Bug 1066410 - Serious color distortion happened when plays WebRTC. r=jesup, a=bajaj
[gecko.git] / mfbt / UniquePtr.h
blobc288ee664ca1a41ead8b2b5952f935b15c4adda1
1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
3 /* This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 /* Smart pointer managing sole ownership of a resource. */
9 #ifndef mozilla_UniquePtr_h
10 #define mozilla_UniquePtr_h
12 #include "mozilla/Assertions.h"
13 #include "mozilla/Attributes.h"
14 #include "mozilla/Compiler.h"
15 #include "mozilla/Move.h"
16 #include "mozilla/NullPtr.h"
17 #include "mozilla/Pair.h"
18 #include "mozilla/TypeTraits.h"
20 namespace mozilla {
22 template<typename T> class DefaultDelete;
23 template<typename T, class D = DefaultDelete<T>> class UniquePtr;
25 } // namespace mozilla
27 namespace mozilla {
29 /**
30 * UniquePtr is a smart pointer that wholly owns a resource. Ownership may be
31 * transferred out of a UniquePtr through explicit action, but otherwise the
32 * resource is destroyed when the UniquePtr is destroyed.
34 * UniquePtr is similar to C++98's std::auto_ptr, but it improves upon auto_ptr
35 * in one crucial way: it's impossible to copy a UniquePtr. Copying an auto_ptr
36 * obviously *can't* copy ownership of its singly-owned resource. So what
37 * happens if you try to copy one? Bizarrely, ownership is implicitly
38 * *transferred*, preserving single ownership but breaking code that assumes a
39 * copy of an object is identical to the original. (This is why auto_ptr is
40 * prohibited in STL containers.)
42 * UniquePtr solves this problem by being *movable* rather than copyable.
43 * Instead of passing a |UniquePtr u| directly to the constructor or assignment
44 * operator, you pass |Move(u)|. In doing so you indicate that you're *moving*
45 * ownership out of |u|, into the target of the construction/assignment. After
46 * the transfer completes, |u| contains |nullptr| and may be safely destroyed.
47 * This preserves single ownership but also allows UniquePtr to be moved by
48 * algorithms that have been made move-safe. (Note: if |u| is instead a
49 * temporary expression, don't use |Move()|: just pass the expression, because
50 * it's already move-ready. For more information see Move.h.)
52 * UniquePtr is also better than std::auto_ptr in that the deletion operation is
53 * customizable. An optional second template parameter specifies a class that
54 * (through its operator()(T*)) implements the desired deletion policy. If no
55 * policy is specified, mozilla::DefaultDelete<T> is used -- which will either
56 * |delete| or |delete[]| the resource, depending whether the resource is an
57 * array. Custom deletion policies ideally should be empty classes (no member
58 * fields, no member fields in base classes, no virtual methods/inheritance),
59 * because then UniquePtr can be just as efficient as a raw pointer.
61 * Use of UniquePtr proceeds like so:
63 * UniquePtr<int> g1; // initializes to nullptr
64 * g1.reset(new int); // switch resources using reset()
65 * g1 = nullptr; // clears g1, deletes the int
67 * UniquePtr<int> g2(new int); // owns that int
68 * int* p = g2.release(); // g2 leaks its int -- still requires deletion
69 * delete p; // now freed
71 * struct S { int x; S(int x) : x(x) {} };
72 * UniquePtr<S> g3, g4(new S(5));
73 * g3 = Move(g4); // g3 owns the S, g4 cleared
74 * S* p = g3.get(); // g3 still owns |p|
75 * assert(g3->x == 5); // operator-> works (if .get() != nullptr)
76 * assert((*g3).x == 5); // also operator* (again, if not cleared)
77 * Swap(g3, g4); // g4 now owns the S, g3 cleared
78 * g3.swap(g4); // g3 now owns the S, g4 cleared
79 * UniquePtr<S> g5(Move(g3)); // g5 owns the S, g3 cleared
80 * g5.reset(); // deletes the S, g5 cleared
82 * struct FreePolicy { void operator()(void* p) { free(p); } };
83 * UniquePtr<int, FreePolicy> g6(static_cast<int*>(malloc(sizeof(int))));
84 * int* ptr = g6.get();
85 * g6 = nullptr; // calls free(ptr)
87 * Now, carefully note a few things you *can't* do:
89 * UniquePtr<int> b1;
90 * b1 = new int; // BAD: can only assign another UniquePtr
91 * int* ptr = b1; // BAD: no auto-conversion to pointer, use get()
93 * UniquePtr<int> b2(b1); // BAD: can't copy a UniquePtr
94 * UniquePtr<int> b3 = b1; // BAD: can't copy-assign a UniquePtr
96 * (Note that changing a UniquePtr to store a direct |new| expression is
97 * permitted, but usually you should use MakeUnique, defined at the end of this
98 * header.)
