Fix font rendering in the Scintilla when using Cairo
[geany-mirror.git] / tagmanager / regex.c
blob6c69cd4c048d4c3cfedb128121b0f12f126c6560
1 /* Extended regular expression matching and search library,
2 version 0.12, with minor changes by Darren Hiebert.
3 (Implements POSIX draft P10003.2/D11.2, except for
4 internationalization features.)
6 Copyright (C) 1993 Free Software Foundation, Inc.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
22 /* AIX requires this to be the first thing in the file. */
23 #if defined (_AIX) && !defined (REGEX_MALLOC)
24 #pragma alloca
25 #endif
27 #define _GNU_SOURCE
29 /* We need this for `regex.h', and perhaps for the Emacs include files. */
30 #include <sys/types.h>
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
36 /* The `emacs' switch turns on certain matching commands
37 that make sense only in Emacs. */
38 #ifdef emacs
40 #include "lisp.h"
41 #include "buffer.h"
42 #include "syntax.h"
44 /* Emacs uses `NULL' as a predicate. */
45 #undef NULL
47 #else /* not emacs */
49 /* We used to test for `BSTRING' here, but only GCC and Emacs define
50 `BSTRING', as far as I know, and neither of them use this code. */
51 #if HAVE_STRING_H || STDC_HEADERS
52 #include <string.h>
53 #ifndef bcmp
54 #define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
55 #endif
56 #ifndef bcopy
57 #define bcopy(s, d, n) memcpy ((d), (s), (n))
58 #endif
59 #ifndef bzero
60 #define bzero(s, n) memset ((s), 0, (n))
61 #endif
62 #else
63 #include <strings.h>
64 #endif
66 #ifdef STDC_HEADERS
67 #include <stdlib.h>
68 #else
69 char *malloc ();
70 char *realloc ();
71 #endif
74 /* Define the syntax stuff for \<, \>, etc. */
76 /* This must be nonzero for the wordchar and notwordchar pattern
77 commands in re_match_2. */
78 #ifndef Sword
79 #define Sword 1
80 #endif
82 #ifdef SYNTAX_TABLE
84 extern char *re_syntax_table;
86 #else /* not SYNTAX_TABLE */
88 /* How many characters in the character set. */
89 #define CHAR_SET_SIZE 256
91 static char re_syntax_table[CHAR_SET_SIZE];
93 static void
94 init_syntax_once ()
96 register int c;
97 static int done = 0;
99 if (done)
100 return;
102 bzero (re_syntax_table, sizeof re_syntax_table);
104 for (c = 'a'; c <= 'z'; c++)
105 re_syntax_table[c] = Sword;
107 for (c = 'A'; c <= 'Z'; c++)
108 re_syntax_table[c] = Sword;
110 for (c = '0'; c <= '9'; c++)
111 re_syntax_table[c] = Sword;
113 re_syntax_table['_'] = Sword;
115 done = 1;
118 #endif /* not SYNTAX_TABLE */
120 #define SYNTAX(c) re_syntax_table[c]
122 #endif /* not emacs */
124 /* Get the interface, including the syntax bits. */
125 #include "gnuregex.h"
127 /* isalpha etc. are used for the character classes. */
128 #include <ctype.h>
130 #ifndef isascii
131 #define isascii(c) 1
132 #endif
134 #ifdef isblank
135 #define ISBLANK(c) (isascii (c) && isblank (c))
136 #else
137 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
138 #endif
139 #ifdef isgraph
140 #define ISGRAPH(c) (isascii (c) && isgraph (c))
141 #else
142 #define ISGRAPH(c) (isascii (c) && isprint (c) && !isspace (c))
143 #endif
145 #define ISPRINT(c) (isascii (c) && isprint (c))
146 #define ISDIGIT(c) (isascii (c) && isdigit (c))
147 #define ISALNUM(c) (isascii (c) && isalnum (c))
148 #define ISALPHA(c) (isascii (c) && isalpha (c))
149 #define ISCNTRL(c) (isascii (c) && iscntrl (c))
150 #define ISLOWER(c) (isascii (c) && islower (c))
151 #define ISPUNCT(c) (isascii (c) && ispunct (c))
152 #define ISSPACE(c) (isascii (c) && isspace (c))
153 #define ISUPPER(c) (isascii (c) && isupper (c))
154 #define ISXDIGIT(c) (isascii (c) && isxdigit (c))
156 #ifndef NULL
157 #define NULL 0
158 #endif
160 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
161 since ours (we hope) works properly with all combinations of
162 machines, compilers, `char' and `unsigned char' argument types.
163 (Per Bothner suggested the basic approach.) */
164 #undef SIGN_EXTEND_CHAR
165 #if __STDC__
166 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
167 #else /* not __STDC__ */
168 /* As in Harbison and Steele. */
169 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
170 #endif
172 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
173 use `alloca' instead of `malloc'. This is because using malloc in
174 re_search* or re_match* could cause memory leaks when C-g is used in
175 Emacs; also, malloc is slower and causes storage fragmentation. On
176 the other hand, malloc is more portable, and easier to debug.
178 Because we sometimes use alloca, some routines have to be macros,
179 not functions -- `alloca'-allocated space disappears at the end of the
180 function it is called in. */
182 #ifdef REGEX_MALLOC
184 #define REGEX_ALLOCATE malloc
185 #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
187 #else /* not REGEX_MALLOC */
189 /* Emacs already defines alloca, sometimes. */
190 #ifndef alloca
192 /* Make alloca work the best possible way. */
193 #ifdef __GNUC__
194 #define alloca __builtin_alloca
195 #else /* not __GNUC__ */
196 #if HAVE_ALLOCA_H
197 #include <alloca.h>
198 #else /* not __GNUC__ or HAVE_ALLOCA_H */
199 #ifndef _AIX /* Already did AIX, up at the top. */
200 char *alloca ();
201 #endif /* not _AIX */
202 #endif /* not HAVE_ALLOCA_H */
203 #endif /* not __GNUC__ */
205 #endif /* not alloca */
207 #define REGEX_ALLOCATE alloca
209 /* Assumes a `char *destination' variable. */
210 #define REGEX_REALLOCATE(source, osize, nsize) \
211 (destination = (char *) alloca (nsize), \
212 bcopy (source, destination, osize), \
213 destination)
215 #endif /* not REGEX_MALLOC */
218 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
219 `string1' or just past its end. This works if PTR is NULL, which is
220 a good thing. */
221 #define FIRST_STRING_P(ptr) \
222 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
224 /* (Re)Allocate N items of type T using malloc, or fail. */
225 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
226 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
227 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
229 #define BYTEWIDTH 8 /* In bits. */
231 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
233 #define MAX(a, b) ((a) > (b) ? (a) : (b))
234 #define MIN(a, b) ((a) < (b) ? (a) : (b))
236 typedef char boolean;
237 #define false 0
238 #define true 1
240 /* These are the command codes that appear in compiled regular
241 expressions. Some opcodes are followed by argument bytes. A
242 command code can specify any interpretation whatsoever for its
243 arguments. Zero bytes may appear in the compiled regular expression.
245 The value of `exactn' is needed in search.c (search_buffer) in Emacs.
246 So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of
247 `exactn' we use here must also be 1. */
249 typedef enum
251 no_op = 0,
253 /* Followed by one byte giving n, then by n literal bytes. */
254 exactn = 1,
256 /* Matches any (more or less) character. */
257 anychar,
259 /* Matches any one char belonging to specified set. First
260 following byte is number of bitmap bytes. Then come bytes
261 for a bitmap saying which chars are in. Bits in each byte
262 are ordered low-bit-first. A character is in the set if its
263 bit is 1. A character too large to have a bit in the map is
264 automatically not in the set. */
265 charset,
267 /* Same parameters as charset, but match any character that is
268 not one of those specified. */
269 charset_not,
271 /* Start remembering the text that is matched, for storing in a
272 register. Followed by one byte with the register number, in
273 the range 0 to one less than the pattern buffer's re_nsub
274 field. Then followed by one byte with the number of groups
275 inner to this one. (This last has to be part of the
276 start_memory only because we need it in the on_failure_jump
277 of re_match_2.) */
278 start_memory,
280 /* Stop remembering the text that is matched and store it in a
281 memory register. Followed by one byte with the register
282 number, in the range 0 to one less than `re_nsub' in the
283 pattern buffer, and one byte with the number of inner groups,
284 just like `start_memory'. (We need the number of inner
285 groups here because we don't have any easy way of finding the
286 corresponding start_memory when we're at a stop_memory.) */
287 stop_memory,
289 /* Match a duplicate of something remembered. Followed by one
290 byte containing the register number. */
291 duplicate,
293 /* Fail unless at beginning of line. */
294 begline,
296 /* Fail unless at end of line. */
297 endline,
299 /* Succeeds if at beginning of buffer (if emacs) or at beginning
300 of string to be matched (if not). */
301 begbuf,
303 /* Analogously, for end of buffer/string. */
304 endbuf,
306 /* Followed by two byte relative address to which to jump. */
307 jump,
309 /* Same as jump, but marks the end of an alternative. */
310 jump_past_alt,
312 /* Followed by two-byte relative address of place to resume at
313 in case of failure. */
314 on_failure_jump,
316 /* Like on_failure_jump, but pushes a placeholder instead of the
317 current string position when executed. */
318 on_failure_keep_string_jump,
320 /* Throw away latest failure point and then jump to following
321 two-byte relative address. */
322 pop_failure_jump,
324 /* Change to pop_failure_jump if know won't have to backtrack to
325 match; otherwise change to jump. This is used to jump
326 back to the beginning of a repeat. If what follows this jump
327 clearly won't match what the repeat does, such that we can be
328 sure that there is no use backtracking out of repetitions
329 already matched, then we change it to a pop_failure_jump.
330 Followed by two-byte address. */
331 maybe_pop_jump,
333 /* Jump to following two-byte address, and push a dummy failure
334 point. This failure point will be thrown away if an attempt
335 is made to use it for a failure. A `+' construct makes this
336 before the first repeat. Also used as an intermediary kind
337 of jump when compiling an alternative. */
338 dummy_failure_jump,
340 /* Push a dummy failure point and continue. Used at the end of
341 alternatives. */
342 push_dummy_failure,
344 /* Followed by two-byte relative address and two-byte number n.
345 After matching N times, jump to the address upon failure. */
346 succeed_n,
348 /* Followed by two-byte relative address, and two-byte number n.
349 Jump to the address N times, then fail. */
350 jump_n,
352 /* Set the following two-byte relative address to the
353 subsequent two-byte number. The address *includes* the two
354 bytes of number. */
355 set_number_at,
357 wordchar, /* Matches any word-constituent character. */
358 notwordchar, /* Matches any char that is not a word-constituent. */
360 wordbeg, /* Succeeds if at word beginning. */
361 wordend, /* Succeeds if at word end. */
363 wordbound, /* Succeeds if at a word boundary. */
364 notwordbound /* Succeeds if not at a word boundary. */
366 #ifdef emacs
367 ,before_dot, /* Succeeds if before point. */
368 at_dot, /* Succeeds if at point. */
369 after_dot, /* Succeeds if after point. */
371 /* Matches any character whose syntax is specified. Followed by
372 a byte which contains a syntax code, e.g., Sword. */
373 syntaxspec,
375 /* Matches any character whose syntax is not that specified. */
376 notsyntaxspec
377 #endif /* emacs */
378 } re_opcode_t;
380 /* Common operations on the compiled pattern. */
382 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
384 #define STORE_NUMBER(destination, number) \
385 do { \
386 (destination)[0] = (number) & 0377; \
387 (destination)[1] = (number) >> 8; \
388 } while (0)
390 /* Same as STORE_NUMBER, except increment DESTINATION to
391 the byte after where the number is stored. Therefore, DESTINATION
392 must be an lvalue. */
394 #define STORE_NUMBER_AND_INCR(destination, number) \
395 do { \
396 STORE_NUMBER (destination, number); \
397 (destination) += 2; \
398 } while (0)
400 /* Put into DESTINATION a number stored in two contiguous bytes starting
401 at SOURCE. */
403 #define EXTRACT_NUMBER(destination, source) \
404 do { \
405 (destination) = *(source) & 0377; \
406 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
407 } while (0)
409 #ifdef DEBUG
410 static void
411 extract_number (dest, source)
412 int *dest;
413 unsigned char *source;
415 int temp = SIGN_EXTEND_CHAR (*(source + 1));
416 *dest = *source & 0377;
417 *dest += temp << 8;
420 #ifndef EXTRACT_MACROS /* To debug the macros. */
421 #undef EXTRACT_NUMBER
422 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
423 #endif /* not EXTRACT_MACROS */
425 #endif /* DEBUG */
427 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
428 SOURCE must be an lvalue. */
430 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
431 do { \
432 EXTRACT_NUMBER (destination, source); \
433 (source) += 2; \
434 } while (0)
436 #ifdef DEBUG
437 static void
438 extract_number_and_incr (destination, source)
439 int *destination;
440 unsigned char **source;
442 extract_number (destination, *source);
443 *source += 2;
446 #ifndef EXTRACT_MACROS
447 #undef EXTRACT_NUMBER_AND_INCR
448 #define EXTRACT_NUMBER_AND_INCR(dest, src) \
449 extract_number_and_incr (&dest, &src)
450 #endif /* not EXTRACT_MACROS */
452 #endif /* DEBUG */
454 /* If DEBUG is defined, Regex prints many voluminous messages about what
455 it is doing (if the variable `debug' is nonzero). If linked with the
456 main program in `iregex.c', you can enter patterns and strings
457 interactively. And if linked with the main program in `main.c' and
458 the other test files, you can run the already-written tests. */
460 #ifdef DEBUG
462 /* We use standard I/O for debugging. */
463 #include <stdio.h>
465 /* It is useful to test things that ``must'' be true when debugging. */
466 #include <assert.h>
468 static int debug = 0;
470 #define DEBUG_STATEMENT(e) e
471 #define DEBUG_PRINT1(x) if (debug) printf (x)
472 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
473 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
474 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
475 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
476 if (debug) print_partial_compiled_pattern (s, e)
477 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
478 if (debug) print_double_string (w, s1, sz1, s2, sz2)
481 extern void printchar ();
483 /* Print the fastmap in human-readable form. */
485 void
486 print_fastmap (fastmap)
487 char *fastmap;
489 unsigned was_a_range = 0;
490 unsigned i = 0;
492 while (i < (1 << BYTEWIDTH))
494 if (fastmap[i++])
496 was_a_range = 0;
497 printchar (i - 1);
498 while (i < (1 << BYTEWIDTH) && fastmap[i])
500 was_a_range = 1;
501 i++;
503 if (was_a_range)
505 printf ("-");
506 printchar (i - 1);
510 putchar ('\n');
514 /* Print a compiled pattern string in human-readable form, starting at
515 the START pointer into it and ending just before the pointer END. */
517 void
518 print_partial_compiled_pattern (start, end)
519 unsigned char *start;
520 unsigned char *end;
522 int mcnt, mcnt2;
523 unsigned char *p = start;
524 unsigned char *pend = end;
526 if (start == NULL)
528 printf ("(null)\n");
529 return;
532 /* Loop over pattern commands. */
533 while (p < pend)
535 switch ((re_opcode_t) *p++)
537 case no_op:
538 printf ("/no_op");
539 break;
541 case exactn:
542 mcnt = *p++;
543 printf ("/exactn/%d", mcnt);
546 putchar ('/');
547 printchar (*p++);
549 while (--mcnt);
550 break;
552 case start_memory:
553 mcnt = *p++;
554 printf ("/start_memory/%d/%d", mcnt, *p++);
555 break;
557 case stop_memory:
558 mcnt = *p++;
559 printf ("/stop_memory/%d/%d", mcnt, *p++);
560 break;
562 case duplicate:
563 printf ("/duplicate/%d", *p++);
564 break;
566 case anychar:
567 printf ("/anychar");
568 break;
570 case charset:
571 case charset_not:
573 register int c;
575 printf ("/charset%s",
576 (re_opcode_t) *(p - 1) == charset_not ? "_not" : "");
578 assert (p + *p < pend);
580 for (c = 0; c < *p; c++)
582 unsigned bit;
583 unsigned char map_byte = p[1 + c];
585 putchar ('/');
587 for (bit = 0; bit < BYTEWIDTH; bit++)
588 if (map_byte & (1 << bit))
589 printchar (c * BYTEWIDTH + bit);
591 p += 1 + *p;
592 break;
595 case begline:
596 printf ("/begline");
597 break;
599 case endline:
600 printf ("/endline");
601 break;
603 case on_failure_jump:
604 extract_number_and_incr (&mcnt, &p);
605 printf ("/on_failure_jump/0/%d", mcnt);
606 break;
608 case on_failure_keep_string_jump:
609 extract_number_and_incr (&mcnt, &p);
610 printf ("/on_failure_keep_string_jump/0/%d", mcnt);
611 break;
613 case dummy_failure_jump:
614 extract_number_and_incr (&mcnt, &p);
615 printf ("/dummy_failure_jump/0/%d", mcnt);
616 break;
618 case push_dummy_failure:
619 printf ("/push_dummy_failure");
620 break;
622 case maybe_pop_jump:
623 extract_number_and_incr (&mcnt, &p);
624 printf ("/maybe_pop_jump/0/%d", mcnt);
625 break;
627 case pop_failure_jump:
628 extract_number_and_incr (&mcnt, &p);
629 printf ("/pop_failure_jump/0/%d", mcnt);
630 break;
632 case jump_past_alt:
633 extract_number_and_incr (&mcnt, &p);
634 printf ("/jump_past_alt/0/%d", mcnt);
635 break;
637 case jump:
638 extract_number_and_incr (&mcnt, &p);
639 printf ("/jump/0/%d", mcnt);
640 break;
642 case succeed_n:
643 extract_number_and_incr (&mcnt, &p);
644 extract_number_and_incr (&mcnt2, &p);
645 printf ("/succeed_n/0/%d/0/%d", mcnt, mcnt2);
646 break;
648 case jump_n:
649 extract_number_and_incr (&mcnt, &p);
650 extract_number_and_incr (&mcnt2, &p);
651 printf ("/jump_n/0/%d/0/%d", mcnt, mcnt2);
652 break;
654 case set_number_at:
655 extract_number_and_incr (&mcnt, &p);
656 extract_number_and_incr (&mcnt2, &p);
657 printf ("/set_number_at/0/%d/0/%d", mcnt, mcnt2);
658 break;
660 case wordbound:
661 printf ("/wordbound");
662 break;
664 case notwordbound:
665 printf ("/notwordbound");
666 break;
668 case wordbeg:
669 printf ("/wordbeg");
670 break;
672 case wordend:
673 printf ("/wordend");
675 #ifdef emacs
676 case before_dot:
677 printf ("/before_dot");
678 break;
680 case at_dot:
681 printf ("/at_dot");
682 break;
684 case after_dot:
685 printf ("/after_dot");
686 break;
688 case syntaxspec:
689 printf ("/syntaxspec");
690 mcnt = *p++;
691 printf ("/%d", mcnt);
692 break;
694 case notsyntaxspec:
695 printf ("/notsyntaxspec");
696 mcnt = *p++;
697 printf ("/%d", mcnt);
698 break;
699 #endif /* emacs */
701 case wordchar:
702 printf ("/wordchar");
703 break;
705 case notwordchar:
706 printf ("/notwordchar");
707 break;
709 case begbuf:
710 printf ("/begbuf");
711 break;
713 case endbuf:
714 printf ("/endbuf");
715 break;
717 default:
718 printf ("?%d", *(p-1));
721 printf ("/\n");
725 void
726 print_compiled_pattern (bufp)
727 struct re_pattern_buffer *bufp;
729 unsigned char *buffer = bufp->buffer;
731 print_partial_compiled_pattern (buffer, buffer + bufp->used);
732 printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
734 if (bufp->fastmap_accurate && bufp->fastmap)
736 printf ("fastmap: ");
737 print_fastmap (bufp->fastmap);
740 printf ("re_nsub: %d\t", bufp->re_nsub);
741 printf ("regs_alloc: %d\t", bufp->regs_allocated);
742 printf ("can_be_null: %d\t", bufp->can_be_null);
743 printf ("newline_anchor: %d\n", bufp->newline_anchor);
744 printf ("no_sub: %d\t", bufp->no_sub);
745 printf ("not_bol: %d\t", bufp->not_bol);
746 printf ("not_eol: %d\t", bufp->not_eol);
747 printf ("syntax: %d\n", bufp->syntax);
748 /* Perhaps we should print the translate table? */
752 void
753 print_double_string (where, string1, size1, string2, size2)
754 const char *where;
755 const char *string1;
756 const char *string2;
757 int size1;
758 int size2;
760 unsigned this_char;
762 if (where == NULL)
763 printf ("(null)");
764 else
766 if (FIRST_STRING_P (where))
768 for (this_char = where - string1; this_char < size1; this_char++)
769 printchar (string1[this_char]);
771 where = string2;
774 for (this_char = where - string2; this_char < size2; this_char++)
775 printchar (string2[this_char]);
779 #else /* not DEBUG */
781 #undef assert
782 #define assert(e)
784 #define DEBUG_STATEMENT(e)
785 #define DEBUG_PRINT1(x)
786 #define DEBUG_PRINT2(x1, x2)
787 #define DEBUG_PRINT3(x1, x2, x3)
788 #define DEBUG_PRINT4(x1, x2, x3, x4)
789 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
790 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
792 #endif /* not DEBUG */
794 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
795 also be assigned to arbitrarily: each pattern buffer stores its own
796 syntax, so it can be changed between regex compilations. */
797 reg_syntax_t re_syntax_options = RE_SYNTAX_EMACS;
800 /* Specify the precise syntax of regexps for compilation. This provides
801 for compatibility for various utilities which historically have
802 different, incompatible syntaxes.
