merge from gcc
[gdb/gnu.git] / gdb / amd64-tdep.c
blob4d6b325207ab4f0e7de4afcf06fc1639cb1c4a03
1 /* Target-dependent code for AMD64.
3 Copyright (C) 2001-2013 Free Software Foundation, Inc.
5 Contributed by Jiri Smid, SuSE Labs.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "defs.h"
23 #include "opcode/i386.h"
24 #include "dis-asm.h"
25 #include "arch-utils.h"
26 #include "block.h"
27 #include "dummy-frame.h"
28 #include "frame.h"
29 #include "frame-base.h"
30 #include "frame-unwind.h"
31 #include "inferior.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "objfiles.h"
35 #include "regcache.h"
36 #include "regset.h"
37 #include "symfile.h"
38 #include "disasm.h"
39 #include "gdb_assert.h"
40 #include "exceptions.h"
41 #include "amd64-tdep.h"
42 #include "i387-tdep.h"
44 #include "features/i386/amd64.c"
45 #include "features/i386/amd64-avx.c"
46 #include "features/i386/x32.c"
47 #include "features/i386/x32-avx.c"
49 #include "ax.h"
50 #include "ax-gdb.h"
52 /* Note that the AMD64 architecture was previously known as x86-64.
53 The latter is (forever) engraved into the canonical system name as
54 returned by config.guess, and used as the name for the AMD64 port
55 of GNU/Linux. The BSD's have renamed their ports to amd64; they
56 don't like to shout. For GDB we prefer the amd64_-prefix over the
57 x86_64_-prefix since it's so much easier to type. */
59 /* Register information. */
61 static const char *amd64_register_names[] =
63 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
65 /* %r8 is indeed register number 8. */
66 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
67 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
69 /* %st0 is register number 24. */
70 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
71 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
73 /* %xmm0 is register number 40. */
74 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
75 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
76 "mxcsr",
79 static const char *amd64_ymm_names[] =
81 "ymm0", "ymm1", "ymm2", "ymm3",
82 "ymm4", "ymm5", "ymm6", "ymm7",
83 "ymm8", "ymm9", "ymm10", "ymm11",
84 "ymm12", "ymm13", "ymm14", "ymm15"
87 static const char *amd64_ymmh_names[] =
89 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
90 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
91 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
92 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
95 /* DWARF Register Number Mapping as defined in the System V psABI,
96 section 3.6. */
98 static int amd64_dwarf_regmap[] =
100 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
101 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
102 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
103 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
105 /* Frame Pointer Register RBP. */
106 AMD64_RBP_REGNUM,
108 /* Stack Pointer Register RSP. */
109 AMD64_RSP_REGNUM,
111 /* Extended Integer Registers 8 - 15. */
112 AMD64_R8_REGNUM, /* %r8 */
113 AMD64_R9_REGNUM, /* %r9 */
114 AMD64_R10_REGNUM, /* %r10 */
115 AMD64_R11_REGNUM, /* %r11 */
116 AMD64_R12_REGNUM, /* %r12 */
117 AMD64_R13_REGNUM, /* %r13 */
118 AMD64_R14_REGNUM, /* %r14 */
119 AMD64_R15_REGNUM, /* %r15 */
121 /* Return Address RA. Mapped to RIP. */
122 AMD64_RIP_REGNUM,
124 /* SSE Registers 0 - 7. */
125 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
126 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
127 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
128 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
130 /* Extended SSE Registers 8 - 15. */
131 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
132 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
133 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
134 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
136 /* Floating Point Registers 0-7. */
137 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
138 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
139 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
140 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
142 /* Control and Status Flags Register. */
143 AMD64_EFLAGS_REGNUM,
145 /* Selector Registers. */
146 AMD64_ES_REGNUM,
147 AMD64_CS_REGNUM,
148 AMD64_SS_REGNUM,
149 AMD64_DS_REGNUM,
150 AMD64_FS_REGNUM,
151 AMD64_GS_REGNUM,
155 /* Segment Base Address Registers. */
161 /* Special Selector Registers. */
165 /* Floating Point Control Registers. */
166 AMD64_MXCSR_REGNUM,
167 AMD64_FCTRL_REGNUM,
168 AMD64_FSTAT_REGNUM
171 static const int amd64_dwarf_regmap_len =
172 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
174 /* Convert DWARF register number REG to the appropriate register
175 number used by GDB. */
177 static int
178 amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
181 int ymm0_regnum = tdep->ymm0_regnum;
182 int regnum = -1;
184 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
185 regnum = amd64_dwarf_regmap[reg];
187 if (regnum == -1)
188 warning (_("Unmapped DWARF Register #%d encountered."), reg);
189 else if (ymm0_regnum >= 0
190 && i386_xmm_regnum_p (gdbarch, regnum))
191 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
193 return regnum;
196 /* Map architectural register numbers to gdb register numbers. */
198 static const int amd64_arch_regmap[16] =
200 AMD64_RAX_REGNUM, /* %rax */
201 AMD64_RCX_REGNUM, /* %rcx */
202 AMD64_RDX_REGNUM, /* %rdx */
203 AMD64_RBX_REGNUM, /* %rbx */
204 AMD64_RSP_REGNUM, /* %rsp */
205 AMD64_RBP_REGNUM, /* %rbp */
206 AMD64_RSI_REGNUM, /* %rsi */
207 AMD64_RDI_REGNUM, /* %rdi */
208 AMD64_R8_REGNUM, /* %r8 */
209 AMD64_R9_REGNUM, /* %r9 */
210 AMD64_R10_REGNUM, /* %r10 */
211 AMD64_R11_REGNUM, /* %r11 */
212 AMD64_R12_REGNUM, /* %r12 */
213 AMD64_R13_REGNUM, /* %r13 */
214 AMD64_R14_REGNUM, /* %r14 */
215 AMD64_R15_REGNUM /* %r15 */
218 static const int amd64_arch_regmap_len =
219 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
221 /* Convert architectural register number REG to the appropriate register
222 number used by GDB. */
224 static int
225 amd64_arch_reg_to_regnum (int reg)
227 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
229 return amd64_arch_regmap[reg];
232 /* Register names for byte pseudo-registers. */
234 static const char *amd64_byte_names[] =
236 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
237 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
238 "ah", "bh", "ch", "dh"
241 /* Number of lower byte registers. */
242 #define AMD64_NUM_LOWER_BYTE_REGS 16
244 /* Register names for word pseudo-registers. */
246 static const char *amd64_word_names[] =
248 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
249 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
252 /* Register names for dword pseudo-registers. */
254 static const char *amd64_dword_names[] =
256 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
257 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d",
258 "eip"
261 /* Return the name of register REGNUM. */
263 static const char *
264 amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
266 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
267 if (i386_byte_regnum_p (gdbarch, regnum))
268 return amd64_byte_names[regnum - tdep->al_regnum];
269 else if (i386_ymm_regnum_p (gdbarch, regnum))
270 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
271 else if (i386_word_regnum_p (gdbarch, regnum))
272 return amd64_word_names[regnum - tdep->ax_regnum];
273 else if (i386_dword_regnum_p (gdbarch, regnum))
274 return amd64_dword_names[regnum - tdep->eax_regnum];
275 else
276 return i386_pseudo_register_name (gdbarch, regnum);
279 static struct value *
280 amd64_pseudo_register_read_value (struct gdbarch *gdbarch,
281 struct regcache *regcache,
282 int regnum)
284 gdb_byte raw_buf[MAX_REGISTER_SIZE];
285 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
286 enum register_status status;
287 struct value *result_value;
288 gdb_byte *buf;
290 result_value = allocate_value (register_type (gdbarch, regnum));
291 VALUE_LVAL (result_value) = lval_register;
292 VALUE_REGNUM (result_value) = regnum;
293 buf = value_contents_raw (result_value);
295 if (i386_byte_regnum_p (gdbarch, regnum))
297 int gpnum = regnum - tdep->al_regnum;
299 /* Extract (always little endian). */
300 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
302 /* Special handling for AH, BH, CH, DH. */
303 status = regcache_raw_read (regcache,
304 gpnum - AMD64_NUM_LOWER_BYTE_REGS,
305 raw_buf);
306 if (status == REG_VALID)
307 memcpy (buf, raw_buf + 1, 1);
308 else
309 mark_value_bytes_unavailable (result_value, 0,
310 TYPE_LENGTH (value_type (result_value)));
312 else
314 status = regcache_raw_read (regcache, gpnum, raw_buf);
315 if (status == REG_VALID)
316 memcpy (buf, raw_buf, 1);
317 else
318 mark_value_bytes_unavailable (result_value, 0,
319 TYPE_LENGTH (value_type (result_value)));
322 else if (i386_dword_regnum_p (gdbarch, regnum))
324 int gpnum = regnum - tdep->eax_regnum;
325 /* Extract (always little endian). */
326 status = regcache_raw_read (regcache, gpnum, raw_buf);
327 if (status == REG_VALID)
328 memcpy (buf, raw_buf, 4);
329 else
330 mark_value_bytes_unavailable (result_value, 0,
331 TYPE_LENGTH (value_type (result_value)));
333 else
334 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum,
335 result_value);
337 return result_value;
340 static void
341 amd64_pseudo_register_write (struct gdbarch *gdbarch,
342 struct regcache *regcache,
343 int regnum, const gdb_byte *buf)
345 gdb_byte raw_buf[MAX_REGISTER_SIZE];
346 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
348 if (i386_byte_regnum_p (gdbarch, regnum))
