merge from gcc
[gdb/gnu.git] / gdb / v850-tdep.c
blobbecb0512c6a97dc7ab68d03e5974d7a3e7479ff8
1 /* Target-dependent code for the NEC V850 for GDB, the GNU debugger.
3 Copyright (C) 1996-2013 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "defs.h"
21 #include "frame.h"
22 #include "frame-base.h"
23 #include "trad-frame.h"
24 #include "frame-unwind.h"
25 #include "dwarf2-frame.h"
26 #include "gdbtypes.h"
27 #include "inferior.h"
28 #include "gdb_string.h"
29 #include "gdb_assert.h"
30 #include "gdbcore.h"
31 #include "arch-utils.h"
32 #include "regcache.h"
33 #include "dis-asm.h"
34 #include "osabi.h"
35 #include "elf-bfd.h"
36 #include "elf/v850.h"
38 enum
40 /* General purpose registers. */
41 E_R0_REGNUM,
42 E_R1_REGNUM,
43 E_R2_REGNUM,
44 E_R3_REGNUM, E_SP_REGNUM = E_R3_REGNUM,
45 E_R4_REGNUM,
46 E_R5_REGNUM,
47 E_R6_REGNUM, E_ARG0_REGNUM = E_R6_REGNUM,
48 E_R7_REGNUM,
49 E_R8_REGNUM,
50 E_R9_REGNUM, E_ARGLAST_REGNUM = E_R9_REGNUM,
51 E_R10_REGNUM, E_V0_REGNUM = E_R10_REGNUM,
52 E_R11_REGNUM, E_V1_REGNUM = E_R11_REGNUM,
53 E_R12_REGNUM,
54 E_R13_REGNUM,
55 E_R14_REGNUM,
56 E_R15_REGNUM,
57 E_R16_REGNUM,
58 E_R17_REGNUM,
59 E_R18_REGNUM,
60 E_R19_REGNUM,
61 E_R20_REGNUM,
62 E_R21_REGNUM,
63 E_R22_REGNUM,
64 E_R23_REGNUM,
65 E_R24_REGNUM,
66 E_R25_REGNUM,
67 E_R26_REGNUM,
68 E_R27_REGNUM,
69 E_R28_REGNUM,
70 E_R29_REGNUM, E_FP_REGNUM = E_R29_REGNUM,
71 E_R30_REGNUM, E_EP_REGNUM = E_R30_REGNUM,
72 E_R31_REGNUM, E_LP_REGNUM = E_R31_REGNUM,
74 /* System registers - main banks. */
75 E_R32_REGNUM, E_SR0_REGNUM = E_R32_REGNUM,
76 E_R33_REGNUM,
77 E_R34_REGNUM,
78 E_R35_REGNUM,
79 E_R36_REGNUM,
80 E_R37_REGNUM, E_PS_REGNUM = E_R37_REGNUM,
81 E_R38_REGNUM,
82 E_R39_REGNUM,
83 E_R40_REGNUM,
84 E_R41_REGNUM,
85 E_R42_REGNUM,
86 E_R43_REGNUM,
87 E_R44_REGNUM,
88 E_R45_REGNUM,
89 E_R46_REGNUM,
90 E_R47_REGNUM,
91 E_R48_REGNUM,
92 E_R49_REGNUM,
93 E_R50_REGNUM,
94 E_R51_REGNUM,
95 E_R52_REGNUM, E_CTBP_REGNUM = E_R52_REGNUM,
96 E_R53_REGNUM,
97 E_R54_REGNUM,
98 E_R55_REGNUM,
99 E_R56_REGNUM,
100 E_R57_REGNUM,
101 E_R58_REGNUM,
102 E_R59_REGNUM,
103 E_R60_REGNUM,
104 E_R61_REGNUM,
105 E_R62_REGNUM,
106 E_R63_REGNUM,
108 /* PC. */
109 E_R64_REGNUM, E_PC_REGNUM = E_R64_REGNUM,
110 E_R65_REGNUM,
111 E_NUM_OF_V850_REGS,
112 E_NUM_OF_V850E_REGS = E_NUM_OF_V850_REGS,
114 /* System registers - MPV (PROT00) bank. */
115 E_R66_REGNUM = E_NUM_OF_V850_REGS,
116 E_R67_REGNUM,
117 E_R68_REGNUM,
118 E_R69_REGNUM,
119 E_R70_REGNUM,
120 E_R71_REGNUM,
121 E_R72_REGNUM,
122 E_R73_REGNUM,
123 E_R74_REGNUM,
124 E_R75_REGNUM,
125 E_R76_REGNUM,
126 E_R77_REGNUM,
127 E_R78_REGNUM,
128 E_R79_REGNUM,
129 E_R80_REGNUM,
130 E_R81_REGNUM,
131 E_R82_REGNUM,
132 E_R83_REGNUM,
133 E_R84_REGNUM,
134 E_R85_REGNUM,
135 E_R86_REGNUM,
136 E_R87_REGNUM,
137 E_R88_REGNUM,
138 E_R89_REGNUM,
139 E_R90_REGNUM,
140 E_R91_REGNUM,
141 E_R92_REGNUM,
142 E_R93_REGNUM,
144 /* System registers - MPU (PROT01) bank. */
145 E_R94_REGNUM,
146 E_R95_REGNUM,
147 E_R96_REGNUM,
148 E_R97_REGNUM,
149 E_R98_REGNUM,
150 E_R99_REGNUM,
151 E_R100_REGNUM,
152 E_R101_REGNUM,
153 E_R102_REGNUM,
154 E_R103_REGNUM,
155 E_R104_REGNUM,
156 E_R105_REGNUM,
157 E_R106_REGNUM,
158 E_R107_REGNUM,
159 E_R108_REGNUM,
160 E_R109_REGNUM,
161 E_R110_REGNUM,
162 E_R111_REGNUM,
163 E_R112_REGNUM,
164 E_R113_REGNUM,
165 E_R114_REGNUM,
166 E_R115_REGNUM,
167 E_R116_REGNUM,
168 E_R117_REGNUM,
169 E_R118_REGNUM,
170 E_R119_REGNUM,
171 E_R120_REGNUM,
172 E_R121_REGNUM,
174 /* FPU system registers. */
175 E_R122_REGNUM,
176 E_R123_REGNUM,
177 E_R124_REGNUM,
178 E_R125_REGNUM,
179 E_R126_REGNUM,
180 E_R127_REGNUM,
181 E_R128_REGNUM, E_FPSR_REGNUM = E_R128_REGNUM,
182 E_R129_REGNUM, E_FPEPC_REGNUM = E_R129_REGNUM,
183 E_R130_REGNUM, E_FPST_REGNUM = E_R130_REGNUM,
184 E_R131_REGNUM, E_FPCC_REGNUM = E_R131_REGNUM,
185 E_R132_REGNUM, E_FPCFG_REGNUM = E_R132_REGNUM,
186 E_R133_REGNUM,
187 E_R134_REGNUM,
188 E_R135_REGNUM,
189 E_R136_REGNUM,
190 E_R137_REGNUM,
191 E_R138_REGNUM,
192 E_R139_REGNUM,
193 E_R140_REGNUM,
194 E_R141_REGNUM,
195 E_R142_REGNUM,
196 E_R143_REGNUM,
197 E_R144_REGNUM,
198 E_R145_REGNUM,
199 E_R146_REGNUM,
200 E_R147_REGNUM,
201 E_R148_REGNUM,
202 E_R149_REGNUM,
203 E_NUM_OF_V850E2_REGS,
205 /* v850e3v5 system registers, selID 1 thru 7. */
206 E_SELID_1_R0_REGNUM = E_NUM_OF_V850E2_REGS,
207 E_SELID_1_R31_REGNUM = E_SELID_1_R0_REGNUM + 31,
209 E_SELID_2_R0_REGNUM,
210 E_SELID_2_R31_REGNUM = E_SELID_2_R0_REGNUM + 31,
212 E_SELID_3_R0_REGNUM,
213 E_SELID_3_R31_REGNUM = E_SELID_3_R0_REGNUM + 31,
215 E_SELID_4_R0_REGNUM,
216 E_SELID_4_R31_REGNUM = E_SELID_4_R0_REGNUM + 31,
218 E_SELID_5_R0_REGNUM,
219 E_SELID_5_R31_REGNUM = E_SELID_5_R0_REGNUM + 31,