804 The argument SYNTAX is a bit mask comprised of the various bits
805 defined in regex.h. We return the old syntax. */
807 reg_syntax_t
808 re_set_syntax (syntax)
809 reg_syntax_t syntax;
811 reg_syntax_t ret = re_syntax_options;
813 re_syntax_options = syntax;
814 return ret;
817 /* This table gives an error message for each of the error codes listed
818 in regex.h. Obviously the order here has to be same as there. */
820 static const char *re_error_msg[] =
821 { NULL, /* REG_NOERROR */
822 "No match", /* REG_NOMATCH */
823 "Invalid regular expression", /* REG_BADPAT */
824 "Invalid collation character", /* REG_ECOLLATE */
825 "Invalid character class name", /* REG_ECTYPE */
826 "Trailing backslash", /* REG_EESCAPE */
827 "Invalid back reference", /* REG_ESUBREG */
828 "Unmatched [ or [^", /* REG_EBRACK */
829 "Unmatched ( or \\(", /* REG_EPAREN */
830 "Unmatched \\{", /* REG_EBRACE */
831 "Invalid content of \\{\\}", /* REG_BADBR */
832 "Invalid range end", /* REG_ERANGE */
833 "Memory exhausted", /* REG_ESPACE */
834 "Invalid preceding regular expression", /* REG_BADRPT */
835 "Premature end of regular expression", /* REG_EEND */
836 "Regular expression too big", /* REG_ESIZE */
837 "Unmatched ) or \\)", /* REG_ERPAREN */
840 /* Subroutine declarations and macros for regex_compile. */
842 static void store_op1 (), store_op2 ();
843 static void insert_op1 (), insert_op2 ();
844 static boolean at_begline_loc_p (), at_endline_loc_p ();
845 static boolean group_in_compile_stack ();
846 static reg_errcode_t compile_range ();
848 /* Fetch the next character in the uncompiled pattern---translating it
849 if necessary. Also cast from a signed character in the constant
850 string passed to us by the user to an unsigned char that we can use
851 as an array index (in, e.g., `translate'). */
852 #define PATFETCH(c) \
853 do {if (p == pend) return REG_EEND; \
854 c = (unsigned char) *p++; \
855 if (translate) c = translate[c]; \
856 } while (0)
858 /* Fetch the next character in the uncompiled pattern, with no
859 translation. */
860 #define PATFETCH_RAW(c) \
861 do {if (p == pend) return REG_EEND; \
862 c = (unsigned char) *p++; \
863 } while (0)
865 /* Go backwards one character in the pattern. */
866 #define PATUNFETCH p--
869 /* If `translate' is non-null, return translate[D], else just D. We
870 cast the subscript to translate because some data is declared as
871 `char *', to avoid warnings when a string constant is passed. But
872 when we use a character as a subscript we must make it unsigned. */
873 #define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))
876 /* Macros for outputting the compiled pattern into `buffer'. */
878 /* If the buffer isn't allocated when it comes in, use this. */
879 #define INIT_BUF_SIZE 32
881 /* Make sure we have at least N more bytes of space in buffer. */
882 #define GET_BUFFER_SPACE(n) \
883 while ((unsigned long)(b - bufp->buffer + (n)) > bufp->allocated) \
884 EXTEND_BUFFER ()
886 /* Make sure we have one more byte of buffer space and then add C to it. */
887 #define BUF_PUSH(c) \
888 do { \
889 GET_BUFFER_SPACE (1); \
890 *b++ = (unsigned char) (c); \
891 } while (0)
894 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
895 #define BUF_PUSH_2(c1, c2) \
896 do { \
897 GET_BUFFER_SPACE (2); \
898 *b++ = (unsigned char) (c1); \
899 *b++ = (unsigned char) (c2); \
900 } while (0)
903 /* As with BUF_PUSH_2, except for three bytes. */
904 #define BUF_PUSH_3(c1, c2, c3) \
905 do { \
906 GET_BUFFER_SPACE (3); \
907 *b++ = (unsigned char) (c1); \
908 *b++ = (unsigned char) (c2); \
909 *b++ = (unsigned char) (c3); \
910 } while (0)
913 /* Store a jump with opcode OP at LOC to location TO. We store a
914 relative address offset by the three bytes the jump itself occupies. */
915 #define STORE_JUMP(op, loc, to) \
916 store_op1 (op, loc, (to) - (loc) - 3)
918 /* Likewise, for a two-argument jump. */
919 #define STORE_JUMP2(op, loc, to, arg) \
920 store_op2 (op, loc, (to) - (loc) - 3, arg)
922 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
923 #define INSERT_JUMP(op, loc, to) \
924 insert_op1 (op, loc, (to) - (loc) - 3, b)
926 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
927 #define INSERT_JUMP2(op, loc, to, arg) \
928 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
931 /* This is not an arbitrary limit: the arguments which represent offsets
932 into the pattern are two bytes long. So if 2^16 bytes turns out to
933 be too small, many things would have to change. */
934 #define MAX_BUF_SIZE (1L << 16)
937 /* Extend the buffer by twice its current size via realloc and
938 reset the pointers that pointed into the old block to point to the
939 correct places in the new one. If extending the buffer results in it
940 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
941 #define EXTEND_BUFFER() \
942 do { \
943 unsigned char *old_buffer = bufp->buffer; \
944 if (bufp->allocated == MAX_BUF_SIZE) \
945 return REG_ESIZE; \
946 bufp->allocated <<= 1; \
947 if (bufp->allocated > MAX_BUF_SIZE) \
948 bufp->allocated = MAX_BUF_SIZE; \
949 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
950 if (bufp->buffer == NULL) \
951 return REG_ESPACE; \
952 /* If the buffer moved, move all the pointers into it. */ \
953 if (old_buffer != bufp->buffer) \
955 b = (b - old_buffer) + bufp->buffer; \
956 begalt = (begalt - old_buffer) + bufp->buffer; \
957 if (fixup_alt_jump) \
958 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
959 if (laststart) \
960 laststart = (laststart - old_buffer) + bufp->buffer; \
961 if (pending_exact) \
962 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
964 } while (0)
967 /* Since we have one byte reserved for the register number argument to
968 {start,stop}_memory, the maximum number of groups we can report
969 things about is what fits in that byte. */
970 #define MAX_REGNUM 255
972 /* But patterns can have more than `MAX_REGNUM' registers. We just
973 ignore the excess. */
974 typedef unsigned regnum_t;
977 /* Macros for the compile stack. */
979 /* Since offsets can go either forwards or backwards, this type needs to
980 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
981 typedef int pattern_offset_t;
983 typedef struct
985 pattern_offset_t begalt_offset;
986 pattern_offset_t fixup_alt_jump;
987 pattern_offset_t inner_group_offset;
988 pattern_offset_t laststart_offset;
989 regnum_t regnum;
990 } compile_stack_elt_t;
993 typedef struct
995 compile_stack_elt_t *stack;
996 unsigned size;
997 unsigned avail; /* Offset of next open position. */
998 } compile_stack_type;
1001 #define INIT_COMPILE_STACK_SIZE 32
1003 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1004 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1006 /* The next available element. */
1007 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1010 /* Set the bit for character C in a list. */
1011 #define SET_LIST_BIT(c) \
1012 (b[((unsigned char) (c)) / BYTEWIDTH] \
1013 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1016 /* Get the next unsigned number in the uncompiled pattern. */
1017 #define GET_UNSIGNED_NUMBER(num) \
1018 { if (p != pend) \
1020 PATFETCH (c); \
1021 while (ISDIGIT (c)) \
1023 if (num < 0) \
1024 num = 0; \
1025 num = num * 10 + c - '0'; \
1026 if (p == pend) \
1027 break; \
1028 PATFETCH (c); \
1033 #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1035 #define IS_CHAR_CLASS(string) \
1036 (STREQ (string, "alpha") || STREQ (string, "upper") \
1037 || STREQ (string, "lower") || STREQ (string, "digit") \
1038 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1039 || STREQ (string, "space") || STREQ (string, "print") \
1040 || STREQ (string, "punct") || STREQ (string, "graph") \
1041 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1043 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1044 Returns one of error codes defined in `regex.h', or zero for success.
1046 Assumes the `allocated' (and perhaps `buffer') and `translate'
1047 fields are set in BUFP on entry.
1049 If it succeeds, results are put in BUFP (if it returns an error, the
1050 contents of BUFP are undefined):
1051 `buffer' is the compiled pattern;
1052 `syntax' is set to SYNTAX;
1053 `used' is set to the length of the compiled pattern;
1054 `fastmap_accurate' is zero;
1055 `re_nsub' is the number of subexpressions in PATTERN;
1056 `not_bol' and `not_eol' are zero;
1058 The `fastmap' and `newline_anchor' fields are neither
1059 examined nor set. */
1061 static reg_errcode_t
1062 regex_compile (pattern, size, syntax, bufp)
1063 const char *pattern;
1064 int size;
1065 reg_syntax_t syntax;
1066 struct re_pattern_buffer *bufp;
1068 /* We fetch characters from PATTERN here. Even though PATTERN is
1069 `char *' (i.e., signed), we declare these variables as unsigned, so
1070 they can be reliably used as array indices. */
1071 register unsigned char c, c1;
1073 /* A random tempory spot in PATTERN. */
1074 const char *p1;
1076 /* Points to the end of the buffer, where we should append. */
1077 register unsigned char *b;
1079 /* Keeps track of unclosed groups. */
1080 compile_stack_type compile_stack;
1082 /* Points to the current (ending) position in the pattern. */
1083 const char *p = pattern;
1084 const char *pend = pattern + size;
1086 /* How to translate the characters in the pattern. */
1087 char *translate = bufp->translate;
1089 /* Address of the count-byte of the most recently inserted `exactn'
1090 command. This makes it possible to tell if a new exact-match
1091 character can be added to that command or if the character requires
1092 a new `exactn' command. */
1093 unsigned char *pending_exact = 0;
1095 /* Address of start of the most recently finished expression.
1096 This tells, e.g., postfix * where to find the start of its
1097 operand. Reset at the beginning of groups and alternatives. */
1098 unsigned char *laststart = 0;
1100 /* Address of beginning of regexp, or inside of last group. */
1101 unsigned char *begalt;
1103 /* Place in the uncompiled pattern (i.e., the {) to
1104 which to go back if the interval is invalid. */
1105 const char *beg_interval;
1107 /* Address of the place where a forward jump should go to the end of
1108 the containing expression. Each alternative of an `or' -- except the
1109 last -- ends with a forward jump of this sort. */
1110 unsigned char *fixup_alt_jump = 0;
1112 /* Counts open-groups as they are encountered. Remembered for the
1113 matching close-group on the compile stack, so the same register
1114 number is put in the stop_memory as the start_memory. */
1115 regnum_t regnum = 0;
1117 #ifdef DEBUG
1118 DEBUG_PRINT1 ("\nCompiling pattern: ");
1119 if (debug)
1121 unsigned debug_count;
1123 for (debug_count = 0; debug_count < size; debug_count++)
1124 printchar (pattern[debug_count]);
1125 putchar ('\n');
1127 #endif /* DEBUG */
1129 /* Initialize the compile stack. */
1130 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1131 if (compile_stack.stack == NULL)
1132 return REG_ESPACE;
1134 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1135 compile_stack.avail = 0;
1137 /* Initialize the pattern buffer. */
1138 bufp->syntax = syntax;
1139 bufp->fastmap_accurate = 0;
1140 bufp->not_bol = bufp->not_eol = 0;
1142 /* Set `used' to zero, so that if we return an error, the pattern
1143 printer (for debugging) will think there's no pattern. We reset it
1144 at the end. */
1145 bufp->used = 0;
1147 /* Always count groups, whether or not bufp->no_sub is set. */
1148 bufp->re_nsub = 0;
1150 #if !defined (emacs) && !defined (SYNTAX_TABLE)
1151 /* Initialize the syntax table. */
1152 init_syntax_once ();
1153 #endif
1155 if (bufp->allocated == 0)
1157 if (bufp->buffer)
1158 { /* If zero allocated, but buffer is non-null, try to realloc
1159 enough space. This loses if buffer's address is bogus, but
1160 that is the user's responsibility. */
1161 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1163 else
1164 { /* Caller did not allocate a buffer. Do it for them. */
1165 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1167 if (!bufp->buffer) return REG_ESPACE;
1169 bufp->allocated = INIT_BUF_SIZE;
1172 begalt = b = bufp->buffer;
1174 /* Loop through the uncompiled pattern until we're at the end. */
1175 while (p != pend)
1177 PATFETCH (c);
1179 switch (c)
1181 case '^':
1183 if ( /* If at start of pattern, it's an operator. */
1184 p == pattern + 1
1185 /* If context independent, it's an operator. */
1186 || syntax & RE_CONTEXT_INDEP_ANCHORS
1187 /* Otherwise, depends on what's come before. */
1188 || at_begline_loc_p (pattern, p, syntax))
1189 BUF_PUSH (begline);
1190 else
1191 goto normal_char;
1193 break;
1196 case '$':
1198 if ( /* If at end of pattern, it's an operator. */
1199 p == pend
1200 /* If context independent, it's an operator. */
1201 || syntax & RE_CONTEXT_INDEP_ANCHORS
1202 /* Otherwise, depends on what's next. */
1203 || at_endline_loc_p (p, pend, syntax))
1204 BUF_PUSH (endline);
1205 else
1206 goto normal_char;
1208 break;
1211 case '+':
1212 case '?':
1213 if ((syntax & RE_BK_PLUS_QM)
1214 || (syntax & RE_LIMITED_OPS))
1215 goto normal_char;
1216 handle_plus:
1217 case '*':
1218 /* If there is no previous pattern... */
1219 if (!laststart)
1221 if (syntax & RE_CONTEXT_INVALID_OPS)
1222 return REG_BADRPT;
1223 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1224 goto normal_char;
1228 /* Are we optimizing this jump? */
1229 boolean keep_string_p = false;
1231 /* 1 means zero (many) matches is allowed. */
1232 char zero_times_ok = 0, many_times_ok = 0;
1234 /* If there is a sequence of repetition chars, collapse it
1235 down to just one (the right one). We can't combine
1236 interval operators with these because of, e.g., `a{2}*',
1237 which should only match an even number of `a's. */
1239 for (;;)
1241 zero_times_ok |= c != '+';
1242 many_times_ok |= c != '?';
1244 if (p == pend)
1245 break;
1247 PATFETCH (c);
1249 if (c == '*'
1250 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1253 else if (syntax & RE_BK_PLUS_QM && c == '\\')
1255 if (p == pend) return REG_EESCAPE;
1257 PATFETCH (c1);
1258 if (!(c1 == '+' || c1 == '?'))