100 * A few miscellaneous notes:
102 * UniquePtr, when not instantiated for an array type, can be move-constructed
103 * and move-assigned, not only from itself but from "derived" UniquePtr<U, E>
104 * instantiations where U converts to T and E converts to D. If you want to use
105 * this, you're going to have to specify a deletion policy for both UniquePtr
106 * instantations, and T pretty much has to have a virtual destructor. In other
107 * words, this doesn't work:
109 * struct Base { virtual ~Base() {} };
110 * struct Derived : Base {};
112 * UniquePtr<Base> b1;
113 * // BAD: DefaultDelete<Base> and DefaultDelete<Derived> don't interconvert
114 * UniquePtr<Derived> d1(Move(b));
116 * UniquePtr<Base> b2;
117 * UniquePtr<Derived, DefaultDelete<Base>> d2(Move(b2)); // okay
119 * UniquePtr is specialized for array types. Specializing with an array type
120 * creates a smart-pointer version of that array -- not a pointer to such an
121 * array.
123 * UniquePtr<int[]> arr(new int[5]);
124 * arr[0] = 4;
126 * What else is different? Deletion of course uses |delete[]|. An operator[]
127 * is provided. Functionality that doesn't make sense for arrays is removed.
128 * The constructors and mutating methods only accept array pointers (not T*, U*
129 * that converts to T*, or UniquePtr<U[]> or UniquePtr<U>) or |nullptr|.
131 * It's perfectly okay to return a UniquePtr from a method to assure the related
132 * resource is properly deleted. You'll need to use |Move()| when returning a
133 * local UniquePtr. Otherwise you can return |nullptr|, or you can return
134 * |UniquePtr(ptr)|.
136 * UniquePtr will commonly be a member of a class, with lifetime equivalent to
137 * that of that class. If you want to expose the related resource, you could
138 * expose a raw pointer via |get()|, but ownership of a raw pointer is
139 * inherently unclear. So it's better to expose a |const UniquePtr&| instead.
140 * This prohibits mutation but still allows use of |get()| when needed (but
141 * operator-> is preferred). Of course, you can only use this smart pointer as
142 * long as the enclosing class instance remains live -- no different than if you
143 * exposed the |get()| raw pointer.
145 * To pass a UniquePtr-managed resource as a pointer, use a |const UniquePtr&|
146 * argument. To specify an inout parameter (where the method may or may not
147 * take ownership of the resource, or reset it), or to specify an out parameter
148 * (where simply returning a |UniquePtr| isn't possible), use a |UniquePtr&|
149 * argument. To unconditionally transfer ownership of a UniquePtr
150 * into a method, use a |UniquePtr| argument. To conditionally transfer
151 * ownership of a resource into a method, should the method want it, use a
152 * |UniquePtr&&| argument.
154 template<typename T, class D>
155 class UniquePtr
157 public:
158 typedef T* Pointer;
159 typedef T ElementType;
160 typedef D DeleterType;
162 private:
163 Pair<Pointer, DeleterType> mTuple;
165 Pointer& ptr() { return mTuple.first(); }
166 const Pointer& ptr() const { return mTuple.first(); }
168 DeleterType& del() { return mTuple.second(); }
169 const DeleterType& del() const { return mTuple.second(); }
171 public:
173 * Construct a UniquePtr containing |nullptr|.
175 MOZ_CONSTEXPR UniquePtr()
176 : mTuple(static_cast<Pointer>(nullptr), DeleterType())
178 static_assert(!IsPointer<D>::value, "must provide a deleter instance");
179 static_assert(!IsReference<D>::value, "must provide a deleter instance");
183 * Construct a UniquePtr containing |aPtr|.