350 int gpnum = regnum - tdep->al_regnum;
352 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
354 /* Read ... AH, BH, CH, DH. */
355 regcache_raw_read (regcache,
356 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
357 /* ... Modify ... (always little endian). */
358 memcpy (raw_buf + 1, buf, 1);
359 /* ... Write. */
360 regcache_raw_write (regcache,
361 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
363 else
365 /* Read ... */
366 regcache_raw_read (regcache, gpnum, raw_buf);
367 /* ... Modify ... (always little endian). */
368 memcpy (raw_buf, buf, 1);
369 /* ... Write. */
370 regcache_raw_write (regcache, gpnum, raw_buf);
373 else if (i386_dword_regnum_p (gdbarch, regnum))
375 int gpnum = regnum - tdep->eax_regnum;
377 /* Read ... */
378 regcache_raw_read (regcache, gpnum, raw_buf);
379 /* ... Modify ... (always little endian). */
380 memcpy (raw_buf, buf, 4);
381 /* ... Write. */
382 regcache_raw_write (regcache, gpnum, raw_buf);
384 else
385 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
390 /* Register classes as defined in the psABI. */
392 enum amd64_reg_class
394 AMD64_INTEGER,
395 AMD64_SSE,
396 AMD64_SSEUP,
397 AMD64_X87,
398 AMD64_X87UP,
399 AMD64_COMPLEX_X87,
400 AMD64_NO_CLASS,
401 AMD64_MEMORY
404 /* Return the union class of CLASS1 and CLASS2. See the psABI for
405 details. */
407 static enum amd64_reg_class
408 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
410 /* Rule (a): If both classes are equal, this is the resulting class. */
411 if (class1 == class2)
412 return class1;
414 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
415 is the other class. */
416 if (class1 == AMD64_NO_CLASS)
417 return class2;
418 if (class2 == AMD64_NO_CLASS)
419 return class1;
421 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
422 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
423 return AMD64_MEMORY;
425 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
426 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
427 return AMD64_INTEGER;
429 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
430 MEMORY is used as class. */
431 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
432 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
433 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
434 return AMD64_MEMORY;
436 /* Rule (f): Otherwise class SSE is used. */
437 return AMD64_SSE;
440 static void amd64_classify (struct type *type, enum amd64_reg_class class[2]);
442 /* Return non-zero if TYPE is a non-POD structure or union type. */
444 static int
445 amd64_non_pod_p (struct type *type)
447 /* ??? A class with a base class certainly isn't POD, but does this
448 catch all non-POD structure types? */
449 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
450 return 1;
452 return 0;
455 /* Classify TYPE according to the rules for aggregate (structures and
456 arrays) and union types, and store the result in CLASS. */
458 static void
459 amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2])
461 /* 1. If the size of an object is larger than two eightbytes, or in
462 C++, is a non-POD structure or union type, or contains
463 unaligned fields, it has class memory. */
464 if (TYPE_LENGTH (type) > 16 || amd64_non_pod_p (type))
466 class[0] = class[1] = AMD64_MEMORY;
467 return;
470 /* 2. Both eightbytes get initialized to class NO_CLASS. */
471 class[0] = class[1] = AMD64_NO_CLASS;
473 /* 3. Each field of an object is classified recursively so that
474 always two fields are considered. The resulting class is
475 calculated according to the classes of the fields in the
476 eightbyte: */
478 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
480 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
482 /* All fields in an array have the same type. */
483 amd64_classify (subtype, class);
484 if (TYPE_LENGTH (type) > 8 && class[1] == AMD64_NO_CLASS)
485 class[1] = class[0];
487 else
489 int i;
491 /* Structure or union. */
492 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
493 || TYPE_CODE (type) == TYPE_CODE_UNION);
495 for (i = 0; i < TYPE_NFIELDS (type); i++)
497 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
498 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
499 enum amd64_reg_class subclass[2];
500 int bitsize = TYPE_FIELD_BITSIZE (type, i);
501 int endpos;
503 if (bitsize == 0)
504 bitsize = TYPE_LENGTH (subtype) * 8;
505 endpos = (TYPE_FIELD_BITPOS (type, i) + bitsize - 1) / 64;
507 /* Ignore static fields. */
508 if (field_is_static (&TYPE_FIELD (type, i)))
509 continue;
511 gdb_assert (pos == 0 || pos == 1);
513 amd64_classify (subtype, subclass);
514 class[pos] = amd64_merge_classes (class[pos], subclass[0]);
515 if (bitsize <= 64 && pos == 0 && endpos == 1)
516 /* This is a bit of an odd case: We have a field that would
517 normally fit in one of the two eightbytes, except that
518 it is placed in a way that this field straddles them.
519 This has been seen with a structure containing an array.
521 The ABI is a bit unclear in this case, but we assume that
522 this field's class (stored in subclass[0]) must also be merged
523 into class[1]. In other words, our field has a piece stored
524 in the second eight-byte, and thus its class applies to
525 the second eight-byte as well.
527 In the case where the field length exceeds 8 bytes,
528 it should not be necessary to merge the field class
529 into class[1]. As LEN > 8, subclass[1] is necessarily
530 different from AMD64_NO_CLASS. If subclass[1] is equal
531 to subclass[0], then the normal class[1]/subclass[1]
532 merging will take care of everything. For subclass[1]
533 to be different from subclass[0], I can only see the case
534 where we have a SSE/SSEUP or X87/X87UP pair, which both
535 use up all 16 bytes of the aggregate, and are already
536 handled just fine (because each portion sits on its own
537 8-byte). */
538 class[1] = amd64_merge_classes (class[1], subclass[0]);
539 if (pos == 0)
540 class[1] = amd64_merge_classes (class[1], subclass[1]);
544 /* 4. Then a post merger cleanup is done: */
546 /* Rule (a): If one of the classes is MEMORY, the whole argument is
547 passed in memory. */
548 if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY)
549 class[0] = class[1] = AMD64_MEMORY;
551 /* Rule (b): If SSEUP is not preceded by SSE, it is converted to
552 SSE. */
553 if (class[0] == AMD64_SSEUP)
554 class[0] = AMD64_SSE;
555 if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE)
556 class[1] = AMD64_SSE;
559 /* Classify TYPE, and store the result in CLASS. */
561 static void
562 amd64_classify (struct type *type, enum amd64_reg_class class[2])
564 enum type_code code = TYPE_CODE (type);
565 int len = TYPE_LENGTH (type);
567 class[0] = class[1] = AMD64_NO_CLASS;
569 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
570 long, long long, and pointers are in the INTEGER class. Similarly,
571 range types, used by languages such as Ada, are also in the INTEGER
572 class. */
573 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
574 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
575 || code == TYPE_CODE_CHAR
576 || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
577 && (len == 1 || len == 2 || len == 4 || len == 8))
578 class[0] = AMD64_INTEGER;
580 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
581 are in class SSE. */
582 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
583 && (len == 4 || len == 8))
584 /* FIXME: __m64 . */
585 class[0] = AMD64_SSE;
587 /* Arguments of types __float128, _Decimal128 and __m128 are split into
588 two halves. The least significant ones belong to class SSE, the most
589 significant one to class SSEUP. */
590 else if (code == TYPE_CODE_DECFLOAT && len == 16)
591 /* FIXME: __float128, __m128. */
592 class[0] = AMD64_SSE, class[1] = AMD64_SSEUP;
594 /* The 64-bit mantissa of arguments of type long double belongs to
595 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
596 class X87UP. */
597 else if (code == TYPE_CODE_FLT && len == 16)
598 /* Class X87 and X87UP. */
599 class[0] = AMD64_X87, class[1] = AMD64_X87UP;
601 /* Arguments of complex T where T is one of the types float or
602 double get treated as if they are implemented as:
604 struct complexT {
605 T real;
606 T imag;
607 }; */
608 else if (code == TYPE_CODE_COMPLEX && len == 8)
609 class[0] = AMD64_SSE;
610 else if (code == TYPE_CODE_COMPLEX && len == 16)
611 class[0] = class[1] = AMD64_SSE;
613 /* A variable of type complex long double is classified as type
614 COMPLEX_X87. */
615 else if (code == TYPE_CODE_COMPLEX && len == 32)
616 class[0] = AMD64_COMPLEX_X87;
618 /* Aggregates. */
619 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
620 || code == TYPE_CODE_UNION)
621 amd64_classify_aggregate (type, class);
624 static enum return_value_convention
625 amd64_return_value (struct gdbarch *gdbarch, struct value *function,
626 struct type *type, struct regcache *regcache,
627 gdb_byte *readbuf, const gdb_byte *writebuf)
629 enum amd64_reg_class class[2];
630 int len = TYPE_LENGTH (type);
631 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
632 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
633 int integer_reg = 0;
634 int sse_reg = 0;
635 int i;
637 gdb_assert (!(readbuf && writebuf));
639 /* 1. Classify the return type with the classification algorithm. */
640 amd64_classify (type, class);
642 /* 2. If the type has class MEMORY, then the caller provides space
643 for the return value and passes the address of this storage in
644 %rdi as if it were the first argument to the function. In effect,
645 this address becomes a hidden first argument.
647 On return %rax will contain the address that has been passed in
648 by the caller in %rdi. */
649 if (class[0] == AMD64_MEMORY)
651 /* As indicated by the comment above, the ABI guarantees that we
652 can always find the return value just after the function has
653 returned. */
655 if (readbuf)
657 ULONGEST addr;
659 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
660 read_memory (addr, readbuf, TYPE_LENGTH (type));
663 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
666 /* 8. If the class is COMPLEX_X87, the real part of the value is
667 returned in %st0 and the imaginary part in %st1. */
668 if (class[0] == AMD64_COMPLEX_X87)
670 if (readbuf)
672 regcache_raw_read (regcache, AMD64_ST0_REGNUM, readbuf);
673 regcache_raw_read (regcache, AMD64_ST1_REGNUM, readbuf + 16);
676 if (writebuf)
678 i387_return_value (gdbarch, regcache);
679 regcache_raw_write (regcache, AMD64_ST0_REGNUM, writebuf);
680 regcache_raw_write (regcache, AMD64_ST1_REGNUM, writebuf + 16);
682 /* Fix up the tag word such that both %st(0) and %st(1) are
683 marked as valid. */
684 regcache_raw_write_unsigned (regcache, AMD64_FTAG_REGNUM, 0xfff);
687 return RETURN_VALUE_REGISTER_CONVENTION;
690 gdb_assert (class[1] != AMD64_MEMORY);
691 gdb_assert (len <= 16);
693 for (i = 0; len > 0; i++, len -= 8)
695 int regnum = -1;
696 int offset = 0;
698 switch (class[i])
700 case AMD64_INTEGER:
701 /* 3. If the class is INTEGER, the next available register
702 of the sequence %rax, %rdx is used. */
703 regnum = integer_regnum[integer_reg++];
704 break;
706 case AMD64_SSE:
707 /* 4. If the class is SSE, the next available SSE register
708 of the sequence %xmm0, %xmm1 is used. */
709 regnum = sse_regnum[sse_reg++];
710 break;
712 case AMD64_SSEUP:
713 /* 5. If the class is SSEUP, the eightbyte is passed in the
714 upper half of the last used SSE register. */
715 gdb_assert (sse_reg > 0);
716 regnum = sse_regnum[sse_reg - 1];
717 offset = 8;
718 break;
720 case AMD64_X87:
721 /* 6. If the class is X87, the value is returned on the X87
722 stack in %st0 as 80-bit x87 number. */
723 regnum = AMD64_ST0_REGNUM;
724 if (writebuf)
725 i387_return_value (gdbarch, regcache);
726 break;
728 case AMD64_X87UP:
729 /* 7. If the class is X87UP, the value is returned together
730 with the previous X87 value in %st0. */
731 gdb_assert (i > 0 && class[0] == AMD64_X87);
732 regnum = AMD64_ST0_REGNUM;
733 offset = 8;
734 len = 2;
735 break;
737 case AMD64_NO_CLASS:
738 continue;
740 default:
741 gdb_assert (!"Unexpected register class.");
744 gdb_assert (regnum != -1);
746 if (readbuf)
747 regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
748 readbuf + i * 8);
749 if (writebuf)
750 regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
751 writebuf + i * 8);
754 return RETURN_VALUE_REGISTER_CONVENTION;
758 static CORE_ADDR
759 amd64_push_arguments (struct regcache *regcache, int nargs,
760 struct value **args, CORE_ADDR sp, int struct_return)
762 static int integer_regnum[] =
764 AMD64_RDI_REGNUM, /* %rdi */
765 AMD64_RSI_REGNUM, /* %rsi */
766 AMD64_RDX_REGNUM, /* %rdx */
767 AMD64_RCX_REGNUM, /* %rcx */
768 AMD64_R8_REGNUM, /* %r8 */
769 AMD64_R9_REGNUM /* %r9 */
771 static int sse_regnum[] =
773 /* %xmm0 ... %xmm7 */
774 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
775 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
776 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
777 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
779 struct value **stack_args = alloca (nargs * sizeof (struct value *));
780 int num_stack_args = 0;
781 int num_elements = 0;
782 int element = 0;
783 int integer_reg = 0;
784 int sse_reg = 0;
785 int i;
787 /* Reserve a register for the "hidden" argument. */
788 if (struct_return)
789 integer_reg++;
791 for (i = 0; i < nargs; i++)
793 struct type *type = value_type (args[i]);
794 int len = TYPE_LENGTH (type);
795 enum amd64_reg_class class[2];
796 int needed_integer_regs = 0;
797 int needed_sse_regs = 0;
798 int j;
800 /* Classify argument. */
801 amd64_classify (type, class);
803 /* Calculate the number of integer and SSE registers needed for
804 this argument. */
805 for (j = 0; j < 2; j++)
807 if (class[j] == AMD64_INTEGER)
808 needed_integer_regs++;
809 else if (class[j] == AMD64_SSE)
810 needed_sse_regs++;
813 /* Check whether enough registers are available, and if the
814 argument should be passed in registers at all. */
815 if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
816 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
817 || (needed_integer_regs == 0 && needed_sse_regs == 0))
819 /* The argument will be passed on the stack. */
820 num_elements += ((len + 7) / 8);
821 stack_args[num_stack_args++] = args[i];
823 else
825 /* The argument will be passed in registers. */
826 const gdb_byte *valbuf = value_contents (args[i]);
827 gdb_byte buf[8];
829 gdb_assert (len <= 16);
831 for (j = 0; len > 0; j++, len -= 8)
833 int regnum = -1;
834 int offset = 0;
836 switch (class[j])
838 case AMD64_INTEGER:
839 regnum = integer_regnum[integer_reg++];
840 break;
842 case AMD64_SSE:
843 regnum = sse_regnum[sse_reg++];
844 break;
846 case AMD64_SSEUP:
847 gdb_assert (sse_reg > 0);
848 regnum = sse_regnum[sse_reg - 1];
849 offset = 8;
850 break;
852 default:
853 gdb_assert (!"Unexpected register class.");
856 gdb_assert (regnum != -1);
857 memset (buf, 0, sizeof buf);
858 memcpy (buf, valbuf + j * 8, min (len, 8));
859 regcache_raw_write_part (regcache, regnum, offset, 8, buf);
864 /* Allocate space for the arguments on the stack. */
865 sp -= num_elements * 8;
867 /* The psABI says that "The end of the input argument area shall be
868 aligned on a 16 byte boundary." */
869 sp &= ~0xf;
871 /* Write out the arguments to the stack. */
872 for (i = 0; i < num_stack_args; i++)
874 struct type *type = value_type (stack_args[i]);
875 const gdb_byte *valbuf = value_contents (stack_args[i]);
876 int len = TYPE_LENGTH (type);
878 write_memory (sp + element * 8, valbuf, len);
879 element += ((len + 7) / 8);
882 /* The psABI says that "For calls that may call functions that use
883 varargs or stdargs (prototype-less calls or calls to functions
884 containing ellipsis (...) in the declaration) %al is used as
885 hidden argument to specify the number of SSE registers used. */
886 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
887 return sp;
890 static CORE_ADDR
891 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
892 struct regcache *regcache, CORE_ADDR bp_addr,
893 int nargs, struct value **args, CORE_ADDR sp,
894 int struct_return, CORE_ADDR struct_addr)
896 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
897 gdb_byte buf[8];
899 /* Pass arguments. */
900 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
902 /* Pass "hidden" argument". */
903 if (struct_return)
905 store_unsigned_integer (buf, 8, byte_order, struct_addr);
906 regcache_cooked_write (regcache, AMD64_RDI_REGNUM, buf);
909 /* Store return address. */
910 sp -= 8;
911 store_unsigned_integer (buf, 8, byte_order, bp_addr);
912 write_memory (sp, buf, 8);
914 /* Finally, update the stack pointer... */
915 store_unsigned_integer (buf, 8, byte_order, sp);
916 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
918 /* ...and fake a frame pointer. */
919 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
921 return sp + 16;
924 /* Displaced instruction handling. */
926 /* A partially decoded instruction.
927 This contains enough details for displaced stepping purposes. */
929 struct amd64_insn
931 /* The number of opcode bytes. */
932 int opcode_len;
933 /* The offset of the rex prefix or -1 if not present. */
934 int rex_offset;
935 /* The offset to the first opcode byte. */
936 int opcode_offset;
937 /* The offset to the modrm byte or -1 if not present. */
938 int modrm_offset;
940 /* The raw instruction. */
941 gdb_byte *raw_insn;
944 struct displaced_step_closure
946 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
947 int tmp_used;
948 int tmp_regno;
949 ULONGEST tmp_save;
951 /* Details of the instruction. */
952 struct amd64_insn insn_details;
954 /* Amount of space allocated to insn_buf. */
955 int max_len;
957 /* The possibly modified insn.
958 This is a variable-length field. */
959 gdb_byte insn_buf[1];
962 /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
963 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
964 at which point delete these in favor of libopcodes' versions). */
966 static const unsigned char onebyte_has_modrm[256] = {
967 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
968 /* ------------------------------- */
969 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
970 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
971 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
972 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
973 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
974 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
975 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
976 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
977 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
978 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
979 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
980 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
981 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
982 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
983 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
984 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
985 /* ------------------------------- */
986 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
989 static const unsigned char twobyte_has_modrm[256] = {
990 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
991 /* ------------------------------- */
992 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
993 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
994 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
995 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
996 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
997 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
998 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
999 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
1000 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
1001 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
1002 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
1003 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
1004 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
1005 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
1006 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
1007 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
1008 /* ------------------------------- */
1009 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1012 static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
1014 static int
1015 rex_prefix_p (gdb_byte pfx)
1017 return REX_PREFIX_P (pfx);
1020 /* Skip the legacy instruction prefixes in INSN.
1021 We assume INSN is properly sentineled so we don't have to worry
1022 about falling off the end of the buffer. */
1024 static gdb_byte *
1025 amd64_skip_prefixes (gdb_byte *insn)
1027 while (1)
1029 switch (*insn)
1031 case DATA_PREFIX_OPCODE:
1032 case ADDR_PREFIX_OPCODE:
1033 case CS_PREFIX_OPCODE:
1034 case DS_PREFIX_OPCODE:
1035 case ES_PREFIX_OPCODE:
1036 case FS_PREFIX_OPCODE:
1037 case GS_PREFIX_OPCODE:
1038 case SS_PREFIX_OPCODE:
1039 case LOCK_PREFIX_OPCODE:
1040 case REPE_PREFIX_OPCODE:
1041 case REPNE_PREFIX_OPCODE:
1042 ++insn;
1043 continue;
1044 default:
1045 break;
1047 break;
1050 return insn;
1053 /* Return an integer register (other than RSP) that is unused as an input
1054 operand in INSN.
1055 In order to not require adding a rex prefix if the insn doesn't already
1056 have one, the result is restricted to RAX ... RDI, sans RSP.
1057 The register numbering of the result follows architecture ordering,
1058 e.g. RDI = 7. */
1060 static int
1061 amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1063 /* 1 bit for each reg */
1064 int used_regs_mask = 0;
1066 /* There can be at most 3 int regs used as inputs in an insn, and we have
1067 7 to choose from (RAX ... RDI, sans RSP).
1068 This allows us to take a conservative approach and keep things simple.
1069 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1070 that implicitly specify RAX. */
1072 /* Avoid RAX. */
1073 used_regs_mask |= 1 << EAX_REG_NUM;
1074 /* Similarily avoid RDX, implicit operand in divides. */
1075 used_regs_mask |= 1 << EDX_REG_NUM;
1076 /* Avoid RSP. */
1077 used_regs_mask |= 1 << ESP_REG_NUM;
1079 /* If the opcode is one byte long and there's no ModRM byte,
1080 assume the opcode specifies a register. */
1081 if (details->opcode_len == 1 && details->modrm_offset == -1)
1082 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1084 /* Mark used regs in the modrm/sib bytes. */
1085 if (details->modrm_offset != -1)
1087 int modrm = details->raw_insn[details->modrm_offset];
1088 int mod = MODRM_MOD_FIELD (modrm);
1089 int reg = MODRM_REG_FIELD (modrm);
1090 int rm = MODRM_RM_FIELD (modrm);
1091 int have_sib = mod != 3 && rm == 4;
1093 /* Assume the reg field of the modrm byte specifies a register. */
1094 used_regs_mask |= 1 << reg;
1096 if (have_sib)
1098 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
1099 int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
1100 used_regs_mask |= 1 << base;
1101 used_regs_mask |= 1 << idx;
1103 else
1105 used_regs_mask |= 1 << rm;
1109 gdb_assert (used_regs_mask < 256);
1110 gdb_assert (used_regs_mask != 255);
1112 /* Finally, find a free reg. */
1114 int i;
1116 for (i = 0; i < 8; ++i)
1118 if (! (used_regs_mask & (1 << i)))
1119 return i;
1122 /* We shouldn't get here. */
1123 internal_error (__FILE__, __LINE__, _("unable to find free reg"));
1127 /* Extract the details of INSN that we need. */
1129 static void
1130 amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1132 gdb_byte *start = insn;
1133 int need_modrm;
1135 details->raw_insn = insn;
1137 details->opcode_len = -1;
1138 details->rex_offset = -1;
1139 details->opcode_offset = -1;
1140 details->modrm_offset = -1;
1142 /* Skip legacy instruction prefixes. */
1143 insn = amd64_skip_prefixes (insn);
1145 /* Skip REX instruction prefix. */
1146 if (rex_prefix_p (*insn))
1148 details->rex_offset = insn - start;
1149 ++insn;
1152 details->opcode_offset = insn - start;
1154 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1156 /* Two or three-byte opcode. */
1157 ++insn;
1158 need_modrm = twobyte_has_modrm[*insn];
1160 /* Check for three-byte opcode. */
1161 switch (*insn)
1163 case 0x24:
1164 case 0x25:
1165 case 0x38:
1166 case 0x3a:
1167 case 0x7a:
1168 case 0x7b:
1169 ++insn;
1170 details->opcode_len = 3;
1171 break;
1172 default:
1173 details->opcode_len = 2;
1174 break;
1177 else
1179 /* One-byte opcode. */
1180 need_modrm = onebyte_has_modrm[*insn];
1181 details->opcode_len = 1;
1184 if (need_modrm)
1186 ++insn;
1187 details->modrm_offset = insn - start;
1191 /* Update %rip-relative addressing in INSN.
1193 %rip-relative addressing only uses a 32-bit displacement.
1194 32 bits is not enough to be guaranteed to cover the distance between where
1195 the real instruction is and where its copy is.
1196 Convert the insn to use base+disp addressing.
1197 We set base = pc + insn_length so we can leave disp unchanged. */
1199 static void
1200 fixup_riprel (struct gdbarch *gdbarch, struct displaced_step_closure *dsc,
1201 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1203 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1204 const struct amd64_insn *insn_details = &dsc->insn_details;
1205 int modrm_offset = insn_details->modrm_offset;
1206 gdb_byte *insn = insn_details->raw_insn + modrm_offset;
1207 CORE_ADDR rip_base;
1208 int32_t disp;
1209 int insn_length;
1210 int arch_tmp_regno, tmp_regno;
1211 ULONGEST orig_value;
1213 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1214 ++insn;
1216 /* Compute the rip-relative address. */
1217 disp = extract_signed_integer (insn, sizeof (int32_t), byte_order);
1218 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf,
1219 dsc->max_len, from);
1220 rip_base = from + insn_length;
1222 /* We need a register to hold the address.
1223 Pick one not used in the insn.
1224 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1225 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1226 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1228 /* REX.B should be unset as we were using rip-relative addressing,
1229 but ensure it's unset anyway, tmp_regno is not r8-r15. */
1230 if (insn_details->rex_offset != -1)
1231 dsc->insn_buf[insn_details->rex_offset] &= ~REX_B;
1233 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1234 dsc->tmp_regno = tmp_regno;
1235 dsc->tmp_save = orig_value;
1236 dsc->tmp_used = 1;
1238 /* Convert the ModRM field to be base+disp. */
1239 dsc->insn_buf[modrm_offset] &= ~0xc7;
1240 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1242 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1244 if (debug_displaced)
1245 fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
1246 "displaced: using temp reg %d, old value %s, new value %s\n",
1247 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1248 paddress (gdbarch, rip_base));
1251 static void
1252 fixup_displaced_copy (struct gdbarch *gdbarch,
1253 struct displaced_step_closure *dsc,
1254 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1256 const struct amd64_insn *details = &dsc->insn_details;
1258 if (details->modrm_offset != -1)
1260 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1262 if ((modrm & 0xc7) == 0x05)
1264 /* The insn uses rip-relative addressing.
1265 Deal with it. */
1266 fixup_riprel (gdbarch, dsc, from, to, regs);
1271 struct displaced_step_closure *
1272 amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1273 CORE_ADDR from, CORE_ADDR to,
1274 struct regcache *regs)
1276 int len = gdbarch_max_insn_length (gdbarch);
1277 /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to
1278 continually watch for running off the end of the buffer. */
1279 int fixup_sentinel_space = len;
1280 struct displaced_step_closure *dsc =
1281 xmalloc (sizeof (*dsc) + len + fixup_sentinel_space);
1282 gdb_byte *buf = &dsc->insn_buf[0];
1283 struct amd64_insn *details = &dsc->insn_details;
1285 dsc->tmp_used = 0;
1286 dsc->max_len = len + fixup_sentinel_space;
1288 read_memory (from, buf, len);
1290 /* Set up the sentinel space so we don't have to worry about running
1291 off the end of the buffer. An excessive number of leading prefixes
1292 could otherwise cause this. */
1293 memset (buf + len, 0, fixup_sentinel_space);
1295 amd64_get_insn_details (buf, details);
1297 /* GDB may get control back after the insn after the syscall.
1298 Presumably this is a kernel bug.
1299 If this is a syscall, make sure there's a nop afterwards. */
1301 int syscall_length;
1303 if (amd64_syscall_p (details, &syscall_length))
1304 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1307 /* Modify the insn to cope with the address where it will be executed from.
1308 In particular, handle any rip-relative addressing. */
1309 fixup_displaced_copy (gdbarch, dsc, from, to, regs);
1311 write_memory (to, buf, len);
1313 if (debug_displaced)
1315 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1316 paddress (gdbarch, from), paddress (gdbarch, to));
1317 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1320 return dsc;
1323 static int
1324 amd64_absolute_jmp_p (const struct amd64_insn *details)
1326 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1328 if (insn[0] == 0xff)
1330 /* jump near, absolute indirect (/4) */
1331 if ((insn[1] & 0x38) == 0x20)
1332 return 1;
1334 /* jump far, absolute indirect (/5) */
1335 if ((insn[1] & 0x38) == 0x28)
1336 return 1;
1339 return 0;
1342 static int
1343 amd64_absolute_call_p (const struct amd64_insn *details)
1345 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1347 if (insn[0] == 0xff)
1349 /* Call near, absolute indirect (/2) */
1350 if ((insn[1] & 0x38) == 0x10)
1351 return 1;
1353 /* Call far, absolute indirect (/3) */
1354 if ((insn[1] & 0x38) == 0x18)
1355 return 1;
1358 return 0;
1361 static int
1362 amd64_ret_p (const struct amd64_insn *details)
1364 /* NOTE: gcc can emit "repz ; ret". */
1365 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1367 switch (insn[0])
1369 case 0xc2: /* ret near, pop N bytes */
1370 case 0xc3: /* ret near */
1371 case 0xca: /* ret far, pop N bytes */
1372 case 0xcb: /* ret far */
1373 case 0xcf: /* iret */
1374 return 1;
1376 default:
1377 return 0;
1381 static int
1382 amd64_call_p (const struct amd64_insn *details)
1384 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1386 if (amd64_absolute_call_p (details))
1387 return 1;
1389 /* call near, relative */
1390 if (insn[0] == 0xe8)
1391 return 1;
1393 return 0;
1396 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
1397 length in bytes. Otherwise, return zero. */
1399 static int
1400 amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1402 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1404 if (insn[0] == 0x0f && insn[1] == 0x05)
1406 *lengthp = 2;
1407 return 1;
1410 return 0;
1413 /* Fix up the state of registers and memory after having single-stepped
1414 a displaced instruction. */
1416 void
1417 amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1418 struct displaced_step_closure *dsc,
1419 CORE_ADDR from, CORE_ADDR to,
1420 struct regcache *regs)
1422 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1423 /* The offset we applied to the instruction's address. */
1424 ULONGEST insn_offset = to - from;
1425 gdb_byte *insn = dsc->insn_buf;
1426 const struct amd64_insn *insn_details = &dsc->insn_details;
1428 if (debug_displaced)
1429 fprintf_unfiltered (gdb_stdlog,
1430 "displaced: fixup (%s, %s), "
1431 "insn = 0x%02x 0x%02x ...\n",
1432 paddress (gdbarch, from), paddress (gdbarch, to),
1433 insn[0], insn[1]);
1435 /* If we used a tmp reg, restore it. */
1437 if (dsc->tmp_used)
1439 if (debug_displaced)
1440 fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
1441 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
1442 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1445 /* The list of issues to contend with here is taken from
1446 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1447 Yay for Free Software! */
1449 /* Relocate the %rip back to the program's instruction stream,
1450 if necessary. */
1452 /* Except in the case of absolute or indirect jump or call
1453 instructions, or a return instruction, the new rip is relative to
1454 the displaced instruction; make it relative to the original insn.
1455 Well, signal handler returns don't need relocation either, but we use the
1456 value of %rip to recognize those; see below. */
1457 if (! amd64_absolute_jmp_p (insn_details)
1458 && ! amd64_absolute_call_p (insn_details)
1459 && ! amd64_ret_p (insn_details))
1461 ULONGEST orig_rip;
1462 int insn_len;
1464 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1466 /* A signal trampoline system call changes the %rip, resuming
1467 execution of the main program after the signal handler has
1468 returned. That makes them like 'return' instructions; we
1469 shouldn't relocate %rip.
1471 But most system calls don't, and we do need to relocate %rip.
1473 Our heuristic for distinguishing these cases: if stepping
1474 over the system call instruction left control directly after
1475 the instruction, the we relocate --- control almost certainly
1476 doesn't belong in the displaced copy. Otherwise, we assume
1477 the instruction has put control where it belongs, and leave
1478 it unrelocated. Goodness help us if there are PC-relative
1479 system calls. */
1480 if (amd64_syscall_p (insn_details, &insn_len)
1481 && orig_rip != to + insn_len
1482 /* GDB can get control back after the insn after the syscall.
1483 Presumably this is a kernel bug.
1484 Fixup ensures its a nop, we add one to the length for it. */
1485 && orig_rip != to + insn_len + 1)
1487 if (debug_displaced)
1488 fprintf_unfiltered (gdb_stdlog,
1489 "displaced: syscall changed %%rip; "
1490 "not relocating\n");
1492 else
1494 ULONGEST rip = orig_rip - insn_offset;
1496 /* If we just stepped over a breakpoint insn, we don't backup
1497 the pc on purpose; this is to match behaviour without
1498 stepping. */
1500 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1502 if (debug_displaced)
1503 fprintf_unfiltered (gdb_stdlog,
1504 "displaced: "
1505 "relocated %%rip from %s to %s\n",
1506 paddress (gdbarch, orig_rip),
1507 paddress (gdbarch, rip));
1511 /* If the instruction was PUSHFL, then the TF bit will be set in the
1512 pushed value, and should be cleared. We'll leave this for later,
1513 since GDB already messes up the TF flag when stepping over a
1514 pushfl. */
1516 /* If the instruction was a call, the return address now atop the
1517 stack is the address following the copied instruction. We need
1518 to make it the address following the original instruction. */
1519 if (amd64_call_p (insn_details))
1521 ULONGEST rsp;
1522 ULONGEST retaddr;
1523 const ULONGEST retaddr_len = 8;
1525 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
1526 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
1527 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
1528 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
1530 if (debug_displaced)
1531 fprintf_unfiltered (gdb_stdlog,
1532 "displaced: relocated return addr at %s "
1533 "to %s\n",
1534 paddress (gdbarch, rsp),
1535 paddress (gdbarch, retaddr));
1539 /* If the instruction INSN uses RIP-relative addressing, return the
1540 offset into the raw INSN where the displacement to be adjusted is
1541 found. Returns 0 if the instruction doesn't use RIP-relative
1542 addressing. */
1544 static int
1545 rip_relative_offset (struct amd64_insn *insn)
1547 if (insn->modrm_offset != -1)
1549 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1551 if ((modrm & 0xc7) == 0x05)
1553 /* The displacement is found right after the ModRM byte. */
1554 return insn->modrm_offset + 1;
1558 return 0;
1561 static void
1562 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1564 target_write_memory (*to, buf, len);
1565 *to += len;
1568 static void
1569 amd64_relocate_instruction (struct gdbarch *gdbarch,
1570 CORE_ADDR *to, CORE_ADDR oldloc)
1572 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1573 int len = gdbarch_max_insn_length (gdbarch);
1574 /* Extra space for sentinels. */
1575 int fixup_sentinel_space = len;
1576 gdb_byte *buf = xmalloc (len + fixup_sentinel_space);
1577 struct amd64_insn insn_details;
1578 int offset = 0;
1579 LONGEST rel32, newrel;
1580 gdb_byte *insn;
1581 int insn_length;
1583 read_memory (oldloc, buf, len);
1585 /* Set up the sentinel space so we don't have to worry about running
1586 off the end of the buffer. An excessive number of leading prefixes
1587 could otherwise cause this. */
1588 memset (buf + len, 0, fixup_sentinel_space);
1590 insn = buf;
1591 amd64_get_insn_details (insn, &insn_details);
1593 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1595 /* Skip legacy instruction prefixes. */
1596 insn = amd64_skip_prefixes (insn);
1598 /* Adjust calls with 32-bit relative addresses as push/jump, with
1599 the address pushed being the location where the original call in
1600 the user program would return to. */
1601 if (insn[0] == 0xe8)
1603 gdb_byte push_buf[16];
1604 unsigned int ret_addr;
1606 /* Where "ret" in the original code will return to. */
1607 ret_addr = oldloc + insn_length;
1608 push_buf[0] = 0x68; /* pushq $... */
1609 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1610 /* Push the push. */
1611 append_insns (to, 5, push_buf);
1613 /* Convert the relative call to a relative jump. */
1614 insn[0] = 0xe9;
1616 /* Adjust the destination offset. */
1617 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1618 newrel = (oldloc - *to) + rel32;
1619 store_signed_integer (insn + 1, 4, byte_order, newrel);
1621 if (debug_displaced)
1622 fprintf_unfiltered (gdb_stdlog,
1623 "Adjusted insn rel32=%s at %s to"
1624 " rel32=%s at %s\n",
1625 hex_string (rel32), paddress (gdbarch, oldloc),
1626 hex_string (newrel), paddress (gdbarch, *to));
1628 /* Write the adjusted jump into its displaced location. */
1629 append_insns (to, 5, insn);
1630 return;
1633 offset = rip_relative_offset (&insn_details);
1634 if (!offset)
1636 /* Adjust jumps with 32-bit relative addresses. Calls are
1637 already handled above. */
1638 if (insn[0] == 0xe9)
1639 offset = 1;
1640 /* Adjust conditional jumps. */
1641 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1642 offset = 2;
1645 if (offset)
1647 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1648 newrel = (oldloc - *to) + rel32;
1649 store_signed_integer (insn + offset, 4, byte_order, newrel);
1650 if (debug_displaced)
1651 fprintf_unfiltered (gdb_stdlog,
1652 "Adjusted insn rel32=%s at %s to"
1653 " rel32=%s at %s\n",
1654 hex_string (rel32), paddress (gdbarch, oldloc),
1655 hex_string (newrel), paddress (gdbarch, *to));
1658 /* Write the adjusted instruction into its displaced location. */
1659 append_insns (to, insn_length, buf);
1663 /* The maximum number of saved registers. This should include %rip. */
1664 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
1666 struct amd64_frame_cache
1668 /* Base address. */
1669 CORE_ADDR base;
1670 int base_p;
1671 CORE_ADDR sp_offset;
1672 CORE_ADDR pc;
1674 /* Saved registers. */
1675 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
1676 CORE_ADDR saved_sp;
1677 int saved_sp_reg;
1679 /* Do we have a frame? */
1680 int frameless_p;
1683 /* Initialize a frame cache. */
1685 static void
1686 amd64_init_frame_cache (struct amd64_frame_cache *cache)
1688 int i;
1690 /* Base address. */
1691 cache->base = 0;
1692 cache->base_p = 0;
1693 cache->sp_offset = -8;
1694 cache->pc = 0;
1696 /* Saved registers. We initialize these to -1 since zero is a valid
1697 offset (that's where %rbp is supposed to be stored).
1698 The values start out as being offsets, and are later converted to
1699 addresses (at which point -1 is interpreted as an address, still meaning
1700 "invalid"). */
1701 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1702 cache->saved_regs[i] = -1;
1703 cache->saved_sp = 0;
1704 cache->saved_sp_reg = -1;
1706 /* Frameless until proven otherwise. */
1707 cache->frameless_p = 1;
1710 /* Allocate and initialize a frame cache. */
1712 static struct amd64_frame_cache *
1713 amd64_alloc_frame_cache (void)
1715 struct amd64_frame_cache *cache;
1717 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
1718 amd64_init_frame_cache (cache);
1719 return cache;
1722 /* GCC 4.4 and later, can put code in the prologue to realign the
1723 stack pointer. Check whether PC points to such code, and update
1724 CACHE accordingly. Return the first instruction after the code
1725 sequence or CURRENT_PC, whichever is smaller. If we don't
1726 recognize the code, return PC. */
1728 static CORE_ADDR
1729 amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1730 struct amd64_frame_cache *cache)
1732 /* There are 2 code sequences to re-align stack before the frame
1733 gets set up:
1735 1. Use a caller-saved saved register:
1737 leaq 8(%rsp), %reg
1738 andq $-XXX, %rsp
1739 pushq -8(%reg)
1741 2. Use a callee-saved saved register:
1743 pushq %reg
1744 leaq 16(%rsp), %reg
1745 andq $-XXX, %rsp
1746 pushq -8(%reg)
1748 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
1750 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
1751 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
1754 gdb_byte buf[18];
1755 int reg, r;
1756 int offset, offset_and;
1758 if (target_read_memory (pc, buf, sizeof buf))
1759 return pc;
1761 /* Check caller-saved saved register. The first instruction has
1762 to be "leaq 8(%rsp), %reg". */
1763 if ((buf[0] & 0xfb) == 0x48
1764 && buf[1] == 0x8d
1765 && buf[3] == 0x24
1766 && buf[4] == 0x8)
1768 /* MOD must be binary 10 and R/M must be binary 100. */
1769 if ((buf[2] & 0xc7) != 0x44)
1770 return pc;
1772 /* REG has register number. */
1773 reg = (buf[2] >> 3) & 7;
1775 /* Check the REX.R bit. */
1776 if (buf[0] == 0x4c)
1777 reg += 8;
1779 offset = 5;
1781 else
1783 /* Check callee-saved saved register. The first instruction
1784 has to be "pushq %reg". */
1785 reg = 0;
1786 if ((buf[0] & 0xf8) == 0x50)
1787 offset = 0;
1788 else if ((buf[0] & 0xf6) == 0x40
1789 && (buf[1] & 0xf8) == 0x50)
1791 /* Check the REX.B bit. */
1792 if ((buf[0] & 1) != 0)
1793 reg = 8;
1795 offset = 1;
1797 else
1798 return pc;
1800 /* Get register. */
1801 reg += buf[offset] & 0x7;
1803 offset++;
1805 /* The next instruction has to be "leaq 16(%rsp), %reg". */
1806 if ((buf[offset] & 0xfb) != 0x48
1807 || buf[offset + 1] != 0x8d
1808 || buf[offset + 3] != 0x24
1809 || buf[offset + 4] != 0x10)
1810 return pc;
1812 /* MOD must be binary 10 and R/M must be binary 100. */
1813 if ((buf[offset + 2] & 0xc7) != 0x44)
1814 return pc;
1816 /* REG has register number. */
1817 r = (buf[offset + 2] >> 3) & 7;
1819 /* Check the REX.R bit. */
1820 if (buf[offset] == 0x4c)
1821 r += 8;
1823 /* Registers in pushq and leaq have to be the same. */
1824 if (reg != r)
1825 return pc;
1827 offset += 5;
1830 /* Rigister can't be %rsp nor %rbp. */
1831 if (reg == 4 || reg == 5)
1832 return pc;
1834 /* The next instruction has to be "andq $-XXX, %rsp". */
1835 if (buf[offset] != 0x48
1836 || buf[offset + 2] != 0xe4
1837 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
1838 return pc;
1840 offset_and = offset;
1841 offset += buf[offset + 1] == 0x81 ? 7 : 4;
1843 /* The next instruction has to be "pushq -8(%reg)". */
1844 r = 0;
1845 if (buf[offset] == 0xff)
1846 offset++;
1847 else if ((buf[offset] & 0xf6) == 0x40
1848 && buf[offset + 1] == 0xff)
1850 /* Check the REX.B bit. */
1851 if ((buf[offset] & 0x1) != 0)
1852 r = 8;
1853 offset += 2;
1855 else
1856 return pc;
1858 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
1859 01. */
1860 if (buf[offset + 1] != 0xf8
1861 || (buf[offset] & 0xf8) != 0x70)
1862 return pc;
1864 /* R/M has register. */
1865 r += buf[offset] & 7;
1867 /* Registers in leaq and pushq have to be the same. */
1868 if (reg != r)
1869 return pc;
1871 if (current_pc > pc + offset_and)
1872 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
1874 return min (pc + offset + 2, current_pc);
1877 /* Similar to amd64_analyze_stack_align for x32. */
1879 static CORE_ADDR
1880 amd64_x32_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1881 struct amd64_frame_cache *cache)
1883 /* There are 2 code sequences to re-align stack before the frame
1884 gets set up:
1886 1. Use a caller-saved saved register:
1888 leaq 8(%rsp), %reg
1889 andq $-XXX, %rsp
1890 pushq -8(%reg)
1894 [addr32] leal 8(%rsp), %reg
1895 andl $-XXX, %esp
1896 [addr32] pushq -8(%reg)
1898 2. Use a callee-saved saved register:
1900 pushq %reg
1901 leaq 16(%rsp), %reg
1902 andq $-XXX, %rsp
1903 pushq -8(%reg)
1907 pushq %reg
1908 [addr32] leal 16(%rsp), %reg
1909 andl $-XXX, %esp
1910 [addr32] pushq -8(%reg)
1912 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
1914 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
1915 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
1917 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1919 0x83 0xe4 0xf0 andl $-16, %esp
1920 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1923 gdb_byte buf[19];
1924 int reg, r;
1925 int offset, offset_and;
1927 if (target_read_memory (pc, buf, sizeof buf))
1928 return pc;
1930 /* Skip optional addr32 prefix. */
1931 offset = buf[0] == 0x67 ? 1 : 0;
1933 /* Check caller-saved saved register. The first instruction has
1934 to be "leaq 8(%rsp), %reg" or "leal 8(%rsp), %reg". */
1935 if (((buf[offset] & 0xfb) == 0x48 || (buf[offset] & 0xfb) == 0x40)
1936 && buf[offset + 1] == 0x8d
1937 && buf[offset + 3] == 0x24
1938 && buf[offset + 4] == 0x8)
1940 /* MOD must be binary 10 and R/M must be binary 100. */
1941 if ((buf[offset + 2] & 0xc7) != 0x44)
1942 return pc;
1944 /* REG has register number. */
1945 reg = (buf[offset + 2] >> 3) & 7;
1947 /* Check the REX.R bit. */
1948 if ((buf[offset] & 0x4) != 0)
1949 reg += 8;
1951 offset += 5;
1953 else
1955 /* Check callee-saved saved register. The first instruction
1956 has to be "pushq %reg". */
1957 reg = 0;
1958 if ((buf[offset] & 0xf6) == 0x40
1959 && (buf[offset + 1] & 0xf8) == 0x50)
1961 /* Check the REX.B bit. */
1962 if ((buf[offset] & 1) != 0)
1963 reg = 8;
1965 offset += 1;
1967 else if ((buf[offset] & 0xf8) != 0x50)
1968 return pc;
1970 /* Get register. */
1971 reg += buf[offset] & 0x7;
1973 offset++;
1975 /* Skip optional addr32 prefix. */
1976 if (buf[offset] == 0x67)
1977 offset++;
1979 /* The next instruction has to be "leaq 16(%rsp), %reg" or
1980 "leal 16(%rsp), %reg". */
1981 if (((buf[offset] & 0xfb) != 0x48 && (buf[offset] & 0xfb) != 0x40)
1982 || buf[offset + 1] != 0x8d
1983 || buf[offset + 3] != 0x24
1984 || buf[offset + 4] != 0x10)
1985 return pc;
1987 /* MOD must be binary 10 and R/M must be binary 100. */
1988 if ((buf[offset + 2] & 0xc7) != 0x44)
1989 return pc;
1991 /* REG has register number. */
1992 r = (buf[offset + 2] >> 3) & 7;
1994 /* Check the REX.R bit. */
1995 if ((buf[offset] & 0x4) != 0)
1996 r += 8;
1998 /* Registers in pushq and leaq have to be the same. */
1999 if (reg != r)
2000 return pc;
2002 offset += 5;
2005 /* Rigister can't be %rsp nor %rbp. */
2006 if (reg == 4 || reg == 5)
2007 return pc;
2009 /* The next instruction may be "andq $-XXX, %rsp" or
2010 "andl $-XXX, %esp". */
2011 if (buf[offset] != 0x48)
2012 offset--;
2014 if (buf[offset + 2] != 0xe4
2015 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2016 return pc;
2018 offset_and = offset;
2019 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2021 /* Skip optional addr32 prefix. */
2022 if (buf[offset] == 0x67)
2023 offset++;
2025 /* The next instruction has to be "pushq -8(%reg)". */
2026 r = 0;
2027 if (buf[offset] == 0xff)
2028 offset++;
2029 else if ((buf[offset] & 0xf6) == 0x40
2030 && buf[offset + 1] == 0xff)
2032 /* Check the REX.B bit. */
2033 if ((buf[offset] & 0x1) != 0)
2034 r = 8;
2035 offset += 2;
2037 else
2038 return pc;
2040 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2041 01. */
2042 if (buf[offset + 1] != 0xf8
2043 || (buf[offset] & 0xf8) != 0x70)
2044 return pc;
2046 /* R/M has register. */
2047 r += buf[offset] & 7;
2049 /* Registers in leaq and pushq have to be the same. */
2050 if (reg != r)
2051 return pc;
2053 if (current_pc > pc + offset_and)
2054 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2056 return min (pc + offset + 2, current_pc);
2059 /* Do a limited analysis of the prologue at PC and update CACHE
2060 accordingly. Bail out early if CURRENT_PC is reached. Return the
2061 address where the analysis stopped.
2063 We will handle only functions beginning with:
2065 pushq %rbp 0x55
2066 movq %rsp, %rbp 0x48 0x89 0xe5 (or 0x48 0x8b 0xec)
2068 or (for the X32 ABI):
2070 pushq %rbp 0x55
2071 movl %esp, %ebp 0x89 0xe5 (or 0x8b 0xec)
2073 Any function that doesn't start with one of these sequences will be
2074 assumed to have no prologue and thus no valid frame pointer in
2075 %rbp. */
2077 static CORE_ADDR
2078 amd64_analyze_prologue (struct gdbarch *gdbarch,
2079 CORE_ADDR pc, CORE_ADDR current_pc,
2080 struct amd64_frame_cache *cache)
2082 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2083 /* There are two variations of movq %rsp, %rbp. */
2084 static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 };
2085 static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec };
2086 /* Ditto for movl %esp, %ebp. */
2087 static const gdb_byte mov_esp_ebp_1[2] = { 0x89, 0xe5 };
2088 static const gdb_byte mov_esp_ebp_2[2] = { 0x8b, 0xec };
2090 gdb_byte buf[3];
2091 gdb_byte op;
2093 if (current_pc <= pc)
2094 return current_pc;
2096 if (gdbarch_ptr_bit (gdbarch) == 32)
2097 pc = amd64_x32_analyze_stack_align (pc, current_pc, cache);
2098 else
2099 pc = amd64_analyze_stack_align (pc, current_pc, cache);
2101 op = read_memory_unsigned_integer (pc, 1, byte_order);
2103 if (op == 0x55) /* pushq %rbp */
2105 /* Take into account that we've executed the `pushq %rbp' that
2106 starts this instruction sequence. */
2107 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
2108 cache->sp_offset += 8;
2110 /* If that's all, return now. */
2111 if (current_pc <= pc + 1)
2112 return current_pc;
2114 read_memory (pc + 1, buf, 3);
2116 /* Check for `movq %rsp, %rbp'. */
2117 if (memcmp (buf, mov_rsp_rbp_1, 3) == 0
2118 || memcmp (buf, mov_rsp_rbp_2, 3) == 0)
2120 /* OK, we actually have a frame. */
2121 cache->frameless_p = 0;
2122 return pc + 4;
2125 /* For X32, also check for `movq %esp, %ebp'. */
2126 if (gdbarch_ptr_bit (gdbarch) == 32)
2128 if (memcmp (buf, mov_esp_ebp_1, 2) == 0
2129 || memcmp (buf, mov_esp_ebp_2, 2) == 0)
2131 /* OK, we actually have a frame. */
2132 cache->frameless_p = 0;
2133 return pc + 3;
2137 return pc + 1;
2140 return pc;
2143 /* Work around false termination of prologue - GCC PR debug/48827.
2145 START_PC is the first instruction of a function, PC is its minimal already
2146 determined advanced address. Function returns PC if it has nothing to do.
2148 84 c0 test %al,%al
2149 74 23 je after
2150 <-- here is 0 lines advance - the false prologue end marker.
2151 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp)
2152 0f 29 4d 80 movaps %xmm1,-0x80(%rbp)
2153 0f 29 55 90 movaps %xmm2,-0x70(%rbp)
2154 0f 29 5d a0 movaps %xmm3,-0x60(%rbp)
2155 0f 29 65 b0 movaps %xmm4,-0x50(%rbp)
2156 0f 29 6d c0 movaps %xmm5,-0x40(%rbp)
2157 0f 29 75 d0 movaps %xmm6,-0x30(%rbp)
2158 0f 29 7d e0 movaps %xmm7,-0x20(%rbp)
2159 after: */
2161 static CORE_ADDR
2162 amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc)
2164 struct symtab_and_line start_pc_sal, next_sal;
2165 gdb_byte buf[4 + 8 * 7];
2166 int offset, xmmreg;
2168 if (pc == start_pc)
2169 return pc;
2171 start_pc_sal = find_pc_sect_line (start_pc, NULL, 0);
2172 if (start_pc_sal.symtab == NULL
2173 || producer_is_gcc_ge_4 (start_pc_sal.symtab->producer) < 6
2174 || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end)
2175 return pc;
2177 next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0);
2178 if (next_sal.line != start_pc_sal.line)
2179 return pc;
2181 /* START_PC can be from overlayed memory, ignored here. */
2182 if (target_read_memory (next_sal.pc - 4, buf, sizeof (buf)) != 0)
2183 return pc;
2185 /* test %al,%al */
2186 if (buf[0] != 0x84 || buf[1] != 0xc0)
2187 return pc;
2188 /* je AFTER */
2189 if (buf[2] != 0x74)
2190 return pc;
2192 offset = 4;
2193 for (xmmreg = 0; xmmreg < 8; xmmreg++)
2195 /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */
2196 if (buf[offset] != 0x0f || buf[offset + 1] != 0x29
2197 || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5))
2198 return pc;
2200 /* 0b01?????? */
2201 if ((buf[offset + 2] & 0xc0) == 0x40)
2203 /* 8-bit displacement. */
2204 offset += 4;
2206 /* 0b10?????? */
2207 else if ((buf[offset + 2] & 0xc0) == 0x80)
2209 /* 32-bit displacement. */
2210 offset += 7;
2212 else
2213 return pc;
2216 /* je AFTER */
2217 if (offset - 4 != buf[3])
2218 return pc;
2220 return next_sal.end;
2223 /* Return PC of first real instruction. */
2225 static CORE_ADDR
2226 amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2228 struct amd64_frame_cache cache;
2229 CORE_ADDR pc;
2230 CORE_ADDR func_addr;
2232 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
2234 CORE_ADDR post_prologue_pc
2235 = skip_prologue_using_sal (gdbarch, func_addr);
2236 struct symtab *s = find_pc_symtab (func_addr);
2238 /* Clang always emits a line note before the prologue and another
2239 one after. We trust clang to emit usable line notes. */
2240 if (post_prologue_pc
2241 && (s != NULL
2242 && s->producer != NULL
2243 && strncmp (s->producer, "clang ", sizeof ("clang ") - 1) == 0))
2244 return max (start_pc, post_prologue_pc);
2247 amd64_init_frame_cache (&cache);
2248 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
2249 &cache);
2250 if (cache.frameless_p)
2251 return start_pc;
2253 return amd64_skip_xmm_prologue (pc, start_pc);
2257 /* Normal frames. */
2259 static void
2260 amd64_frame_cache_1 (struct frame_info *this_frame,
2261 struct amd64_frame_cache *cache)
2263 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2264 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2265 gdb_byte buf[8];
2266 int i;
2268 cache->pc = get_frame_func (this_frame);
2269 if (cache->pc != 0)
2270 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2271 cache);
2273 if (cache->frameless_p)
2275 /* We didn't find a valid frame. If we're at the start of a
2276 function, or somewhere half-way its prologue, the function's
2277 frame probably hasn't been fully setup yet. Try to
2278 reconstruct the base address for the stack frame by looking
2279 at the stack pointer. For truly "frameless" functions this
2280 might work too. */
2282 if (cache->saved_sp_reg != -1)
2284 /* Stack pointer has been saved. */
2285 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2286 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
2288 /* We're halfway aligning the stack. */
2289 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
2290 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
2292 /* This will be added back below. */
2293 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
2295 else
2297 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2298 cache->base = extract_unsigned_integer (buf, 8, byte_order)
2299 + cache->sp_offset;
2302 else
2304 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
2305 cache->base = extract_unsigned_integer (buf, 8, byte_order);
2308 /* Now that we have the base address for the stack frame we can
2309 calculate the value of %rsp in the calling frame. */
2310 cache->saved_sp = cache->base + 16;
2312 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
2313 frame we find it at the same offset from the reconstructed base
2314 address. If we're halfway aligning the stack, %rip is handled
2315 differently (see above). */
2316 if (!cache->frameless_p || cache->saved_sp_reg == -1)
2317 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
2319 /* Adjust all the saved registers such that they contain addresses
2320 instead of offsets. */
2321 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
2322 if (cache->saved_regs[i] != -1)
2323 cache->saved_regs[i] += cache->base;
2325 cache->base_p = 1;
2328 static struct amd64_frame_cache *
2329 amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
2331 volatile struct gdb_exception ex;
2332 struct amd64_frame_cache *cache;
2334 if (*this_cache)
2335 return *this_cache;
2337 cache = amd64_alloc_frame_cache ();
2338 *this_cache = cache;
2340 TRY_CATCH (ex, RETURN_MASK_ERROR)
2342 amd64_frame_cache_1 (this_frame, cache);
2344 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2345 throw_exception (ex);
2347 return cache;
2350 static enum unwind_stop_reason
2351 amd64_frame_unwind_stop_reason (struct frame_info *this_frame,
2352 void **this_cache)
2354 struct amd64_frame_cache *cache =
2355 amd64_frame_cache (this_frame, this_cache);
2357 if (!cache->base_p)
2358 return UNWIND_UNAVAILABLE;
2360 /* This marks the outermost frame. */
2361 if (cache->base == 0)
2362 return UNWIND_OUTERMOST;
2364 return UNWIND_NO_REASON;
2367 static void
2368 amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2369 struct frame_id *this_id)
2371 struct amd64_frame_cache *cache =
2372 amd64_frame_cache (this_frame, this_cache);
2374 if (!cache->base_p)
2375 return;
2377 /* This marks the outermost frame. */
2378 if (cache->base == 0)
2379 return;
2381 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
2384 static struct value *
2385 amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2386 int regnum)
2388 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2389 struct amd64_frame_cache *cache =
2390 amd64_frame_cache (this_frame, this_cache);
2392 gdb_assert (regnum >= 0);
2394 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2395 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2397 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2398 return frame_unwind_got_memory (this_frame, regnum,
2399 cache->saved_regs[regnum]);
2401 return frame_unwind_got_register (this_frame, regnum, regnum);
2404 static const struct frame_unwind amd64_frame_unwind =
2406 NORMAL_FRAME,
2407 amd64_frame_unwind_stop_reason,
2408 amd64_frame_this_id,
2409 amd64_frame_prev_register,
2410 NULL,
2411 default_frame_sniffer
2414 /* Generate a bytecode expression to get the value of the saved PC. */
2416 static void
2417 amd64_gen_return_address (struct gdbarch *gdbarch,
2418 struct agent_expr *ax, struct axs_value *value,
2419 CORE_ADDR scope)
2421 /* The following sequence assumes the traditional use of the base
2422 register. */
2423 ax_reg (ax, AMD64_RBP_REGNUM);
2424 ax_const_l (ax, 8);
2425 ax_simple (ax, aop_add);
2426 value->type = register_type (gdbarch, AMD64_RIP_REGNUM);
2427 value->kind = axs_lvalue_memory;
2431 /* Signal trampolines. */
2433 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2434 64-bit variants. This would require using identical frame caches
2435 on both platforms. */
2437 static struct amd64_frame_cache *
2438 amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2440 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2441 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2442 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2443 volatile struct gdb_exception ex;
2444 struct amd64_frame_cache *cache;
2445 CORE_ADDR addr;
2446 gdb_byte buf[8];
2447 int i;
2449 if (*this_cache)
2450 return *this_cache;
2452 cache = amd64_alloc_frame_cache ();
2454 TRY_CATCH (ex, RETURN_MASK_ERROR)
2456 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2457 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2459 addr = tdep->sigcontext_addr (this_frame);
2460 gdb_assert (tdep->sc_reg_offset);
2461 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2462 for (i = 0; i < tdep->sc_num_regs; i++)
2463 if (tdep->sc_reg_offset[i] != -1)
2464 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2466 cache->base_p = 1;
2468 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2469 throw_exception (ex);
2471 *this_cache = cache;
2472 return cache;
2475 static enum unwind_stop_reason
2476 amd64_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2477 void **this_cache)
2479 struct amd64_frame_cache *cache =
2480 amd64_sigtramp_frame_cache (this_frame, this_cache);
2482 if (!cache->base_p)
2483 return UNWIND_UNAVAILABLE;
2485 return UNWIND_NO_REASON;
2488 static void
2489 amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
2490 void **this_cache, struct frame_id *this_id)
2492 struct amd64_frame_cache *cache =
2493 amd64_sigtramp_frame_cache (this_frame, this_cache);
2495 if (!cache->base_p)
2496 return;
2498 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
2501 static struct value *
2502 amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2503 void **this_cache, int regnum)
2505 /* Make sure we've initialized the cache. */
2506 amd64_sigtramp_frame_cache (this_frame, this_cache);
2508 return amd64_frame_prev_register (this_frame, this_cache, regnum);
2511 static int
2512 amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2513 struct frame_info *this_frame,
2514 void **this_cache)
2516 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2518 /* We shouldn't even bother if we don't have a sigcontext_addr
2519 handler. */
2520 if (tdep->sigcontext_addr == NULL)
2521 return 0;
2523 if (tdep->sigtramp_p != NULL)
2525 if (tdep->sigtramp_p (this_frame))
2526 return 1;
2529 if (tdep->sigtramp_start != 0)
2531 CORE_ADDR pc = get_frame_pc (this_frame);
2533 gdb_assert (tdep->sigtramp_end != 0);
2534 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2535 return 1;
2538 return 0;
2541 static const struct frame_unwind amd64_sigtramp_frame_unwind =
2543 SIGTRAMP_FRAME,
2544 amd64_sigtramp_frame_unwind_stop_reason,
2545 amd64_sigtramp_frame_this_id,
2546 amd64_sigtramp_frame_prev_register,
2547 NULL,
2548 amd64_sigtramp_frame_sniffer
2552 static CORE_ADDR
2553 amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2555 struct amd64_frame_cache *cache =
2556 amd64_frame_cache (this_frame, this_cache);
2558 return cache->base;
2561 static const struct frame_base amd64_frame_base =
2563 &amd64_frame_unwind,
2564 amd64_frame_base_address,
2565 amd64_frame_base_address,
2566 amd64_frame_base_address
2569 /* Normal frames, but in a function epilogue. */
2571 /* The epilogue is defined here as the 'ret' instruction, which will
2572 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2573 the function's stack frame. */
2575 static int
2576 amd64_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2578 gdb_byte insn;
2579 struct symtab *symtab;
2581 symtab = find_pc_symtab (pc);
2582 if (symtab && symtab->epilogue_unwind_valid)
2583 return 0;
2585 if (target_read_memory (pc, &insn, 1))
2586 return 0; /* Can't read memory at pc. */
2588 if (insn != 0xc3) /* 'ret' instruction. */
2589 return 0;
2591 return 1;
2594 static int
2595 amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2596 struct frame_info *this_frame,
2597 void **this_prologue_cache)
2599 if (frame_relative_level (this_frame) == 0)
2600 return amd64_in_function_epilogue_p (get_frame_arch (this_frame),
2601 get_frame_pc (this_frame));
2602 else
2603 return 0;
2606 static struct amd64_frame_cache *
2607 amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2609 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2610 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2611 volatile struct gdb_exception ex;
2612 struct amd64_frame_cache *cache;
2613 gdb_byte buf[8];
2615 if (*this_cache)
2616 return *this_cache;
2618 cache = amd64_alloc_frame_cache ();
2619 *this_cache = cache;
2621 TRY_CATCH (ex, RETURN_MASK_ERROR)
2623 /* Cache base will be %esp plus cache->sp_offset (-8). */
2624 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2625 cache->base = extract_unsigned_integer (buf, 8,
2626 byte_order) + cache->sp_offset;
2628 /* Cache pc will be the frame func. */
2629 cache->pc = get_frame_pc (this_frame);
2631 /* The saved %esp will be at cache->base plus 16. */
2632 cache->saved_sp = cache->base + 16;
2634 /* The saved %eip will be at cache->base plus 8. */
2635 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
2637 cache->base_p = 1;
2639 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2640 throw_exception (ex);
2642 return cache;
2645 static enum unwind_stop_reason
2646 amd64_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2647 void **this_cache)
2649 struct amd64_frame_cache *cache
2650 = amd64_epilogue_frame_cache (this_frame, this_cache);
2652 if (!cache->base_p)
2653 return UNWIND_UNAVAILABLE;
2655 return UNWIND_NO_REASON;
2658 static void
2659 amd64_epilogue_frame_this_id (struct frame_info *this_frame,
2660 void **this_cache,
2661 struct frame_id *this_id)
2663 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2664 this_cache);
2666 if (!cache->base_p)
2667 return;
2669 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2672 static const struct frame_unwind amd64_epilogue_frame_unwind =
2674 NORMAL_FRAME,
2675 amd64_epilogue_frame_unwind_stop_reason,
2676 amd64_epilogue_frame_this_id,
2677 amd64_frame_prev_register,
2678 NULL,
2679 amd64_epilogue_frame_sniffer
2682 static struct frame_id
2683 amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2685 CORE_ADDR fp;
2687 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
2689 return frame_id_build (fp + 16, get_frame_pc (this_frame));
2692 /* 16 byte align the SP per frame requirements. */
2694 static CORE_ADDR
2695 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2697 return sp & -(CORE_ADDR)16;
2701 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2702 in the floating-point register set REGSET to register cache
2703 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2705 static void
2706 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2707 int regnum, const void *fpregs, size_t len)
2709 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2711 gdb_assert (len == tdep->sizeof_fpregset);
2712 amd64_supply_fxsave (regcache, regnum, fpregs);
2715 /* Collect register REGNUM from the register cache REGCACHE and store
2716 it in the buffer specified by FPREGS and LEN as described by the
2717 floating-point register set REGSET. If REGNUM is -1, do this for
2718 all registers in REGSET. */
2720 static void
2721 amd64_collect_fpregset (const struct regset *regset,
2722 const struct regcache *regcache,
2723 int regnum, void *fpregs, size_t len)
2725 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2727 gdb_assert (len == tdep->sizeof_fpregset);
2728 amd64_collect_fxsave (regcache, regnum, fpregs);
2731 /* Similar to amd64_supply_fpregset, but use XSAVE extended state. */
2733 static void
2734 amd64_supply_xstateregset (const struct regset *regset,
2735 struct regcache *regcache, int regnum,
2736 const void *xstateregs, size_t len)
2738 amd64_supply_xsave (regcache, regnum, xstateregs);
2741 /* Similar to amd64_collect_fpregset, but use XSAVE extended state. */
2743 static void
2744 amd64_collect_xstateregset (const struct regset *regset,
2745 const struct regcache *regcache,
2746 int regnum, void *xstateregs, size_t len)
2748 amd64_collect_xsave (regcache, regnum, xstateregs, 1);
2751 /* Return the appropriate register set for the core section identified
2752 by SECT_NAME and SECT_SIZE. */
2754 static const struct regset *
2755 amd64_regset_from_core_section (struct gdbarch *gdbarch,
2756 const char *sect_name, size_t sect_size)