1260 PATUNFETCH;
1261 PATUNFETCH;
1262 break;
1265 c = c1;
1267 else
1269 PATUNFETCH;
1270 break;
1273 /* If we get here, we found another repeat character. */
1276 /* Star, etc. applied to an empty pattern is equivalent
1277 to an empty pattern. */
1278 if (!laststart)
1279 break;
1281 /* Now we know whether or not zero matches is allowed
1282 and also whether or not two or more matches is allowed. */
1283 if (many_times_ok)
1284 { /* More than one repetition is allowed, so put in at the
1285 end a backward relative jump from `b' to before the next
1286 jump we're going to put in below (which jumps from
1287 laststart to after this jump).
1289 But if we are at the `*' in the exact sequence `.*\n',
1290 insert an unconditional jump backwards to the .,
1291 instead of the beginning of the loop. This way we only
1292 push a failure point once, instead of every time
1293 through the loop. */
1294 assert (p - 1 > pattern);
1296 /* Allocate the space for the jump. */
1297 GET_BUFFER_SPACE (3);
1299 /* We know we are not at the first character of the pattern,
1300 because laststart was nonzero. And we've already
1301 incremented `p', by the way, to be the character after
1302 the `*'. Do we have to do something analogous here
1303 for null bytes, because of RE_DOT_NOT_NULL? */
1304 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
1305 && zero_times_ok
1306 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
1307 && !(syntax & RE_DOT_NEWLINE))
1308 { /* We have .*\n. */
1309 STORE_JUMP (jump, b, laststart);
1310 keep_string_p = true;
1312 else
1313 /* Anything else. */
1314 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
1316 /* We've added more stuff to the buffer. */
1317 b += 3;
1320 /* On failure, jump from laststart to b + 3, which will be the
1321 end of the buffer after this jump is inserted. */
1322 GET_BUFFER_SPACE (3);
1323 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
1324 : on_failure_jump,
1325 laststart, b + 3);
1326 pending_exact = 0;
1327 b += 3;
1329 if (!zero_times_ok)
1331 /* At least one repetition is required, so insert a
1332 `dummy_failure_jump' before the initial
1333 `on_failure_jump' instruction of the loop. This
1334 effects a skip over that instruction the first time
1335 we hit that loop. */
1336 GET_BUFFER_SPACE (3);
1337 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
1338 b += 3;
1341 break;
1344 case '.':
1345 laststart = b;
1346 BUF_PUSH (anychar);
1347 break;
1350 case '[':
1352 boolean had_char_class = false;
1354 if (p == pend) return REG_EBRACK;
1356 /* Ensure that we have enough space to push a charset: the
1357 opcode, the length count, and the bitset; 34 bytes in all. */
1358 GET_BUFFER_SPACE (34);
1360 laststart = b;
1362 /* We test `*p == '^' twice, instead of using an if
1363 statement, so we only need one BUF_PUSH. */
1364 BUF_PUSH (*p == '^' ? charset_not : charset);
1365 if (*p == '^')
1366 p++;
1368 /* Remember the first position in the bracket expression. */
1369 p1 = p;
1371 /* Push the number of bytes in the bitmap. */
1372 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
1374 /* Clear the whole map. */
1375 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
1377 /* charset_not matches newline according to a syntax bit. */
1378 if ((re_opcode_t) b[-2] == charset_not
1379 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
1380 SET_LIST_BIT ('\n');
1382 /* Read in characters and ranges, setting map bits. */
1383 for (;;)
1385 if (p == pend) return REG_EBRACK;
1387 PATFETCH (c);
1389 /* \ might escape characters inside [...] and [^...]. */
1390 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
1392 if (p == pend) return REG_EESCAPE;
1394 PATFETCH (c1);
1395 SET_LIST_BIT (c1);
1396 continue;
1399 /* Could be the end of the bracket expression. If it's
1400 not (i.e., when the bracket expression is `[]' so
1401 far), the ']' character bit gets set way below. */
1402 if (c == ']' && p != p1 + 1)
1403 break;
1405 /* Look ahead to see if it's a range when the last thing
1406 was a character class. */
1407 if (had_char_class && c == '-' && *p != ']')
1408 return REG_ERANGE;
1410 /* Look ahead to see if it's a range when the last thing
1411 was a character: if this is a hyphen not at the
1412 beginning or the end of a list, then it's the range
1413 operator. */
1414 if (c == '-'
1415 && !(p - 2 >= pattern && p[-2] == '[')
1416 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
1417 && *p != ']')
1419 reg_errcode_t ret
1420 = compile_range (&p, pend, translate, syntax, b);
1421 if (ret != REG_NOERROR) return ret;
1424 else if (p[0] == '-' && p[1] != ']')
1425 { /* This handles ranges made up of characters only. */
1426 reg_errcode_t ret;
1428 /* Move past the `-'. */
1429 PATFETCH (c1);
1431 ret = compile_range (&p, pend, translate, syntax, b);
1432 if (ret != REG_NOERROR) return ret;
1435 /* See if we're at the beginning of a possible character
1436 class. */
1438 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
1439 { /* Leave room for the null. */
1440 char str[CHAR_CLASS_MAX_LENGTH + 1];
1442 PATFETCH (c);
1443 c1 = 0;
1445 /* If pattern is `[[:'. */
1446 if (p == pend) return REG_EBRACK;
1448 for (;;)
1450 PATFETCH (c);
1451 if (c == ':' || c == ']' || p == pend
1452 || c1 == CHAR_CLASS_MAX_LENGTH)
1453 break;
1454 str[c1++] = c;
1456 str[c1] = '\0';
1458 /* If isn't a word bracketed by `[:' and:`]':
1459 undo the ending character, the letters, and leave
1460 the leading `:' and `[' (but set bits for them). */
1461 if (c == ':' && *p == ']')
1463 int ch;
1464 boolean is_alnum = STREQ (str, "alnum");
1465 boolean is_alpha = STREQ (str, "alpha");
1466 boolean is_blank = STREQ (str, "blank");
1467 boolean is_cntrl = STREQ (str, "cntrl");
1468 boolean is_digit = STREQ (str, "digit");
1469 boolean is_graph = STREQ (str, "graph");
1470 boolean is_lower = STREQ (str, "lower");
1471 boolean is_print = STREQ (str, "print");
1472 boolean is_punct = STREQ (str, "punct");
1473 boolean is_space = STREQ (str, "space");
1474 boolean is_upper = STREQ (str, "upper");
1475 boolean is_xdigit = STREQ (str, "xdigit");
1477 if (!IS_CHAR_CLASS (str)) return REG_ECTYPE;
1479 /* Throw away the ] at the end of the character
1480 class. */
1481 PATFETCH (c);
1483 if (p == pend) return REG_EBRACK;
1485 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
1487 if ( (is_alnum && ISALNUM (ch))
1488 || (is_alpha && ISALPHA (ch))
1489 || (is_blank && ISBLANK (ch))
1490 || (is_cntrl && ISCNTRL (ch))
1491 || (is_digit && ISDIGIT (ch))
1492 || (is_graph && ISGRAPH (ch))
1493 || (is_lower && ISLOWER (ch))
1494 || (is_print && ISPRINT (ch))
1495 || (is_punct && ISPUNCT (ch))
1496 || (is_space && ISSPACE (ch))
1497 || (is_upper && ISUPPER (ch))
1498 || (is_xdigit && ISXDIGIT (ch)))
1499 SET_LIST_BIT (ch);
1501 had_char_class = true;
1503 else
1505 c1++;
1506 while (c1--)
1507 PATUNFETCH;
1508 SET_LIST_BIT ('[');
1509 SET_LIST_BIT (':');
1510 had_char_class = false;
1513 else
1515 had_char_class = false;
1516 SET_LIST_BIT (c);
1520 /* Discard any (non)matching list bytes that are all 0 at the
1521 end of the map. Decrease the map-length byte too. */
1522 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
1523 b[-1]--;
1524 b += b[-1];
1526 break;
1529 case '(':
1530 if (syntax & RE_NO_BK_PARENS)
1531 goto handle_open;
1532 else
1533 goto normal_char;
1536 case ')':
1537 if (syntax & RE_NO_BK_PARENS)
1538 goto handle_close;
1539 else
1540 goto normal_char;
1543 case '\n':
1544 if (syntax & RE_NEWLINE_ALT)
1545 goto handle_alt;
1546 else
1547 goto normal_char;
1550 case '|':
1551 if (syntax & RE_NO_BK_VBAR)
1552 goto handle_alt;
1553 else
1554 goto normal_char;
1557 case '{':
1558 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
1559 goto handle_interval;
1560 else
1561 goto normal_char;
1564 case '\\':
1565 if (p == pend) return REG_EESCAPE;
1567 /* Do not translate the character after the \, so that we can
1568 distinguish, e.g., \B from \b, even if we normally would
1569 translate, e.g., B to b. */
1570 PATFETCH_RAW (c);
1572 switch (c)
1574 case '(':
1575 if (syntax & RE_NO_BK_PARENS)
1576 goto normal_backslash;
1578 handle_open:
1579 bufp->re_nsub++;
1580 regnum++;
1582 if (COMPILE_STACK_FULL)
1584 RETALLOC (compile_stack.stack, compile_stack.size << 1,
1585 compile_stack_elt_t);
1586 if (compile_stack.stack == NULL) return REG_ESPACE;
1588 compile_stack.size <<= 1;
1591 /* These are the values to restore when we hit end of this
1592 group. They are all relative offsets, so that if the
1593 whole pattern moves because of realloc, they will still
1594 be valid. */
1595 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
1596 COMPILE_STACK_TOP.fixup_alt_jump
1597 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
1598 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
1599 COMPILE_STACK_TOP.regnum = regnum;
1601 /* We will eventually replace the 0 with the number of
1602 groups inner to this one. But do not push a
1603 start_memory for groups beyond the last one we can
1604 represent in the compiled pattern. */
1605 if (regnum <= MAX_REGNUM)
1607 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
1608 BUF_PUSH_3 (start_memory, regnum, 0);
1611 compile_stack.avail++;
1613 fixup_alt_jump = 0;
1614 laststart = 0;
1615 begalt = b;
1616 /* If we've reached MAX_REGNUM groups, then this open
1617 won't actually generate any code, so we'll have to
1618 clear pending_exact explicitly. */
1619 pending_exact = 0;
1620 break;
1623 case ')':
1624 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
1626 if (COMPILE_STACK_EMPTY)
1628 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
1629 goto normal_backslash;
1630 else
1631 return REG_ERPAREN;
1634 handle_close:
1635 if (fixup_alt_jump)
1636 { /* Push a dummy failure point at the end of the
1637 alternative for a possible future
1638 `pop_failure_jump' to pop. See comments at
1639 `push_dummy_failure' in `re_match_2'. */
1640 BUF_PUSH (push_dummy_failure);
1642 /* We allocated space for this jump when we assigned
1643 to `fixup_alt_jump', in the `handle_alt' case below. */
1644 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
1647 /* See similar code for backslashed left paren above. */
1648 if (COMPILE_STACK_EMPTY)
1650 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
1651 goto normal_char;
1652 else
1653 return REG_ERPAREN;
1656 /* Since we just checked for an empty stack above, this
1657 ``can't happen''. */
1658 assert (compile_stack.avail != 0);
1660 /* We don't just want to restore into `regnum', because
1661 later groups should continue to be numbered higher,
1662 as in `(ab)c(de)' -- the second group is #2. */
1663 regnum_t this_group_regnum;
1665 compile_stack.avail--;
1666 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
1667 fixup_alt_jump
1668 = COMPILE_STACK_TOP.fixup_alt_jump
1669 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
1670 : 0;
1671 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
1672 this_group_regnum = COMPILE_STACK_TOP.regnum;
1673 /* If we've reached MAX_REGNUM groups, then this open
1674 won't actually generate any code, so we'll have to
1675 clear pending_exact explicitly. */
1676 pending_exact = 0;
1678 /* We're at the end of the group, so now we know how many
1679 groups were inside this one. */
1680 if (this_group_regnum <= MAX_REGNUM)
1682 unsigned char *inner_group_loc
1683 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
1685 *inner_group_loc = regnum - this_group_regnum;
1686 BUF_PUSH_3 (stop_memory, this_group_regnum,
1687 regnum - this_group_regnum);
1690 break;
1693 case '|': /* `\|'. */
1694 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
1695 goto normal_backslash;
1696 handle_alt:
1697 if (syntax & RE_LIMITED_OPS)
1698 goto normal_char;
1700 /* Insert before the previous alternative a jump which
1701 jumps to this alternative if the former fails. */
1702 GET_BUFFER_SPACE (3);
1703 INSERT_JUMP (on_failure_jump, begalt, b + 6);
1704 pending_exact = 0;
1705 b += 3;
1707 /* The alternative before this one has a jump after it
1708 which gets executed if it gets matched. Adjust that
1709 jump so it will jump to this alternative's analogous
1710 jump (put in below, which in turn will jump to the next
1711 (if any) alternative's such jump, etc.). The last such
1712 jump jumps to the correct final destination. A picture:
1713 _____ _____
1714 | | | |
1715 | v | v
1716 a | b | c
1718 If we are at `b', then fixup_alt_jump right now points to a
1719 three-byte space after `a'. We'll put in the jump, set
1720 fixup_alt_jump to right after `b', and leave behind three
1721 bytes which we'll fill in when we get to after `c'. */
1723 if (fixup_alt_jump)
1724 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
1726 /* Mark and leave space for a jump after this alternative,
1727 to be filled in later either by next alternative or
1728 when know we're at the end of a series of alternatives. */
1729 fixup_alt_jump = b;
1730 GET_BUFFER_SPACE (3);
1731 b += 3;
1733 laststart = 0;
1734 begalt = b;
1735 break;
1738 case '{':
1739 /* If \{ is a literal. */
1740 if (!(syntax & RE_INTERVALS)
1741 /* If we're at `\{' and it's not the open-interval
1742 operator. */
1743 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
1744 || (p - 2 == pattern && p == pend))
1745 goto normal_backslash;
1747 handle_interval:
1749 /* If got here, then the syntax allows intervals. */
1751 /* At least (most) this many matches must be made. */
1752 int lower_bound = -1, upper_bound = -1;
1754 beg_interval = p - 1;
1756 if (p == pend)
1758 if (syntax & RE_NO_BK_BRACES)
1759 goto unfetch_interval;
1760 else
1761 return REG_EBRACE;
1764 GET_UNSIGNED_NUMBER (lower_bound);
1766 if (c == ',')
1768 GET_UNSIGNED_NUMBER (upper_bound);
1769 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
1771 else
1772 /* Interval such as `{1}' => match exactly once. */
1773 upper_bound = lower_bound;
1775 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
1776 || lower_bound > upper_bound)
1778 if (syntax & RE_NO_BK_BRACES)
1779 goto unfetch_interval;
1780 else
1781 return REG_BADBR;
1784 if (!(syntax & RE_NO_BK_BRACES))
1786 if (c != '\\') return REG_EBRACE;
1788 PATFETCH (c);
1791 if (c != '}')
1793 if (syntax & RE_NO_BK_BRACES)
1794 goto unfetch_interval;
1795 else
1796 return REG_BADBR;
1799 /* We just parsed a valid interval. */
1801 /* If it's invalid to have no preceding re. */
1802 if (!laststart)
1804 if (syntax & RE_CONTEXT_INVALID_OPS)
1805 return REG_BADRPT;
1806 else if (syntax & RE_CONTEXT_INDEP_OPS)
1807 laststart = b;
1808 else
1809 goto unfetch_interval;
1812 /* If the upper bound is zero, don't want to succeed at
1813 all; jump from `laststart' to `b + 3', which will be
1814 the end of the buffer after we insert the jump. */
1815 if (upper_bound == 0)
1817 GET_BUFFER_SPACE (3);
1818 INSERT_JUMP (jump, laststart, b + 3);
1819 b += 3;
1822 /* Otherwise, we have a nontrivial interval. When
1823 we're all done, the pattern will look like:
1824 set_number_at <jump count> <upper bound>
1825 set_number_at <succeed_n count> <lower bound>
1826 succeed_n <after jump addr> <succed_n count>
1827 <body of loop>
1828 jump_n <succeed_n addr> <jump count>
1829 (The upper bound and `jump_n' are omitted if
1830 `upper_bound' is 1, though.) */
1831 else
1832 { /* If the upper bound is > 1, we need to insert
1833 more at the end of the loop. */
1834 unsigned nbytes = 10 + (upper_bound > 1) * 10;
1836 GET_BUFFER_SPACE (nbytes);
1838 /* Initialize lower bound of the `succeed_n', even
1839 though it will be set during matching by its
1840 attendant `set_number_at' (inserted next),
1841 because `re_compile_fastmap' needs to know.