185 explicit UniquePtr(Pointer aPtr)
186 : mTuple(aPtr, DeleterType())
188 static_assert(!IsPointer<D>::value, "must provide a deleter instance");
189 static_assert(!IsReference<D>::value, "must provide a deleter instance");
192 UniquePtr(Pointer aPtr,
193 typename Conditional<IsReference<D>::value,
195 const D&>::Type aD1)
196 : mTuple(aPtr, aD1)
199 // If you encounter an error with MSVC10 about RemoveReference below, along
200 // the lines that "more than one partial specialization matches the template
201 // argument list": don't use UniquePtr<T, reference to function>! Ideally
202 // you should make deletion use the same function every time, using a
203 // deleter policy:
205 // // BAD, won't compile with MSVC10, deleter doesn't need to be a
206 // // variable at all
207 // typedef void (&FreeSignature)(void*);
208 // UniquePtr<int, FreeSignature> ptr((int*) malloc(sizeof(int)), free);
210 // // GOOD, compiles with MSVC10, deletion behavior statically known and
211 // // optimizable
212 // struct DeleteByFreeing
213 // {
214 // void operator()(void* aPtr) { free(aPtr); }
215 // };
217 // If deletion really, truly, must be a variable: you might be able to work
218 // around this with a deleter class that contains the function reference.
219 // But this workaround is untried and untested, because variable deletion
220 // behavior really isn't something you should use.
221 UniquePtr(Pointer aPtr,
222 typename RemoveReference<D>::Type&& aD2)
223 : mTuple(aPtr, Move(aD2))
225 static_assert(!IsReference<D>::value,
226 "rvalue deleter can't be stored by reference");
229 UniquePtr(UniquePtr&& aOther)
230 : mTuple(aOther.release(), Forward<DeleterType>(aOther.getDeleter()))
233 template<typename N>
234 UniquePtr(N,
235 typename EnableIf<IsNullPointer<N>::value, int>::Type aDummy = 0)
236 : mTuple(static_cast<Pointer>(nullptr), DeleterType())
238 static_assert(!IsPointer<D>::value, "must provide a deleter instance");
239 static_assert(!IsReference<D>::value, "must provide a deleter instance");
242 template<typename U, class E>
243 UniquePtr(UniquePtr<U, E>&& aOther,
244 typename EnableIf<IsConvertible<typename UniquePtr<U, E>::Pointer,
245 Pointer>::value &&
246 !IsArray<U>::value &&
247 (IsReference<D>::value
248 ? IsSame<D, E>::value
249 : IsConvertible<E, D>::value),
250 int>::Type aDummy = 0)
251 : mTuple(aOther.release(), Forward<E>(aOther.getDeleter()))
255 ~UniquePtr() { reset(nullptr); }
257 UniquePtr& operator=(UniquePtr&& aOther)
259 reset(aOther.release());
260 getDeleter() = Forward<DeleterType>(aOther.getDeleter());
261 return *this;
264 template<typename U, typename E>
265 UniquePtr& operator=(UniquePtr<U, E>&& aOther)
267 static_assert(IsConvertible<typename UniquePtr<U, E>::Pointer,
268 Pointer>::value,
269 "incompatible UniquePtr pointees");
270 static_assert(!IsArray<U>::value,
271 "can't assign from UniquePtr holding an array");
273 reset(aOther.release());
274 getDeleter() = Forward<E>(aOther.getDeleter());
275 return *this;
278 UniquePtr& operator=(NullptrT aNull)
280 MOZ_ASSERT(aNull == nullptr);
281 reset(nullptr);
282 return *this;
285 T& operator*() const { return *get(); }
286 Pointer operator->() const
288 MOZ_ASSERT(get(), "dereferencing a UniquePtr containing nullptr");
289 return get();
292 Pointer get() const { return ptr(); }
294 DeleterType& getDeleter() { return del(); }
295 const DeleterType& getDeleter() const { return del(); }
297 private:
298 typedef void (UniquePtr::* ConvertibleToBool)(double, char);
299 void nonNull(double, char) {}
301 public:
302 operator ConvertibleToBool() const
304 return get() != nullptr ? &UniquePtr::nonNull : nullptr;
307 Pointer release()
309 Pointer p = ptr();
310 ptr() = nullptr;
311 return p;
314 void reset(Pointer aPtr = Pointer())
316 Pointer old = ptr();
317 ptr() = aPtr;
318 if (old != nullptr) {
319 getDeleter()(old);
323 void swap(UniquePtr& aOther)
325 mTuple.swap(aOther.mTuple);
328 private:
329 UniquePtr(const UniquePtr& aOther) MOZ_DELETE; // construct using Move()!
330 void operator=(const UniquePtr& aOther) MOZ_DELETE; // assign using Move()!