221 E_SELID_6_R0_REGNUM,
222 E_SELID_6_R31_REGNUM = E_SELID_6_R0_REGNUM + 31,
224 E_SELID_7_R0_REGNUM,
225 E_SELID_7_R31_REGNUM = E_SELID_7_R0_REGNUM + 31,
227 /* v850e3v5 vector registers. */
228 E_VR0_REGNUM,
229 E_VR31_REGNUM = E_VR0_REGNUM + 31,
231 E_NUM_OF_V850E3V5_REGS,
233 /* Total number of possible registers. */
234 E_NUM_REGS = E_NUM_OF_V850E3V5_REGS
237 enum
239 v850_reg_size = 4
242 /* Size of return datatype which fits into all return registers. */
243 enum
245 E_MAX_RETTYPE_SIZE_IN_REGS = 2 * v850_reg_size
248 /* When v850 support was added to GCC in the late nineties, the intention
249 was to follow the Green Hills ABI for v850. In fact, the authors of
250 that support at the time thought that they were doing so. As far as
251 I can tell, the calling conventions are correct, but the return value
252 conventions were not quite right. Over time, the return value code
253 in this file was modified to mostly reflect what GCC was actually
254 doing instead of to actually follow the Green Hills ABI as it did
255 when the code was first written.
257 Renesas defined the RH850 ABI which they use in their compiler. It
258 is similar to the original Green Hills ABI with some minor
259 differences. */
261 enum v850_abi
263 V850_ABI_GCC,
264 V850_ABI_RH850
267 /* Architecture specific data. */
269 struct gdbarch_tdep
271 /* Fields from the ELF header. */
272 int e_flags;
273 int e_machine;
275 /* Which ABI are we using? */
276 enum v850_abi abi;
277 int eight_byte_align;
280 struct v850_frame_cache
282 /* Base address. */
283 CORE_ADDR base;
284 LONGEST sp_offset;
285 CORE_ADDR pc;
287 /* Flag showing that a frame has been created in the prologue code. */
288 int uses_fp;
290 /* Saved registers. */
291 struct trad_frame_saved_reg *saved_regs;
294 /* Info gleaned from scanning a function's prologue. */
295 struct pifsr /* Info about one saved register. */
297 int offset; /* Offset from sp or fp. */
298 int cur_frameoffset; /* Current frameoffset. */
299 int reg; /* Saved register number. */
302 static const char *
303 v850_register_name (struct gdbarch *gdbarch, int regnum)
305 static const char *v850_reg_names[] =
306 { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
307 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
308 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
309 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
310 "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
311 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
312 "sr16", "sr17", "sr18", "sr19", "sr20", "sr21", "sr22", "sr23",
313 "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
314 "pc", "fp"
316 if (regnum < 0 || regnum > E_NUM_OF_V850_REGS)
317 return NULL;
318 return v850_reg_names[regnum];
321 static const char *
322 v850e_register_name (struct gdbarch *gdbarch, int regnum)
324 static const char *v850e_reg_names[] =
326 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
327 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
328 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
329 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
330 "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
331 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
332 "ctpc", "ctpsw", "dbpc", "dbpsw", "ctbp", "sr21", "sr22", "sr23",
333 "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
334 "pc", "fp"
336 if (regnum < 0 || regnum > E_NUM_OF_V850E_REGS)
337 return NULL;
338 return v850e_reg_names[regnum];
341 static const char *
342 v850e2_register_name (struct gdbarch *gdbarch, int regnum)
344 static const char *v850e2_reg_names[] =
346 /* General purpose registers. */
347 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
348 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
349 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
350 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
352 /* System registers - main banks. */
353 "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "pid", "cfg",
354 "", "", "", "sccfg", "scbp", "eiic", "feic", "dbic",
355 "ctpc", "ctpsw", "dbpc", "dbpsw", "ctbp", "dir", "", "",
356 "", "", "", "", "eiwr", "fewr", "dbwr", "bsel",
359 /* PC. */
360 "pc", "",
362 /* System registers - MPV (PROT00) bank. */
363 "vsecr", "vstid", "vsadr", "", "vmecr", "vmtid", "vmadr", "",
364 "vpecr", "vptid", "vpadr", "", "", "", "", "",
365 "", "", "", "", "", "", "", "",
366 "mca", "mcs", "mcc", "mcr",
368 /* System registers - MPU (PROT01) bank. */
369 "mpm", "mpc", "tid", "", "", "", "ipa0l", "ipa0u",
370 "ipa1l", "ipa1u", "ipa2l", "ipa2u", "ipa3l", "ipa3u", "ipa4l", "ipa4u",
