Bug 1523562 [wpt PR 14965] - Sync Mozilla CSS tests as of 2019-01-20, a=testonly
[gecko.git] / media / libjpeg / jdhuff.c
blob87dff975dc1313b1be892ed49a43c9a3bb61b37a
1 /*
2 * jdhuff.c
4 * This file was part of the Independent JPEG Group's software:
5 * Copyright (C) 1991-1997, Thomas G. Lane.
6 * libjpeg-turbo Modifications:
7 * Copyright (C) 2009-2011, 2016, 2018, D. R. Commander.
8 * For conditions of distribution and use, see the accompanying README.ijg
9 * file.
11 * This file contains Huffman entropy decoding routines.
13 * Much of the complexity here has to do with supporting input suspension.
14 * If the data source module demands suspension, we want to be able to back
15 * up to the start of the current MCU. To do this, we copy state variables
16 * into local working storage, and update them back to the permanent
17 * storage only upon successful completion of an MCU.
19 * NOTE: All referenced figures are from
20 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
23 #define JPEG_INTERNALS
24 #include "jinclude.h"
25 #include "jpeglib.h"
26 #include "jdhuff.h" /* Declarations shared with jdphuff.c */
27 #include "jpegcomp.h"
28 #include "jstdhuff.c"
32 * Expanded entropy decoder object for Huffman decoding.
34 * The savable_state subrecord contains fields that change within an MCU,
35 * but must not be updated permanently until we complete the MCU.
38 typedef struct {
39 int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
40 } savable_state;
42 /* This macro is to work around compilers with missing or broken
43 * structure assignment. You'll need to fix this code if you have
44 * such a compiler and you change MAX_COMPS_IN_SCAN.
47 #ifndef NO_STRUCT_ASSIGN
48 #define ASSIGN_STATE(dest, src) ((dest) = (src))
49 #else
50 #if MAX_COMPS_IN_SCAN == 4
51 #define ASSIGN_STATE(dest, src) \
52 ((dest).last_dc_val[0] = (src).last_dc_val[0], \
53 (dest).last_dc_val[1] = (src).last_dc_val[1], \
54 (dest).last_dc_val[2] = (src).last_dc_val[2], \
55 (dest).last_dc_val[3] = (src).last_dc_val[3])
56 #endif
57 #endif
60 typedef struct {
61 struct jpeg_entropy_decoder pub; /* public fields */
63 /* These fields are loaded into local variables at start of each MCU.
64 * In case of suspension, we exit WITHOUT updating them.
66 bitread_perm_state bitstate; /* Bit buffer at start of MCU */
67 savable_state saved; /* Other state at start of MCU */
69 /* These fields are NOT loaded into local working state. */
70 unsigned int restarts_to_go; /* MCUs left in this restart interval */
72 /* Pointers to derived tables (these workspaces have image lifespan) */
73 d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
74 d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
76 /* Precalculated info set up by start_pass for use in decode_mcu: */
78 /* Pointers to derived tables to be used for each block within an MCU */
79 d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
80 d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
81 /* Whether we care about the DC and AC coefficient values for each block */
82 boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
83 boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
84 } huff_entropy_decoder;
86 typedef huff_entropy_decoder *huff_entropy_ptr;
90 * Initialize for a Huffman-compressed scan.
93 METHODDEF(void)
94 start_pass_huff_decoder(j_decompress_ptr cinfo)
96 huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
97 int ci, blkn, dctbl, actbl;
98 d_derived_tbl **pdtbl;
99 jpeg_component_info *compptr;
101 /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
102 * This ought to be an error condition, but we make it a warning because
103 * there are some baseline files out there with all zeroes in these bytes.