333 // In case you didn't read the comment by the main definition (you should!): the
334 // UniquePtr<T[]> specialization exists to manage array pointers. It deletes
335 // such pointers using delete[], it will reject construction and modification
336 // attempts using U* or U[]. Otherwise it works like the normal UniquePtr.
337 template<typename T, class D>
338 class UniquePtr<T[], D>
340 public:
341 typedef T* Pointer;
342 typedef T ElementType;
343 typedef D DeleterType;
345 private:
346 Pair<Pointer, DeleterType> mTuple;
348 public:
350 * Construct a UniquePtr containing nullptr.
352 MOZ_CONSTEXPR UniquePtr()
353 : mTuple(static_cast<Pointer>(nullptr), DeleterType())
355 static_assert(!IsPointer<D>::value, "must provide a deleter instance");
356 static_assert(!IsReference<D>::value, "must provide a deleter instance");
360 * Construct a UniquePtr containing |aPtr|.
362 explicit UniquePtr(Pointer aPtr)
363 : mTuple(aPtr, DeleterType())
365 static_assert(!IsPointer<D>::value, "must provide a deleter instance");
366 static_assert(!IsReference<D>::value, "must provide a deleter instance");
369 private:
370 // delete[] knows how to handle *only* an array of a single class type. For
371 // delete[] to work correctly, it must know the size of each element, the
372 // fields and base classes of each element requiring destruction, and so on.
373 // So forbid all overloads which would end up invoking delete[] on a pointer
374 // of the wrong type.
375 template<typename U>
376 UniquePtr(U&& aU,
377 typename EnableIf<IsPointer<U>::value &&
378 IsConvertible<U, Pointer>::value,
379 int>::Type aDummy = 0)
380 MOZ_DELETE;
382 public:
383 UniquePtr(Pointer aPtr,
384 typename Conditional<IsReference<D>::value,
386 const D&>::Type aD1)
387 : mTuple(aPtr, aD1)
390 // If you encounter an error with MSVC10 about RemoveReference below, along
391 // the lines that "more than one partial specialization matches the template
392 // argument list": don't use UniquePtr<T[], reference to function>! See the
393 // comment by this constructor in the non-T[] specialization above.
394 UniquePtr(Pointer aPtr,
395 typename RemoveReference<D>::Type&& aD2)
396 : mTuple(aPtr, Move(aD2))
398 static_assert(!IsReference<D>::value,
399 "rvalue deleter can't be stored by reference");
402 private:
403 // Forbidden for the same reasons as stated above.
404 template<typename U, typename V>
405 UniquePtr(U&& aU, V&& aV,
406 typename EnableIf<IsPointer<U>::value &&
407 IsConvertible<U, Pointer>::value,
408 int>::Type aDummy = 0)
409 MOZ_DELETE;
411 public:
412 UniquePtr(UniquePtr&& aOther)
413 : mTuple(aOther.release(), Forward<DeleterType>(aOther.getDeleter()))
416 template<typename N>
417 UniquePtr(N,
418 typename EnableIf<IsNullPointer<N>::value, int>::Type aDummy = 0)
419 : mTuple(static_cast<Pointer>(nullptr), DeleterType())
421 static_assert(!IsPointer<D>::value, "must provide a deleter instance");
422 static_assert(!IsReference<D>::value, "must provide a deleter instance");
425 ~UniquePtr() { reset(nullptr); }
427 UniquePtr& operator=(UniquePtr&& aOther)
429 reset(aOther.release());
430 getDeleter() = Forward<DeleterType>(aOther.getDeleter());
431 return *this;
434 UniquePtr& operator=(NullptrT)
436 reset();
437 return *this;
440 T& operator[](decltype(sizeof(int)) aIndex) const { return get()[aIndex]; }
441 Pointer get() const { return mTuple.first(); }
443 DeleterType& getDeleter() { return mTuple.second(); }
444 const DeleterType& getDeleter() const { return mTuple.second(); }
446 private:
447 typedef void (UniquePtr::* ConvertibleToBool)(double, char);
448 void nonNull(double, char) {}
450 public:
451 operator ConvertibleToBool() const
453 return get() != nullptr ? &UniquePtr::nonNull : nullptr;
456 Pointer release()
458 Pointer p = mTuple.first();
459 mTuple.first() = nullptr;
460 return p;
463 void reset(Pointer aPtr = Pointer())
465 Pointer old = mTuple.first();
466 mTuple.first() = aPtr;
467 if (old != nullptr) {
468 mTuple.second()(old);
472 private:
473 // Kill off all remaining overloads that aren't true nullptr (the overload
474 // above should handle that) or emulated nullptr (which acts like int/long
475 // on gcc 4.4/4.5).