371 "dpa0l", "dpa0u", "dpa1l", "dpa1u", "dpa2l", "dpa2u", "dpa3l", "dpa3u",
372 "dpa4l", "dpa4u", "dpa5l", "dpa5u",
374 /* FPU system registers. */
375 "", "", "", "", "", "", "fpsr", "fpepc",
376 "fpst", "fpcc", "fpcfg", "fpec", "", "", "", "",
377 "", "", "", "", "", "", "", "",
378 "", "", "", "fpspc"
380 if (regnum < 0 || regnum >= E_NUM_OF_V850E2_REGS)
381 return NULL;
382 return v850e2_reg_names[regnum];
385 /* Implement the "register_name" gdbarch method for v850e3v5. */
387 static const char *
388 v850e3v5_register_name (struct gdbarch *gdbarch, int regnum)
390 static const char *v850e3v5_reg_names[] =
392 /* General purpose registers. */
393 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
394 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
395 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
396 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
398 /* selID 0, not including FPU registers. The FPU registers are
399 listed later on. */
400 "eipc", "eipsw", "fepc", "fepsw",
401 "", "psw", "" /* fpsr */, "" /* fpepc */,
402 "" /* fpst */, "" /* fpcc */, "" /* fpcfg */, "" /* fpec */,
403 "sesr", "eiic", "feic", "",
404 "ctpc", "ctpsw", "", "", "ctbp", "", "", "",
405 "", "", "", "", "eiwr", "fewr", "", "bsel",
408 /* PC. */
409 "pc", "",
411 /* v850e2 MPV bank. */
412 "", "", "", "", "", "", "", "",
413 "", "", "", "", "", "", "", "",
414 "", "", "", "", "", "", "", "",
415 "", "", "", "",
417 /* Skip v850e2 MPU bank. It's tempting to reuse these, but we need
418 32 entries for this bank. */
419 "", "", "", "", "", "", "", "",
420 "", "", "", "", "", "", "", "",
421 "", "", "", "", "", "", "", "",
422 "", "", "", "",
424 /* FPU system registers. These are actually in selID 0, but
425 are placed here to preserve register numbering compatibility
426 with previous architectures. */
427 "", "", "", "", "", "", "fpsr", "fpepc",
428 "fpst", "fpcc", "fpcfg", "fpec", "", "", "", "",
429 "", "", "", "", "", "", "", "",
430 "", "", "", "",
432 /* selID 1. */
433 "mcfg0", "mcfg1", "rbase", "ebase", "intbp", "mctl", "pid", "fpipr",
434 "", "", "tcsel", "sccfg", "scbp", "hvccfg", "hvcbp", "vsel",
435 "vmprt0", "vmprt1", "vmprt2", "", "", "", "", "vmscctl",
436 "vmsctbl0", "vmsctbl1", "vmsctbl2", "vmsctbl3", "", "", "", "",
438 /* selID 2. */
439 "htcfg0", "", "", "", "", "htctl", "mea", "asid",
440 "mei", "ispr", "pmr", "icsr", "intcfg", "", "", "",
441 "tlbsch", "", "", "", "", "", "", "htscctl",
442 "htsctbl0", "htsctbl1", "htsctbl2", "htsctbl3",
443 "htsctbl4", "htsctbl5", "htsctbl6", "htsctbl7",
445 /* selID 3. */
446 "", "", "", "", "", "", "", "",
447 "", "", "", "", "", "", "", "",
448 "", "", "", "", "", "", "", "",
449 "", "", "", "", "", "", "", "",
451 /* selID 4. */
452 "tlbidx", "", "", "", "telo0", "telo1", "tehi0", "tehi1",
453 "", "", "tlbcfg", "", "bwerrl", "bwerrh", "brerrl", "brerrh",
454 "ictagl", "ictagh", "icdatl", "icdath",
455 "dctagl", "dctagh", "dcdatl", "dcdath",
456 "icctrl", "dcctrl", "iccfg", "dccfg", "icerr", "dcerr", "", "",
458 /* selID 5. */
459 "mpm", "mprc", "", "", "mpbrgn", "mptrgn", "", "",
460 "mca", "mcs", "mcc", "mcr", "", "", "", "",
461 "", "", "", "", "mpprt0", "mpprt1", "mpprt2", "",
462 "", "", "", "", "", "", "", "",
464 /* selID 6. */
465 "mpla0", "mpua0", "mpat0", "", "mpla1", "mpua1", "mpat1", "",
466 "mpla2", "mpua2", "mpat2", "", "mpla3", "mpua3", "mpat3", "",
467 "mpla4", "mpua4", "mpat4", "", "mpla5", "mpua5", "mpat5", "",
468 "mpla6", "mpua6", "mpat6", "", "mpla7", "mpua7", "mpat7", "",
470 /* selID 7. */
471 "mpla8", "mpua8", "mpat8", "", "mpla9", "mpua9", "mpat9", "",
472 "mpla10", "mpua10", "mpat10", "", "mpla11", "mpua11", "mpat11", "",
473 "mpla12", "mpua12", "mpat12", "", "mpla13", "mpua13", "mpat13", "",
474 "mpla14", "mpua14", "mpat14", "", "mpla15", "mpua15", "mpat15", "",
476 /* Vector Registers */
477 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
478 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
479 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
480 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31",
483 if (regnum < 0 || regnum >= E_NUM_OF_V850E3V5_REGS)
484 return NULL;
485 return v850e3v5_reg_names[regnum];
488 /* Returns the default type for register N. */
490 static struct type *
491 v850_register_type (struct gdbarch *gdbarch, int regnum)
493 if (regnum == E_PC_REGNUM)
494 return builtin_type (gdbarch)->builtin_func_ptr;
495 else if (E_VR0_REGNUM <= regnum && regnum <= E_VR31_REGNUM)
496 return builtin_type (gdbarch)->builtin_uint64;
497 return builtin_type (gdbarch)->builtin_int32;
500 static int
501 v850_type_is_scalar (struct type *t)