105 if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
106 cinfo->Ah != 0 || cinfo->Al != 0)
107 WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
109 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
110 compptr = cinfo->cur_comp_info[ci];
111 dctbl = compptr->dc_tbl_no;
112 actbl = compptr->ac_tbl_no;
113 /* Compute derived values for Huffman tables */
114 /* We may do this more than once for a table, but it's not expensive */
115 pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
116 jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
117 pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
118 jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
119 /* Initialize DC predictions to 0 */
120 entropy->saved.last_dc_val[ci] = 0;
123 /* Precalculate decoding info for each block in an MCU of this scan */
124 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
125 ci = cinfo->MCU_membership[blkn];
126 compptr = cinfo->cur_comp_info[ci];
127 /* Precalculate which table to use for each block */
128 entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
129 entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
130 /* Decide whether we really care about the coefficient values */
131 if (compptr->component_needed) {
132 entropy->dc_needed[blkn] = TRUE;
133 /* we don't need the ACs if producing a 1/8th-size image */
134 entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
135 } else {
136 entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
140 /* Initialize bitread state variables */
141 entropy->bitstate.bits_left = 0;
142 entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
143 entropy->pub.insufficient_data = FALSE;
145 /* Initialize restart counter */
146 entropy->restarts_to_go = cinfo->restart_interval;
151 * Compute the derived values for a Huffman table.
152 * This routine also performs some validation checks on the table.
154 * Note this is also used by jdphuff.c.
157 GLOBAL(void)
158 jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
159 d_derived_tbl **pdtbl)
161 JHUFF_TBL *htbl;
162 d_derived_tbl *dtbl;
163 int p, i, l, si, numsymbols;
164 int lookbits, ctr;
165 char huffsize[257];
166 unsigned int huffcode[257];
167 unsigned int code;
169 /* Note that huffsize[] and huffcode[] are filled in code-length order,
170 * paralleling the order of the symbols themselves in htbl->huffval[].
173 /* Find the input Huffman table */
174 if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
175 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
176 htbl =
177 isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
178 if (htbl == NULL)
179 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
181 /* Allocate a workspace if we haven't already done so. */
182 if (*pdtbl == NULL)
183 *pdtbl = (d_derived_tbl *)
184 (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
185 sizeof(d_derived_tbl));
186 dtbl = *pdtbl;
187 dtbl->pub = htbl; /* fill in back link */
189 /* Figure C.1: make table of Huffman code length for each symbol */
191 p = 0;
192 for (l = 1; l <= 16; l++) {
193 i = (int)htbl->bits[l];
194 if (i < 0 || p + i > 256) /* protect against table overrun */
195 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
196 while (i--)
197 huffsize[p++] = (char)l;
199 huffsize[p] = 0;
200 numsymbols = p;
202 /* Figure C.2: generate the codes themselves */
203 /* We also validate that the counts represent a legal Huffman code tree. */
205 code = 0;
206 si = huffsize[0];
207 p = 0;
208 while (huffsize[p]) {
209 while (((int)huffsize[p]) == si) {
210 huffcode[p++] = code;
211 code++;
213 /* code is now 1 more than the last code used for codelength si; but
214 * it must still fit in si bits, since no code is allowed to be all ones.
216 if (((JLONG)code) >= (((JLONG)1) << si))
217 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
218 code <<= 1;
219 si++;
222 /* Figure F.15: generate decoding tables for bit-sequential decoding */
224 p = 0;
225 for (l = 1; l <= 16; l++) {
226 if (htbl->bits[l]) {
227 /* valoffset[l] = huffval[] index of 1st symbol of code length l,
228 * minus the minimum code of length l
230 dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
231 p += htbl->bits[l];
232 dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
233 } else {
234 dtbl->maxcode[l] = -1; /* -1 if no codes of this length */
237 dtbl->valoffset[17] = 0;
238 dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
240 /* Compute lookahead tables to speed up decoding.
241 * First we set all the table entries to 0, indicating "too long";
242 * then we iterate through the Huffman codes that are short enough and
243 * fill in all the entries that correspond to bit sequences starting
244 * with that code.
247 for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
248 dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
250 p = 0;
251 for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
252 for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
253 /* l = current code's length, p = its index in huffcode[] & huffval[]. */
254 /* Generate left-justified code followed by all possible bit sequences */
255 lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
256 for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
257 dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
258 lookbits++;
263 /* Validate symbols as being reasonable.
264 * For AC tables, we make no check, but accept all byte values 0..255.