476 template<typename U>
477 void reset(U,
478 typename EnableIf<!IsNullPointer<U>::value &&
479 !IsSame<U,
480 Conditional<(sizeof(int) == sizeof(void*)),
481 int,
482 long>::Type>::value,
483 int>::Type aDummy = 0)
484 MOZ_DELETE;
486 public:
487 void swap(UniquePtr& aOther) { mTuple.swap(aOther.mTuple); }
489 private:
490 UniquePtr(const UniquePtr& aOther) MOZ_DELETE; // construct using Move()!
491 void operator=(const UniquePtr& aOther) MOZ_DELETE; // assign using Move()!
494 /** A default deletion policy using plain old operator delete. */
495 template<typename T>
496 class DefaultDelete
498 public:
499 MOZ_CONSTEXPR DefaultDelete() {}
501 template<typename U>
502 DefaultDelete(const DefaultDelete<U>& aOther,
503 typename EnableIf<mozilla::IsConvertible<U*, T*>::value,
504 int>::Type aDummy = 0)
507 void operator()(T* aPtr) const
509 static_assert(sizeof(T) > 0, "T must be complete");
510 delete aPtr;
514 /** A default deletion policy using operator delete[]. */
515 template<typename T>
516 class DefaultDelete<T[]>
518 public:
519 MOZ_CONSTEXPR DefaultDelete() {}
521 void operator()(T* aPtr) const
523 static_assert(sizeof(T) > 0, "T must be complete");
524 delete[] aPtr;
527 private:
528 template<typename U>
529 void operator()(U* aPtr) const MOZ_DELETE;
532 template<typename T, class D>
533 void
534 Swap(UniquePtr<T, D>& aX, UniquePtr<T, D>& aY)
536 aX.swap(aY);
539 template<typename T, class D, typename U, class E>
540 bool
541 operator==(const UniquePtr<T, D>& aX, const UniquePtr<U, E>& aY)
543 return aX.get() == aY.get();
546 template<typename T, class D, typename U, class E>
547 bool
548 operator!=(const UniquePtr<T, D>& aX, const UniquePtr<U, E>& aY)
550 return aX.get() != aY.get();
553 template<typename T, class D>
554 bool
555 operator==(const UniquePtr<T, D>& aX, NullptrT aNull)
557 MOZ_ASSERT(aNull == nullptr);
558 return !aX;
561 template<typename T, class D>
562 bool
563 operator==(NullptrT aNull, const UniquePtr<T, D>& aX)
565 MOZ_ASSERT(aNull == nullptr);
566 return !aX;
569 template<typename T, class D>
570 bool
571 operator!=(const UniquePtr<T, D>& aX, NullptrT aNull)
573 MOZ_ASSERT(aNull == nullptr);
574 return bool(aX);
577 template<typename T, class D>
578 bool
579 operator!=(NullptrT aNull, const UniquePtr<T, D>& aX)
581 MOZ_ASSERT(aNull == nullptr);
582 return bool(aX);
585 // No operator<, operator>, operator<=, operator>= for now because simplicity.
587 namespace detail {
589 template<typename T>
590 struct UniqueSelector
592 typedef UniquePtr<T> SingleObject;
595 template<typename T>
596 struct UniqueSelector<T[]>
598 typedef UniquePtr<T[]> UnknownBound;
601 template<typename T, decltype(sizeof(int)) N>
602 struct UniqueSelector<T[N]>
604 typedef UniquePtr<T[N]> KnownBound;
607 } // namespace detail
610 * MakeUnique is a helper function for allocating new'd objects and arrays,
611 * returning a UniquePtr containing the resulting pointer. The semantics of
612 * MakeUnique<Type>(...) are as follows.
614 * If Type is an array T[n]:
615 * Disallowed, deleted, no overload for you!
616 * If Type is an array T[]:
617 * MakeUnique<T[]>(size_t) is the only valid overload. The pointer returned
618 * is as if by |new T[n]()|, which value-initializes each element. (If T
619 * isn't a class type, this will zero each element. If T is a class type,
620 * then roughly speaking, each element will be constructed using its default
621 * constructor. See C++11 [dcl.init]p7 for the full gory details.)