503 return (TYPE_CODE (t) != TYPE_CODE_STRUCT
504 && TYPE_CODE (t) != TYPE_CODE_UNION
505 && TYPE_CODE (t) != TYPE_CODE_ARRAY);
508 /* Should call_function allocate stack space for a struct return? */
510 static int
511 v850_use_struct_convention (struct gdbarch *gdbarch, struct type *type)
513 int i;
514 struct type *fld_type, *tgt_type;
516 if (gdbarch_tdep (gdbarch)->abi == V850_ABI_RH850)
518 if (v850_type_is_scalar (type) && TYPE_LENGTH(type) <= 8)
519 return 0;
521 /* Structs are never returned in registers for this ABI. */
522 return 1;
524 /* 1. The value is greater than 8 bytes -> returned by copying. */
525 if (TYPE_LENGTH (type) > 8)
526 return 1;
528 /* 2. The value is a single basic type -> returned in register. */
529 if (v850_type_is_scalar (type))
530 return 0;
532 /* The value is a structure or union with a single element and that
533 element is either a single basic type or an array of a single basic
534 type whose size is greater than or equal to 4 -> returned in register. */
535 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
536 || TYPE_CODE (type) == TYPE_CODE_UNION)
537 && TYPE_NFIELDS (type) == 1)
539 fld_type = TYPE_FIELD_TYPE (type, 0);
540 if (v850_type_is_scalar (fld_type) && TYPE_LENGTH (fld_type) >= 4)
541 return 0;
543 if (TYPE_CODE (fld_type) == TYPE_CODE_ARRAY)
545 tgt_type = TYPE_TARGET_TYPE (fld_type);
546 if (v850_type_is_scalar (tgt_type) && TYPE_LENGTH (tgt_type) >= 4)
547 return 0;
551 /* The value is a structure whose first element is an integer or a float,
552 and which contains no arrays of more than two elements -> returned in
553 register. */
554 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
555 && v850_type_is_scalar (TYPE_FIELD_TYPE (type, 0))
556 && TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4)
558 for (i = 1; i < TYPE_NFIELDS (type); ++i)
560 fld_type = TYPE_FIELD_TYPE (type, 0);
561 if (TYPE_CODE (fld_type) == TYPE_CODE_ARRAY)
563 tgt_type = TYPE_TARGET_TYPE (fld_type);
564 if (TYPE_LENGTH (fld_type) >= 0 && TYPE_LENGTH (tgt_type) >= 0
565 && TYPE_LENGTH (fld_type) / TYPE_LENGTH (tgt_type) > 2)
566 return 1;
569 return 0;
572 /* The value is a union which contains at least one field which
573 would be returned in registers according to these rules ->
574 returned in register. */
575 if (TYPE_CODE (type) == TYPE_CODE_UNION)
577 for (i = 0; i < TYPE_NFIELDS (type); ++i)
579 fld_type = TYPE_FIELD_TYPE (type, 0);
580 if (!v850_use_struct_convention (gdbarch, fld_type))
581 return 0;
585 return 1;
588 /* Structure for mapping bits in register lists to register numbers. */
590 struct reg_list
592 long mask;
593 int regno;
596 /* Helper function for v850_scan_prologue to handle prepare instruction. */
598 static void
599 v850_handle_prepare (int insn, int insn2, CORE_ADDR * current_pc_ptr,
600 struct v850_frame_cache *pi, struct pifsr **pifsr_ptr)
602 CORE_ADDR current_pc = *current_pc_ptr;
603 struct pifsr *pifsr = *pifsr_ptr;
604 long next = insn2 & 0xffff;
605 long list12 = ((insn & 1) << 16) + (next & 0xffe0);
606 long offset = (insn & 0x3e) << 1;
607 static struct reg_list reg_table[] =
609 {0x00800, 20}, /* r20 */
610 {0x00400, 21}, /* r21 */
611 {0x00200, 22}, /* r22 */
612 {0x00100, 23}, /* r23 */
613 {0x08000, 24}, /* r24 */
614 {0x04000, 25}, /* r25 */
615 {0x02000, 26}, /* r26 */
616 {0x01000, 27}, /* r27 */
617 {0x00080, 28}, /* r28 */
618 {0x00040, 29}, /* r29 */
619 {0x10000, 30}, /* ep */
620 {0x00020, 31}, /* lp */
621 {0, 0} /* end of table */
623 int i;
625 if ((next & 0x1f) == 0x0b) /* skip imm16 argument */
626 current_pc += 2;
627 else if ((next & 0x1f) == 0x13) /* skip imm16 argument */
628 current_pc += 2;
629 else if ((next & 0x1f) == 0x1b) /* skip imm32 argument */
630 current_pc += 4;
632 /* Calculate the total size of the saved registers, and add it to the
633 immediate value used to adjust SP. */
634 for (i = 0; reg_table[i].mask != 0; i++)
635 if (list12 & reg_table[i].mask)
636 offset += v850_reg_size;
637 pi->sp_offset -= offset;
639 /* Calculate the offsets of the registers relative to the value the SP
640 will have after the registers have been pushed and the imm5 value has
641 been subtracted from it. */
642 if (pifsr)
644 for (i = 0; reg_table[i].mask != 0; i++)
646 if (list12 & reg_table[i].mask)
648 int reg = reg_table[i].regno;
649 offset -= v850_reg_size;
650 pifsr->reg = reg;
651 pifsr->offset = offset;
652 pifsr->cur_frameoffset = pi->sp_offset;
653 pifsr++;
658 /* Set result parameters. */
659 *current_pc_ptr = current_pc;
660 *pifsr_ptr = pifsr;
664 /* Helper function for v850_scan_prologue to handle pushm/pushl instructions.
