoryPressureObserver
, "memory-pressure");
761 UnregisterWeakMemoryReporter(this);
765 void InitMemoryReporter() { RegisterWeakMemoryReporter(this); }
767 InsertOutcome
Insert(NotNull
<ISurfaceProvider
*> aProvider
, bool aSetAvailable
,
768 const StaticMutexAutoLock
& aAutoLock
) {
769 // If this is a duplicate surface, refuse to replace the original.
770 // XXX(seth): Calling Lookup() and then RemoveEntry() does the lookup
771 // twice. We'll make this more efficient in bug 1185137.
772 LookupResult result
=
773 Lookup(aProvider
->GetImageKey(), aProvider
->GetSurfaceKey(), aAutoLock
,
774 /* aMarkUsed = */ false);
775 if (MOZ_UNLIKELY(result
)) {
776 mAlreadyPresentCount
++;
777 return InsertOutcome::FAILURE_ALREADY_PRESENT
;
780 if (result
.Type() == MatchType::PENDING
) {
781 RemoveEntry(aProvider
->GetImageKey(), aProvider
->GetSurfaceKey(),
785 MOZ_ASSERT(result
.Type() == MatchType::NOT_FOUND
||
786 result
.Type() == MatchType::PENDING
,
787 "A LookupResult with no surface should be NOT_FOUND or PENDING");
789 // If this is bigger than we can hold after discarding everything we can,
790 // refuse to cache it.
791 Cost cost
= aProvider
->LogicalSizeInBytes();
792 if (MOZ_UNLIKELY(!CanHoldAfterDiscarding(cost
))) {
794 return InsertOutcome::FAILURE
;
797 // Remove elements in order of cost until we can fit this in the cache. Note
798 // that locked surfaces aren't in mCosts, so we never remove them here.
799 while (cost
> mAvailableCost
) {
800 MOZ_ASSERT(!mCosts
.IsEmpty(),
801 "Removed everything and it still won't fit");
802 Remove(mCosts
.LastElement().Surface(), /* aStopTracking */ true,
806 // Locate the appropriate per-image cache. If there's not an existing cache
807 // for this image, create it.
808 const ImageKey imageKey
= aProvider
->GetImageKey();
809 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(imageKey
);
811 cache
= new ImageSurfaceCache(imageKey
);
812 if (!mImageCaches
.InsertOrUpdate(aProvider
->GetImageKey(), RefPtr
{cache
},
814 mTableFailureCount
++;
815 return InsertOutcome::FAILURE
;
819 // If we were asked to mark the cache entry available, do so.
821 aProvider
->Availability().SetAvailable();
824 auto surface
= MakeNotNull
<RefPtr
<CachedSurface
>>(aProvider
);
826 // We require that locking succeed if the image is locked and we're not
827 // inserting a placeholder; the caller may need to know this to handle
829 bool mustLock
= cache
->IsLocked() && !surface
->IsPlaceholder();
831 surface
->SetLocked(true);
832 if (!surface
->IsLocked()) {
833 return InsertOutcome::FAILURE
;
838 MOZ_ASSERT(cost
<= mAvailableCost
, "Inserting despite too large a cost");
839 if (!cache
->Insert(surface
)) {
840 mTableFailureCount
++;
842 surface
->SetLocked(false);
844 return InsertOutcome::FAILURE
;
847 if (MOZ_UNLIKELY(!StartTracking(surface
, aAutoLock
))) {
848 MOZ_ASSERT(!mustLock
);
849 Remove(surface
, /* aStopTracking */ false, aAutoLock
);
850 return InsertOutcome::FAILURE
;
853 return InsertOutcome::SUCCESS
;
856 void Remove(NotNull
<CachedSurface
*> aSurface
, bool aStopTracking
,
857 const StaticMutexAutoLock
& aAutoLock
) {
858 ImageKey imageKey
= aSurface
->GetImageKey();
860 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(imageKey
);
861 MOZ_ASSERT(cache
, "Shouldn't try to remove a surface with no image cache");
863 // If the surface was not a placeholder, tell its image that we discarded
865 if (!aSurface
->IsPlaceholder()) {
866 static_cast<Image
*>(imageKey
)->OnSurfaceDiscarded(
867 aSurface
->GetSurfaceKey());
870 // If we failed during StartTracking, we can skip this step.
872 StopTracking(aSurface
, /* aIsTracked */ true, aAutoLock
);
875 // Individual surfaces must be freed outside the lock.
876 mCachedSurfacesDiscard
.AppendElement(cache
->Remove(aSurface
));
878 MaybeRemoveEmptyCache(imageKey
, cache
);
881 bool StartTracking(NotNull
<CachedSurface
*> aSurface
,
882 const StaticMutexAutoLock
& aAutoLock
) {
883 CostEntry costEntry
= aSurface
->GetCostEntry();
884 MOZ_ASSERT(costEntry
.GetCost() <= mAvailableCost
,
885 "Cost too large and the caller didn't catch it");
887 if (aSurface
->IsLocked()) {
888 mLockedCost
+= costEntry
.GetCost();
889 MOZ_ASSERT(mLockedCost
<= mMaxCost
, "Locked more than we can hold?");
891 if (NS_WARN_IF(!mCosts
.InsertElementSorted(costEntry
, fallible
))) {
892 mTrackingFailureCount
++;
896 // This may fail during XPCOM shutdown, so we need to ensure the object is
897 // tracked before calling RemoveObject in StopTracking.