1842 Jump to the `jump_n' we might insert below. */
1843 INSERT_JUMP2 (succeed_n, laststart,
1844 b + 5 + (upper_bound > 1) * 5,
1845 lower_bound);
1846 b += 5;
1848 /* Code to initialize the lower bound. Insert
1849 before the `succeed_n'. The `5' is the last two
1850 bytes of this `set_number_at', plus 3 bytes of
1851 the following `succeed_n'. */
1852 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
1853 b += 5;
1855 if (upper_bound > 1)
1856 { /* More than one repetition is allowed, so
1857 append a backward jump to the `succeed_n'
1858 that starts this interval.
1860 When we've reached this during matching,
1861 we'll have matched the interval once, so
1862 jump back only `upper_bound - 1' times. */
1863 STORE_JUMP2 (jump_n, b, laststart + 5,
1864 upper_bound - 1);
1865 b += 5;
1867 /* The location we want to set is the second
1868 parameter of the `jump_n'; that is `b-2' as
1869 an absolute address. `laststart' will be
1870 the `set_number_at' we're about to insert;
1871 `laststart+3' the number to set, the source
1872 for the relative address. But we are
1873 inserting into the middle of the pattern --
1874 so everything is getting moved up by 5.
1875 Conclusion: (b - 2) - (laststart + 3) + 5,
1876 i.e., b - laststart.
1878 We insert this at the beginning of the loop
1879 so that if we fail during matching, we'll
1880 reinitialize the bounds. */
1881 insert_op2 (set_number_at, laststart, b - laststart,
1882 upper_bound - 1, b);
1883 b += 5;
1886 pending_exact = 0;
1887 beg_interval = NULL;
1889 break;
1891 unfetch_interval:
1892 /* If an invalid interval, match the characters as literals. */
1893 assert (beg_interval);
1894 p = beg_interval;
1895 beg_interval = NULL;
1897 /* normal_char and normal_backslash need `c'. */
1898 PATFETCH (c);
1900 if (!(syntax & RE_NO_BK_BRACES))
1902 if (p > pattern && p[-1] == '\\')
1903 goto normal_backslash;
1905 goto normal_char;
1907 #ifdef emacs
1908 /* There is no way to specify the before_dot and after_dot
1909 operators. rms says this is ok. --karl */
1910 case '=':
1911 BUF_PUSH (at_dot);
1912 break;
1914 case 's':
1915 laststart = b;
1916 PATFETCH (c);
1917 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
1918 break;
1920 case 'S':
1921 laststart = b;
1922 PATFETCH (c);
1923 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
1924 break;
1925 #endif /* emacs */
1928 case 'w':
1929 laststart = b;
1930 BUF_PUSH (wordchar);
1931 break;
1934 case 'W':
1935 laststart = b;
1936 BUF_PUSH (notwordchar);
1937 break;
1940 case '<':
1941 BUF_PUSH (wordbeg);
1942 break;
1944 case '>':
1945 BUF_PUSH (wordend);
1946 break;
1948 case 'b':
1949 BUF_PUSH (wordbound);
1950 break;
1952 case 'B':
1953 BUF_PUSH (notwordbound);
1954 break;
1956 case '`':
1957 BUF_PUSH (begbuf);
1958 break;
1960 case '\'':
1961 BUF_PUSH (endbuf);
1962 break;
1964 case '1': case '2': case '3': case '4': case '5':
1965 case '6': case '7': case '8': case '9':
1966 if (syntax & RE_NO_BK_REFS)
1967 goto normal_char;
1969 c1 = c - '0';
1971 if (c1 > regnum)
1972 return REG_ESUBREG;
1974 /* Can't back reference to a subexpression if inside of it. */
1975 if (group_in_compile_stack (compile_stack, c1))
1976 goto normal_char;
1978 laststart = b;
1979 BUF_PUSH_2 (duplicate, c1);
1980 break;
1983 case '+':
1984 case '?':
1985 if (syntax & RE_BK_PLUS_QM)
1986 goto handle_plus;
1987 else
1988 goto normal_backslash;
1990 default:
1991 normal_backslash:
1992 /* You might think it would be useful for \ to mean
1993 not to translate; but if we don't translate it
1994 it will never match anything. */
1995 c = TRANSLATE (c);
1996 goto normal_char;
1998 break;
2001 default:
2002 /* Expects the character in `c'. */
2003 normal_char:
2004 /* If no exactn currently being built. */
2005 if (!pending_exact
2007 /* If last exactn not at current position. */
2008 || pending_exact + *pending_exact + 1 != b
2010 /* We have only one byte following the exactn for the count. */
2011 || *pending_exact == (1 << BYTEWIDTH) - 1
2013 /* If followed by a repetition operator. */
2014 || *p == '*' || *p == '^'
2015 || ((syntax & RE_BK_PLUS_QM)
2016 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2017 : (*p == '+' || *p == '?'))
2018 || ((syntax & RE_INTERVALS)
2019 && ((syntax & RE_NO_BK_BRACES)
2020 ? *p == '{'
2021 : (p[0] == '\\' && p[1] == '{'))))
2023 /* Start building a new exactn. */
2025 laststart = b;
2027 BUF_PUSH_2 (exactn, 0);
2028 pending_exact = b - 1;
2031 BUF_PUSH (c);
2032 (*pending_exact)++;
2033 break;
2034 } /* switch (c) */
2035 } /* while p != pend */
2038 /* Through the pattern now. */
2040 if (fixup_alt_jump)
2041 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2043 if (!COMPILE_STACK_EMPTY)
2044 return REG_EPAREN;
2046 free (compile_stack.stack);
2048 /* We have succeeded; set the length of the buffer. */
2049 bufp->used = b - bufp->buffer;
2051 #ifdef DEBUG
2052 if (debug)
2054 DEBUG_PRINT1 ("\nCompiled pattern: ");
2055 print_compiled_pattern (bufp);
2057 #endif /* DEBUG */
2059 return REG_NOERROR;
2060 } /* regex_compile */
2062 /* Subroutines for `regex_compile'. */
2064 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2066 static void
2067 store_op1 (op, loc, arg)
2068 re_opcode_t op;
2069 unsigned char *loc;
2070 int arg;
2072 *loc = (unsigned char) op;
2073 STORE_NUMBER (loc + 1, arg);
2077 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2079 static void
2080 store_op2 (op, loc, arg1, arg2)
2081 re_opcode_t op;
2082 unsigned char *loc;
2083 int arg1, arg2;
2085 *loc = (unsigned char) op;
2086 STORE_NUMBER (loc + 1, arg1);
2087 STORE_NUMBER (loc + 3, arg2);
2091 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2092 for OP followed by two-byte integer parameter ARG. */
2094 static void
2095 insert_op1 (op, loc, arg, end)
2096 re_opcode_t op;
2097 unsigned char *loc;
2098 int arg;
2099 unsigned char *end;
2101 register unsigned char *pfrom = end;
2102 register unsigned char *pto = end + 3;
2104 while (pfrom != loc)
2105 *--pto = *--pfrom;
2107 store_op1 (op, loc, arg);
2111 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2113 static void
2114 insert_op2 (op, loc, arg1, arg2, end)
2115 re_opcode_t op;
2116 unsigned char *loc;
2117 int arg1, arg2;
2118 unsigned char *end;
2120 register unsigned char *pfrom = end;
2121 register unsigned char *pto = end + 5;
2123 while (pfrom != loc)
2124 *--pto = *--pfrom;
2126 store_op2 (op, loc, arg1, arg2);
2130 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
2131 after an alternative or a begin-subexpression. We assume there is at
2132 least one character before the ^. */
2134 static boolean
2135 at_begline_loc_p (pattern, p, syntax)
2136 const char *pattern, *p;
2137 reg_syntax_t syntax;
2139 const char *prev = p - 2;
2140 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2142 return
2143 /* After a subexpression? */
2144 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2145 /* After an alternative? */
2146 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2150 /* The dual of at_begline_loc_p. This one is for $. We assume there is
2151 at least one character after the $, i.e., `P < PEND'. */
2153 static boolean
2154 at_endline_loc_p (p, pend, syntax)
2155 const char *p, *pend;
2156 int syntax;
2158 const char *next = p;
2159 boolean next_backslash = *next == '\\';
2160 const char *next_next = p + 1 < pend ? p + 1 : NULL;
2162 return
2163 /* Before a subexpression? */
2164 (syntax & RE_NO_BK_PARENS ? *next == ')'
2165 : next_backslash && next_next && *next_next == ')')
2166 /* Before an alternative? */
2167 || (syntax & RE_NO_BK_VBAR ? *next == '|'
2168 : next_backslash && next_next && *next_next == '|');
2172 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
2173 false if it's not. */
2175 static boolean
2176 group_in_compile_stack (compile_stack, regnum)
2177 compile_stack_type compile_stack;
2178 regnum_t regnum;
2180 int this_element;
2182 for (this_element = compile_stack.avail - 1;
2183 this_element >= 0;
2184 this_element--)
2185 if (compile_stack.stack[this_element].regnum == regnum)
2186 return true;
2188 return false;
2192 /* Read the ending character of a range (in a bracket expression) from the
2193 uncompiled pattern *P_PTR (which ends at PEND). We assume the
2194 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
2195 Then we set the translation of all bits between the starting and
2196 ending characters (inclusive) in the compiled pattern B.
2198 Return an error code.
2200 We use these short variable names so we can use the same macros as
2201 `regex_compile' itself. */
2203 static reg_errcode_t
2204 compile_range (p_ptr, pend, translate, syntax, b)
2205 const char **p_ptr, *pend;
2206 char *translate;
2207 reg_syntax_t syntax;
2208 unsigned char *b;
2210 unsigned this_char;
2212 const char *p = *p_ptr;
2213 int range_start, range_end;
2215 if (p == pend)
2216 return REG_ERANGE;
2218 /* Even though the pattern is a signed `char *', we need to fetch
2219 with unsigned char *'s; if the high bit of the pattern character
2220 is set, the range endpoints will be negative if we fetch using a
2221 signed char *.
2223 We also want to fetch the endpoints without translating them; the
2224 appropriate translation is done in the bit-setting loop below. */
2225 range_start = ((const unsigned char *) p)[-2];
2226 range_end = ((const unsigned char *) p)[0];
2228 /* Have to increment the pointer into the pattern string, so the
2229 caller isn't still at the ending character. */
2230 (*p_ptr)++;
2232 /* If the start is after the end, the range is empty. */
2233 if (range_start > range_end)
2234 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
2236 /* Here we see why `this_char' has to be larger than an `unsigned
2237 char' -- the range is inclusive, so if `range_end' == 0xff
2238 (assuming 8-bit characters), we would otherwise go into an infinite
2239 loop, since all characters <= 0xff. */
2240 for (this_char = range_start; this_char <= range_end; this_char++)
2242 SET_LIST_BIT (TRANSLATE (this_char));
2245 return REG_NOERROR;
2248 /* Failure stack declarations and macros; both re_compile_fastmap and
2249 re_match_2 use a failure stack. These have to be macros because of
2250 REGEX_ALLOCATE. */
2253 /* Number of failure points for which to initially allocate space
2254 when matching. If this number is exceeded, we allocate more
2255 space, so it is not a hard limit. */
2256 #ifndef INIT_FAILURE_ALLOC
2257 #define INIT_FAILURE_ALLOC 5
2258 #endif
2260 /* Roughly the maximum number of failure points on the stack. Would be
2261 exactly that if always used MAX_FAILURE_SPACE each time we failed.
2262 This is a variable only so users of regex can assign to it; we never
2263 change it ourselves. */
2264 int re_max_failures = 2000;
2266 typedef const unsigned char *fail_stack_elt_t;
2268 typedef struct
2270 fail_stack_elt_t *stack;
2271 unsigned size;
2272 unsigned avail; /* Offset of next open position. */
2273 } fail_stack_type;
2275 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
2276 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
2277 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
2278 #define FAIL_STACK_TOP() (fail_stack.stack[fail_stack.avail])
2281 /* Initialize `fail_stack'. Do `return -2' if the alloc fails. */
2283 #define INIT_FAIL_STACK() \
2284 do { \
2285 fail_stack.stack = (fail_stack_elt_t *) \
2286 REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
2288 if (fail_stack.stack == NULL) \
2289 return -2; \
2291 fail_stack.size = INIT_FAILURE_ALLOC; \
2292 fail_stack.avail = 0; \
2293 } while (0)
2296 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
2298 Return 1 if succeeds, and 0 if either ran out of memory
2299 allocating space for it or it was already too large.
2301 REGEX_REALLOCATE requires `destination' be declared. */
2303 #define DOUBLE_FAIL_STACK(fail_stack) \
2304 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
2305 ? 0 \
2306 : ((fail_stack).stack = (fail_stack_elt_t *) \
2307 REGEX_REALLOCATE ((fail_stack).stack, \
2308 (fail_stack).size * sizeof (fail_stack_elt_t), \
2309 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
2311 (fail_stack).stack == NULL \
2312 ? 0 \
2313 : ((fail_stack).size <<= 1, \
2314 1)))
2317 /* Push PATTERN_OP on FAIL_STACK.
2319 Return 1 if was able to do so and 0 if ran out of memory allocating
2320 space to do so. */
2321 #define PUSH_PATTERN_OP(pattern_op, fail_stack) \
2322 ((FAIL_STACK_FULL () \
2323 && !DOUBLE_FAIL_STACK (fail_stack)) \
2324 ? 0 \
2325 : ((fail_stack).stack[(fail_stack).avail++] = pattern_op, \
2328 /* This pushes an item onto the failure stack. Must be a four-byte
2329 value. Assumes the variable `fail_stack'. Probably should only
2330 be called from within `PUSH_FAILURE_POINT'. */
2331 #define PUSH_FAILURE_ITEM(item) \
2332 fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item
2334 /* The complement operation. Assumes `fail_stack' is nonempty. */
2335 #define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail]
2337 /* Used to omit pushing failure point id's when we're not debugging. */
2338 #ifdef DEBUG
2339 #define DEBUG_PUSH PUSH_FAILURE_ITEM
2340 #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM ()
2341 #else
2342 #define DEBUG_PUSH(item)
2343 #define DEBUG_POP(item_addr)
2344 #endif
2347 /* Push the information about the state we will need
2348 if we ever fail back to it.
2350 Requires variables fail_stack, regstart, regend, reg_info, and
2351 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
2352 declared.
2354 Does `return FAILURE_CODE' if runs out of memory. */
2356 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
2357 do { \
2358 char *destination; \
2359 /* Must be int, so when we don't save any registers, the arithmetic \
2360 of 0 + -1 isn't done as unsigned. */ \
2361 int this_reg; \
2363 DEBUG_STATEMENT (failure_id++); \
2364 DEBUG_STATEMENT (nfailure_points_pushed++); \
2365 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
2366 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
2367 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
2369 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
2370 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
2372 /* Ensure we have enough space allocated for what we will push. */ \
2373 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
2375 if (!DOUBLE_FAIL_STACK (fail_stack)) \
2376 return failure_code; \
2378 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
2379 (fail_stack).size); \
2380 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
2383 /* Push the info, starting with the registers. */ \
2384 DEBUG_PRINT1 ("\n"); \
2386 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
2387 this_reg++) \
2389 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
2390 DEBUG_STATEMENT (num_regs_pushed++); \
2392 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
2393 PUSH_FAILURE_ITEM (regstart[this_reg]); \
2395 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
2396 PUSH_FAILURE_ITEM (regend[this_reg]); \
2398 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
2399 DEBUG_PRINT2 (" match_null=%d", \
2400 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
2401 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
2402 DEBUG_PRINT2 (" matched_something=%d", \
2403 MATCHED_SOMETHING (reg_info[this_reg])); \
2404 DEBUG_PRINT2 (" ever_matched=%d", \
2405 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
2406 DEBUG_PRINT1 ("\n"); \
2407 PUSH_FAILURE_ITEM (reg_info[this_reg].word); \
2410 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
2411 PUSH_FAILURE_ITEM (lowest_active_reg); \
2413 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
2414 PUSH_FAILURE_ITEM (highest_active_reg); \
2416 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
2417 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
2418 PUSH_FAILURE_ITEM (pattern_place); \
2420 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
2421 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
2422 size2); \
2423 DEBUG_PRINT1 ("'\n"); \
2424 PUSH_FAILURE_ITEM (string_place); \
2426 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
2427 DEBUG_PUSH (failure_id); \
2428 } while (0)
2430 /* This is the number of items that are pushed and popped on the stack
2431 for each register. */
2432 #define NUM_REG_ITEMS 3
2434 /* Individual items aside from the registers. */
2435 #ifdef DEBUG
2436 #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
2437 #else
2438 #define NUM_NONREG_ITEMS 4
2439 #endif
2441 /* We push at most this many items on the stack. */
2442 #define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
2444 /* We actually push this many items. */
2445 #define NUM_FAILURE_ITEMS \
2446 ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \
2447 + NUM_NONREG_ITEMS)
2449 /* How many items can still be added to the stack without overflowing it. */
2450 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
2453 /* Pops what PUSH_FAIL_STACK pushes.