665 The SR bit of the register list is not supported. gcc does not generate
666 this bit. */
668 static void
669 v850_handle_pushm (int insn, int insn2, struct v850_frame_cache *pi,
670 struct pifsr **pifsr_ptr)
672 struct pifsr *pifsr = *pifsr_ptr;
673 long list12 = ((insn & 0x0f) << 16) + (insn2 & 0xfff0);
674 long offset = 0;
675 static struct reg_list pushml_reg_table[] =
677 {0x80000, E_PS_REGNUM}, /* PSW */
678 {0x40000, 1}, /* r1 */
679 {0x20000, 2}, /* r2 */
680 {0x10000, 3}, /* r3 */
681 {0x00800, 4}, /* r4 */
682 {0x00400, 5}, /* r5 */
683 {0x00200, 6}, /* r6 */
684 {0x00100, 7}, /* r7 */
685 {0x08000, 8}, /* r8 */
686 {0x04000, 9}, /* r9 */
687 {0x02000, 10}, /* r10 */
688 {0x01000, 11}, /* r11 */
689 {0x00080, 12}, /* r12 */
690 {0x00040, 13}, /* r13 */
691 {0x00020, 14}, /* r14 */
692 {0x00010, 15}, /* r15 */
693 {0, 0} /* end of table */
695 static struct reg_list pushmh_reg_table[] =
697 {0x80000, 16}, /* r16 */
698 {0x40000, 17}, /* r17 */
699 {0x20000, 18}, /* r18 */
700 {0x10000, 19}, /* r19 */
701 {0x00800, 20}, /* r20 */
702 {0x00400, 21}, /* r21 */
703 {0x00200, 22}, /* r22 */
704 {0x00100, 23}, /* r23 */
705 {0x08000, 24}, /* r24 */
706 {0x04000, 25}, /* r25 */
707 {0x02000, 26}, /* r26 */
708 {0x01000, 27}, /* r27 */
709 {0x00080, 28}, /* r28 */
710 {0x00040, 29}, /* r29 */
711 {0x00010, 30}, /* r30 */
712 {0x00020, 31}, /* r31 */
713 {0, 0} /* end of table */
715 struct reg_list *reg_table;
716 int i;
718 /* Is this a pushml or a pushmh? */
719 if ((insn2 & 7) == 1)
720 reg_table = pushml_reg_table;
721 else
722 reg_table = pushmh_reg_table;
724 /* Calculate the total size of the saved registers, and add it to the
725 immediate value used to adjust SP. */
726 for (i = 0; reg_table[i].mask != 0; i++)
727 if (list12 & reg_table[i].mask)
728 offset += v850_reg_size;
729 pi->sp_offset -= offset;
731 /* Calculate the offsets of the registers relative to the value the SP
732 will have after the registers have been pushed and the imm5 value is
733 subtracted from it. */
734 if (pifsr)
736 for (i = 0; reg_table[i].mask != 0; i++)
738 if (list12 & reg_table[i].mask)
740 int reg = reg_table[i].regno;
741 offset -= v850_reg_size;
742 pifsr->reg = reg;
743 pifsr->offset = offset;
744 pifsr->cur_frameoffset = pi->sp_offset;
745 pifsr++;
750 /* Set result parameters. */
751 *pifsr_ptr = pifsr;
754 /* Helper function to evaluate if register is one of the "save" registers.
755 This allows to simplify conditionals in v850_analyze_prologue a lot. */
757 static int
758 v850_is_save_register (int reg)
760 /* The caller-save registers are R2, R20 - R29 and R31. All other
761 registers are either special purpose (PC, SP), argument registers,
762 or just considered free for use in the caller. */
763 return reg == E_R2_REGNUM
764 || (reg >= E_R20_REGNUM && reg <= E_R29_REGNUM)
765 || reg == E_R31_REGNUM;
768 /* Scan the prologue of the function that contains PC, and record what
769 we find in PI. Returns the pc after the prologue. Note that the
770 addresses saved in frame->saved_regs are just frame relative (negative
771 offsets from the frame pointer). This is because we don't know the
772 actual value of the frame pointer yet. In some circumstances, the
773 frame pointer can't be determined till after we have scanned the
774 prologue. */
776 static CORE_ADDR
777 v850_analyze_prologue (struct gdbarch *gdbarch,
778 CORE_ADDR func_addr, CORE_ADDR pc,
779 struct v850_frame_cache *pi, ULONGEST ctbp)
781 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
782 CORE_ADDR prologue_end, current_pc;
783 struct pifsr pifsrs[E_NUM_REGS + 1];
784 struct pifsr *pifsr, *pifsr_tmp;
785 int ep_used;
786 int reg;
787 CORE_ADDR save_pc, save_end;
788 int regsave_func_p;
789 int r12_tmp;
791 memset (&pifsrs, 0, sizeof pifsrs);
792 pifsr = &pifsrs[0];
794 prologue_end = pc;
796 /* Now, search the prologue looking for instructions that setup fp, save
797 rp, adjust sp and such. We also record the frame offset of any saved
798 registers. */
800 pi->sp_offset = 0;
801 pi->uses_fp = 0;
802 ep_used = 0;
803 regsave_func_p = 0;
804 save_pc = 0;
805 save_end = 0;
806 r12_tmp = 0;
808 for (current_pc = func_addr; current_pc < prologue_end;)
810 int insn;
811 int insn2 = -1; /* dummy value */
813 insn = read_memory_integer (current_pc, 2, byte_order);
814 current_pc += 2;
815 if ((insn & 0x0780) >= 0x0600) /* Four byte instruction? */
817 insn2 = read_memory_integer (current_pc, 2, byte_order);
818 current_pc += 2;
821 if ((insn & 0xffc0) == ((10 << 11) | 0x0780) && !regsave_func_p)
822 { /* jarl <func>,10 */
823 long low_disp = insn2 & ~(long) 1;
824 long disp = (((((insn & 0x3f) << 16) + low_disp)
825 & ~(long) 1) ^ 0x00200000) - 0x00200000;
827 save_pc = current_pc;
828 save_end = prologue_end;
829 regsave_func_p = 1;
830 current_pc += disp - 4;
831 prologue_end = (current_pc
832 + (2 * 3) /* moves to/from ep */
833 + 4 /* addi <const>,sp,sp */
834 + 2 /* jmp [r10] */
835 + (2 * 12) /* sst.w to save r2, r20-r29, r31 */
836 + 20); /* slop area */
838 else if ((insn & 0xffc0) == 0x0200 && !regsave_func_p)
839 { /* callt <imm6> */
840 long adr = ctbp + ((insn & 0x3f) << 1);
842 save_pc = current_pc;
843 save_end = prologue_end;
844 regsave_func_p = 1;
845 current_pc = ctbp + (read_memory_unsigned_integer (adr, 2, byte_order)
846 & 0xffff);
847 prologue_end = (current_pc