265 * For DC tables, we require the symbols to be in range 0..15.
266 * (Tighter bounds could be applied depending on the data depth and mode,
267 * but this is sufficient to ensure safe decoding.)
269 if (isDC) {
270 for (i = 0; i < numsymbols; i++) {
271 int sym = htbl->huffval[i];
272 if (sym < 0 || sym > 15)
273 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
280 * Out-of-line code for bit fetching (shared with jdphuff.c).
281 * See jdhuff.h for info about usage.
282 * Note: current values of get_buffer and bits_left are passed as parameters,
283 * but are returned in the corresponding fields of the state struct.
285 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
286 * of get_buffer to be used. (On machines with wider words, an even larger
287 * buffer could be used.) However, on some machines 32-bit shifts are
288 * quite slow and take time proportional to the number of places shifted.
289 * (This is true with most PC compilers, for instance.) In this case it may
290 * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the
291 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
294 #ifdef SLOW_SHIFT_32
295 #define MIN_GET_BITS 15 /* minimum allowable value */
296 #else
297 #define MIN_GET_BITS (BIT_BUF_SIZE - 7)
298 #endif
301 GLOBAL(boolean)
302 jpeg_fill_bit_buffer(bitread_working_state *state,
303 register bit_buf_type get_buffer, register int bits_left,
304 int nbits)
305 /* Load up the bit buffer to a depth of at least nbits */
307 /* Copy heavily used state fields into locals (hopefully registers) */
308 register const JOCTET *next_input_byte = state->next_input_byte;
309 register size_t bytes_in_buffer = state->bytes_in_buffer;
310 j_decompress_ptr cinfo = state->cinfo;
312 /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
313 /* (It is assumed that no request will be for more than that many bits.) */
314 /* We fail to do so only if we hit a marker or are forced to suspend. */
316 if (cinfo->unread_marker == 0) { /* cannot advance past a marker */
317 while (bits_left < MIN_GET_BITS) {
318 register int c;
320 /* Attempt to read a byte */
321 if (bytes_in_buffer == 0) {
322 if (!(*cinfo->src->fill_input_buffer) (cinfo))
323 return FALSE;
324 next_input_byte = cinfo->src->next_input_byte;
325 bytes_in_buffer = cinfo->src->bytes_in_buffer;
327 bytes_in_buffer--;
328 c = GETJOCTET(*next_input_byte++);
330 /* If it's 0xFF, check and discard stuffed zero byte */
331 if (c == 0xFF) {
332 /* Loop here to discard any padding FF's on terminating marker,
333 * so that we can save a valid unread_marker value. NOTE: we will
334 * accept multiple FF's followed by a 0 as meaning a single FF data
335 * byte. This data pattern is not valid according to the standard.
337 do {
338 if (bytes_in_buffer == 0) {
339 if (!(*cinfo->src->fill_input_buffer) (cinfo))
340 return FALSE;
341 next_input_byte = cinfo->src->next_input_byte;
342 bytes_in_buffer = cinfo->src->bytes_in_buffer;
344 bytes_in_buffer--;
345 c = GETJOCTET(*next_input_byte++);
346 } while (c == 0xFF);
348 if (c == 0) {
349 /* Found FF/00, which represents an FF data byte */
350 c = 0xFF;
351 } else {
352 /* Oops, it's actually a marker indicating end of compressed data.
353 * Save the marker code for later use.
354 * Fine point: it might appear that we should save the marker into
355 * bitread working state, not straight into permanent state. But
356 * once we have hit a marker, we cannot need to suspend within the
357 * current MCU, because we will read no more bytes from the data
358 * source. So it is OK to update permanent state right away.
360 cinfo->unread_marker = c;
361 /* See if we need to insert some fake zero bits. */
362 goto no_more_bytes;
366 /* OK, load c into get_buffer */
367 get_buffer = (get_buffer << 8) | c;
368 bits_left += 8;
369 } /* end while */
370 } else {
371 no_more_bytes:
372 /* We get here if we've read the marker that terminates the compressed
373 * data segment. There should be enough bits in the buffer register
374 * to satisfy the request; if so, no problem.