2758 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2760 if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2762 if (tdep->fpregset == NULL)
2763 tdep->fpregset = regset_alloc (gdbarch, amd64_supply_fpregset,
2764 amd64_collect_fpregset);
2766 return tdep->fpregset;
2769 if (strcmp (sect_name, ".reg-xstate") == 0)
2771 if (tdep->xstateregset == NULL)
2772 tdep->xstateregset = regset_alloc (gdbarch,
2773 amd64_supply_xstateregset,
2774 amd64_collect_xstateregset);
2776 return tdep->xstateregset;
2779 return i386_regset_from_core_section (gdbarch, sect_name, sect_size);
2783 /* Figure out where the longjmp will land. Slurp the jmp_buf out of
2784 %rdi. We expect its value to be a pointer to the jmp_buf structure
2785 from which we extract the address that we will land at. This
2786 address is copied into PC. This routine returns non-zero on
2787 success. */
2789 static int
2790 amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2792 gdb_byte buf[8];
2793 CORE_ADDR jb_addr;
2794 struct gdbarch *gdbarch = get_frame_arch (frame);
2795 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2796 int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
2798 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2799 longjmp will land. */
2800 if (jb_pc_offset == -1)
2801 return 0;
2803 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
2804 jb_addr= extract_typed_address
2805 (buf, builtin_type (gdbarch)->builtin_data_ptr);
2806 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
2807 return 0;
2809 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
2811 return 1;
2814 static const int amd64_record_regmap[] =
2816 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
2817 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
2818 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
2819 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
2820 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
2821 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
2824 void
2825 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2827 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2828 const struct target_desc *tdesc = info.target_desc;
2830 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
2831 floating-point registers. */
2832 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
2834 if (! tdesc_has_registers (tdesc))
2835 tdesc = tdesc_amd64;
2836 tdep->tdesc = tdesc;
2838 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
2839 tdep->register_names = amd64_register_names;
2841 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
2843 tdep->ymmh_register_names = amd64_ymmh_names;
2844 tdep->num_ymm_regs = 16;
2845 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
2848 tdep->num_byte_regs = 20;
2849 tdep->num_word_regs = 16;
2850 tdep->num_dword_regs = 16;
2851 /* Avoid wiring in the MMX registers for now. */
2852 tdep->num_mmx_regs = 0;
2854 set_gdbarch_pseudo_register_read_value (gdbarch,
2855 amd64_pseudo_register_read_value);
2856 set_gdbarch_pseudo_register_write (gdbarch,
2857 amd64_pseudo_register_write);
2859 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
2861 /* AMD64 has an FPU and 16 SSE registers. */
2862 tdep->st0_regnum = AMD64_ST0_REGNUM;
2863 tdep->num_xmm_regs = 16;
2865 /* This is what all the fuss is about. */
2866 set_gdbarch_long_bit (gdbarch, 64);
2867 set_gdbarch_long_long_bit (gdbarch, 64);
2868 set_gdbarch_ptr_bit (gdbarch, 64);
2870 /* In contrast to the i386, on AMD64 a `long double' actually takes
2871 up 128 bits, even though it's still based on the i387 extended
2872 floating-point format which has only 80 significant bits. */
2873 set_gdbarch_long_double_bit (gdbarch, 128);
2875 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
2877 /* Register numbers of various important registers. */
2878 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
2879 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
2880 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
2881 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
2883 /* The "default" register numbering scheme for AMD64 is referred to
2884 as the "DWARF Register Number Mapping" in the System V psABI.
2885 The preferred debugging format for all known AMD64 targets is
2886 actually DWARF2, and GCC doesn't seem to support DWARF (that is
2887 DWARF-1), but we provide the same mapping just in case. This
2888 mapping is also used for stabs, which GCC does support. */
2889 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
2890 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
2892 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
2893 be in use on any of the supported AMD64 targets. */
2895 /* Call dummy code. */
2896 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
2897 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
2898 set_gdbarch_frame_red_zone_size (gdbarch, 128);
2900 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
2901 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
2902 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
2904 set_gdbarch_return_value (gdbarch, amd64_return_value);
2906 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
2908 tdep->record_regmap = amd64_record_regmap;
2910 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
2912 /* Hook the function epilogue frame unwinder. This unwinder is
2913 appended to the list first, so that it supercedes the other
2914 unwinders in function epilogues. */
2915 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
2917 /* Hook the prologue-based frame unwinders. */
2918 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
2919 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
2920 frame_base_set_default (gdbarch, &amd64_frame_base);
2922 /* If we have a register mapping, enable the generic core file support. */
2923 if (tdep->gregset_reg_offset)
2924 set_gdbarch_regset_from_core_section (gdbarch,
2925 amd64_regset_from_core_section);
2927 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
2929 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
2931 set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address);
2933 /* SystemTap variables and functions. */
2934 set_gdbarch_stap_integer_prefix (gdbarch, "$");
2935 set_gdbarch_stap_register_prefix (gdbarch, "%");
2936 set_gdbarch_stap_register_indirection_prefix (gdbarch, "(");
2937 set_gdbarch_stap_register_indirection_suffix (gdbarch, ")");
2938 set_gdbarch_stap_is_single_operand (gdbarch,
2939 i386_stap_is_single_operand);
2940 set_gdbarch_stap_parse_special_token (gdbarch,
2941 i386_stap_parse_special_token);
2945 static struct type *
2946 amd64_x32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2948 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2950 switch (regnum - tdep->eax_regnum)
2952 case AMD64_RBP_REGNUM: /* %ebp */
2953 case AMD64_RSP_REGNUM: /* %esp */
2954 return builtin_type (gdbarch)->builtin_data_ptr;
2955 case AMD64_RIP_REGNUM: /* %eip */
2956 return builtin_type (gdbarch)->builtin_func_ptr;
2959 return i386_pseudo_register_type (gdbarch, regnum);
2962 void
2963 amd64_x32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2965 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2966 const struct target_desc *tdesc = info.target_desc;
2968 amd64_init_abi (info, gdbarch);
2970 if (! tdesc_has_registers (tdesc))
2971 tdesc = tdesc_x32;
2972 tdep->tdesc = tdesc;
2974 tdep->num_dword_regs = 17;
2975 set_tdesc_pseudo_register_type (gdbarch, amd64_x32_pseudo_register_type);
2977 set_gdbarch_long_bit (gdbarch, 32);
2978 set_gdbarch_ptr_bit (gdbarch, 32);
2981 /* Provide a prototype to silence -Wmissing-prototypes. */
2982 void _initialize_amd64_tdep (void);
2984 void
2985 _initialize_amd64_tdep (void)
2987 initialize_tdesc_amd64 ();
2988 initialize_tdesc_amd64_avx ();
2989 initialize_tdesc_x32 ();
2990 initialize_tdesc_x32_avx ();
2994 /* The 64-bit FXSAVE format differs from the 32-bit format in the
2995 sense that the instruction pointer and data pointer are simply
2996 64-bit offsets into the code segment and the data segment instead
2997 of a selector offset pair. The functions below store the upper 32
2998 bits of these pointers (instead of just the 16-bits of the segment
2999 selector). */
3001 /* Fill register REGNUM in REGCACHE with the appropriate
3002 floating-point or SSE register value from *FXSAVE. If REGNUM is
3003 -1, do this for all registers. This function masks off any of the
3004 reserved bits in *FXSAVE. */
3006 void
3007 amd64_supply_fxsave (struct regcache *regcache, int regnum,
3008 const void *fxsave)
3010 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3011 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3013 i387_supply_fxsave (regcache, regnum, fxsave);
3015 if (fxsave
3016 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3018 const gdb_byte *regs = fxsave;
3020 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3021 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
3022 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3023 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
3027 /* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
3029 void
3030 amd64_supply_xsave (struct regcache *regcache, int regnum,
3031 const void *xsave)
3033 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3034 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3036 i387_supply_xsave (regcache, regnum, xsave);
3038 if (xsave
3039 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3041 const gdb_byte *regs = xsave;
3043 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3044 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep),
3045 regs + 12);
3046 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3047 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep),
3048 regs + 20);
3052 /* Fill register REGNUM (if it is a floating-point or SSE register) in
3053 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
3054 all registers. This function doesn't touch any of the reserved
3055 bits in *FXSAVE. */
3057 void
3058 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
3059 void *fxsave)
3061 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3062 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3063 gdb_byte *regs = fxsave;
3065 i387_collect_fxsave (regcache, regnum, fxsave);
3067 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3069 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3070 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
3071 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3072 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
3076 /* Similar to amd64_collect_fxsave, but use XSAVE extended state. */
3078 void
3079 amd64_collect_xsave (const struct regcache *regcache, int regnum,
3080 void *xsave, int gcore)
3082 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3083 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3084 gdb_byte *regs = xsave;
3086 i387_collect_xsave (regcache, regnum, xsave, gcore);
3088 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3090 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3091 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep),
3092 regs + 12);
3093 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3094 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep),
3095 regs + 20);