848 + (2 * 3) /* prepare list2,imm5,sp/imm */
849 + 4 /* ctret */
850 + 20); /* slop area */
851 continue;
853 else if ((insn & 0xffc0) == 0x0780) /* prepare list2,imm5 */
855 v850_handle_prepare (insn, insn2, &current_pc, pi, &pifsr);
856 continue;
858 else if (insn == 0x07e0 && regsave_func_p && insn2 == 0x0144)
859 { /* ctret after processing register save. */
860 current_pc = save_pc;
861 prologue_end = save_end;
862 regsave_func_p = 0;
863 continue;
865 else if ((insn & 0xfff0) == 0x07e0 && (insn2 & 5) == 1)
866 { /* pushml, pushmh */
867 v850_handle_pushm (insn, insn2, pi, &pifsr);
868 continue;
870 else if ((insn & 0xffe0) == 0x0060 && regsave_func_p)
871 { /* jmp after processing register save. */
872 current_pc = save_pc;
873 prologue_end = save_end;
874 regsave_func_p = 0;
875 continue;
877 else if ((insn & 0x07c0) == 0x0780 /* jarl or jr */
878 || (insn & 0xffe0) == 0x0060 /* jmp */
879 || (insn & 0x0780) == 0x0580) /* branch */
881 break; /* Ran into end of prologue. */
884 else if ((insn & 0xffe0) == ((E_SP_REGNUM << 11) | 0x0240))
885 /* add <imm>,sp */
886 pi->sp_offset += ((insn & 0x1f) ^ 0x10) - 0x10;
887 else if (insn == ((E_SP_REGNUM << 11) | 0x0600 | E_SP_REGNUM))
888 /* addi <imm>,sp,sp */
889 pi->sp_offset += insn2;
890 else if (insn == ((E_FP_REGNUM << 11) | 0x0000 | E_SP_REGNUM))
891 /* mov sp,fp */
892 pi->uses_fp = 1;
893 else if (insn == ((E_R12_REGNUM << 11) | 0x0640 | E_R0_REGNUM))
894 /* movhi hi(const),r0,r12 */
895 r12_tmp = insn2 << 16;
896 else if (insn == ((E_R12_REGNUM << 11) | 0x0620 | E_R12_REGNUM))
897 /* movea lo(const),r12,r12 */
898 r12_tmp += insn2;
899 else if (insn == ((E_SP_REGNUM << 11) | 0x01c0 | E_R12_REGNUM) && r12_tmp)
900 /* add r12,sp */
901 pi->sp_offset += r12_tmp;
902 else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_SP_REGNUM))
903 /* mov sp,ep */
904 ep_used = 1;
905 else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_R1_REGNUM))
906 /* mov r1,ep */
907 ep_used = 0;
908 else if (((insn & 0x07ff) == (0x0760 | E_SP_REGNUM)
909 || (pi->uses_fp
910 && (insn & 0x07ff) == (0x0760 | E_FP_REGNUM)))
911 && pifsr
912 && v850_is_save_register (reg = (insn >> 11) & 0x1f))
914 /* st.w <reg>,<offset>[sp] or st.w <reg>,<offset>[fp] */
915 pifsr->reg = reg;
916 pifsr->offset = insn2 & ~1;
917 pifsr->cur_frameoffset = pi->sp_offset;
918 pifsr++;
920 else if (ep_used
921 && ((insn & 0x0781) == 0x0501)
922 && pifsr
923 && v850_is_save_register (reg = (insn >> 11) & 0x1f))
925 /* sst.w <reg>,<offset>[ep] */
926 pifsr->reg = reg;
927 pifsr->offset = (insn & 0x007e) << 1;
928 pifsr->cur_frameoffset = pi->sp_offset;
929 pifsr++;
933 /* Fix up any offsets to the final offset. If a frame pointer was created,
934 use it instead of the stack pointer. */
935 for (pifsr_tmp = pifsrs; pifsr_tmp != pifsr; pifsr_tmp++)
937 pifsr_tmp->offset -= pi->sp_offset - pifsr_tmp->cur_frameoffset;
938 pi->saved_regs[pifsr_tmp->reg].addr = pifsr_tmp->offset;
941 return current_pc;
944 /* Return the address of the first code past the prologue of the function. */
946 static CORE_ADDR
947 v850_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
949 CORE_ADDR func_addr, func_end;
951 /* See what the symbol table says. */
953 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
955 struct symtab_and_line sal;
957 sal = find_pc_line (func_addr, 0);
958 if (sal.line != 0 && sal.end < func_end)
959 return sal.end;
961 /* Either there's no line info, or the line after the prologue is after
962 the end of the function. In this case, there probably isn't a
963 prologue. */
964 return pc;
967 /* We can't find the start of this function, so there's nothing we
968 can do. */
969 return pc;
972 /* Return 1 if the data structure has any 8-byte fields that'll require
973 the entire data structure to be aligned. Otherwise, return 0. */
975 static int
976 v850_eight_byte_align_p (struct type *type)
978 type = check_typedef (type);
980 if (v850_type_is_scalar (type))
981 return (TYPE_LENGTH (type) == 8);
982 else
984 int i;
986 for (i = 0; i < TYPE_NFIELDS (type); i++)
988 if (v850_eight_byte_align_p (TYPE_FIELD_TYPE (type, i)))
989 return 1;
992 return 0;
995 static CORE_ADDR
996 v850_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
998 return sp & ~3;
1001 /* Setup arguments and LP for a call to the target. First four args
1002 go in R6->R9, subsequent args go into sp + 16 -> sp + ... Structs
1003 are passed by reference. 64 bit quantities (doubles and long longs)
1004 may be split between the regs and the stack. When calling a function
1005 that returns a struct, a pointer to the struct is passed in as a secret
1006 first argument (always in R6).
1008 Stack space for the args has NOT been allocated: that job is up to us. */
1010 static CORE_ADDR
1011 v850_push_dummy_call (struct gdbarch *gdbarch,
1012 struct value *function,
1013 struct regcache *regcache,
1014 CORE_ADDR bp_addr,
1015 int nargs,
1016 struct value **args,
1017 CORE_ADDR sp,
1018 int struct_return,
1019 CORE_ADDR struct_addr)
1021 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1022 int argreg;
1023 int argnum;
1024 int len = 0;
1025 int stack_offset;
1027 if (gdbarch_tdep (gdbarch)->abi == V850_ABI_RH850)
1028 stack_offset = 0;
1029 else
1030 /* The offset onto the stack at which we will start copying parameters
1031 (after the registers are used up) begins at 16 rather than at zero.