2455 We restore into the parameters, all of which should be lvalues:
2456 STR -- the saved data position.
2457 PAT -- the saved pattern position.
2458 LOW_REG, HIGH_REG -- the highest and lowest active registers.
2459 REGSTART, REGEND -- arrays of string positions.
2460 REG_INFO -- array of information about each subexpression.
2462 Also assumes the variables `fail_stack' and (if debugging), `bufp',
2463 `pend', `string1', `size1', `string2', and `size2'. */
2465 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
2467 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
2468 int this_reg; \
2469 const unsigned char *string_temp; \
2471 assert (!FAIL_STACK_EMPTY ()); \
2473 /* Remove failure points and point to how many regs pushed. */ \
2474 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
2475 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
2476 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
2478 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
2480 DEBUG_POP (&failure_id); \
2481 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
2483 /* If the saved string location is NULL, it came from an \
2484 on_failure_keep_string_jump opcode, and we want to throw away the \
2485 saved NULL, thus retaining our current position in the string. */ \
2486 string_temp = POP_FAILURE_ITEM (); \
2487 if (string_temp != NULL) \
2488 str = (const char *) string_temp; \
2490 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
2491 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
2492 DEBUG_PRINT1 ("'\n"); \
2494 pat = (unsigned char *) POP_FAILURE_ITEM (); \
2495 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
2496 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
2498 /* Restore register info. */ \
2499 high_reg = (unsigned) POP_FAILURE_ITEM (); \
2500 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
2502 low_reg = (unsigned) POP_FAILURE_ITEM (); \
2503 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
2505 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
2507 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
2509 reg_info[this_reg].word = POP_FAILURE_ITEM (); \
2510 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
2512 regend[this_reg] = (const char *) POP_FAILURE_ITEM (); \
2513 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
2515 regstart[this_reg] = (const char *) POP_FAILURE_ITEM (); \
2516 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
2519 DEBUG_STATEMENT (nfailure_points_popped++); \
2520 } /* POP_FAILURE_POINT */
2522 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
2523 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
2524 characters can start a string that matches the pattern. This fastmap
2525 is used by re_search to skip quickly over impossible starting points.
2527 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
2528 area as BUFP->fastmap.
2530 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
2531 the pattern buffer.
2533 Returns 0 if we succeed, -2 if an internal error. */
2536 re_compile_fastmap (bufp)
2537 struct re_pattern_buffer *bufp;
2539 int j, k;
2540 fail_stack_type fail_stack;
2541 #ifndef REGEX_MALLOC
2542 char *destination;
2543 #endif
2544 /* We don't push any register information onto the failure stack. */
2545 unsigned num_regs = 0;
2547 register char *fastmap = bufp->fastmap;
2548 unsigned char *pattern = bufp->buffer;
2549 unsigned long size = bufp->used;
2550 const unsigned char *p = pattern;
2551 register unsigned char *pend = pattern + size;
2553 /* Assume that each path through the pattern can be null until
2554 proven otherwise. We set this false at the bottom of switch
2555 statement, to which we get only if a particular path doesn't
2556 match the empty string. */
2557 boolean path_can_be_null = true;
2559 /* We aren't doing a `succeed_n' to begin with. */
2560 boolean succeed_n_p = false;
2562 assert (fastmap != NULL && p != NULL);
2564 INIT_FAIL_STACK ();
2565 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
2566 bufp->fastmap_accurate = 1; /* It will be when we're done. */
2567 bufp->can_be_null = 0;
2569 while (p != pend || !FAIL_STACK_EMPTY ())
2571 if (p == pend)
2573 bufp->can_be_null |= path_can_be_null;
2575 /* Reset for next path. */
2576 path_can_be_null = true;
2578 p = fail_stack.stack[--fail_stack.avail];
2581 /* We should never be about to go beyond the end of the pattern. */
2582 assert (p < pend);
2584 #ifdef SWITCH_ENUM_BUG
2585 switch ((int) ((re_opcode_t) *p++))
2586 #else
2587 switch ((re_opcode_t) *p++)
2588 #endif
2591 /* I guess the idea here is to simply not bother with a fastmap
2592 if a backreference is used, since it's too hard to figure out
2593 the fastmap for the corresponding group. Setting
2594 `can_be_null' stops `re_search_2' from using the fastmap, so
2595 that is all we do. */
2596 case duplicate:
2597 bufp->can_be_null = 1;
2598 return 0;
2601 /* Following are the cases which match a character. These end
2602 with `break'. */
2604 case exactn:
2605 fastmap[p[1]] = 1;
2606 break;
2609 case charset:
2610 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2611 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
2612 fastmap[j] = 1;
2613 break;
2616 case charset_not:
2617 /* Chars beyond end of map must be allowed. */
2618 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
2619 fastmap[j] = 1;
2621 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2622 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
2623 fastmap[j] = 1;
2624 break;
2627 case wordchar:
2628 for (j = 0; j < (1 << BYTEWIDTH); j++)
2629 if (SYNTAX (j) == Sword)
2630 fastmap[j] = 1;
2631 break;
2634 case notwordchar:
2635 for (j = 0; j < (1 << BYTEWIDTH); j++)
2636 if (SYNTAX (j) != Sword)
2637 fastmap[j] = 1;
2638 break;
2641 case anychar:
2642 /* `.' matches anything ... */
2643 for (j = 0; j < (1 << BYTEWIDTH); j++)
2644 fastmap[j] = 1;
2646 /* ... except perhaps newline. */
2647 if (!(bufp->syntax & RE_DOT_NEWLINE))
2648 fastmap['\n'] = 0;
2650 /* Return if we have already set `can_be_null'; if we have,
2651 then the fastmap is irrelevant. Something's wrong here. */
2652 else if (bufp->can_be_null)
2653 return 0;
2655 /* Otherwise, have to check alternative paths. */
2656 break;
2659 #ifdef emacs
2660 case syntaxspec:
2661 k = *p++;
2662 for (j = 0; j < (1 << BYTEWIDTH); j++)
2663 if (SYNTAX (j) == (enum syntaxcode) k)
2664 fastmap[j] = 1;
2665 break;
2668 case notsyntaxspec:
2669 k = *p++;
2670 for (j = 0; j < (1 << BYTEWIDTH); j++)
2671 if (SYNTAX (j) != (enum syntaxcode) k)
2672 fastmap[j] = 1;
2673 break;
2676 /* All cases after this match the empty string. These end with
2677 `continue'. */
2680 case before_dot:
2681 case at_dot:
2682 case after_dot:
2683 continue;
2684 #endif /* not emacs */
2687 case no_op:
2688 case begline:
2689 case endline:
2690 case begbuf:
2691 case endbuf:
2692 case wordbound:
2693 case notwordbound:
2694 case wordbeg:
2695 case wordend:
2696 case push_dummy_failure:
2697 continue;
2700 case jump_n:
2701 case pop_failure_jump:
2702 case maybe_pop_jump:
2703 case jump:
2704 case jump_past_alt:
2705 case dummy_failure_jump:
2706 EXTRACT_NUMBER_AND_INCR (j, p);
2707 p += j;
2708 if (j > 0)
2709 continue;
2711 /* Jump backward implies we just went through the body of a
2712 loop and matched nothing. Opcode jumped to should be
2713 `on_failure_jump' or `succeed_n'. Just treat it like an
2714 ordinary jump. For a * loop, it has pushed its failure
2715 point already; if so, discard that as redundant. */
2716 if ((re_opcode_t) *p != on_failure_jump
2717 && (re_opcode_t) *p != succeed_n)
2718 continue;
2720 p++;
2721 EXTRACT_NUMBER_AND_INCR (j, p);
2722 p += j;
2724 /* If what's on the stack is where we are now, pop it. */
2725 if (!FAIL_STACK_EMPTY ()
2726 && fail_stack.stack[fail_stack.avail - 1] == p)
2727 fail_stack.avail--;
2729 continue;
2732 case on_failure_jump:
2733 case on_failure_keep_string_jump:
2734 handle_on_failure_jump:
2735 EXTRACT_NUMBER_AND_INCR (j, p);
2737 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
2738 end of the pattern. We don't want to push such a point,
2739 since when we restore it above, entering the switch will
2740 increment `p' past the end of the pattern. We don't need
2741 to push such a point since we obviously won't find any more
2742 fastmap entries beyond `pend'. Such a pattern can match
2743 the null string, though. */
2744 if (p + j < pend)
2746 if (!PUSH_PATTERN_OP (p + j, fail_stack))
2747 return -2;
2749 else
2750 bufp->can_be_null = 1;
2752 if (succeed_n_p)
2754 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
2755 succeed_n_p = false;
2758 continue;
2761 case succeed_n:
2762 /* Get to the number of times to succeed. */
2763 p += 2;
2765 /* Increment p past the n for when k != 0. */
2766 EXTRACT_NUMBER_AND_INCR (k, p);
2767 if (k == 0)
2769 p -= 4;
2770 succeed_n_p = true; /* Spaghetti code alert. */
2771 goto handle_on_failure_jump;
2773 continue;
2776 case set_number_at:
2777 p += 4;
2778 continue;
2781 case start_memory:
2782 case stop_memory:
2783 p += 2;
2784 continue;
2787 default:
2788 abort (); /* We have listed all the cases. */
2789 } /* switch *p++ */
2791 /* Getting here means we have found the possible starting
2792 characters for one path of the pattern -- and that the empty
2793 string does not match. We need not follow this path further.
2794 Instead, look at the next alternative (remembered on the
2795 stack), or quit if no more. The test at the top of the loop
2796 does these things. */
2797 path_can_be_null = false;
2798 p = pend;
2799 } /* while p */
2801 /* Set `can_be_null' for the last path (also the first path, if the
2802 pattern is empty). */
2803 bufp->can_be_null |= path_can_be_null;
2804 return 0;
2805 } /* re_compile_fastmap */
2807 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
2808 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
2809 this memory for recording register information. STARTS and ENDS
2810 must be allocated using the malloc library routine, and must each
2811 be at least NUM_REGS * sizeof (regoff_t) bytes long.
2813 If NUM_REGS == 0, then subsequent matches should allocate their own
2814 register data.
2816 Unless this function is called, the first search or match using
2817 PATTERN_BUFFER will allocate its own register data, without
2818 freeing the old data. */
2820 void
2821 re_set_registers (bufp, regs, num_regs, starts, ends)
2822 struct re_pattern_buffer *bufp;
2823 struct re_registers *regs;
2824 unsigned num_regs;
2825 regoff_t *starts, *ends;
2827 if (num_regs)
2829 bufp->regs_allocated = REGS_REALLOCATE;
2830 regs->num_regs = num_regs;
2831 regs->start = starts;
2832 regs->end = ends;
2834 else
2836 bufp->regs_allocated = REGS_UNALLOCATED;
2837 regs->num_regs = 0;
2838 regs->start = regs->end = NULL;
2842 /* Searching routines. */
2844 /* Like re_search_2, below, but only one string is specified, and
2845 doesn't let you say where to stop matching. */
2848 re_search (bufp, string, size, startpos, range, regs)
2849 struct re_pattern_buffer *bufp;
2850 const char *string;
2851 int size, startpos, range;
2852 struct re_registers *regs;
2854 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
2855 regs, size);
2859 /* Using the compiled pattern in BUFP->buffer, first tries to match the
2860 virtual concatenation of STRING1 and STRING2, starting first at index
2861 STARTPOS, then at STARTPOS + 1, and so on.
2863 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
2865 RANGE is how far to scan while trying to match. RANGE = 0 means try
2866 only at STARTPOS; in general, the last start tried is STARTPOS +
2867 RANGE.
2869 In REGS, return the indices of the virtual concatenation of STRING1
2870 and STRING2 that matched the entire BUFP->buffer and its contained
2871 subexpressions.
2873 Do not consider matching one past the index STOP in the virtual
2874 concatenation of STRING1 and STRING2.
2876 We return either the position in the strings at which the match was
2877 found, -1 if no match, or -2 if error (such as failure
2878 stack overflow). */
2881 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
2882 struct re_pattern_buffer *bufp;
2883 const char *string1, *string2;
2884 int size1, size2;
2885 int startpos;
2886 int range;
2887 struct re_registers *regs;
2888 int stop;
2890 int val;
2891 register char *fastmap = bufp->fastmap;
2892 register char *translate = bufp->translate;
2893 int total_size = size1 + size2;
2894 int endpos = startpos + range;
2896 /* Check for out-of-range STARTPOS. */
2897 if (startpos < 0 || startpos > total_size)
2898 return -1;
2900 /* Fix up RANGE if it might eventually take us outside
2901 the virtual concatenation of STRING1 and STRING2. */
2902 if (endpos < -1)
2903 range = -1 - startpos;
2904 else if (endpos > total_size)
2905 range = total_size - startpos;
2907 /* If the search isn't to be a backwards one, don't waste time in a
2908 search for a pattern that must be anchored. */
2909 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
2911 if (startpos > 0)
2912 return -1;
2913 else
2914 range = 1;
2917 /* Update the fastmap now if not correct already. */
2918 if (fastmap && !bufp->fastmap_accurate)
2919 if (re_compile_fastmap (bufp) == -2)
2920 return -2;
2922 /* Loop through the string, looking for a place to start matching. */
2923 for (;;)
2925 /* If a fastmap is supplied, skip quickly over characters that
2926 cannot be the start of a match. If the pattern can match the
2927 null string, however, we don't need to skip characters; we want
2928 the first null string. */
2929 if (fastmap && startpos < total_size && !bufp->can_be_null)
2931 if (range > 0) /* Searching forwards. */
2933 register const char *d;
2934 register int lim = 0;
2935 int irange = range;
2937 if (startpos < size1 && startpos + range >= size1)
2938 lim = range - (size1 - startpos);
2940 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
2942 /* Written out as an if-else to avoid testing `translate'
2943 inside the loop. */
2944 if (translate)
2945 while (range > lim
2946 && !fastmap[(unsigned char)
2947 translate[(unsigned char) *d++]])
2948 range--;
2949 else
2950 while (range > lim && !fastmap[(unsigned char) *d++])
2951 range--;
2953 startpos += irange - range;
2955 else /* Searching backwards. */
2957 register char c = (size1 == 0 || startpos >= size1
2958 ? string2[startpos - size1]
2959 : string1[startpos]);
2961 if (!fastmap[(unsigned char) TRANSLATE (c)])
2962 goto advance;
2966 /* If can't match the null string, and that's all we have left, fail. */
2967 if (range >= 0 && startpos == total_size && fastmap
2968 && !bufp->can_be_null)
2969 return -1;
2971 val = re_match_2 (bufp, string1, size1, string2, size2,
2972 startpos, regs, stop);
2973 if (val >= 0)
2974 return startpos;
2976 if (val == -2)
2977 return -2;
2979 advance:
2980 if (!range)
2981 break;
2982 else if (range > 0)
2984 range--;
2985 startpos++;
2987 else
2989 range++;
2990 startpos--;
2993 return -1;
2994 } /* re_search_2 */
2996 /* Declarations and macros for re_match_2. */
2998 static int bcmp_translate ();
2999 static boolean alt_match_null_string_p (),
3000 common_op_match_null_string_p (),
3001 group_match_null_string_p ();
3003 /* Structure for per-register (a.k.a. per-group) information.
3004 This must not be longer than one word, because we push this value
3005 onto the failure stack. Other register information, such as the
3006 starting and ending positions (which are addresses), and the list of
3007 inner groups (which is a bits list) are maintained in separate
3008 variables.
3010 We are making a (strictly speaking) nonportable assumption here: that
3011 the compiler will pack our bit fields into something that fits into
3012 the type of `word', i.e., is something that fits into one item on the
3013 failure stack. */
3014 typedef union
3016 fail_stack_elt_t word;
3017 struct
3019 /* This field is one if this group can match the empty string,
3020 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
3021 #define MATCH_NULL_UNSET_VALUE 3
3022 unsigned match_null_string_p : 2;
3023 unsigned is_active : 1;
3024 unsigned matched_something : 1;
3025 unsigned ever_matched_something : 1;
3026 } bits;
3027 } register_info_type;
3029 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
3030 #define IS_ACTIVE(R) ((R).bits.is_active)
3031 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
3032 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
3035 /* Call this when have matched a real character; it sets `matched' flags
3036 for the subexpressions which we are currently inside. Also records
3037 that those subexprs have matched. */
3038 #define SET_REGS_MATCHED() \
3039 do \
3041 unsigned r; \
3042 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
3044 MATCHED_SOMETHING (reg_info[r]) \
3045 = EVER_MATCHED_SOMETHING (reg_info[r]) \
3046 = 1; \
3049 while (0)
3052 /* This converts PTR, a pointer into one of the search strings `string1'
3053 and `string2' into an offset from the beginning of that string. */
3054 #define POINTER_TO_OFFSET(ptr) \
3055 (FIRST_STRING_P (ptr) ? (ptr) - string1 : (ptr) - string2 + size1)
3057 /* Registers are set to a sentinel when they haven't yet matched. */
3058 #define REG_UNSET_VALUE ((char *) -1)
3059 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
3062 /* Macros for dealing with the split strings in re_match_2. */
3064 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3066 /* Call before fetching a character with *d. This switches over to
3067 string2 if necessary. */
3068 #define PREFETCH() \
3069 while (d == dend) \
3071 /* End of string2 => fail. */ \
3072 if (dend == end_match_2) \
3073 goto fail; \
3074 /* End of string1 => advance to string2. */ \
3075 d = string2; \
3076 dend = end_match_2; \
3080 /* Test if at very beginning or at very end of the virtual concatenation
3081 of `string1' and `string2'. If only one string, it's `string2'. */
3082 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3083 #define AT_STRINGS_END(d) ((d) == end2)
3086 /* Test if D points to a character which is word-constituent. We have
3087 two special cases to check for: if past the end of string1, look at
3088 the first character in string2; and if before the beginning of
3089 string2, look at the last character in string1. */
3090 #define WORDCHAR_P(d) \
3091 (SYNTAX ((d) == end1 ? *string2 \
3092 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3093 == Sword)
3095 /* Test if the character before D and the one at D differ with respect
3096 to being word-constituent. */
3097 #define AT_WORD_BOUNDARY(d) \
3098 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3099 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3102 /* Free everything we malloc. */
3103 #ifdef REGEX_MALLOC
3104 #define FREE_VAR(var) if (var) free (var); var = NULL
3105 #define FREE_VARIABLES() \
3106 do { \
3107 FREE_VAR (fail_stack.stack); \
3108 FREE_VAR (regstart); \
3109 FREE_VAR (regend); \
3110 FREE_VAR (old_regstart); \
3111 FREE_VAR (old_regend); \
3112 FREE_VAR (best_regstart); \
3113 FREE_VAR (best_regend); \
3114 FREE_VAR (reg_info); \
3115 FREE_VAR (reg_dummy); \
3116 FREE_VAR (reg_info_dummy); \
3117 } while (0)
3118 #else /* not REGEX_MALLOC */
3119 /* Some MIPS systems (at least) want this to free alloca'd storage. */
3120 #define FREE_VARIABLES() alloca (0)
3121 #endif /* not REGEX_MALLOC */
3124 /* These values must meet several constraints. They must not be valid
3125 register values; since we have a limit of 255 registers (because
3126 we use only one byte in the pattern for the register number), we can
3127 use numbers larger than 255. They must differ by 1, because of
3128 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3129 be larger than the value for the highest register, so we do not try
3130 to actually save any registers when none are active. */
3131 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3132 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3134 /* Matching routines. */
3136 #ifndef emacs /* Emacs never uses this. */
3137 /* re_match is like re_match_2 except it takes only a single string. */
3140 re_match (bufp, string, size, pos, regs)
3141 struct re_pattern_buffer *bufp;
3142 const char *string;
3143 int size, pos;
3144 struct re_registers *regs;
3146 return re_match_2 (bufp, NULL, 0, string, size, pos, regs, size);
3148 #endif /* not emacs */
3151 /* re_match_2 matches the compiled pattern in BUFP against the
3152 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3153 and SIZE2, respectively). We start matching at POS, and stop
3154 matching at STOP.