376 if (nbits > bits_left) {
377 /* Uh-oh. Report corrupted data to user and stuff zeroes into
378 * the data stream, so that we can produce some kind of image.
379 * We use a nonvolatile flag to ensure that only one warning message
380 * appears per data segment.
382 if (!cinfo->entropy->insufficient_data) {
383 WARNMS(cinfo, JWRN_HIT_MARKER);
384 cinfo->entropy->insufficient_data = TRUE;
386 /* Fill the buffer with zero bits */
387 get_buffer <<= MIN_GET_BITS - bits_left;
388 bits_left = MIN_GET_BITS;
392 /* Unload the local registers */
393 state->next_input_byte = next_input_byte;
394 state->bytes_in_buffer = bytes_in_buffer;
395 state->get_buffer = get_buffer;
396 state->bits_left = bits_left;
398 return TRUE;
402 /* Macro version of the above, which performs much better but does not
403 handle markers. We have to hand off any blocks with markers to the
404 slower routines. */
406 #define GET_BYTE { \
407 register int c0, c1; \
408 c0 = GETJOCTET(*buffer++); \
409 c1 = GETJOCTET(*buffer); \
410 /* Pre-execute most common case */ \
411 get_buffer = (get_buffer << 8) | c0; \
412 bits_left += 8; \
413 if (c0 == 0xFF) { \
414 /* Pre-execute case of FF/00, which represents an FF data byte */ \
415 buffer++; \
416 if (c1 != 0) { \
417 /* Oops, it's actually a marker indicating end of compressed data. */ \
418 cinfo->unread_marker = c1; \
419 /* Back out pre-execution and fill the buffer with zero bits */ \
420 buffer -= 2; \
421 get_buffer &= ~0xFF; \
426 #if SIZEOF_SIZE_T == 8 || defined(_WIN64)
428 /* Pre-fetch 48 bytes, because the holding register is 64-bit */
429 #define FILL_BIT_BUFFER_FAST \
430 if (bits_left <= 16) { \
431 GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
434 #else
436 /* Pre-fetch 16 bytes, because the holding register is 32-bit */
437 #define FILL_BIT_BUFFER_FAST \
438 if (bits_left <= 16) { \
439 GET_BYTE GET_BYTE \
442 #endif
446 * Out-of-line code for Huffman code decoding.
447 * See jdhuff.h for info about usage.
450 GLOBAL(int)
451 jpeg_huff_decode(bitread_working_state *state,
452 register bit_buf_type get_buffer, register int bits_left,
453 d_derived_tbl *htbl, int min_bits)
455 register int l = min_bits;
456 register JLONG code;
458 /* HUFF_DECODE has determined that the code is at least min_bits */
459 /* bits long, so fetch that many bits in one swoop. */
461 CHECK_BIT_BUFFER(*state, l, return -1);
462 code = GET_BITS(l);
464 /* Collect the rest of the Huffman code one bit at a time. */
465 /* This is per Figure F.16. */
467 while (code > htbl->maxcode[l]) {
468 code <<= 1;
469 CHECK_BIT_BUFFER(*state, 1, return -1);
470 code |= GET_BITS(1);
471 l++;
474 /* Unload the local registers */
475 state->get_buffer = get_buffer;
476 state->bits_left = bits_left;
478 /* With garbage input we may reach the sentinel value l = 17. */
480 if (l > 16) {
481 WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
482 return 0; /* fake a zero as the safest result */
485 return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
490 * Figure F.12: extend sign bit.
491 * On some machines, a shift and add will be faster than a table lookup.
494 #define AVOID_TABLES
495 #ifdef AVOID_TABLES
497 #define NEG_1 ((unsigned int)-1)
498 #define HUFF_EXTEND(x, s) \
499 ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
501 #else
503 #define HUFF_EXTEND(x, s) \
504 ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
506 static const int extend_test[16] = { /* entry n is 2**(n-1) */
507 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
508 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
511 static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
512 0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
513 ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
514 ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
515 ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
518 #endif /* AVOID_TABLES */
522 * Check for a restart marker & resynchronize decoder.
523 * Returns FALSE if must suspend.