1032 That's how the ABI is defined, though there's no indication that these
1033 16 bytes are used for anything, not even for saving incoming
1034 argument registers. */
1035 stack_offset = 16;
1037 /* Now make space on the stack for the args. */
1038 for (argnum = 0; argnum < nargs; argnum++)
1039 len += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3);
1040 sp -= len + stack_offset;
1042 argreg = E_ARG0_REGNUM;
1043 /* The struct_return pointer occupies the first parameter register. */
1044 if (struct_return)
1045 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1047 /* Now load as many as possible of the first arguments into
1048 registers, and push the rest onto the stack. There are 16 bytes
1049 in four registers available. Loop thru args from first to last. */
1050 for (argnum = 0; argnum < nargs; argnum++)
1052 int len;
1053 gdb_byte *val;
1054 gdb_byte valbuf[v850_reg_size];
1056 if (!v850_type_is_scalar (value_type (*args))
1057 && gdbarch_tdep (gdbarch)->abi == V850_ABI_GCC
1058 && TYPE_LENGTH (value_type (*args)) > E_MAX_RETTYPE_SIZE_IN_REGS)
1060 store_unsigned_integer (valbuf, 4, byte_order,
1061 value_address (*args));
1062 len = 4;
1063 val = valbuf;
1065 else
1067 len = TYPE_LENGTH (value_type (*args));
1068 val = (gdb_byte *) value_contents (*args);
1071 if (gdbarch_tdep (gdbarch)->eight_byte_align
1072 && v850_eight_byte_align_p (value_type (*args)))
1074 if (argreg <= E_ARGLAST_REGNUM && (argreg & 1))
1075 argreg++;
1076 else if (stack_offset & 0x4)
1077 stack_offset += 4;
1080 while (len > 0)
1081 if (argreg <= E_ARGLAST_REGNUM)
1083 CORE_ADDR regval;
1085 regval = extract_unsigned_integer (val, v850_reg_size, byte_order);
1086 regcache_cooked_write_unsigned (regcache, argreg, regval);
1088 len -= v850_reg_size;
1089 val += v850_reg_size;
1090 argreg++;
1092 else
1094 write_memory (sp + stack_offset, val, 4);
1096 len -= 4;
1097 val += 4;
1098 stack_offset += 4;
1100 args++;
1103 /* Store return address. */
1104 regcache_cooked_write_unsigned (regcache, E_LP_REGNUM, bp_addr);
1106 /* Update stack pointer. */
1107 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
1109 return sp;
1112 static void
1113 v850_extract_return_value (struct type *type, struct regcache *regcache,
1114 gdb_byte *valbuf)
1116 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1117 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1118 int len = TYPE_LENGTH (type);
1120 if (len <= v850_reg_size)
1122 ULONGEST val;
1124 regcache_cooked_read_unsigned (regcache, E_V0_REGNUM, &val);
1125 store_unsigned_integer (valbuf, len, byte_order, val);
1127 else if (len <= 2 * v850_reg_size)
1129 int i, regnum = E_V0_REGNUM;
1130 gdb_byte buf[v850_reg_size];
1131 for (i = 0; len > 0; i += 4, len -= 4)
1133 regcache_raw_read (regcache, regnum++, buf);
1134 memcpy (valbuf + i, buf, len > 4 ? 4 : len);
1139 static void
1140 v850_store_return_value (struct type *type, struct regcache *regcache,
1141 const gdb_byte *valbuf)
1143 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1144 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1145 int len = TYPE_LENGTH (type);
1147 if (len <= v850_reg_size)
1148 regcache_cooked_write_unsigned
1149 (regcache, E_V0_REGNUM,
1150 extract_unsigned_integer (valbuf, len, byte_order));
1151 else if (len <= 2 * v850_reg_size)
1153 int i, regnum = E_V0_REGNUM;
1154 for (i = 0; i < len; i += 4)
1155 regcache_raw_write (regcache, regnum++, valbuf + i);
1159 static enum return_value_convention
1160 v850_return_value (struct gdbarch *gdbarch, struct value *function,
1161 struct type *type, struct regcache *regcache,
1162 gdb_byte *readbuf, const gdb_byte *writebuf)
1164 if (v850_use_struct_convention (gdbarch, type))
1165 return RETURN_VALUE_STRUCT_CONVENTION;
1166 if (writebuf)
1167 v850_store_return_value (type, regcache, writebuf);
1168 else if (readbuf)
1169 v850_extract_return_value (type, regcache, readbuf);
1170 return RETURN_VALUE_REGISTER_CONVENTION;
1173 static const unsigned char *
1174 v850_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
1175 int *lenptr)
1177 static unsigned char breakpoint[] = { 0x85, 0x05 };
1179 *lenptr = sizeof (breakpoint);
1180 return breakpoint;
1183 /* Implement software breakpoints by using the dbtrap instruction.
1184 Older architectures had no such instruction. For those, an
1185 unconditional branch to self instruction is used. */
1187 static const unsigned char *
1188 v850_dbtrap_breakpoint_from_pc (struct gdbarch *gdbarch,
1189 CORE_ADDR *pcptr, int *lenptr)
1191 static unsigned char breakpoint[] = { 0x40, 0xf8 };
1193 *lenptr = sizeof (breakpoint);
1194 return breakpoint;
1197 static struct v850_frame_cache *
1198 v850_alloc_frame_cache (struct frame_info *this_frame)
1200 struct v850_frame_cache *cache;
1202 cache = FRAME_OBSTACK_ZALLOC (struct v850_frame_cache);
1203 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1205 /* Base address. */
1206 cache->base = 0;
1207 cache->sp_offset = 0;
1208 cache->pc = 0;
1210 /* Frameless until proven otherwise. */
1211 cache->uses_fp = 0;
1213 return cache;
1216 static struct v850_frame_cache *
1217 v850_frame_cache (struct frame_info *this_frame, void **this_cache)
1219 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1220 struct v850_frame_cache *cache;
1221 CORE_ADDR current_pc;
1222 int i;
1224 if (*this_cache)
1225 return *this_cache;
1227 cache = v850_alloc_frame_cache (this_frame);
1228 *this_cache = cache;
1230 /* In principle, for normal frames, fp holds the frame pointer,
1231 which holds the base address for the current stack frame.
1232 However, for functions that don't need it, the frame pointer is
1233 optional. For these "frameless" functions the frame pointer is
1234 actually the frame pointer of the calling frame. */
1235 cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
1236 if (cache->base == 0)
1237 return cache;
1239 cache->pc = get_frame_func (this_frame);
1240 current_pc = get_frame_pc (this_frame);
1241 if (cache->pc != 0)
1243 ULONGEST ctbp;
1244 ctbp = get_frame_register_unsigned (this_frame, E_CTBP_REGNUM);
1245 v850_analyze_prologue (gdbarch, cache->pc, current_pc, cache, ctbp);
1248 if (!cache->uses_fp)
1250 /* We didn't find a valid frame, which means that CACHE->base
1251 currently holds the frame pointer for our calling frame. If
1252 we're at the start of a function, or somewhere half-way its
1253 prologue, the function's frame probably hasn't been fully
1254 setup yet. Try to reconstruct the base address for the stack
1255 frame by looking at the stack pointer. For truly "frameless"
1256 functions this might work too. */
1257 cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
1260 /* Now that we have the base address for the stack frame we can
1261 calculate the value of sp in the calling frame. */
1262 trad_frame_set_value (cache->saved_regs, E_SP_REGNUM,
1263 cache->base - cache->sp_offset);
1265 /* Adjust all the saved registers such that they contain addresses
1266 instead of offsets. */
1267 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1268 if (trad_frame_addr_p (cache->saved_regs, i))
1269 cache->saved_regs[i].addr += cache->base;
1271 /* The call instruction moves the caller's PC in the callee's LP.