898 nsresult rv
= mExpirationTracker
.AddObjectLocked(aSurface
, aAutoLock
);
899 if (NS_WARN_IF(NS_FAILED(rv
))) {
900 DebugOnly
<bool> foundInCosts
= mCosts
.RemoveElementSorted(costEntry
);
901 MOZ_ASSERT(foundInCosts
, "Lost track of costs for this surface");
902 mTrackingFailureCount
++;
907 mAvailableCost
-= costEntry
.GetCost();
911 void StopTracking(NotNull
<CachedSurface
*> aSurface
, bool aIsTracked
,
912 const StaticMutexAutoLock
& aAutoLock
) {
913 CostEntry costEntry
= aSurface
->GetCostEntry();
915 if (aSurface
->IsLocked()) {
916 MOZ_ASSERT(mLockedCost
>= costEntry
.GetCost(), "Costs don't balance");
917 mLockedCost
-= costEntry
.GetCost();
918 // XXX(seth): It'd be nice to use an O(log n) lookup here. This is O(n).
919 MOZ_ASSERT(!mCosts
.Contains(costEntry
),
920 "Shouldn't have a cost entry for a locked surface");
922 if (MOZ_LIKELY(aSurface
->GetExpirationState()->IsTracked())) {
923 MOZ_ASSERT(aIsTracked
, "Expiration-tracking a surface unexpectedly!");
924 mExpirationTracker
.RemoveObjectLocked(aSurface
, aAutoLock
);
926 // Our call to AddObject must have failed in StartTracking; most likely
927 // we're in XPCOM shutdown right now.
928 MOZ_ASSERT(!aIsTracked
, "Not expiration-tracking an unlocked surface!");
931 DebugOnly
<bool> foundInCosts
= mCosts
.RemoveElementSorted(costEntry
);
932 MOZ_ASSERT(foundInCosts
, "Lost track of costs for this surface");
935 mAvailableCost
+= costEntry
.GetCost();
936 MOZ_ASSERT(mAvailableCost
<= mMaxCost
,
937 "More available cost than we started with");
940 LookupResult
Lookup(const ImageKey aImageKey
, const SurfaceKey
& aSurfaceKey
,
941 const StaticMutexAutoLock
& aAutoLock
, bool aMarkUsed
) {
942 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(aImageKey
);
944 // No cached surfaces for this image.
945 return LookupResult(MatchType::NOT_FOUND
);
948 RefPtr
<CachedSurface
> surface
= cache
->Lookup(aSurfaceKey
, aMarkUsed
);
950 // Lookup in the per-image cache missed.
951 return LookupResult(MatchType::NOT_FOUND
);
954 if (surface
->IsPlaceholder()) {
955 return LookupResult(MatchType::PENDING
);
958 DrawableSurface drawableSurface
= surface
->GetDrawableSurface();
959 if (!drawableSurface
) {
960 // The surface was released by the operating system. Remove the cache
962 Remove(WrapNotNull(surface
), /* aStopTracking */ true, aAutoLock
);
963 return LookupResult(MatchType::NOT_FOUND
);
967 !MarkUsed(WrapNotNull(surface
), WrapNotNull(cache
), aAutoLock
)) {
968 Remove(WrapNotNull(surface
), /* aStopTracking */ false, aAutoLock
);
969 return LookupResult(MatchType::NOT_FOUND
);
972 MOZ_ASSERT(surface
->GetSurfaceKey() == aSurfaceKey
,
973 "Lookup() not returning an exact match?");
974 return LookupResult(std::move(drawableSurface
), MatchType::EXACT
);
977 LookupResult
LookupBestMatch(const ImageKey aImageKey
,
978 const SurfaceKey
& aSurfaceKey
,
979 const StaticMutexAutoLock
& aAutoLock
,
981 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(aImageKey
);
983 // No cached surfaces for this image.
985 MatchType::NOT_FOUND
,
986 SurfaceCache::ClampSize(aImageKey
, aSurfaceKey
.Size()));
989 // Repeatedly look up the best match, trying again if the resulting surface
990 // has been freed by the operating system, until we can either lock a
991 // surface for drawing or there are no matching surfaces left.
992 // XXX(seth): This is O(N^2), but N is expected to be very small. If we
993 // encounter a performance problem here we can revisit this.
995 RefPtr
<CachedSurface
> surface
;
996 DrawableSurface drawableSurface
;
997 MatchType matchType
= MatchType::NOT_FOUND
;
998 IntSize suggestedSize
;
1000 Tie(surface
, matchType
, suggestedSize
) =
1001 cache
->LookupBestMatch(aSurfaceKey
);
1004 return LookupResult(
1005 matchType
, suggestedSize
); // Lookup in the per-image cache missed.
1008 drawableSurface
= surface
->GetDrawableSurface();
1009 if (drawableSurface
) {
1013 // The surface was released by the operating system. Remove the cache
1015 Remove(WrapNotNull(surface
), /* aStopTracking */ true, aAutoLock
);
1018 MOZ_ASSERT_IF(matchType
== MatchType::EXACT
,
1019 surface
->GetSurfaceKey() == aSurfaceKey
);
1021 matchType
== MatchType::SUBSTITUTE_BECAUSE_NOT_FOUND
||
1022 matchType
== MatchType::SUBSTITUTE_BECAUSE_PENDING
,
1023 surface
->GetSurfaceKey().SVGContext() == aSurfaceKey
.SVGContext() &&
1024 surface
->GetSurfaceKey().Playback() == aSurfaceKey
.Playback() &&
1025 surface
->GetSurfaceKey().Flags() == aSurfaceKey
.Flags());
1027 if (matchType
== MatchType::EXACT
||
1028 matchType
== MatchType::SUBSTITUTE_BECAUSE_BEST
) {
1030 !MarkUsed(WrapNotNull(surface
), WrapNotNull(cache
), aAutoLock
)) {
1031 Remove(WrapNotNull(surface
), /* aStopTracking */ false, aAutoLock
);
1035 return LookupResult(std::move(drawableSurface
), matchType
, suggestedSize
);
1038 bool CanHold(const Cost aCost
) const { return aCost
<= mMaxCost
; }
1040 size_t MaximumCapacity() const { return size_t(mMaxCost
); }
1042 void SurfaceAvailable(NotNull
<ISurfaceProvider
*> aProvider
,
1043 const StaticMutexAutoLock
& aAutoLock
) {
1044 if (!aProvider
->Availability().IsPlaceholder()) {
1045 MOZ_ASSERT_UNREACHABLE("Calling SurfaceAvailable on non-placeholder");
1049 // Reinsert the provider, requesting that Insert() mark it available. This
1050 // may or may not succeed, depending on whether some other decoder has
1051 // beaten us to the punch and inserted a non-placeholder version of this
1052 // surface first, but it's fine either way.
1053 // XXX(seth): This could be implemented more efficiently; we should be able
1054 // to just update our data structures without reinserting.
1055 Insert(aProvider
, /* aSetAvailable = */ true, aAutoLock
);
1058 void LockImage(const ImageKey aImageKey
) {
1059 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(aImageKey
);
1061 cache
= new ImageSurfaceCache(aImageKey
);
1062 mImageCaches
.InsertOrUpdate(aImageKey
, RefPtr
{cache
});
1065 cache
->SetLocked(true);
1067 // We don't relock this image's existing surfaces right away; instead, the
1068 // image should arrange for Lookup() to touch them if they are still useful.
1071 void UnlockImage(const ImageKey aImageKey
,
1072 const StaticMutexAutoLock
& aAutoLock
) {
1073 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(aImageKey
);
1074 if (!cache
|| !cache
->IsLocked()) {
1075 return; // Already unlocked.
1078 cache
->SetLocked(false);
1079 DoUnlockSurfaces(WrapNotNull(cache
), /* aStaticOnly = */ false, aAutoLock
);
1082 void UnlockEntries(const ImageKey aImageKey
,
1083 const StaticMutexAutoLock
& aAutoLock
) {
1084 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(aImageKey
);
1085 if (!cache
|| !cache
->IsLocked()) {
1086 return; // Already unlocked.
1089 // (Note that we *don't* unlock the per-image cache here; that's the
1090 // difference between this and UnlockImage.)
1091 DoUnlockSurfaces(WrapNotNull(cache
),
1093 !StaticPrefs::image_mem_animated_discardable_AtStartup(),
1097 already_AddRefed
<ImageSurfaceCache
> RemoveImage(
1098 const ImageKey aImageKey
, const StaticMutexAutoLock
& aAutoLock
) {
1099 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(aImageKey
);
1101 return nullptr; // No cached surfaces for this image, so nothing to do.
1104 // Discard all of the cached surfaces for this image.
1105 // XXX(seth): This is O(n^2) since for each item in the cache we are
1106 // removing an element from the costs array. Since n is expected to be
1107 // small, performance should be good, but if usage patterns change we should
1108 // change the data structure used for mCosts.
1109 for (const auto& value
: cache
->Values()) {
1110 StopTracking(WrapNotNull(value
),
1111 /* aIsTracked */ true, aAutoLock
);
1114 // The per-image cache isn't needed anymore, so remove it as well.
1115 // This implicitly unlocks the image if it was locked.
1116 mImageCaches
.Remove(aImageKey
);
1118 // Since we did not actually remove any of the surfaces from the cache
1119 // itself, only stopped tracking them, we should free it outside the lock.
1120 return cache
.forget();
1123 void PruneImage(const ImageKey aImageKey
,
1124 const StaticMutexAutoLock
& aAutoLock
) {
1125 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(aImageKey
);
1127 return; // No cached surfaces for this image, so nothing to do.
1130 cache
->Prune([this, &aAutoLock
](NotNull
<CachedSurface
*> aSurface
) -> void {
1131 StopTracking(aSurface
, /* aIsTracked */ true, aAutoLock
);
1132 // Individual surfaces must be freed outside the lock.
1133 mCachedSurfacesDiscard
.AppendElement(aSurface
);
1136 MaybeRemoveEmptyCache(aImageKey
, cache
);
1139 void DiscardAll(const StaticMutexAutoLock
& aAutoLock
) {
1140 // Remove in order of cost because mCosts is an array and the other data
1141 // structures are all hash tables. Note that locked surfaces are not
1142 // removed, since they aren't present in mCosts.
1143 while (!mCosts
.IsEmpty()) {
1144 Remove(mCosts
.LastElement().Surface(), /* aStopTracking */ true,
1149 void DiscardForMemoryPressure(const StaticMutexAutoLock
& aAutoLock
) {
1150 // Compute our discardable cost. Since locked surfaces aren't discardable,
1152 const Cost discardableCost
= (mMaxCost
- mAvailableCost
) - mLockedCost
;
1153 MOZ_ASSERT(discardableCost
<= mMaxCost
, "Discardable cost doesn't add up");
1155 // Our target is to raise our available cost by (1 / mDiscardFactor) of our
1156 // discardable cost - in other words, we want to end up with about
1157 // (discardableCost / mDiscardFactor) fewer bytes stored in the surface
1158 // cache after we're done.
1159 const Cost targetCost
= mAvailableCost
+ (discardableCost
/ mDiscardFactor
);
1161 if (targetCost
> mMaxCost
- mLockedCost
) {
1162 MOZ_ASSERT_UNREACHABLE("Target cost is more than we can discard");
1163 DiscardAll(aAutoLock
);
1167 // Discard surfaces until we've reduced our cost to our target cost.
1168 while (mAvailableCost
< targetCost
) {
1169 MOZ_ASSERT(!mCosts
.IsEmpty(), "Removed everything and still not done");
1170 Remove(mCosts
.LastElement().Surface(), /* aStopTracking */ true,
1175 void TakeDiscard(nsTArray
<RefPtr
<CachedSurface
>>& aDiscard
,
1176 const StaticMutexAutoLock
& aAutoLock
) {
1177 MOZ_ASSERT(aDiscard
.IsEmpty());
1178 aDiscard
= std::move(mCachedSurfacesDiscard
);
1181 void LockSurface(NotNull
<CachedSurface
*> aSurface
,
1182 const StaticMutexAutoLock
& aAutoLock
) {
1183 if (aSurface
->IsPlaceholder() || aSurface
->IsLocked()) {
1187 StopTracking(aSurface
, /* aIsTracked */ true, aAutoLock
);
1189 // Lock the surface. This can fail.
1190 aSurface
->SetLocked(true);
1191 DebugOnly
<bool> tracked
= StartTracking(aSurface
, aAutoLock
);
1192 MOZ_ASSERT(tracked
);
1195 size_t ShallowSizeOfIncludingThis(
1196 MallocSizeOf aMallocSizeOf
, const StaticMutexAutoLock
& aAutoLock
) const {
1198 aMallocSizeOf(this) + mCosts
.ShallowSizeOfExcludingThis(aMallocSizeOf
) +
1199 mImageCaches
.ShallowSizeOfExcludingThis(aMallocSizeOf
) +
1200 mCachedSurfacesDiscard
.ShallowSizeOfExcludingThis(aMallocSizeOf
) +
1201 mExpirationTracker
.ShallowSizeOfExcludingThis(aMallocSizeOf
);
1202 for (const auto& data
: mImageCaches
.Values()) {
1203 bytes
+= data
->ShallowSizeOfIncludingThis(aMallocSizeOf
);
1209 CollectReports(nsIHandleReportCallback
* aHandleReport
, nsISupports
* aData
,
1210 bool aAnonymize
) override
{
1211 StaticMutexAutoLock
lock(sInstanceMutex
);
1213 uint32_t lockedImageCount
= 0;
1214 uint32_t totalSurfaceCount
= 0;
1215 uint32_t lockedSurfaceCount
= 0;
1216 for (const auto& cache
: mImageCaches
.Values()) {
1217 totalSurfaceCount
+= cache
->Count();
1218 if (cache
->IsLocked()) {
1221 for (const auto& value
: cache
->Values()) {
1222 if (value
->IsLocked()) {
1223 ++lockedSurfaceCount
;
1229 // We have explicit memory reporting for the surface cache which is more
1230 // accurate than the cost metrics we report here, but these metrics are
1231 // still useful to report, since they control the cache's behavior.
1233 "explicit/images/cache/overhead", KIND_HEAP
, UNITS_BYTES
,
1234 ShallowSizeOfIncludingThis(SurfaceCacheMallocSizeOf
, lock
),
1235 "Memory used by the surface cache data structures, excluding surface data.");
1238 "imagelib-surface-cache-estimated-total",
1239 KIND_OTHER
, UNITS_BYTES
, (mMaxCost
- mAvailableCost
),
1240 "Estimated total memory used by the imagelib surface cache.");
1243 "imagelib-surface-cache-estimated-locked",
1244 KIND_OTHER
, UNITS_BYTES
, mLockedCost
,
1245 "Estimated memory used by locked surfaces in the imagelib surface cache.");
1248 "imagelib-surface-cache-tracked-cost-count",
1249 KIND_OTHER
, UNITS_COUNT
, mCosts
.Length(),
1250 "Total number of surfaces tracked for cost (and expiry) in the imagelib surface cache.");
1253 "imagelib-surface-cache-tracked-expiry-count",
1254 KIND_OTHER
, UNITS_COUNT
, mExpirationTracker
.Length(lock
),
1255 "Total number of surfaces tracked for expiry (and cost) in the imagelib surface cache.");
1258 "imagelib-surface-cache-image-count",
1259 KIND_OTHER
, UNITS_COUNT
, mImageCaches
.Count(),
1260 "Total number of images in the imagelib surface cache.");
1263 "imagelib-surface-cache-locked-image-count",
1264 KIND_OTHER
, UNITS_COUNT
, lockedImageCount
,
1265 "Total number of locked images in the imagelib surface cache.");
1268 "imagelib-surface-cache-image-surface-count",
1269 KIND_OTHER
, UNITS_COUNT
, totalSurfaceCount
,
1270 "Total number of surfaces in the imagelib surface cache.");
1273 "imagelib-surface-cache-locked-surfaces-count",
1274 KIND_OTHER
, UNITS_COUNT
, lockedSurfaceCount
,
1275 "Total number of locked surfaces in the imagelib surface cache.");
1278 "imagelib-surface-cache-overflow-count",
1279 KIND_OTHER
, UNITS_COUNT
, mOverflowCount
,
1280 "Count of how many times the surface cache has hit its capacity and been "
1281 "unable to insert a new surface.");
1284 "imagelib-surface-cache-tracking-failure-count",
1285 KIND_OTHER
, UNITS_COUNT
, mTrackingFailureCount
,
1286 "Count of how many times the surface cache has failed to begin tracking a "
1290 "imagelib-surface-cache-already-present-count",
1291 KIND_OTHER
, UNITS_COUNT
, mAlreadyPresentCount
,
1292 "Count of how many times the surface cache has failed to insert a surface "
1293 "because it is already present.");
1296 "imagelib-surface-cache-table-failure-count",
1297 KIND_OTHER
, UNITS_COUNT
, mTableFailureCount
,
1298 "Count of how many times the surface cache has failed to insert a surface "
1299 "because a hash table could not accept an entry.");
1305 void CollectSizeOfSurfaces(const ImageKey aImageKey
,
1306 nsTArray
<SurfaceMemoryCounter
>& aCounters
,
1307 MallocSizeOf aMallocSizeOf
,
1308 const StaticMutexAutoLock
& aAutoLock
) {
1309 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(aImageKey
);
1311 return; // No surfaces for this image.