526 LOCAL(boolean)
527 process_restart(j_decompress_ptr cinfo)
529 huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
530 int ci;
532 /* Throw away any unused bits remaining in bit buffer; */
533 /* include any full bytes in next_marker's count of discarded bytes */
534 cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
535 entropy->bitstate.bits_left = 0;
537 /* Advance past the RSTn marker */
538 if (!(*cinfo->marker->read_restart_marker) (cinfo))
539 return FALSE;
541 /* Re-initialize DC predictions to 0 */
542 for (ci = 0; ci < cinfo->comps_in_scan; ci++)
543 entropy->saved.last_dc_val[ci] = 0;
545 /* Reset restart counter */
546 entropy->restarts_to_go = cinfo->restart_interval;
548 /* Reset out-of-data flag, unless read_restart_marker left us smack up
549 * against a marker. In that case we will end up treating the next data
550 * segment as empty, and we can avoid producing bogus output pixels by
551 * leaving the flag set.
553 if (cinfo->unread_marker == 0)
554 entropy->pub.insufficient_data = FALSE;
556 return TRUE;
560 LOCAL(boolean)
561 decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
563 huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
564 BITREAD_STATE_VARS;
565 int blkn;
566 savable_state state;
567 /* Outer loop handles each block in the MCU */
569 /* Load up working state */
570 BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
571 ASSIGN_STATE(state, entropy->saved);
573 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
574 JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
575 d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
576 d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
577 register int s, k, r;
579 /* Decode a single block's worth of coefficients */
581 /* Section F.2.2.1: decode the DC coefficient difference */
582 HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
583 if (s) {
584 CHECK_BIT_BUFFER(br_state, s, return FALSE);
585 r = GET_BITS(s);
586 s = HUFF_EXTEND(r, s);
589 if (entropy->dc_needed[blkn]) {
590 /* Convert DC difference to actual value, update last_dc_val */
591 int ci = cinfo->MCU_membership[blkn];
592 s += state.last_dc_val[ci];
593 state.last_dc_val[ci] = s;
594 if (block) {
595 /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
596 (*block)[0] = (JCOEF)s;
600 if (entropy->ac_needed[blkn] && block) {
602 /* Section F.2.2.2: decode the AC coefficients */
603 /* Since zeroes are skipped, output area must be cleared beforehand */
604 for (k = 1; k < DCTSIZE2; k++) {
605 HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
607 r = s >> 4;
608 s &= 15;
610 if (s) {
611 k += r;
612 CHECK_BIT_BUFFER(br_state, s, return FALSE);
613 r = GET_BITS(s);
614 s = HUFF_EXTEND(r, s);
615 /* Output coefficient in natural (dezigzagged) order.
616 * Note: the extra entries in jpeg_natural_order[] will save us
617 * if k >= DCTSIZE2, which could happen if the data is corrupted.