1272 Since this is an unwind, do the reverse. Copy the location of LP
1273 into PC (the address / regnum) so that a request for PC will be
1274 converted into a request for the LP. */
1276 cache->saved_regs[E_PC_REGNUM] = cache->saved_regs[E_LP_REGNUM];
1278 return cache;
1282 static struct value *
1283 v850_frame_prev_register (struct frame_info *this_frame,
1284 void **this_cache, int regnum)
1286 struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache);
1288 gdb_assert (regnum >= 0);
1290 return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
1293 static void
1294 v850_frame_this_id (struct frame_info *this_frame, void **this_cache,
1295 struct frame_id *this_id)
1297 struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache);
1299 /* This marks the outermost frame. */
1300 if (cache->base == 0)
1301 return;
1303 *this_id = frame_id_build (cache->saved_regs[E_SP_REGNUM].addr, cache->pc);
1306 static const struct frame_unwind v850_frame_unwind = {
1307 NORMAL_FRAME,
1308 default_frame_unwind_stop_reason,
1309 v850_frame_this_id,
1310 v850_frame_prev_register,
1311 NULL,
1312 default_frame_sniffer
1315 static CORE_ADDR
1316 v850_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1318 return frame_unwind_register_unsigned (next_frame,
1319 gdbarch_sp_regnum (gdbarch));
1322 static CORE_ADDR
1323 v850_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1325 return frame_unwind_register_unsigned (next_frame,
1326 gdbarch_pc_regnum (gdbarch));
1329 static struct frame_id
1330 v850_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1332 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
1333 gdbarch_sp_regnum (gdbarch));
1334 return frame_id_build (sp, get_frame_pc (this_frame));
1337 static CORE_ADDR
1338 v850_frame_base_address (struct frame_info *this_frame, void **this_cache)
1340 struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache);
1342 return cache->base;
1345 static const struct frame_base v850_frame_base = {
1346 &v850_frame_unwind,
1347 v850_frame_base_address,
1348 v850_frame_base_address,
1349 v850_frame_base_address
1352 static struct gdbarch *
1353 v850_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1355 struct gdbarch *gdbarch;
1356 struct gdbarch_tdep *tdep;
1357 int e_flags, e_machine;
1359 /* Extract the elf_flags if available. */
1360 if (info.abfd != NULL
1361 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1363 e_flags = elf_elfheader (info.abfd)->e_flags;
1364 e_machine = elf_elfheader (info.abfd)->e_machine;
1366 else
1368 e_flags = 0;
1369 e_machine = 0;
1373 /* Try to find the architecture in the list of already defined
1374 architectures. */
1375 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1376 arches != NULL;
1377 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1379 if (gdbarch_tdep (arches->gdbarch)->e_flags != e_flags
1380 || gdbarch_tdep (arches->gdbarch)->e_machine != e_machine)
1381 continue;
1383 return arches->gdbarch;
1385 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1386 tdep->e_flags = e_flags;
1387 tdep->e_machine = e_machine;
1389 switch (tdep->e_machine)
1391 case EM_V800:
1392 tdep->abi = V850_ABI_RH850;
1393 break;
1394 default:
1395 tdep->abi = V850_ABI_GCC;
1396 break;
1399 tdep->eight_byte_align = (tdep->e_flags & EF_RH850_DATA_ALIGN8) ? 1 : 0;
1400 gdbarch = gdbarch_alloc (&info, tdep);
1402 switch (info.bfd_arch_info->mach)
1404 case bfd_mach_v850:
1405 set_gdbarch_register_name (gdbarch, v850_register_name);
1406 set_gdbarch_num_regs (gdbarch, E_NUM_OF_V850_REGS);
1407 break;
1408 case bfd_mach_v850e:
1409 case bfd_mach_v850e1:
1410 set_gdbarch_register_name (gdbarch, v850e_register_name);
1411 set_gdbarch_num_regs (gdbarch, E_NUM_OF_V850E_REGS);
1412 break;
1413 case bfd_mach_v850e2:
1414 case bfd_mach_v850e2v3:
1415 set_gdbarch_register_name (gdbarch, v850e2_register_name);
1416 set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
1417 break;
1418 case bfd_mach_v850e3v5:
1419 set_gdbarch_register_name (gdbarch, v850e3v5_register_name);
1420 set_gdbarch_num_regs (gdbarch, E_NUM_OF_V850E3V5_REGS);
1421 break;
1424 set_gdbarch_num_pseudo_regs (gdbarch, 0);
1425 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
1426 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
1427 set_gdbarch_fp0_regnum (gdbarch, -1);
1429 set_gdbarch_register_type (gdbarch, v850_register_type);
1431 set_gdbarch_char_signed (gdbarch, 1);
1432 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1433 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1434 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1435 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1437 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1438 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1439 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1441 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1442 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1444 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1445 switch (info.bfd_arch_info->mach)
1447 case bfd_mach_v850e2:
1448 case bfd_mach_v850e2v3:
1449 case bfd_mach_v850e3v5:
1450 set_gdbarch_breakpoint_from_pc (gdbarch, v850_dbtrap_breakpoint_from_pc);
1451 break;
1452 default:
1453 set_gdbarch_breakpoint_from_pc (gdbarch, v850_breakpoint_from_pc);
1454 break;
1457 set_gdbarch_return_value (gdbarch, v850_return_value);
1458 set_gdbarch_push_dummy_call (gdbarch, v850_push_dummy_call);
1459 set_gdbarch_skip_prologue (gdbarch, v850_skip_prologue);
1461 set_gdbarch_print_insn (gdbarch, print_insn_v850);
1463 set_gdbarch_frame_align (gdbarch, v850_frame_align);
1464 set_gdbarch_unwind_sp (gdbarch, v850_unwind_sp);
1465 set_gdbarch_unwind_pc (gdbarch, v850_unwind_pc);
1466 set_gdbarch_dummy_id (gdbarch, v850_dummy_id);
1467 frame_base_set_default (gdbarch, &v850_frame_base);
1469 /* Hook in ABI-specific overrides, if they have been registered. */
1470 gdbarch_init_osabi (info, gdbarch);
1472 dwarf2_append_unwinders (gdbarch);
1473 frame_unwind_append_unwinder (gdbarch, &v850_frame_unwind);
1475 return gdbarch;
1478 extern initialize_file_ftype _initialize_v850_tdep; /* -Wmissing-prototypes */
1480 void
1481 _initialize_v850_tdep (void)
1483 register_gdbarch_init (bfd_arch_v850, v850_gdbarch_init);
1484 register_gdbarch_init (bfd_arch_v850_rh850, v850_gdbarch_init);