1314 // Report all surfaces in the per-image cache.
1315 cache
->CollectSizeOfSurfaces(
1316 aCounters
, aMallocSizeOf
,
1317 [this, &aAutoLock
](NotNull
<CachedSurface
*> aSurface
) -> void {
1318 StopTracking(aSurface
, /* aIsTracked */ true, aAutoLock
);
1319 // Individual surfaces must be freed outside the lock.
1320 mCachedSurfacesDiscard
.AppendElement(aSurface
);
1323 MaybeRemoveEmptyCache(aImageKey
, cache
);
1326 void ReleaseImageOnMainThread(already_AddRefed
<image::Image
>&& aImage
,
1327 const StaticMutexAutoLock
& aAutoLock
) {
1328 RefPtr
<image::Image
> image
= aImage
;
1333 bool needsDispatch
= mReleasingImagesOnMainThread
.IsEmpty();
1334 mReleasingImagesOnMainThread
.AppendElement(image
);
1336 if (!needsDispatch
|| gXPCOMThreadsShutDown
) {
1337 // Either there is already a ongoing task for ClearReleasingImages() or
1338 // it's too late in shutdown to dispatch.
1342 NS_DispatchToMainThread(NS_NewRunnableFunction(
1343 "SurfaceCacheImpl::ReleaseImageOnMainThread",
1344 []() -> void { SurfaceCache::ClearReleasingImages(); }));
1347 void TakeReleasingImages(nsTArray
<RefPtr
<image::Image
>>& aImage
,
1348 const StaticMutexAutoLock
& aAutoLock
) {
1349 MOZ_ASSERT(NS_IsMainThread());
1350 aImage
.SwapElements(mReleasingImagesOnMainThread
);
1354 already_AddRefed
<ImageSurfaceCache
> GetImageCache(const ImageKey aImageKey
) {
1355 RefPtr
<ImageSurfaceCache
> imageCache
;
1356 mImageCaches
.Get(aImageKey
, getter_AddRefs(imageCache
));
1357 return imageCache
.forget();
1360 void MaybeRemoveEmptyCache(const ImageKey aImageKey
,
1361 ImageSurfaceCache
* aCache
) {
1362 // Remove the per-image cache if it's unneeded now. Keep it if the image is
1363 // locked, since the per-image cache is where we store that state. Note that
1364 // we don't push it into mImageCachesDiscard because all of its surfaces
1365 // have been removed, so it is safe to free while holding the lock.
1366 if (aCache
->IsEmpty() && !aCache
->IsLocked()) {
1367 mImageCaches
.Remove(aImageKey
);
1371 // This is similar to CanHold() except that it takes into account the costs of
1372 // locked surfaces. It's used internally in Insert(), but it's not exposed
1373 // publicly because we permit multithreaded access to the surface cache, which
1374 // means that the result would be meaningless: another thread could insert a
1375 // surface or lock an image at any time.
1376 bool CanHoldAfterDiscarding(const Cost aCost
) const {
1377 return aCost
<= mMaxCost
- mLockedCost
;
1380 bool MarkUsed(NotNull
<CachedSurface
*> aSurface
,
1381 NotNull
<ImageSurfaceCache
*> aCache
,
1382 const StaticMutexAutoLock
& aAutoLock
) {
1383 if (aCache
->IsLocked()) {
1384 LockSurface(aSurface
, aAutoLock
);
1388 nsresult rv
= mExpirationTracker
.MarkUsedLocked(aSurface
, aAutoLock
);
1389 if (NS_WARN_IF(NS_FAILED(rv
))) {
1390 // If mark used fails, it is because it failed to reinsert the surface
1391 // after removing it from the tracker. Thus we need to update our
1392 // own accounting but otherwise expect it to be untracked.
1393 StopTracking(aSurface
, /* aIsTracked */ false, aAutoLock
);
1399 void DoUnlockSurfaces(NotNull
<ImageSurfaceCache
*> aCache
, bool aStaticOnly
,
1400 const StaticMutexAutoLock
& aAutoLock
) {
1401 AutoTArray
<NotNull
<CachedSurface
*>, 8> discard
;
1403 // Unlock all the surfaces the per-image cache is holding.
1404 for (const auto& value
: aCache
->Values()) {
1405 NotNull
<CachedSurface
*> surface
= WrapNotNull(value
);
1406 if (surface
->IsPlaceholder() || !surface
->IsLocked()) {
1410 surface
->GetSurfaceKey().Playback() != PlaybackType::eStatic
) {
1413 StopTracking(surface
, /* aIsTracked */ true, aAutoLock
);
1414 surface
->SetLocked(false);
1415 if (MOZ_UNLIKELY(!StartTracking(surface
, aAutoLock
))) {
1416 discard
.AppendElement(surface
);
1420 // Discard any that we failed to track.
1421 for (auto iter
= discard
.begin(); iter
!= discard
.end(); ++iter
) {
1422 Remove(*iter
, /* aStopTracking */ false, aAutoLock
);
1426 void RemoveEntry(const ImageKey aImageKey
, const SurfaceKey
& aSurfaceKey
,
1427 const StaticMutexAutoLock
& aAutoLock
) {
1428 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(aImageKey
);
1430 return; // No cached surfaces for this image.
1433 RefPtr
<CachedSurface
> surface
=
1434 cache
->Lookup(aSurfaceKey
, /* aForAccess = */ false);
1436 return; // Lookup in the per-image cache missed.
1439 Remove(WrapNotNull(surface
), /* aStopTracking */ true, aAutoLock
);
1442 class SurfaceTracker final
1443 : public ExpirationTrackerImpl
<CachedSurface
, 2, StaticMutex
,
1444 StaticMutexAutoLock
> {
1446 explicit SurfaceTracker(uint32_t aSurfaceCacheExpirationTimeMS
)
1447 : ExpirationTrackerImpl
<CachedSurface
, 2, StaticMutex
,
1448 StaticMutexAutoLock
>(
1449 aSurfaceCacheExpirationTimeMS
, "SurfaceTracker") {}
1452 void NotifyExpiredLocked(CachedSurface
* aSurface
,
1453 const StaticMutexAutoLock
& aAutoLock
) override
{
1454 sInstance
->Remove(WrapNotNull(aSurface
), /* aStopTracking */ true,
1458 void NotifyHandlerEndLocked(const StaticMutexAutoLock
& aAutoLock
) override
{
1459 sInstance
->TakeDiscard(mDiscard
, aAutoLock
);
1462 void NotifyHandlerEnd() override
{
1463 nsTArray
<RefPtr
<CachedSurface
>> discard(std::move(mDiscard
));
1466 StaticMutex
& GetMutex() override
{ return sInstanceMutex
; }
1468 nsTArray
<RefPtr
<CachedSurface
>> mDiscard
;
1471 class MemoryPressureObserver final
: public nsIObserver
{
1475 NS_IMETHOD
Observe(nsISupports
*, const char* aTopic
,
1476 const char16_t
*) override
{
1477 nsTArray
<RefPtr
<CachedSurface
>> discard
;
1479 StaticMutexAutoLock
lock(sInstanceMutex
);
1480 if (sInstance
&& strcmp(aTopic
, "memory-pressure") == 0) {
1481 sInstance
->DiscardForMemoryPressure(lock
);
1482 sInstance
->TakeDiscard(discard
, lock
);
1489 virtual ~MemoryPressureObserver() {}
1492 nsTArray
<CostEntry
> mCosts
;
1493 nsRefPtrHashtable
<nsPtrHashKey
<Image
>, ImageSurfaceCache
> mImageCaches
;
1494 nsTArray
<RefPtr
<CachedSurface
>> mCachedSurfacesDiscard
;
1495 SurfaceTracker mExpirationTracker
;
1496 RefPtr
<MemoryPressureObserver
> mMemoryPressureObserver
;
1497 nsTArray
<RefPtr
<image::Image
>> mReleasingImagesOnMainThread
;
1498 const uint32_t mDiscardFactor
;
1499 const Cost mMaxCost
;
1500 Cost mAvailableCost
;
1502 size_t mOverflowCount
;
1503 size_t mAlreadyPresentCount
;
1504 size_t mTableFailureCount
;
1505 size_t mTrackingFailureCount
;
1508 NS_IMPL_ISUPPORTS(SurfaceCacheImpl
, nsIMemoryReporter
)
1509 NS_IMPL_ISUPPORTS(SurfaceCacheImpl::MemoryPressureObserver
, nsIObserver
)
1511 ///////////////////////////////////////////////////////////////////////////////
1513 ///////////////////////////////////////////////////////////////////////////////
1516 void SurfaceCache::Initialize() {
1517 // Initialize preferences.
1518 MOZ_ASSERT(NS_IsMainThread());
1519 MOZ_ASSERT(!sInstance
, "Shouldn't initialize more than once");
1521 // See StaticPrefs for the default values of these preferences.
1523 // Length of time before an unused surface is removed from the cache, in
1525 uint32_t surfaceCacheExpirationTimeMS
=
1526 StaticPrefs::image_mem_surfacecache_min_expiration_ms_AtStartup();
1528 // What fraction of the memory used by the surface cache we should discard
1529 // when we get a memory pressure notification. This value is interpreted as
1530 // 1/N, so 1 means to discard everything, 2 means to discard about half of the
1531 // memory we're using, and so forth. We clamp it to avoid division by zero.
1532 uint32_t surfaceCacheDiscardFactor
=
1533 max(StaticPrefs::image_mem_surfacecache_discard_factor_AtStartup(), 1u);
1535 // Maximum size of the surface cache, in kilobytes.
1536 uint64_t surfaceCacheMaxSizeKB
=
1537 StaticPrefs::image_mem_surfacecache_max_size_kb_AtStartup();
1539 if (sizeof(uintptr_t) <= 4) {
1540 // Limit surface cache to 1 GB if our address space is 32 bit.
1541 surfaceCacheMaxSizeKB
= 1024 * 1024;
1544 // A knob determining the actual size of the surface cache. Currently the
1545 // cache is (size of main memory) / (surface cache size factor) KB
1546 // or (surface cache max size) KB, whichever is smaller. The formula
1547 // may change in the future, though.
1548 // For example, a value of 4 would yield a 256MB cache on a 1GB machine.
1549 // The smallest machines we are likely to run this code on have 256MB
1550 // of memory, which would yield a 64MB cache on this setting.
1551 // We clamp this value to avoid division by zero.
1552 uint32_t surfaceCacheSizeFactor
=
1553 max(StaticPrefs::image_mem_surfacecache_size_factor_AtStartup(), 1u);
1555 // Compute the size of the surface cache.
1556 uint64_t memorySize
= PR_GetPhysicalMemorySize();
1557 if (memorySize
== 0) {
1558 MOZ_ASSERT_UNREACHABLE("PR_GetPhysicalMemorySize not implemented here");
1559 memorySize
= 256 * 1024 * 1024; // Fall back to 256MB.
1561 uint64_t proposedSize
= memorySize
/ surfaceCacheSizeFactor
;
1562 uint64_t surfaceCacheSizeBytes
=
1563 min(proposedSize
, surfaceCacheMaxSizeKB
* 1024);
1564 uint32_t finalSurfaceCacheSizeBytes
=
1565 min(surfaceCacheSizeBytes
, uint64_t(UINT32_MAX
));
1567 // Create the surface cache singleton with the requested settings. Note that
1568 // the size is a limit that the cache may not grow beyond, but we do not
1569 // actually allocate any storage for surfaces at this time.
1570 sInstance
= new SurfaceCacheImpl(surfaceCacheExpirationTimeMS
,
1571 surfaceCacheDiscardFactor
,
1572 finalSurfaceCacheSizeBytes
);
1573 sInstance
->InitMemoryReporter();
1577 void SurfaceCache::Shutdown() {
1578 RefPtr
<SurfaceCacheImpl
> cache
;
1580 StaticMutexAutoLock
lock(sInstanceMutex
);
1581 MOZ_ASSERT(NS_IsMainThread());
1582 MOZ_ASSERT(sInstance
, "No singleton - was Shutdown() called twice?");
1583 cache
= sInstance
.forget();
1588 LookupResult
SurfaceCache::Lookup(const ImageKey aImageKey
,
1589 const SurfaceKey
& aSurfaceKey
,
1591 nsTArray
<RefPtr
<CachedSurface
>> discard
;
1592 LookupResult
rv(MatchType::NOT_FOUND
);
1595 StaticMutexAutoLock
lock(sInstanceMutex
);
1600 rv
= sInstance
->Lookup(aImageKey
, aSurfaceKey
, lock
, aMarkUsed
);
1601 sInstance
->TakeDiscard(discard
, lock
);
1608 LookupResult
SurfaceCache::LookupBestMatch(const ImageKey aImageKey
,
1609 const SurfaceKey
& aSurfaceKey
,
1611 nsTArray
<RefPtr
<CachedSurface
>> discard
;
1612 LookupResult
rv(MatchType::NOT_FOUND
);
1615 StaticMutexAutoLock
lock(sInstanceMutex
);
1620 rv
= sInstance
->LookupBestMatch(aImageKey
, aSurfaceKey
, lock
, aMarkUsed
);
1621 sInstance
->TakeDiscard(discard
, lock
);
1628 InsertOutcome
SurfaceCache::Insert(NotNull
<ISurfaceProvider
*> aProvider
) {
1629 nsTArray
<RefPtr
<CachedSurface
>> discard
;
1630 InsertOutcome
rv(InsertOutcome::FAILURE
);
1633 StaticMutexAutoLock
lock(sInstanceMutex
);
1638 rv
= sInstance
->Insert(aProvider
, /* aSetAvailable = */ false, lock
);
1639 sInstance
->TakeDiscard(discard
, lock
);
1646 bool SurfaceCache::CanHold(const IntSize
& aSize
,
1647 uint32_t aBytesPerPixel
/* = 4 */) {
1648 StaticMutexAutoLock
lock(sInstanceMutex
);
1653 Cost cost
= ComputeCost(aSize
, aBytesPerPixel
);
1654 return sInstance
->CanHold(cost
);
1658 bool SurfaceCache::CanHold(size_t aSize
) {
1659 StaticMutexAutoLock
lock(sInstanceMutex
);
1664 return sInstance
->CanHold(aSize
);
1668 void SurfaceCache::SurfaceAvailable(NotNull
<ISurfaceProvider
*> aProvider
) {
1669 StaticMutexAutoLock
lock(sInstanceMutex
);
1674 sInstance
->SurfaceAvailable(aProvider
, lock
);
1678 void SurfaceCache::LockImage(const ImageKey aImageKey
) {
1679 StaticMutexAutoLock
lock(sInstanceMutex
);
1681 return sInstance
->LockImage(aImageKey
);
1686 void SurfaceCache::UnlockImage(const ImageKey aImageKey
) {
1687 StaticMutexAutoLock
lock(sInstanceMutex
);
1689 return sInstance
->UnlockImage(aImageKey
, lock
);
1694 void SurfaceCache::UnlockEntries(const ImageKey aImageKey
) {
1695 StaticMutexAutoLock
lock(sInstanceMutex
);
1697 return sInstance
->UnlockEntries(aImageKey
, lock
);
1702 void SurfaceCache::RemoveImage(const ImageKey aImageKey
) {
1703 RefPtr
<ImageSurfaceCache
> discard
;
1705 StaticMutexAutoLock
lock(sInstanceMutex
);
1707 discard
= sInstance
->RemoveImage(aImageKey
, lock
);
1713 void SurfaceCache::PruneImage(const ImageKey aImageKey
) {
1714 nsTArray
<RefPtr
<CachedSurface
>> discard
;
1716 StaticMutexAutoLock
lock(sInstanceMutex
);
1718 sInstance
->PruneImage(aImageKey
, lock
);
1719 sInstance
->TakeDiscard(discard
, lock
);
1725 void SurfaceCache::DiscardAll() {
1726 nsTArray
<RefPtr
<CachedSurface
>> discard
;
1728 StaticMutexAutoLock
lock(sInstanceMutex
);
1730 sInstance
->DiscardAll(lock
);
1731 sInstance
->TakeDiscard(discard
, lock
);
1737 void SurfaceCache::CollectSizeOfSurfaces(
1738 const ImageKey aImageKey
, nsTArray
<SurfaceMemoryCounter
>& aCounters
,
1739 MallocSizeOf aMallocSizeOf
) {
1740 nsTArray
<RefPtr
<CachedSurface
>> discard
;
1742 StaticMutexAutoLock
lock(sInstanceMutex
);
1747 sInstance
->CollectSizeOfSurfaces(aImageKey
, aCounters
, aMallocSizeOf
, lock
);
1748 sInstance
->TakeDiscard(discard
, lock
);
1753 size_t SurfaceCache::MaximumCapacity() {
1754 StaticMutexAutoLock
lock(sInstanceMutex
);
1759 return sInstance
->MaximumCapacity();
1763 bool SurfaceCache::IsLegalSize(const IntSize
& aSize
) {
1764 // reject over-wide or over-tall images
1765 const int32_t k64KLimit
= 0x0000FFFF;
1766 if (MOZ_UNLIKELY(aSize
.width
> k64KLimit
|| aSize
.height
> k64KLimit
)) {
1767 NS_WARNING("image too big");
1771 // protect against invalid sizes
1772 if (MOZ_UNLIKELY(aSize
.height
<= 0 || aSize
.width
<= 0)) {
1776 // check to make sure we don't overflow a 32-bit
1777 CheckedInt32 requiredBytes
=
1778 CheckedInt32(aSize
.width
) * CheckedInt32(aSize
.height
) * 4;
1779 if (MOZ_UNLIKELY(!requiredBytes
.isValid())) {
1780 NS_WARNING("width or height too large");
1786 IntSize
SurfaceCache::ClampVectorSize(const IntSize
& aSize
) {
1787 // If we exceed the maximum, we need to scale the size downwards to fit.
1788 // It shouldn't get here if it is significantly larger because
1789 // VectorImage::UseSurfaceCacheForSize should prevent us from requesting
1790 // a rasterized version of a surface greater than 4x the maximum.
1792 StaticPrefs::image_cache_max_rasterized_svg_threshold_kb();
1793 if (maxSizeKB
<= 0) {
1797 int64_t proposedKB
= int64_t(aSize
.width
) * aSize
.height
/ 256;
1798 if (maxSizeKB
>= proposedKB
) {
1802 double scale
= sqrt(double(maxSizeKB
) / proposedKB
);
1803 return IntSize(int32_t(scale
* aSize
.width
), int32_t(scale
* aSize
.height
));
1806 IntSize
SurfaceCache::ClampSize(ImageKey aImageKey
, const IntSize
& aSize
) {
1807 if (aImageKey
->GetType() != imgIContainer::TYPE_VECTOR
) {
1811 return ClampVectorSize(aSize
);
1815 void SurfaceCache::ReleaseImageOnMainThread(
1816 already_AddRefed
<image::Image
> aImage
, bool aAlwaysProxy
) {
1817 if (NS_IsMainThread() && !aAlwaysProxy
) {
1818 RefPtr
<image::Image
> image
= std::move(aImage
);
1822 // Don't try to dispatch the release after shutdown, we'll just leak the
1824 if (gXPCOMThreadsShutDown
) {
1828 StaticMutexAutoLock
lock(sInstanceMutex
);
1830 sInstance
->ReleaseImageOnMainThread(std::move(aImage
), lock
);
1832 NS_ReleaseOnMainThread("SurfaceCache::ReleaseImageOnMainThread",
1833 std::move(aImage
), /* aAlwaysProxy */ true);
1838 void SurfaceCache::ClearReleasingImages() {
1839 MOZ_ASSERT(NS_IsMainThread());
1841 nsTArray
<RefPtr
<image::Image
>> images
;
1843 StaticMutexAutoLock
lock(sInstanceMutex
);
1845 sInstance
->TakeReleasingImages(images
, lock
);
1850 } // namespace image
1851 } // namespace mozilla