3156 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3157 store offsets for the substring each group matched in REGS. See the
3158 documentation for exactly how many groups we fill.
3160 We return -1 if no match, -2 if an internal error (such as the
3161 failure stack overflowing). Otherwise, we return the length of the
3162 matched substring. */
3165 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3166 struct re_pattern_buffer *bufp;
3167 const char *string1, *string2;
3168 int size1, size2;
3169 int pos;
3170 struct re_registers *regs;
3171 int stop;
3173 /* General temporaries. */
3174 int mcnt;
3175 unsigned char *p1;
3177 /* Just past the end of the corresponding string. */
3178 const char *end1, *end2;
3180 /* Pointers into string1 and string2, just past the last characters in
3181 each to consider matching. */
3182 const char *end_match_1, *end_match_2;
3184 /* Where we are in the data, and the end of the current string. */
3185 const char *d, *dend;
3187 /* Where we are in the pattern, and the end of the pattern. */
3188 unsigned char *p = bufp->buffer;
3189 register unsigned char *pend = p + bufp->used;
3191 /* We use this to map every character in the string. */
3192 char *translate = bufp->translate;
3194 /* Failure point stack. Each place that can handle a failure further
3195 down the line pushes a failure point on this stack. It consists of
3196 restart, regend, and reg_info for all registers corresponding to
3197 the subexpressions we're currently inside, plus the number of such
3198 registers, and, finally, two char *'s. The first char * is where
3199 to resume scanning the pattern; the second one is where to resume
3200 scanning the strings. If the latter is zero, the failure point is
3201 a ``dummy''; if a failure happens and the failure point is a dummy,
3202 it gets discarded and the next next one is tried. */
3203 fail_stack_type fail_stack;
3204 #ifdef DEBUG
3205 static unsigned failure_id = 0;
3206 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3207 #endif
3209 /* We fill all the registers internally, independent of what we
3210 return, for use in backreferences. The number here includes
3211 an element for register zero. */
3212 unsigned num_regs = bufp->re_nsub + 1;
3214 /* The currently active registers. */
3215 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3216 unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3218 /* Information on the contents of registers. These are pointers into
3219 the input strings; they record just what was matched (on this
3220 attempt) by a subexpression part of the pattern, that is, the
3221 regnum-th regstart pointer points to where in the pattern we began
3222 matching and the regnum-th regend points to right after where we
3223 stopped matching the regnum-th subexpression. (The zeroth register
3224 keeps track of what the whole pattern matches.) */
3225 const char **regstart, **regend;
3227 /* If a group that's operated upon by a repetition operator fails to
3228 match anything, then the register for its start will need to be
3229 restored because it will have been set to wherever in the string we
3230 are when we last see its open-group operator. Similarly for a
3231 register's end. */
3232 const char **old_regstart, **old_regend;
3234 /* The is_active field of reg_info helps us keep track of which (possibly
3235 nested) subexpressions we are currently in. The matched_something
3236 field of reg_info[reg_num] helps us tell whether or not we have
3237 matched any of the pattern so far this time through the reg_num-th
3238 subexpression. These two fields get reset each time through any
3239 loop their register is in. */
3240 register_info_type *reg_info;
3242 /* The following record the register info as found in the above
3243 variables when we find a match better than any we've seen before.
3244 This happens as we backtrack through the failure points, which in
3245 turn happens only if we have not yet matched the entire string. */
3246 unsigned best_regs_set = false;
3247 const char **best_regstart, **best_regend;
3249 /* Logically, this is `best_regend[0]'. But we don't want to have to
3250 allocate space for that if we're not allocating space for anything
3251 else (see below). Also, we never need info about register 0 for
3252 any of the other register vectors, and it seems rather a kludge to
3253 treat `best_regend' differently than the rest. So we keep track of
3254 the end of the best match so far in a separate variable. We
3255 initialize this to NULL so that when we backtrack the first time
3256 and need to test it, it's not garbage. */
3257 const char *match_end = NULL;
3259 /* Used when we pop values we don't care about. */
3260 const char **reg_dummy;
3261 register_info_type *reg_info_dummy;
3263 #ifdef DEBUG
3264 /* Counts the total number of registers pushed. */
3265 unsigned num_regs_pushed = 0;
3266 #endif
3268 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3270 INIT_FAIL_STACK ();
3272 /* Do not bother to initialize all the register variables if there are
3273 no groups in the pattern, as it takes a fair amount of time. If
3274 there are groups, we include space for register 0 (the whole
3275 pattern), even though we never use it, since it simplifies the
3276 array indexing. We should fix this. */
3277 if (bufp->re_nsub)
3279 regstart = REGEX_TALLOC (num_regs, const char *);
3280 regend = REGEX_TALLOC (num_regs, const char *);
3281 old_regstart = REGEX_TALLOC (num_regs, const char *);
3282 old_regend = REGEX_TALLOC (num_regs, const char *);
3283 best_regstart = REGEX_TALLOC (num_regs, const char *);
3284 best_regend = REGEX_TALLOC (num_regs, const char *);
3285 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3286 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3287 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3289 if (!(regstart && regend && old_regstart && old_regend && reg_info
3290 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3292 FREE_VARIABLES ();
3293 return -2;
3296 #ifdef REGEX_MALLOC
3297 else
3299 /* We must initialize all our variables to NULL, so that
3300 `FREE_VARIABLES' doesn't try to free them. */
3301 regstart = regend = old_regstart = old_regend = best_regstart
3302 = best_regend = reg_dummy = NULL;
3303 reg_info = reg_info_dummy = (register_info_type *) NULL;
3305 #endif /* REGEX_MALLOC */
3307 /* The starting position is bogus. */
3308 if (pos < 0 || pos > size1 + size2)
3310 FREE_VARIABLES ();
3311 return -1;
3314 /* Initialize subexpression text positions to -1 to mark ones that no
3315 start_memory/stop_memory has been seen for. Also initialize the
3316 register information struct. */
3317 for (mcnt = 1; mcnt < num_regs; mcnt++)
3319 regstart[mcnt] = regend[mcnt]
3320 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3322 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3323 IS_ACTIVE (reg_info[mcnt]) = 0;
3324 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3325 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3328 /* We move `string1' into `string2' if the latter's empty -- but not if
3329 `string1' is null. */
3330 if (size2 == 0 && string1 != NULL)
3332 string2 = string1;
3333 size2 = size1;
3334 string1 = 0;
3335 size1 = 0;
3337 end1 = string1 + size1;
3338 end2 = string2 + size2;
3340 /* Compute where to stop matching, within the two strings. */
3341 if (stop <= size1)
3343 end_match_1 = string1 + stop;
3344 end_match_2 = string2;
3346 else
3348 end_match_1 = end1;
3349 end_match_2 = string2 + stop - size1;
3352 /* `p' scans through the pattern as `d' scans through the data.
3353 `dend' is the end of the input string that `d' points within. `d'
3354 is advanced into the following input string whenever necessary, but
3355 this happens before fetching; therefore, at the beginning of the
3356 loop, `d' can be pointing at the end of a string, but it cannot
3357 equal `string2'. */
3358 if (size1 > 0 && pos <= size1)
3360 d = string1 + pos;
3361 dend = end_match_1;
3363 else
3365 d = string2 + pos - size1;
3366 dend = end_match_2;
3369 DEBUG_PRINT1 ("The compiled pattern is: ");
3370 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
3371 DEBUG_PRINT1 ("The string to match is: `");
3372 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
3373 DEBUG_PRINT1 ("'\n");
3375 /* This loops over pattern commands. It exits by returning from the
3376 function if the match is complete, or it drops through if the match
3377 fails at this starting point in the input data. */
3378 for (;;)
3380 DEBUG_PRINT2 ("\n0x%x: ", p);
3382 if (p == pend)
3383 { /* End of pattern means we might have succeeded. */
3384 DEBUG_PRINT1 ("end of pattern ... ");
3386 /* If we haven't matched the entire string, and we want the
3387 longest match, try backtracking. */
3388 if (d != end_match_2)
3390 DEBUG_PRINT1 ("backtracking.\n");
3392 if (!FAIL_STACK_EMPTY ())
3393 { /* More failure points to try. */
3394 boolean same_str_p = (FIRST_STRING_P (match_end)
3395 == MATCHING_IN_FIRST_STRING);
3397 /* If exceeds best match so far, save it. */
3398 if (!best_regs_set
3399 || (same_str_p && d > match_end)
3400 || (!same_str_p && !MATCHING_IN_FIRST_STRING))
3402 best_regs_set = true;
3403 match_end = d;
3405 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
3407 for (mcnt = 1; mcnt < num_regs; mcnt++)
3409 best_regstart[mcnt] = regstart[mcnt];
3410 best_regend[mcnt] = regend[mcnt];
3413 goto fail;
3416 /* If no failure points, don't restore garbage. */
3417 else if (best_regs_set)
3419 restore_best_regs:
3420 /* Restore best match. It may happen that `dend ==
3421 end_match_1' while the restored d is in string2.
3422 For example, the pattern `x.*y.*z' against the
3423 strings `x-' and `y-z-', if the two strings are
3424 not consecutive in memory. */
3425 DEBUG_PRINT1 ("Restoring best registers.\n");
3427 d = match_end;
3428 dend = ((d >= string1 && d <= end1)
3429 ? end_match_1 : end_match_2);
3431 for (mcnt = 1; mcnt < num_regs; mcnt++)
3433 regstart[mcnt] = best_regstart[mcnt];
3434 regend[mcnt] = best_regend[mcnt];
3437 } /* d != end_match_2 */
3439 DEBUG_PRINT1 ("Accepting match.\n");
3441 /* If caller wants register contents data back, do it. */
3442 if (regs && !bufp->no_sub)
3444 /* Have the register data arrays been allocated? */
3445 if (bufp->regs_allocated == REGS_UNALLOCATED)
3446 { /* No. So allocate them with malloc. We need one
3447 extra element beyond `num_regs' for the `-1' marker
3448 GNU code uses. */
3449 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
3450 regs->start = TALLOC (regs->num_regs, regoff_t);
3451 regs->end = TALLOC (regs->num_regs, regoff_t);
3452 if (regs->start == NULL || regs->end == NULL)
3453 return -2;
3454 bufp->regs_allocated = REGS_REALLOCATE;
3456 else if (bufp->regs_allocated == REGS_REALLOCATE)
3457 { /* Yes. If we need more elements than were already
3458 allocated, reallocate them. If we need fewer, just
3459 leave it alone. */
3460 if (regs->num_regs < num_regs + 1)
3462 regs->num_regs = num_regs + 1;
3463 RETALLOC (regs->start, regs->num_regs, regoff_t);
3464 RETALLOC (regs->end, regs->num_regs, regoff_t);
3465 if (regs->start == NULL || regs->end == NULL)
3466 return -2;
3469 else
3470 assert (bufp->regs_allocated == REGS_FIXED);
3472 /* Convert the pointer data in `regstart' and `regend' to
3473 indices. Register zero has to be set differently,
3474 since we haven't kept track of any info for it. */
3475 if (regs->num_regs > 0)
3477 regs->start[0] = pos;
3478 regs->end[0] = (MATCHING_IN_FIRST_STRING ? d - string1
3479 : d - string2 + size1);
3482 /* Go through the first `min (num_regs, regs->num_regs)'
3483 registers, since that is all we initialized. */
3484 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
3486 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
3487 regs->start[mcnt] = regs->end[mcnt] = -1;
3488 else
3490 regs->start[mcnt] = POINTER_TO_OFFSET (regstart[mcnt]);
3491 regs->end[mcnt] = POINTER_TO_OFFSET (regend[mcnt]);
3495 /* If the regs structure we return has more elements than
3496 were in the pattern, set the extra elements to -1. If
3497 we (re)allocated the registers, this is the case,
3498 because we always allocate enough to have at least one
3499 -1 at the end. */
3500 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
3501 regs->start[mcnt] = regs->end[mcnt] = -1;
3502 } /* regs && !bufp->no_sub */
3504 FREE_VARIABLES ();
3505 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
3506 nfailure_points_pushed, nfailure_points_popped,
3507 nfailure_points_pushed - nfailure_points_popped);
3508 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
3510 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
3511 ? string1
3512 : string2 - size1);
3514 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
3516 return mcnt;
3519 /* Otherwise match next pattern command. */
3520 #ifdef SWITCH_ENUM_BUG
3521 switch ((int) ((re_opcode_t) *p++))
3522 #else
3523 switch ((re_opcode_t) *p++)
3524 #endif
3526 /* Ignore these. Used to ignore the n of succeed_n's which
3527 currently have n == 0. */
3528 case no_op:
3529 DEBUG_PRINT1 ("EXECUTING no_op.\n");
3530 break;
3533 /* Match the next n pattern characters exactly. The following
3534 byte in the pattern defines n, and the n bytes after that
3535 are the characters to match. */
3536 case exactn:
3537 mcnt = *p++;
3538 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
3540 /* This is written out as an if-else so we don't waste time
3541 testing `translate' inside the loop. */
3542 if (translate)
3546 PREFETCH ();
3547 if (translate[(unsigned char) *d++] != (char) *p++)
3548 goto fail;
3550 while (--mcnt);
3552 else
3556 PREFETCH ();
3557 if (*d++ != (char) *p++) goto fail;
3559 while (--mcnt);
3561 SET_REGS_MATCHED ();
3562 break;
3565 /* Match any character except possibly a newline or a null. */
3566 case anychar:
3567 DEBUG_PRINT1 ("EXECUTING anychar.\n");
3569 PREFETCH ();
3571 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
3572 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
3573 goto fail;
3575 SET_REGS_MATCHED ();
3576 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
3577 d++;
3578 break;
3581 case charset:
3582 case charset_not:
3584 register unsigned char c;
3585 boolean not = (re_opcode_t) *(p - 1) == charset_not;
3587 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
3589 PREFETCH ();
3590 c = TRANSLATE (*d); /* The character to match. */
3592 /* Cast to `unsigned' instead of `unsigned char' in case the
3593 bit list is a full 32 bytes long. */
3594 if (c < (unsigned) (*p * BYTEWIDTH)
3595 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
3596 not = !not;
3598 p += 1 + *p;
3600 if (!not) goto fail;
3602 SET_REGS_MATCHED ();
3603 d++;
3604 break;
3608 /* The beginning of a group is represented by start_memory.
3609 The arguments are the register number in the next byte, and the
3610 number of groups inner to this one in the next. The text
3611 matched within the group is recorded (in the internal
3612 registers data structure) under the register number. */
3613 case start_memory:
3614 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
3616 /* Find out if this group can match the empty string. */
3617 p1 = p; /* To send to group_match_null_string_p. */
3619 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
3620 REG_MATCH_NULL_STRING_P (reg_info[*p])
3621 = group_match_null_string_p (&p1, pend, reg_info);
3623 /* Save the position in the string where we were the last time
3624 we were at this open-group operator in case the group is
3625 operated upon by a repetition operator, e.g., with `(a*)*b'
3626 against `ab'; then we want to ignore where we are now in
3627 the string in case this attempt to match fails. */
3628 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
3629 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
3630 : regstart[*p];
3631 DEBUG_PRINT2 (" old_regstart: %d\n",
3632 POINTER_TO_OFFSET (old_regstart[*p]));
3634 regstart[*p] = d;
3635 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
3637 IS_ACTIVE (reg_info[*p]) = 1;
3638 MATCHED_SOMETHING (reg_info[*p]) = 0;
3640 /* This is the new highest active register. */
3641 highest_active_reg = *p;
3643 /* If nothing was active before, this is the new lowest active
3644 register. */
3645 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
3646 lowest_active_reg = *p;
3648 /* Move past the register number and inner group count. */
3649 p += 2;
3650 break;
3653 /* The stop_memory opcode represents the end of a group. Its
3654 arguments are the same as start_memory's: the register
3655 number, and the number of inner groups. */
3656 case stop_memory:
3657 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
3659 /* We need to save the string position the last time we were at
3660 this close-group operator in case the group is operated
3661 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
3662 against `aba'; then we want to ignore where we are now in
3663 the string in case this attempt to match fails. */
3664 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
3665 ? REG_UNSET (regend[*p]) ? d : regend[*p]
3666 : regend[*p];
3667 DEBUG_PRINT2 (" old_regend: %d\n",
3668 POINTER_TO_OFFSET (old_regend[*p]));
3670 regend[*p] = d;
3671 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
3673 /* This register isn't active anymore. */
3674 IS_ACTIVE (reg_info[*p]) = 0;
3676 /* If this was the only register active, nothing is active
3677 anymore. */
3678 if (lowest_active_reg == highest_active_reg)
3680 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3681 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3683 else
3684 { /* We must scan for the new highest active register, since
3685 it isn't necessarily one less than now: consider
3686 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
3687 new highest active register is 1. */
3688 unsigned char r = *p - 1;
3689 while (r > 0 && !IS_ACTIVE (reg_info[r]))
3690 r--;
3692 /* If we end up at register zero, that means that we saved
3693 the registers as the result of an `on_failure_jump', not
3694 a `start_memory', and we jumped to past the innermost
3695 `stop_memory'. For example, in ((.)*) we save
3696 registers 1 and 2 as a result of the *, but when we pop
3697 back to the second ), we are at the stop_memory 1.