622 * If Type is non-array T:
623 * The arguments passed to MakeUnique<T>(...) are forwarded into a
624 * |new T(...)| call, initializing the T as would happen if executing
625 * |T(...)|. (Note: literal nullptr must not be provided as an argument to
626 * MakeUnique, because nullptr may be emulated. See Move.h for details.)
628 * There are various benefits to using MakeUnique instead of |new| expressions.
630 * First, MakeUnique eliminates use of |new| from code entirely. If objects are
631 * only created through UniquePtr, then (assuming all explicit release() calls
632 * are safe, including transitively, and no type-safety casting funniness)
633 * correctly maintained ownership of the UniquePtr guarantees no leaks are
634 * possible. (This pays off best if a class is only ever created through a
635 * factory method on the class, using a private constructor.)
637 * Second, initializing a UniquePtr using a |new| expression requires renaming
638 * the new'd type, whereas MakeUnique in concert with the |auto| keyword names
639 * it only once:
641 * UniquePtr<char> ptr1(new char()); // repetitive
642 * auto ptr2 = MakeUnique<char>(); // shorter
644 * Of course this assumes the reader understands the operation MakeUnique
645 * performs. In the long run this is probably a reasonable assumption. In the
646 * short run you'll have to use your judgment about what readers can be expected
647 * to know, or to quickly look up.
649 * Third, a call to MakeUnique can be assigned directly to a UniquePtr. In
650 * contrast you can't assign a pointer into a UniquePtr without using the
651 * cumbersome reset().
653 * UniquePtr<char> p;
654 * p = new char; // ERROR
655 * p.reset(new char); // works, but fugly
656 * p = MakeUnique<char>(); // preferred
658 * (And third, although not relevant to Mozilla: MakeUnique is exception-safe.
659 * An exception thrown after |new T| succeeds will leak that memory, unless the
660 * pointer is assigned to an object that will manage its ownership. UniquePtr
661 * ably serves this function.)
664 // We don't have variadic template support everywhere, so just hard-code arities
665 // 0-8 for now. If you need more arguments, feel free to add the extra
666 // overloads (and deletions for the T = E[N] case).
668 // Beware! Due to lack of true nullptr support in gcc 4.4 and 4.5, passing
669 // literal nullptr to MakeUnique will not work on some platforms. See Move.h
670 // for more details.
672 template<typename T>
673 typename detail::UniqueSelector<T>::SingleObject
674 MakeUnique()
676 return UniquePtr<T>(new T());
679 template<typename T, typename A1>
680 typename detail::UniqueSelector<T>::SingleObject
681 MakeUnique(A1&& aA1)
683 return UniquePtr<T>(new T(Forward<A1>(aA1)));
686 template<typename T, typename A1, typename A2>
687 typename detail::UniqueSelector<T>::SingleObject
688 MakeUnique(A1&& aA1, A2&& aA2)
690 return UniquePtr<T>(new T(Forward<A1>(aA1), Forward<A2>(aA2)));
693 template<typename T, typename A1, typename A2, typename A3>
694 typename detail::UniqueSelector<T>::SingleObject
695 MakeUnique(A1&& aA1, A2&& aA2, A3&& aA3)
697 return UniquePtr<T>(new T(Forward<A1>(aA1), Forward<A2>(aA2),
698 Forward<A3>(aA3)));
701 template<typename T, typename A1, typename A2, typename A3, typename A4>
702 typename detail::UniqueSelector<T>::SingleObject
703 MakeUnique(A1&& aA1, A2&& aA2, A3&& aA3, A4&& aA4)
705 return UniquePtr<T>(new T(Forward<A1>(aA1), Forward<A2>(aA2),
706 Forward<A3>(aA3), Forward<A4>(aA4)));
709 template<typename T, typename A1, typename A2, typename A3, typename A4,