619 (*block)[jpeg_natural_order[k]] = (JCOEF)s;
620 } else {
621 if (r != 15)
622 break;
623 k += 15;
627 } else {
629 /* Section F.2.2.2: decode the AC coefficients */
630 /* In this path we just discard the values */
631 for (k = 1; k < DCTSIZE2; k++) {
632 HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
634 r = s >> 4;
635 s &= 15;
637 if (s) {
638 k += r;
639 CHECK_BIT_BUFFER(br_state, s, return FALSE);
640 DROP_BITS(s);
641 } else {
642 if (r != 15)
643 break;
644 k += 15;
650 /* Completed MCU, so update state */
651 BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
652 ASSIGN_STATE(entropy->saved, state);
653 return TRUE;
657 LOCAL(boolean)
658 decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
660 huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
661 BITREAD_STATE_VARS;
662 JOCTET *buffer;
663 int blkn;
664 savable_state state;
665 /* Outer loop handles each block in the MCU */
667 /* Load up working state */
668 BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
669 buffer = (JOCTET *)br_state.next_input_byte;
670 ASSIGN_STATE(state, entropy->saved);
672 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
673 JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
674 d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
675 d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
676 register int s, k, r, l;
678 HUFF_DECODE_FAST(s, l, dctbl, slow_decode_mcu);
679 if (s) {
680 FILL_BIT_BUFFER_FAST
681 r = GET_BITS(s);
682 s = HUFF_EXTEND(r, s);
685 if (entropy->dc_needed[blkn]) {
686 int ci = cinfo->MCU_membership[blkn];
687 s += state.last_dc_val[ci];
688 state.last_dc_val[ci] = s;
689 if (block)
690 (*block)[0] = (JCOEF)s;
693 if (entropy->ac_needed[blkn] && block) {
695 for (k = 1; k < DCTSIZE2; k++) {
696 HUFF_DECODE_FAST(s, l, actbl, slow_decode_mcu);
697 r = s >> 4;
698 s &= 15;
700 if (s) {
701 k += r;
702 FILL_BIT_BUFFER_FAST
703 r = GET_BITS(s);
704 s = HUFF_EXTEND(r, s);
705 (*block)[jpeg_natural_order[k]] = (JCOEF)s;
706 } else {
707 if (r != 15) break;
708 k += 15;
712 } else {
714 for (k = 1; k < DCTSIZE2; k++) {
715 HUFF_DECODE_FAST(s, l, actbl, slow_decode_mcu);
716 r = s >> 4;
717 s &= 15;
719 if (s) {
720 k += r;
721 FILL_BIT_BUFFER_FAST
722 DROP_BITS(s);
723 } else {
724 if (r != 15) break;
725 k += 15;
731 if (cinfo->unread_marker != 0) {
732 slow_decode_mcu:
733 cinfo->unread_marker = 0;
734 return FALSE;
737 br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
738 br_state.next_input_byte = buffer;
739 BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
740 ASSIGN_STATE(entropy->saved, state);
741 return TRUE;
746 * Decode and return one MCU's worth of Huffman-compressed coefficients.
747 * The coefficients are reordered from zigzag order into natural array order,
748 * but are not dequantized.
750 * The i'th block of the MCU is stored into the block pointed to by
751 * MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
752 * (Wholesale zeroing is usually a little faster than retail...)
754 * Returns FALSE if data source requested suspension. In that case no
755 * changes have been made to permanent state. (Exception: some output
756 * coefficients may already have been assigned. This is harmless for
757 * this module, since we'll just re-assign them on the next call.)
760 #define BUFSIZE (DCTSIZE2 * 8)
762 METHODDEF(boolean)
763 decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
765 huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
766 int usefast = 1;
768 /* Process restart marker if needed; may have to suspend */
769 if (cinfo->restart_interval) {
770 if (entropy->restarts_to_go == 0)
771 if (!process_restart(cinfo))
772 return FALSE;
773 usefast = 0;
776 if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
777 cinfo->unread_marker != 0)
778 usefast = 0;
780 /* If we've run out of data, just leave the MCU set to zeroes.
781 * This way, we return uniform gray for the remainder of the segment.
783 if (!entropy->pub.insufficient_data) {
785 if (usefast) {
786 if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
787 } else {
788 use_slow:
789 if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
794 /* Account for restart interval (no-op if not using restarts) */
795 entropy->restarts_to_go--;
797 return TRUE;
802 * Module initialization routine for Huffman entropy decoding.
805 GLOBAL(void)
806 jinit_huff_decoder(j_decompress_ptr cinfo)
808 huff_entropy_ptr entropy;
809 int i;
811 /* Motion JPEG frames typically do not include the Huffman tables if they
812 are the default tables. Thus, if the tables are not set by the time
813 the Huffman decoder is initialized (usually within the body of
814 jpeg_start_decompress()), we set them to default values. */
815 std_huff_tables((j_common_ptr)cinfo);
817 entropy = (huff_entropy_ptr)
818 (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
819 sizeof(huff_entropy_decoder));
820 cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
821 entropy->pub.start_pass = start_pass_huff_decoder;
822 entropy->pub.decode_mcu = decode_mcu;
824 /* Mark tables unallocated */
825 for (i = 0; i < NUM_HUFF_TBLS; i++) {
826 entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;