3698 Thus, nothing is active. */
3699 if (r == 0)
3701 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3702 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3704 else
3705 highest_active_reg = r;
3708 /* If just failed to match something this time around with a
3709 group that's operated on by a repetition operator, try to
3710 force exit from the ``loop'', and restore the register
3711 information for this group that we had before trying this
3712 last match. */
3713 if ((!MATCHED_SOMETHING (reg_info[*p])
3714 || (re_opcode_t) p[-3] == start_memory)
3715 && (p + 2) < pend)
3717 boolean is_a_jump_n = false;
3719 p1 = p + 2;
3720 mcnt = 0;
3721 switch ((re_opcode_t) *p1++)
3723 case jump_n:
3724 is_a_jump_n = true;
3725 case pop_failure_jump:
3726 case maybe_pop_jump:
3727 case jump:
3728 case dummy_failure_jump:
3729 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
3730 if (is_a_jump_n)
3731 p1 += 2;
3732 break;
3734 default:
3735 /* do nothing */ ;
3737 p1 += mcnt;
3739 /* If the next operation is a jump backwards in the pattern
3740 to an on_failure_jump right before the start_memory
3741 corresponding to this stop_memory, exit from the loop
3742 by forcing a failure after pushing on the stack the
3743 on_failure_jump's jump in the pattern, and d. */
3744 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
3745 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
3747 /* If this group ever matched anything, then restore
3748 what its registers were before trying this last
3749 failed match, e.g., with `(a*)*b' against `ab' for
3750 regstart[1], and, e.g., with `((a*)*(b*)*)*'
3751 against `aba' for regend[3].
3753 Also restore the registers for inner groups for,
3754 e.g., `((a*)(b*))*' against `aba' (register 3 would
3755 otherwise get trashed). */
3757 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
3759 unsigned r;
3761 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
3763 /* Restore this and inner groups' (if any) registers. */
3764 for (r = *p; r < *p + *(p + 1); r++)
3766 regstart[r] = old_regstart[r];
3768 /* xx why this test? */
3769 if ((int) old_regend[r] >= (int) regstart[r])
3770 regend[r] = old_regend[r];
3773 p1++;
3774 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
3775 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
3777 goto fail;
3781 /* Move past the register number and the inner group count. */
3782 p += 2;
3783 break;
3786 /* \<digit> has been turned into a `duplicate' command which is
3787 followed by the numeric value of <digit> as the register number. */
3788 case duplicate:
3790 register const char *d2, *dend2;
3791 int regno = *p++; /* Get which register to match against. */
3792 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
3794 /* Can't back reference a group which we've never matched. */
3795 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
3796 goto fail;
3798 /* Where in input to try to start matching. */
3799 d2 = regstart[regno];
3801 /* Where to stop matching; if both the place to start and
3802 the place to stop matching are in the same string, then
3803 set to the place to stop, otherwise, for now have to use
3804 the end of the first string. */
3806 dend2 = ((FIRST_STRING_P (regstart[regno])
3807 == FIRST_STRING_P (regend[regno]))
3808 ? regend[regno] : end_match_1);
3809 for (;;)
3811 /* If necessary, advance to next segment in register
3812 contents. */
3813 while (d2 == dend2)
3815 if (dend2 == end_match_2) break;
3816 if (dend2 == regend[regno]) break;
3818 /* End of string1 => advance to string2. */
3819 d2 = string2;
3820 dend2 = regend[regno];
3822 /* At end of register contents => success */
3823 if (d2 == dend2) break;
3825 /* If necessary, advance to next segment in data. */
3826 PREFETCH ();
3828 /* How many characters left in this segment to match. */
3829 mcnt = dend - d;
3831 /* Want how many consecutive characters we can match in
3832 one shot, so, if necessary, adjust the count. */
3833 if (mcnt > dend2 - d2)
3834 mcnt = dend2 - d2;
3836 /* Compare that many; failure if mismatch, else move
3837 past them. */
3838 if (translate
3839 ? bcmp_translate (d, d2, mcnt, translate)
3840 : bcmp (d, d2, mcnt))
3841 goto fail;
3842 d += mcnt, d2 += mcnt;
3845 break;
3848 /* begline matches the empty string at the beginning of the string
3849 (unless `not_bol' is set in `bufp'), and, if
3850 `newline_anchor' is set, after newlines. */
3851 case begline:
3852 DEBUG_PRINT1 ("EXECUTING begline.\n");
3854 if (AT_STRINGS_BEG (d))
3856 if (!bufp->not_bol) break;
3858 else if (d[-1] == '\n' && bufp->newline_anchor)
3860 break;
3862 /* In all other cases, we fail. */
3863 goto fail;
3866 /* endline is the dual of begline. */
3867 case endline:
3868 DEBUG_PRINT1 ("EXECUTING endline.\n");
3870 if (AT_STRINGS_END (d))
3872 if (!bufp->not_eol) break;
3875 /* We have to ``prefetch'' the next character. */
3876 else if ((d == end1 ? *string2 : *d) == '\n'
3877 && bufp->newline_anchor)
3879 break;
3881 goto fail;
3884 /* Match at the very beginning of the data. */
3885 case begbuf:
3886 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
3887 if (AT_STRINGS_BEG (d))
3888 break;
3889 goto fail;
3892 /* Match at the very end of the data. */
3893 case endbuf:
3894 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
3895 if (AT_STRINGS_END (d))
3896 break;
3897 goto fail;
3900 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
3901 pushes NULL as the value for the string on the stack. Then
3902 `pop_failure_point' will keep the current value for the
3903 string, instead of restoring it. To see why, consider
3904 matching `foo\nbar' against `.*\n'. The .* matches the foo;
3905 then the . fails against the \n. But the next thing we want
3906 to do is match the \n against the \n; if we restored the
3907 string value, we would be back at the foo.
3909 Because this is used only in specific cases, we don't need to
3910 check all the things that `on_failure_jump' does, to make
3911 sure the right things get saved on the stack. Hence we don't
3912 share its code. The only reason to push anything on the
3913 stack at all is that otherwise we would have to change
3914 `anychar's code to do something besides goto fail in this
3915 case; that seems worse than this. */
3916 case on_failure_keep_string_jump:
3917 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
3919 EXTRACT_NUMBER_AND_INCR (mcnt, p);
3920 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
3922 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
3923 break;
3926 /* Uses of on_failure_jump:
3928 Each alternative starts with an on_failure_jump that points
3929 to the beginning of the next alternative. Each alternative
3930 except the last ends with a jump that in effect jumps past
3931 the rest of the alternatives. (They really jump to the
3932 ending jump of the following alternative, because tensioning
3933 these jumps is a hassle.)
3935 Repeats start with an on_failure_jump that points past both
3936 the repetition text and either the following jump or
3937 pop_failure_jump back to this on_failure_jump. */
3938 case on_failure_jump:
3939 on_failure:
3940 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
3942 EXTRACT_NUMBER_AND_INCR (mcnt, p);
3943 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
3945 /* If this on_failure_jump comes right before a group (i.e.,
3946 the original * applied to a group), save the information
3947 for that group and all inner ones, so that if we fail back
3948 to this point, the group's information will be correct.
3949 For example, in \(a*\)*\1, we need the preceding group,
3950 and in \(\(a*\)b*\)\2, we need the inner group. */
3952 /* We can't use `p' to check ahead because we push
3953 a failure point to `p + mcnt' after we do this. */
3954 p1 = p;
3956 /* We need to skip no_op's before we look for the
3957 start_memory in case this on_failure_jump is happening as
3958 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
3959 against aba. */
3960 while (p1 < pend && (re_opcode_t) *p1 == no_op)
3961 p1++;
3963 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
3965 /* We have a new highest active register now. This will
3966 get reset at the start_memory we are about to get to,
3967 but we will have saved all the registers relevant to
3968 this repetition op, as described above. */
3969 highest_active_reg = *(p1 + 1) + *(p1 + 2);
3970 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
3971 lowest_active_reg = *(p1 + 1);
3974 DEBUG_PRINT1 (":\n");
3975 PUSH_FAILURE_POINT (p + mcnt, d, -2);
3976 break;
3979 /* A smart repeat ends with `maybe_pop_jump'.
3980 We change it to either `pop_failure_jump' or `jump'. */
3981 case maybe_pop_jump:
3982 EXTRACT_NUMBER_AND_INCR (mcnt, p);
3983 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
3985 register unsigned char *p2 = p;
3987 /* Compare the beginning of the repeat with what in the
3988 pattern follows its end. If we can establish that there
3989 is nothing that they would both match, i.e., that we
3990 would have to backtrack because of (as in, e.g., `a*a')
3991 then we can change to pop_failure_jump, because we'll
3992 never have to backtrack.
3994 This is not true in the case of alternatives: in
3995 `(a|ab)*' we do need to backtrack to the `ab' alternative
3996 (e.g., if the string was `ab'). But instead of trying to
3997 detect that here, the alternative has put on a dummy
3998 failure point which is what we will end up popping. */
4000 /* Skip over open/close-group commands. */
4001 while (p2 + 2 < pend
4002 && ((re_opcode_t) *p2 == stop_memory
4003 || (re_opcode_t) *p2 == start_memory))
4004 p2 += 3; /* Skip over args, too. */
4006 /* If we're at the end of the pattern, we can change. */
4007 if (p2 == pend)
4009 /* Consider what happens when matching ":\(.*\)"
4010 against ":/". I don't really understand this code
4011 yet. */
4012 p[-3] = (unsigned char) pop_failure_jump;
4013 DEBUG_PRINT1
4014 (" End of pattern: change to `pop_failure_jump'.\n");
4017 else if ((re_opcode_t) *p2 == exactn
4018 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4020 register unsigned char c
4021 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4022 p1 = p + mcnt;
4024 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4025 to the `maybe_finalize_jump' of this case. Examine what
4026 follows. */
4027 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4029 p[-3] = (unsigned char) pop_failure_jump;
4030 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4031 c, p1[5]);
4034 else if ((re_opcode_t) p1[3] == charset
4035 || (re_opcode_t) p1[3] == charset_not)
4037 int not = (re_opcode_t) p1[3] == charset_not;
4039 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4040 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4041 not = !not;
4043 /* `not' is equal to 1 if c would match, which means
4044 that we can't change to pop_failure_jump. */
4045 if (!not)
4047 p[-3] = (unsigned char) pop_failure_jump;
4048 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4053 p -= 2; /* Point at relative address again. */
4054 if ((re_opcode_t) p[-1] != pop_failure_jump)
4056 p[-1] = (unsigned char) jump;
4057 DEBUG_PRINT1 (" Match => jump.\n");
4058 goto unconditional_jump;
4060 /* Note fall through. */
4063 /* The end of a simple repeat has a pop_failure_jump back to
4064 its matching on_failure_jump, where the latter will push a
4065 failure point. The pop_failure_jump takes off failure
4066 points put on by this pop_failure_jump's matching
4067 on_failure_jump; we got through the pattern to here from the
4068 matching on_failure_jump, so didn't fail. */
4069 case pop_failure_jump:
4071 /* We need to pass separate storage for the lowest and
4072 highest registers, even though we don't care about the
4073 actual values. Otherwise, we will restore only one
4074 register from the stack, since lowest will == highest in
4075 `pop_failure_point'. */
4076 unsigned dummy_low_reg, dummy_high_reg;
4077 unsigned char *pdummy;
4078 const char *sdummy;
4080 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4081 POP_FAILURE_POINT (sdummy, pdummy,
4082 dummy_low_reg, dummy_high_reg,
4083 reg_dummy, reg_dummy, reg_info_dummy);
4085 /* Note fall through. */
4088 /* Unconditionally jump (without popping any failure points). */
4089 case jump:
4090 unconditional_jump:
4091 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4092 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4093 p += mcnt; /* Do the jump. */
4094 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4095 break;
4098 /* We need this opcode so we can detect where alternatives end
4099 in `group_match_null_string_p' et al. */
4100 case jump_past_alt:
4101 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4102 goto unconditional_jump;
4105 /* Normally, the on_failure_jump pushes a failure point, which
4106 then gets popped at pop_failure_jump. We will end up at
4107 pop_failure_jump, also, and with a pattern of, say, `a+', we
4108 are skipping over the on_failure_jump, so we have to push
4109 something meaningless for pop_failure_jump to pop. */
4110 case dummy_failure_jump:
4111 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4112 /* It doesn't matter what we push for the string here. What
4113 the code at `fail' tests is the value for the pattern. */
4114 PUSH_FAILURE_POINT (0, 0, -2);
4115 goto unconditional_jump;
4118 /* At the end of an alternative, we need to push a dummy failure
4119 point in case we are followed by a `pop_failure_jump', because
4120 we don't want the failure point for the alternative to be
4121 popped. For example, matching `(a|ab)*' against `aab'
4122 requires that we match the `ab' alternative. */
4123 case push_dummy_failure:
4124 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4125 /* See comments just above at `dummy_failure_jump' about the
4126 two zeroes. */
4127 PUSH_FAILURE_POINT (0, 0, -2);
4128 break;
4130 /* Have to succeed matching what follows at least n times.
4131 After that, handle like `on_failure_jump'. */
4132 case succeed_n:
4133 EXTRACT_NUMBER (mcnt, p + 2);
4134 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4136 assert (mcnt >= 0);
4137 /* Originally, this is how many times we HAVE to succeed. */
4138 if (mcnt > 0)
4140 mcnt--;
4141 p += 2;
4142 STORE_NUMBER_AND_INCR (p, mcnt);
4143 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt);
4145 else if (mcnt == 0)
4147 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
4148 p[2] = (unsigned char) no_op;
4149 p[3] = (unsigned char) no_op;
4150 goto on_failure;
4152 break;
4154 case jump_n:
4155 EXTRACT_NUMBER (mcnt, p + 2);
4156 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4158 /* Originally, this is how many times we CAN jump. */
4159 if (mcnt)
4161 mcnt--;
4162 STORE_NUMBER (p + 2, mcnt);
4163 goto unconditional_jump;
4165 /* If don't have to jump any more, skip over the rest of command. */
4166 else
4167 p += 4;
4168 break;
4170 case set_number_at:
4172 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4174 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4175 p1 = p + mcnt;
4176 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4177 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
4178 STORE_NUMBER (p1, mcnt);
4179 break;
4182 case wordbound:
4183 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4184 if (AT_WORD_BOUNDARY (d))
4185 break;
4186 goto fail;
4188 case notwordbound:
4189 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4190 if (AT_WORD_BOUNDARY (d))
4191 goto fail;
4192 break;
4194 case wordbeg:
4195 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
4196 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
4197 break;
4198 goto fail;
4200 case wordend:
4201 DEBUG_PRINT1 ("EXECUTING wordend.\n");
4202 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
4203 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
4204 break;
4205 goto fail;
4207 #ifdef emacs
4208 #ifdef emacs19
4209 case before_dot:
4210 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4211 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
4212 goto fail;
4213 break;
4215 case at_dot:
4216 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4217 if (PTR_CHAR_POS ((unsigned char *) d) != point)
4218 goto fail;
4219 break;
4221 case after_dot:
4222 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
4223 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
4224 goto fail;
4225 break;
4226 #else /* not emacs19 */
4227 case at_dot:
4228 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4229 if (PTR_CHAR_POS ((unsigned char *) d) + 1 != point)
4230 goto fail;
4231 break;
4232 #endif /* not emacs19 */
4234 case syntaxspec:
4235 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
4236 mcnt = *p++;
4237 goto matchsyntax;
4239 case wordchar:
4240 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
4241 mcnt = (int) Sword;
4242 matchsyntax:
4243 PREFETCH ();
4244 if (SYNTAX (*d++) != (enum syntaxcode) mcnt)
4245 goto fail;
4246 SET_REGS_MATCHED ();
4247 break;
4249 case notsyntaxspec:
4250 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
4251 mcnt = *p++;
4252 goto matchnotsyntax;
4254 case notwordchar:
4255 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
4256 mcnt = (int) Sword;
4257 matchnotsyntax:
4258 PREFETCH ();
4259 if (SYNTAX (*d++) == (enum syntaxcode) mcnt)
4260 goto fail;
4261 SET_REGS_MATCHED ();
4262 break;
4264 #else /* not emacs */
4265 case wordchar:
4266 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
4267 PREFETCH ();
4268 if (!WORDCHAR_P (d))
4269 goto fail;
4270 SET_REGS_MATCHED ();
4271 d++;
4272 break;
4274 case notwordchar:
4275 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
4276 PREFETCH ();
4277 if (WORDCHAR_P (d))
4278 goto fail;
4279 SET_REGS_MATCHED ();
4280 d++;
4281 break;
4282 #endif /* not emacs */
4284 default:
4285 abort ();
4287 continue; /* Successfully executed one pattern command; keep going. */
4290 /* We goto here if a matching operation fails. */
4291 fail:
4292 if (!FAIL_STACK_EMPTY ())
4293 { /* A restart point is known. Restore to that state. */
4294 DEBUG_PRINT1 ("\nFAIL:\n");
4295 POP_FAILURE_POINT (d, p,
4296 lowest_active_reg, highest_active_reg,
4297 regstart, regend, reg_info);
4299 /* If this failure point is a dummy, try the next one. */
4300 if (!p)
4301 goto fail;
4303 /* If we failed to the end of the pattern, don't examine *p. */
4304 assert (p <= pend);
4305 if (p < pend)
4307 boolean is_a_jump_n = false;
4309 /* If failed to a backwards jump that's part of a repetition
4310 loop, need to pop this failure point and use the next one. */
4311 switch ((re_opcode_t) *p)
4313 case jump_n:
4314 is_a_jump_n = true;
4315 case maybe_pop_jump:
4316 case pop_failure_jump:
4317 case jump:
4318 p1 = p + 1;
4319 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4320 p1 += mcnt;
4322 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
4323 || (!is_a_jump_n
4324 && (re_opcode_t) *p1 == on_failure_jump))
4325 goto fail;
4326 break;
4327 default:
4328 /* do nothing */ ;
4332 if (d >= string1 && d <= end1)
4333 dend = end_match_1;
4335 else
4336 break; /* Matching at this starting point really fails. */
4337 } /* for (;;) */
4339 if (best_regs_set)
4340 goto restore_best_regs;
4342 FREE_VARIABLES ();
4344 return -1; /* Failure to match. */
4345 } /* re_match_2 */
4347 /* Subroutine definitions for re_match_2. */
4350 /* We are passed P pointing to a register number after a start_memory.