710 typename A5>
711 typename detail::UniqueSelector<T>::SingleObject
712 MakeUnique(A1&& aA1, A2&& aA2, A3&& aA3, A4&& aA4, A5&& aA5)
714 return UniquePtr<T>(new T(Forward<A1>(aA1), Forward<A2>(aA2),
715 Forward<A3>(aA3), Forward<A4>(aA4),
716 Forward<A5>(aA5)));
719 template<typename T, typename A1, typename A2, typename A3, typename A4,
720 typename A5, typename A6>
721 typename detail::UniqueSelector<T>::SingleObject
722 MakeUnique(A1&& a1, A2&& a2, A3&& a3, A4&& a4, A5&& a5, A6&& a6)
724 return UniquePtr<T>(new T(Forward<A1>(a1), Forward<A2>(a2),
725 Forward<A3>(a3), Forward<A4>(a4),
726 Forward<A5>(a5), Forward<A6>(a6)));
729 template<typename T, typename A1, typename A2, typename A3, typename A4,
730 typename A5, typename A6, typename A7>
731 typename detail::UniqueSelector<T>::SingleObject
732 MakeUnique(A1&& a1, A2&& a2, A3&& a3, A4&& a4, A5&& a5, A6&& a6, A7&& a7)
734 return UniquePtr<T>(new T(Forward<A1>(a1), Forward<A2>(a2),
735 Forward<A3>(a3), Forward<A4>(a4),
736 Forward<A5>(a5), Forward<A6>(a6),
737 Forward<A7>(a7)));
740 template<typename T, typename A1, typename A2, typename A3, typename A4,
741 typename A5, typename A6, typename A7, typename A8>
742 typename detail::UniqueSelector<T>::SingleObject
743 MakeUnique(A1&& a1, A2&& a2, A3&& a3, A4&& a4, A5&& a5, A6&& a6, A7&& a7,
744 A8&& a8)
746 return UniquePtr<T>(new T(Forward<A1>(a1), Forward<A2>(a2),
747 Forward<A3>(a3), Forward<A4>(a4),
748 Forward<A5>(a5), Forward<A6>(a6),
749 Forward<A7>(a7), Forward<A8>(a8)));
752 template<typename T>
753 typename detail::UniqueSelector<T>::UnknownBound
754 MakeUnique(decltype(sizeof(int)) aN)
756 typedef typename RemoveExtent<T>::Type ArrayType;
757 return UniquePtr<T>(new ArrayType[aN]());
760 template<typename T>
761 typename detail::UniqueSelector<T>::KnownBound
762 MakeUnique() MOZ_DELETE;
764 template<typename T, typename A1>
765 typename detail::UniqueSelector<T>::KnownBound
766 MakeUnique(A1&& aA1) MOZ_DELETE;
768 template<typename T, typename A1, typename A2>
769 typename detail::UniqueSelector<T>::KnownBound
770 MakeUnique(A1&& aA1, A2&& aA2) MOZ_DELETE;
772 template<typename T, typename A1, typename A2, typename A3>
773 typename detail::UniqueSelector<T>::KnownBound
774 MakeUnique(A1&& aA1, A2&& aA2, A3&& aA3) MOZ_DELETE;
776 template<typename T, typename A1, typename A2, typename A3, typename A4>
777 typename detail::UniqueSelector<T>::KnownBound
778 MakeUnique(A1&& aA1, A2&& aA2, A3&& aA3, A4&& aA4) MOZ_DELETE;
780 template<typename T, typename A1, typename A2, typename A3, typename A4,
781 typename A5>
782 typename detail::UniqueSelector<T>::KnownBound
783 MakeUnique(A1&& aA1, A2&& aA2, A3&& aA3, A4&& aA4, A5&& aA5) MOZ_DELETE;
785 template<typename T, typename A1, typename A2, typename A3, typename A4,
786 typename A5, typename A6>
787 typename detail::UniqueSelector<T>::KnownBound
788 MakeUnique(A1&& a1, A2&& a2, A3&& a3, A4&& a4, A5&& a5,
789 A6&& a6) MOZ_DELETE;
791 template<typename T, typename A1, typename A2, typename A3, typename A4,
792 typename A5, typename A6, typename A7>
793 typename detail::UniqueSelector<T>::KnownBound
794 MakeUnique(A1&& a1, A2&& a2, A3&& a3, A4&& a4, A5&& a5, A6&& a6,
795 A7&& a7) MOZ_DELETE;
797 template<typename T, typename A1, typename A2, typename A3, typename A4,
798 typename A5, typename A6, typename A7, typename A8>
799 typename detail::UniqueSelector<T>::KnownBound
800 MakeUnique(A1&& a1, A2&& a2, A3&& a3, A4&& a4, A5&& a5, A6&& a6,
801 A7&& a7, A8&& a8) MOZ_DELETE;
803 } // namespace mozilla
805 #endif /* mozilla_UniquePtr_h */