4352 Return true if the pattern up to the corresponding stop_memory can
4353 match the empty string, and false otherwise.
4355 If we find the matching stop_memory, sets P to point to one past its number.
4356 Otherwise, sets P to an undefined byte less than or equal to END.
4358 We don't handle duplicates properly (yet). */
4360 static boolean
4361 group_match_null_string_p (p, end, reg_info)
4362 unsigned char **p, *end;
4363 register_info_type *reg_info;
4365 int mcnt;
4366 /* Point to after the args to the start_memory. */
4367 unsigned char *p1 = *p + 2;
4369 while (p1 < end)
4371 /* Skip over opcodes that can match nothing, and return true or
4372 false, as appropriate, when we get to one that can't, or to the
4373 matching stop_memory. */
4375 switch ((re_opcode_t) *p1)
4377 /* Could be either a loop or a series of alternatives. */
4378 case on_failure_jump:
4379 p1++;
4380 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4382 /* If the next operation is not a jump backwards in the
4383 pattern. */
4385 if (mcnt >= 0)
4387 /* Go through the on_failure_jumps of the alternatives,
4388 seeing if any of the alternatives cannot match nothing.
4389 The last alternative starts with only a jump,
4390 whereas the rest start with on_failure_jump and end
4391 with a jump, e.g., here is the pattern for `a|b|c':
4393 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
4394 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
4395 /exactn/1/c
4397 So, we have to first go through the first (n-1)
4398 alternatives and then deal with the last one separately. */
4401 /* Deal with the first (n-1) alternatives, which start
4402 with an on_failure_jump (see above) that jumps to right
4403 past a jump_past_alt. */
4405 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
4407 /* `mcnt' holds how many bytes long the alternative
4408 is, including the ending `jump_past_alt' and
4409 its number. */
4411 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
4412 reg_info))
4413 return false;
4415 /* Move to right after this alternative, including the
4416 jump_past_alt. */
4417 p1 += mcnt;
4419 /* Break if it's the beginning of an n-th alternative
4420 that doesn't begin with an on_failure_jump. */
4421 if ((re_opcode_t) *p1 != on_failure_jump)
4422 break;
4424 /* Still have to check that it's not an n-th
4425 alternative that starts with an on_failure_jump. */
4426 p1++;
4427 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4428 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
4430 /* Get to the beginning of the n-th alternative. */
4431 p1 -= 3;
4432 break;
4436 /* Deal with the last alternative: go back and get number
4437 of the `jump_past_alt' just before it. `mcnt' contains
4438 the length of the alternative. */
4439 EXTRACT_NUMBER (mcnt, p1 - 2);
4441 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
4442 return false;
4444 p1 += mcnt; /* Get past the n-th alternative. */
4445 } /* if mcnt > 0 */
4446 break;
4449 case stop_memory:
4450 assert (p1[1] == **p);
4451 *p = p1 + 2;
4452 return true;
4455 default:
4456 if (!common_op_match_null_string_p (&p1, end, reg_info))
4457 return false;
4459 } /* while p1 < end */
4461 return false;
4462 } /* group_match_null_string_p */
4465 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
4466 It expects P to be the first byte of a single alternative and END one
4467 byte past the last. The alternative can contain groups. */
4469 static boolean
4470 alt_match_null_string_p (p, end, reg_info)
4471 unsigned char *p, *end;
4472 register_info_type *reg_info;
4474 int mcnt;
4475 unsigned char *p1 = p;
4477 while (p1 < end)
4479 /* Skip over opcodes that can match nothing, and break when we get
4480 to one that can't. */
4482 switch ((re_opcode_t) *p1)
4484 /* It's a loop. */
4485 case on_failure_jump:
4486 p1++;
4487 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4488 p1 += mcnt;
4489 break;
4491 default:
4492 if (!common_op_match_null_string_p (&p1, end, reg_info))
4493 return false;
4495 } /* while p1 < end */
4497 return true;
4498 } /* alt_match_null_string_p */
4501 /* Deals with the ops common to group_match_null_string_p and
4502 alt_match_null_string_p.
4504 Sets P to one after the op and its arguments, if any. */
4506 static boolean
4507 common_op_match_null_string_p (p, end, reg_info)
4508 unsigned char **p, *end;
4509 register_info_type *reg_info;
4511 int mcnt;
4512 boolean ret;
4513 int reg_no;
4514 unsigned char *p1 = *p;
4516 switch ((re_opcode_t) *p1++)
4518 case no_op:
4519 case begline:
4520 case endline:
4521 case begbuf:
4522 case endbuf:
4523 case wordbeg:
4524 case wordend:
4525 case wordbound:
4526 case notwordbound:
4527 #ifdef emacs
4528 case before_dot:
4529 case at_dot:
4530 case after_dot:
4531 #endif
4532 break;
4534 case start_memory:
4535 reg_no = *p1;
4536 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
4537 ret = group_match_null_string_p (&p1, end, reg_info);
4539 /* Have to set this here in case we're checking a group which
4540 contains a group and a back reference to it. */
4542 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
4543 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
4545 if (!ret)
4546 return false;
4547 break;
4549 /* If this is an optimized succeed_n for zero times, make the jump. */
4550 case jump:
4551 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4552 if (mcnt >= 0)
4553 p1 += mcnt;
4554 else
4555 return false;
4556 break;
4558 case succeed_n:
4559 /* Get to the number of times to succeed. */
4560 p1 += 2;
4561 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4563 if (mcnt == 0)
4565 p1 -= 4;
4566 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4567 p1 += mcnt;
4569 else
4570 return false;
4571 break;
4573 case duplicate:
4574 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
4575 return false;
4576 break;
4578 case set_number_at:
4579 p1 += 4;
4581 default:
4582 /* All other opcodes mean we cannot match the empty string. */
4583 return false;
4586 *p = p1;
4587 return true;
4588 } /* common_op_match_null_string_p */
4591 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
4592 bytes; nonzero otherwise. */
4594 static int
4595 bcmp_translate (s1, s2, len, translate)
4596 unsigned char *s1, *s2;
4597 register int len;
4598 char *translate;
4600 register unsigned char *p1 = s1, *p2 = s2;
4601 while (len)
4603 if (translate[*p1++] != translate[*p2++]) return 1;
4604 len--;
4606 return 0;
4609 /* Entry points for GNU code. */
4611 /* re_compile_pattern is the GNU regular expression compiler: it
4612 compiles PATTERN (of length SIZE) and puts the result in BUFP.
4613 Returns 0 if the pattern was valid, otherwise an error string.
4615 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
4616 are set in BUFP on entry.
4618 We call regex_compile to do the actual compilation. */
4620 const char *
4621 re_compile_pattern (pattern, length, bufp)
4622 const char *pattern;
4623 int length;
4624 struct re_pattern_buffer *bufp;
4626 reg_errcode_t ret;
4628 /* GNU code is written to assume at least RE_NREGS registers will be set
4629 (and at least one extra will be -1). */
4630 bufp->regs_allocated = REGS_UNALLOCATED;
4632 /* And GNU code determines whether or not to get register information
4633 by passing null for the REGS argument to re_match, etc., not by
4634 setting no_sub. */
4635 bufp->no_sub = 0;
4637 /* Match anchors at newline. */
4638 bufp->newline_anchor = 1;
4640 ret = regex_compile (pattern, length, re_syntax_options, bufp);
4642 return re_error_msg[(int) ret];
4645 /* Entry points compatible with 4.2 BSD regex library. We don't define
4646 them if this is an Emacs or POSIX compilation. */
4648 #if !defined (emacs) && !defined (_POSIX_SOURCE)
4650 /* BSD has one and only one pattern buffer. */
4651 static struct re_pattern_buffer re_comp_buf;
4653 char *
4654 re_comp (s)
4655 const char *s;
4657 reg_errcode_t ret;
4659 if (!s)
4661 if (!re_comp_buf.buffer)
4662 return "No previous regular expression";
4663 return 0;
4666 if (!re_comp_buf.buffer)
4668 re_comp_buf.buffer = (unsigned char *) malloc (200);
4669 if (re_comp_buf.buffer == NULL)
4670 return "Memory exhausted";
4671 re_comp_buf.allocated = 200;
4673 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
4674 if (re_comp_buf.fastmap == NULL)
4675 return "Memory exhausted";
4678 /* Since `re_exec' always passes NULL for the `regs' argument, we
4679 don't need to initialize the pattern buffer fields which affect it. */
4681 /* Match anchors at newlines. */
4682 re_comp_buf.newline_anchor = 1;
4684 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
4686 /* Yes, we're discarding `const' here. */
4687 return (char *) re_error_msg[(int) ret];
4692 re_exec (s)
4693 const char *s;
4695 const int len = strlen (s);
4696 return
4697 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
4699 #endif /* not emacs and not _POSIX_SOURCE */
4701 /* POSIX.2 functions. Don't define these for Emacs. */
4703 #ifndef emacs
4705 /* regcomp takes a regular expression as a string and compiles it.
4707 PREG is a regex_t *. We do not expect any fields to be initialized,
4708 since POSIX says we shouldn't. Thus, we set
4710 `buffer' to the compiled pattern;
4711 `used' to the length of the compiled pattern;
4712 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
4713 REG_EXTENDED bit in CFLAGS is set; otherwise, to
4714 RE_SYNTAX_POSIX_BASIC;
4715 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
4716 `fastmap' and `fastmap_accurate' to zero;
4717 `re_nsub' to the number of subexpressions in PATTERN.
4719 PATTERN is the address of the pattern string.
4721 CFLAGS is a series of bits which affect compilation.
4723 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
4724 use POSIX basic syntax.
4726 If REG_NEWLINE is set, then . and [^...] don't match newline.
4727 Also, regexec will try a match beginning after every newline.
4729 If REG_ICASE is set, then we considers upper- and lowercase
4730 versions of letters to be equivalent when matching.
4732 If REG_NOSUB is set, then when PREG is passed to regexec, that
4733 routine will report only success or failure, and nothing about the
4734 registers.
4736 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
4737 the return codes and their meanings.) */
4740 regcomp (preg, pattern, cflags)
4741 regex_t *preg;
4742 const char *pattern;
4743 int cflags;
4745 reg_errcode_t ret;
4746 unsigned syntax
4747 = (cflags & REG_EXTENDED) ?
4748 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
4750 /* regex_compile will allocate the space for the compiled pattern. */
4751 preg->buffer = 0;
4752 preg->allocated = 0;
4754 /* Don't bother to use a fastmap when searching. This simplifies the
4755 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
4756 characters after newlines into the fastmap. This way, we just try
4757 every character. */
4758 preg->fastmap = 0;
4760 if (cflags & REG_ICASE)
4762 unsigned i;
4764 preg->translate = (char *) malloc (CHAR_SET_SIZE);
4765 if (preg->translate == NULL)
4766 return (int) REG_ESPACE;
4768 /* Map uppercase characters to corresponding lowercase ones. */
4769 for (i = 0; i < CHAR_SET_SIZE; i++)
4770 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
4772 else
4773 preg->translate = NULL;
4775 /* If REG_NEWLINE is set, newlines are treated differently. */
4776 if (cflags & REG_NEWLINE)
4777 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
4778 syntax &= ~RE_DOT_NEWLINE;
4779 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
4780 /* It also changes the matching behavior. */
4781 preg->newline_anchor = 1;
4783 else
4784 preg->newline_anchor = 0;
4786 preg->no_sub = !!(cflags & REG_NOSUB);
4788 /* POSIX says a null character in the pattern terminates it, so we
4789 can use strlen here in compiling the pattern. */
4790 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
4792 /* POSIX doesn't distinguish between an unmatched open-group and an
4793 unmatched close-group: both are REG_EPAREN. */
4794 if (ret == REG_ERPAREN) ret = REG_EPAREN;
4796 return (int) ret;
4800 /* regexec searches for a given pattern, specified by PREG, in the
4801 string STRING.
4803 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
4804 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
4805 least NMATCH elements, and we set them to the offsets of the
4806 corresponding matched substrings.
4808 EFLAGS specifies `execution flags' which affect matching: if
4809 REG_NOTBOL is set, then ^ does not match at the beginning of the
4810 string; if REG_NOTEOL is set, then $ does not match at the end.
4812 We return 0 if we find a match and REG_NOMATCH if not. */
4815 regexec (preg, string, nmatch, pmatch, eflags)
4816 const regex_t *preg;
4817 const char *string;
4818 size_t nmatch;
4819 regmatch_t pmatch[];
4820 int eflags;
4822 int ret;
4823 struct re_registers regs;
4824 regex_t private_preg;
4825 int len = strlen (string);
4826 boolean want_reg_info = !preg->no_sub && nmatch > 0;
4828 private_preg = *preg;
4830 private_preg.not_bol = !!(eflags & REG_NOTBOL);
4831 private_preg.not_eol = !!(eflags & REG_NOTEOL);
4833 /* The user has told us exactly how many registers to return
4834 information about, via `nmatch'. We have to pass that on to the
4835 matching routines. */
4836 private_preg.regs_allocated = REGS_FIXED;
4838 if (want_reg_info)
4840 regs.num_regs = nmatch;
4841 regs.start = TALLOC (nmatch, regoff_t);
4842 regs.end = TALLOC (nmatch, regoff_t);
4843 if (regs.start == NULL || regs.end == NULL)
4844 return (int) REG_NOMATCH;
4847 /* Perform the searching operation. */
4848 ret = re_search (&private_preg, string, len,
4849 /* start: */ 0, /* range: */ len,
4850 want_reg_info ? &regs : (struct re_registers *) 0);
4852 /* Copy the register information to the POSIX structure. */
4853 if (want_reg_info)
4855 if (ret >= 0)
4857 unsigned r;
4859 for (r = 0; r < nmatch; r++)
4861 pmatch[r].rm_so = regs.start[r];
4862 pmatch[r].rm_eo = regs.end[r];
4866 /* If we needed the temporary register info, free the space now. */
4867 free (regs.start);
4868 free (regs.end);
4871 /* We want zero return to mean success, unlike `re_search'. */
4872 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
4876 /* Returns a message corresponding to an error code, ERRCODE, returned
4877 from either regcomp or regexec. We don't use PREG here. */
4879 size_t
4880 regerror (code, preg, errbuf, errbuf_size)
4881 int code;
4882 const regex_t *preg;
4883 char *errbuf;
4884 size_t errbuf_size;
4886 const char *msg;
4887 size_t msg_size;
4889 if (code < 0
4890 || code >= (sizeof (re_error_msg) / sizeof (re_error_msg[0])))
4891 /* Only error codes returned by the rest of the code should be passed
4892 to this routine. If we are given anything else, or if other regex
4893 code generates an invalid error code, then the program has a bug.
4894 Dump core so we can fix it. */
4895 abort ();
4897 msg = re_error_msg[code];
4899 /* POSIX doesn't require that we do anything in this case, but why
4900 not be nice. */
4901 if (! msg)
4902 msg = "Success";
4904 msg_size = strlen (msg) + 1; /* Includes the null. */
4906 if (errbuf_size != 0)
4908 if (msg_size > errbuf_size)
4910 strncpy (errbuf, msg, errbuf_size - 1);
4911 errbuf[errbuf_size - 1] = 0;
4913 else
4914 strcpy (errbuf, msg);
4917 return msg_size;
4921 /* Free dynamically allocated space used by PREG. */
4923 void
4924 regfree (preg)
4925 regex_t *preg;
4927 if (preg->buffer != NULL)
4928 free (preg->buffer);
4929 preg->buffer = NULL;
4931 preg->allocated = 0;
4932 preg->used = 0;
4934 if (preg->fastmap != NULL)
4935 free (preg->fastmap);
4936 preg->fastmap = NULL;
4937 preg->fastmap_accurate = 0;
4939 if (preg->translate != NULL)
4940 free (preg->translate);
4941 preg->translate = NULL;
4944 #endif /* not emacs */
4947 Local variables:
4948 make-backup-files: t
4949 version-control: t
4950 trim-versions-without-asking: nil
4951 End: