merge from gcc
[gdb/gnu.git] / bfd / section.c
blobfb19d8cc3afbdfc3ceb8e9a4c8c6a32d35567a86
1 /* Object file "section" support for the BFD library.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011,
4 2012, 2013
5 Free Software Foundation, Inc.
6 Written by Cygnus Support.
8 This file is part of BFD, the Binary File Descriptor library.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
23 MA 02110-1301, USA. */
26 SECTION
27 Sections
29 The raw data contained within a BFD is maintained through the
30 section abstraction. A single BFD may have any number of
31 sections. It keeps hold of them by pointing to the first;
32 each one points to the next in the list.
34 Sections are supported in BFD in <<section.c>>.
36 @menu
37 @* Section Input::
38 @* Section Output::
39 @* typedef asection::
40 @* section prototypes::
41 @end menu
43 INODE
44 Section Input, Section Output, Sections, Sections
45 SUBSECTION
46 Section input
48 When a BFD is opened for reading, the section structures are
49 created and attached to the BFD.
51 Each section has a name which describes the section in the
52 outside world---for example, <<a.out>> would contain at least
53 three sections, called <<.text>>, <<.data>> and <<.bss>>.
55 Names need not be unique; for example a COFF file may have several
56 sections named <<.data>>.
58 Sometimes a BFD will contain more than the ``natural'' number of
59 sections. A back end may attach other sections containing
60 constructor data, or an application may add a section (using
61 <<bfd_make_section>>) to the sections attached to an already open
62 BFD. For example, the linker creates an extra section
63 <<COMMON>> for each input file's BFD to hold information about
64 common storage.
66 The raw data is not necessarily read in when
67 the section descriptor is created. Some targets may leave the
68 data in place until a <<bfd_get_section_contents>> call is
69 made. Other back ends may read in all the data at once. For
70 example, an S-record file has to be read once to determine the
71 size of the data. An IEEE-695 file doesn't contain raw data in
72 sections, but data and relocation expressions intermixed, so
73 the data area has to be parsed to get out the data and
74 relocations.
76 INODE
77 Section Output, typedef asection, Section Input, Sections
79 SUBSECTION
80 Section output
82 To write a new object style BFD, the various sections to be
83 written have to be created. They are attached to the BFD in
84 the same way as input sections; data is written to the
85 sections using <<bfd_set_section_contents>>.
87 Any program that creates or combines sections (e.g., the assembler
88 and linker) must use the <<asection>> fields <<output_section>> and
89 <<output_offset>> to indicate the file sections to which each
90 section must be written. (If the section is being created from
91 scratch, <<output_section>> should probably point to the section
92 itself and <<output_offset>> should probably be zero.)
94 The data to be written comes from input sections attached
95 (via <<output_section>> pointers) to
96 the output sections. The output section structure can be
97 considered a filter for the input section: the output section
98 determines the vma of the output data and the name, but the
99 input section determines the offset into the output section of
100 the data to be written.
102 E.g., to create a section "O", starting at 0x100, 0x123 long,
103 containing two subsections, "A" at offset 0x0 (i.e., at vma
104 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
105 structures would look like:
107 | section name "A"
108 | output_offset 0x00
109 | size 0x20
110 | output_section -----------> section name "O"
111 | | vma 0x100
112 | section name "B" | size 0x123
113 | output_offset 0x20 |
114 | size 0x103 |
115 | output_section --------|
117 SUBSECTION
118 Link orders
120 The data within a section is stored in a @dfn{link_order}.
121 These are much like the fixups in <<gas>>. The link_order
122 abstraction allows a section to grow and shrink within itself.
124 A link_order knows how big it is, and which is the next
125 link_order and where the raw data for it is; it also points to
126 a list of relocations which apply to it.
128 The link_order is used by the linker to perform relaxing on
129 final code. The compiler creates code which is as big as
130 necessary to make it work without relaxing, and the user can
131 select whether to relax. Sometimes relaxing takes a lot of
132 time. The linker runs around the relocations to see if any
133 are attached to data which can be shrunk, if so it does it on
134 a link_order by link_order basis.
138 #include "sysdep.h"
139 #include "bfd.h"
140 #include "libbfd.h"
141 #include "bfdlink.h"
144 DOCDD
145 INODE
146 typedef asection, section prototypes, Section Output, Sections
147 SUBSECTION
148 typedef asection
150 Here is the section structure:
152 CODE_FRAGMENT
154 .typedef struct bfd_section
156 . {* The name of the section; the name isn't a copy, the pointer is
157 . the same as that passed to bfd_make_section. *}
158 . const char *name;
160 . {* A unique sequence number. *}
161 . int id;
163 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *}
164 . int index;
166 . {* The next section in the list belonging to the BFD, or NULL. *}
167 . struct bfd_section *next;
169 . {* The previous section in the list belonging to the BFD, or NULL. *}
170 . struct bfd_section *prev;
172 . {* The field flags contains attributes of the section. Some
173 . flags are read in from the object file, and some are
174 . synthesized from other information. *}
175 . flagword flags;
177 .#define SEC_NO_FLAGS 0x000
179 . {* Tells the OS to allocate space for this section when loading.
180 . This is clear for a section containing debug information only. *}
181 .#define SEC_ALLOC 0x001
183 . {* Tells the OS to load the section from the file when loading.
184 . This is clear for a .bss section. *}
185 .#define SEC_LOAD 0x002
187 . {* The section contains data still to be relocated, so there is
188 . some relocation information too. *}
189 .#define SEC_RELOC 0x004
191 . {* A signal to the OS that the section contains read only data. *}
192 .#define SEC_READONLY 0x008
194 . {* The section contains code only. *}
195 .#define SEC_CODE 0x010
197 . {* The section contains data only. *}
198 .#define SEC_DATA 0x020
200 . {* The section will reside in ROM. *}
201 .#define SEC_ROM 0x040
203 . {* The section contains constructor information. This section
204 . type is used by the linker to create lists of constructors and
205 . destructors used by <<g++>>. When a back end sees a symbol
206 . which should be used in a constructor list, it creates a new
207 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
208 . the symbol to it, and builds a relocation. To build the lists
209 . of constructors, all the linker has to do is catenate all the
210 . sections called <<__CTOR_LIST__>> and relocate the data
211 . contained within - exactly the operations it would peform on
212 . standard data. *}
213 .#define SEC_CONSTRUCTOR 0x080
215 . {* The section has contents - a data section could be
216 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
217 . <<SEC_HAS_CONTENTS>> *}
218 .#define SEC_HAS_CONTENTS 0x100
220 . {* An instruction to the linker to not output the section
221 . even if it has information which would normally be written. *}
222 .#define SEC_NEVER_LOAD 0x200
224 . {* The section contains thread local data. *}
225 .#define SEC_THREAD_LOCAL 0x400
227 . {* The section has GOT references. This flag is only for the
228 . linker, and is currently only used by the elf32-hppa back end.
229 . It will be set if global offset table references were detected
230 . in this section, which indicate to the linker that the section
231 . contains PIC code, and must be handled specially when doing a
232 . static link. *}
233 .#define SEC_HAS_GOT_REF 0x800
235 . {* The section contains common symbols (symbols may be defined
236 . multiple times, the value of a symbol is the amount of
237 . space it requires, and the largest symbol value is the one
238 . used). Most targets have exactly one of these (which we
239 . translate to bfd_com_section_ptr), but ECOFF has two. *}
240 .#define SEC_IS_COMMON 0x1000
242 . {* The section contains only debugging information. For
243 . example, this is set for ELF .debug and .stab sections.
244 . strip tests this flag to see if a section can be
245 . discarded. *}
246 .#define SEC_DEBUGGING 0x2000
248 . {* The contents of this section are held in memory pointed to
249 . by the contents field. This is checked by bfd_get_section_contents,
250 . and the data is retrieved from memory if appropriate. *}
251 .#define SEC_IN_MEMORY 0x4000
253 . {* The contents of this section are to be excluded by the
254 . linker for executable and shared objects unless those
255 . objects are to be further relocated. *}
256 .#define SEC_EXCLUDE 0x8000
258 . {* The contents of this section are to be sorted based on the sum of
259 . the symbol and addend values specified by the associated relocation
260 . entries. Entries without associated relocation entries will be
261 . appended to the end of the section in an unspecified order. *}
262 .#define SEC_SORT_ENTRIES 0x10000
264 . {* When linking, duplicate sections of the same name should be
265 . discarded, rather than being combined into a single section as
266 . is usually done. This is similar to how common symbols are
267 . handled. See SEC_LINK_DUPLICATES below. *}
268 .#define SEC_LINK_ONCE 0x20000
270 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
271 . should handle duplicate sections. *}
272 .#define SEC_LINK_DUPLICATES 0xc0000
274 . {* This value for SEC_LINK_DUPLICATES means that duplicate
275 . sections with the same name should simply be discarded. *}
276 .#define SEC_LINK_DUPLICATES_DISCARD 0x0
278 . {* This value for SEC_LINK_DUPLICATES means that the linker
279 . should warn if there are any duplicate sections, although
280 . it should still only link one copy. *}
281 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000
283 . {* This value for SEC_LINK_DUPLICATES means that the linker
284 . should warn if any duplicate sections are a different size. *}
285 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000
287 . {* This value for SEC_LINK_DUPLICATES means that the linker
288 . should warn if any duplicate sections contain different
289 . contents. *}
290 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
291 . (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
293 . {* This section was created by the linker as part of dynamic
294 . relocation or other arcane processing. It is skipped when
295 . going through the first-pass output, trusting that someone
296 . else up the line will take care of it later. *}
297 .#define SEC_LINKER_CREATED 0x100000
299 . {* This section should not be subject to garbage collection.
300 . Also set to inform the linker that this section should not be
301 . listed in the link map as discarded. *}
302 .#define SEC_KEEP 0x200000
304 . {* This section contains "short" data, and should be placed
305 . "near" the GP. *}
306 .#define SEC_SMALL_DATA 0x400000
308 . {* Attempt to merge identical entities in the section.
309 . Entity size is given in the entsize field. *}
310 .#define SEC_MERGE 0x800000
312 . {* If given with SEC_MERGE, entities to merge are zero terminated
313 . strings where entsize specifies character size instead of fixed
314 . size entries. *}
315 .#define SEC_STRINGS 0x1000000
317 . {* This section contains data about section groups. *}
318 .#define SEC_GROUP 0x2000000
320 . {* The section is a COFF shared library section. This flag is
321 . only for the linker. If this type of section appears in
322 . the input file, the linker must copy it to the output file
323 . without changing the vma or size. FIXME: Although this
324 . was originally intended to be general, it really is COFF
325 . specific (and the flag was renamed to indicate this). It
326 . might be cleaner to have some more general mechanism to
327 . allow the back end to control what the linker does with
328 . sections. *}
329 .#define SEC_COFF_SHARED_LIBRARY 0x4000000
331 . {* This input section should be copied to output in reverse order
332 . as an array of pointers. This is for ELF linker internal use
333 . only. *}
334 .#define SEC_ELF_REVERSE_COPY 0x4000000
336 . {* This section contains data which may be shared with other
337 . executables or shared objects. This is for COFF only. *}
338 .#define SEC_COFF_SHARED 0x8000000
340 . {* When a section with this flag is being linked, then if the size of
341 . the input section is less than a page, it should not cross a page
342 . boundary. If the size of the input section is one page or more,
343 . it should be aligned on a page boundary. This is for TI
344 . TMS320C54X only. *}
345 .#define SEC_TIC54X_BLOCK 0x10000000
347 . {* Conditionally link this section; do not link if there are no
348 . references found to any symbol in the section. This is for TI
349 . TMS320C54X only. *}
350 .#define SEC_TIC54X_CLINK 0x20000000
352 . {* Indicate that section has the no read flag set. This happens
353 . when memory read flag isn't set. *}
354 .#define SEC_COFF_NOREAD 0x40000000
356 . {* End of section flags. *}
358 . {* Some internal packed boolean fields. *}
360 . {* See the vma field. *}
361 . unsigned int user_set_vma : 1;
363 . {* A mark flag used by some of the linker backends. *}
364 . unsigned int linker_mark : 1;
366 . {* Another mark flag used by some of the linker backends. Set for
367 . output sections that have an input section. *}
368 . unsigned int linker_has_input : 1;
370 . {* Mark flag used by some linker backends for garbage collection. *}
371 . unsigned int gc_mark : 1;
373 . {* Section compression status. *}
374 . unsigned int compress_status : 2;
375 .#define COMPRESS_SECTION_NONE 0
376 .#define COMPRESS_SECTION_DONE 1
377 .#define DECOMPRESS_SECTION_SIZED 2
379 . {* The following flags are used by the ELF linker. *}
381 . {* Mark sections which have been allocated to segments. *}
382 . unsigned int segment_mark : 1;
384 . {* Type of sec_info information. *}
385 . unsigned int sec_info_type:3;
386 .#define SEC_INFO_TYPE_NONE 0
387 .#define SEC_INFO_TYPE_STABS 1
388 .#define SEC_INFO_TYPE_MERGE 2
389 .#define SEC_INFO_TYPE_EH_FRAME 3
390 .#define SEC_INFO_TYPE_JUST_SYMS 4
392 . {* Nonzero if this section uses RELA relocations, rather than REL. *}
393 . unsigned int use_rela_p:1;
395 . {* Bits used by various backends. The generic code doesn't touch
396 . these fields. *}
398 . unsigned int sec_flg0:1;
399 . unsigned int sec_flg1:1;
400 . unsigned int sec_flg2:1;
401 . unsigned int sec_flg3:1;
402 . unsigned int sec_flg4:1;
403 . unsigned int sec_flg5:1;
405 . {* End of internal packed boolean fields. *}
407 . {* The virtual memory address of the section - where it will be
408 . at run time. The symbols are relocated against this. The
409 . user_set_vma flag is maintained by bfd; if it's not set, the
410 . backend can assign addresses (for example, in <<a.out>>, where
411 . the default address for <<.data>> is dependent on the specific
412 . target and various flags). *}
413 . bfd_vma vma;
415 . {* The load address of the section - where it would be in a
416 . rom image; really only used for writing section header
417 . information. *}
418 . bfd_vma lma;
420 . {* The size of the section in octets, as it will be output.
421 . Contains a value even if the section has no contents (e.g., the
422 . size of <<.bss>>). *}
423 . bfd_size_type size;
425 . {* For input sections, the original size on disk of the section, in
426 . octets. This field should be set for any section whose size is
427 . changed by linker relaxation. It is required for sections where
428 . the linker relaxation scheme doesn't cache altered section and
429 . reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing
430 . targets), and thus the original size needs to be kept to read the
431 . section multiple times. For output sections, rawsize holds the
432 . section size calculated on a previous linker relaxation pass. *}
433 . bfd_size_type rawsize;
435 . {* The compressed size of the section in octets. *}
436 . bfd_size_type compressed_size;
438 . {* Relaxation table. *}
439 . struct relax_table *relax;
441 . {* Count of used relaxation table entries. *}
442 . int relax_count;
445 . {* If this section is going to be output, then this value is the
446 . offset in *bytes* into the output section of the first byte in the
447 . input section (byte ==> smallest addressable unit on the
448 . target). In most cases, if this was going to start at the
449 . 100th octet (8-bit quantity) in the output section, this value
450 . would be 100. However, if the target byte size is 16 bits
451 . (bfd_octets_per_byte is "2"), this value would be 50. *}
452 . bfd_vma output_offset;
454 . {* The output section through which to map on output. *}
455 . struct bfd_section *output_section;
457 . {* The alignment requirement of the section, as an exponent of 2 -
458 . e.g., 3 aligns to 2^3 (or 8). *}
459 . unsigned int alignment_power;
461 . {* If an input section, a pointer to a vector of relocation
462 . records for the data in this section. *}
463 . struct reloc_cache_entry *relocation;
465 . {* If an output section, a pointer to a vector of pointers to
466 . relocation records for the data in this section. *}
467 . struct reloc_cache_entry **orelocation;
469 . {* The number of relocation records in one of the above. *}
470 . unsigned reloc_count;
472 . {* Information below is back end specific - and not always used
473 . or updated. *}
475 . {* File position of section data. *}
476 . file_ptr filepos;
478 . {* File position of relocation info. *}
479 . file_ptr rel_filepos;
481 . {* File position of line data. *}
482 . file_ptr line_filepos;
484 . {* Pointer to data for applications. *}
485 . void *userdata;
487 . {* If the SEC_IN_MEMORY flag is set, this points to the actual
488 . contents. *}
489 . unsigned char *contents;
491 . {* Attached line number information. *}
492 . alent *lineno;
494 . {* Number of line number records. *}
495 . unsigned int lineno_count;
497 . {* Entity size for merging purposes. *}
498 . unsigned int entsize;
500 . {* Points to the kept section if this section is a link-once section,
501 . and is discarded. *}
502 . struct bfd_section *kept_section;
504 . {* When a section is being output, this value changes as more
505 . linenumbers are written out. *}
506 . file_ptr moving_line_filepos;
508 . {* What the section number is in the target world. *}
509 . int target_index;
511 . void *used_by_bfd;
513 . {* If this is a constructor section then here is a list of the
514 . relocations created to relocate items within it. *}
515 . struct relent_chain *constructor_chain;
517 . {* The BFD which owns the section. *}
518 . bfd *owner;
520 . {* A symbol which points at this section only. *}
521 . struct bfd_symbol *symbol;
522 . struct bfd_symbol **symbol_ptr_ptr;
524 . {* Early in the link process, map_head and map_tail are used to build
525 . a list of input sections attached to an output section. Later,
526 . output sections use these fields for a list of bfd_link_order
527 . structs. *}
528 . union {
529 . struct bfd_link_order *link_order;
530 . struct bfd_section *s;
531 . } map_head, map_tail;
532 .} asection;
534 .{* Relax table contains information about instructions which can
535 . be removed by relaxation -- replacing a long address with a
536 . short address. *}
537 .struct relax_table {
538 . {* Address where bytes may be deleted. *}
539 . bfd_vma addr;
541 . {* Number of bytes to be deleted. *}
542 . int size;
545 .{* These sections are global, and are managed by BFD. The application
546 . and target back end are not permitted to change the values in
547 . these sections. *}
548 .extern asection _bfd_std_section[4];
550 .#define BFD_ABS_SECTION_NAME "*ABS*"
551 .#define BFD_UND_SECTION_NAME "*UND*"
552 .#define BFD_COM_SECTION_NAME "*COM*"
553 .#define BFD_IND_SECTION_NAME "*IND*"
555 .{* Pointer to the common section. *}
556 .#define bfd_com_section_ptr (&_bfd_std_section[0])
557 .{* Pointer to the undefined section. *}
558 .#define bfd_und_section_ptr (&_bfd_std_section[1])
559 .{* Pointer to the absolute section. *}
560 .#define bfd_abs_section_ptr (&_bfd_std_section[2])
561 .{* Pointer to the indirect section. *}
562 .#define bfd_ind_section_ptr (&_bfd_std_section[3])
564 .#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
565 .#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
566 .#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
568 .#define bfd_is_const_section(SEC) \
569 . ( ((SEC) == bfd_abs_section_ptr) \
570 . || ((SEC) == bfd_und_section_ptr) \
571 . || ((SEC) == bfd_com_section_ptr) \
572 . || ((SEC) == bfd_ind_section_ptr))
574 .{* Macros to handle insertion and deletion of a bfd's sections. These
575 . only handle the list pointers, ie. do not adjust section_count,
576 . target_index etc. *}
577 .#define bfd_section_list_remove(ABFD, S) \
578 . do \
579 . { \
580 . asection *_s = S; \
581 . asection *_next = _s->next; \
582 . asection *_prev = _s->prev; \
583 . if (_prev) \
584 . _prev->next = _next; \
585 . else \
586 . (ABFD)->sections = _next; \
587 . if (_next) \
588 . _next->prev = _prev; \
589 . else \
590 . (ABFD)->section_last = _prev; \
591 . } \
592 . while (0)
593 .#define bfd_section_list_append(ABFD, S) \
594 . do \
595 . { \
596 . asection *_s = S; \
597 . bfd *_abfd = ABFD; \
598 . _s->next = NULL; \
599 . if (_abfd->section_last) \
600 . { \
601 . _s->prev = _abfd->section_last; \
602 . _abfd->section_last->next = _s; \
603 . } \
604 . else \
605 . { \
606 . _s->prev = NULL; \
607 . _abfd->sections = _s; \
608 . } \
609 . _abfd->section_last = _s; \
610 . } \
611 . while (0)
612 .#define bfd_section_list_prepend(ABFD, S) \
613 . do \
614 . { \
615 . asection *_s = S; \
616 . bfd *_abfd = ABFD; \
617 . _s->prev = NULL; \
618 . if (_abfd->sections) \
619 . { \
620 . _s->next = _abfd->sections; \
621 . _abfd->sections->prev = _s; \
622 . } \
623 . else \
624 . { \
625 . _s->next = NULL; \
626 . _abfd->section_last = _s; \
627 . } \
628 . _abfd->sections = _s; \
629 . } \
630 . while (0)
631 .#define bfd_section_list_insert_after(ABFD, A, S) \
632 . do \
633 . { \
634 . asection *_a = A; \
635 . asection *_s = S; \
636 . asection *_next = _a->next; \
637 . _s->next = _next; \
638 . _s->prev = _a; \
639 . _a->next = _s; \
640 . if (_next) \
641 . _next->prev = _s; \
642 . else \
643 . (ABFD)->section_last = _s; \
644 . } \
645 . while (0)
646 .#define bfd_section_list_insert_before(ABFD, B, S) \
647 . do \
648 . { \
649 . asection *_b = B; \
650 . asection *_s = S; \
651 . asection *_prev = _b->prev; \
652 . _s->prev = _prev; \
653 . _s->next = _b; \
654 . _b->prev = _s; \
655 . if (_prev) \
656 . _prev->next = _s; \
657 . else \
658 . (ABFD)->sections = _s; \
659 . } \
660 . while (0)
661 .#define bfd_section_removed_from_list(ABFD, S) \
662 . ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S))
664 .#define BFD_FAKE_SECTION(SEC, FLAGS, SYM, NAME, IDX) \
665 . {* name, id, index, next, prev, flags, user_set_vma, *} \
666 . { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \
668 . {* linker_mark, linker_has_input, gc_mark, decompress_status, *} \
669 . 0, 0, 1, 0, \
671 . {* segment_mark, sec_info_type, use_rela_p, *} \
672 . 0, 0, 0, \
674 . {* sec_flg0, sec_flg1, sec_flg2, sec_flg3, sec_flg4, sec_flg5, *} \
675 . 0, 0, 0, 0, 0, 0, \
677 . {* vma, lma, size, rawsize, compressed_size, relax, relax_count, *} \
678 . 0, 0, 0, 0, 0, 0, 0, \
680 . {* output_offset, output_section, alignment_power, *} \
681 . 0, &SEC, 0, \
683 . {* relocation, orelocation, reloc_count, filepos, rel_filepos, *} \
684 . NULL, NULL, 0, 0, 0, \
686 . {* line_filepos, userdata, contents, lineno, lineno_count, *} \
687 . 0, NULL, NULL, NULL, 0, \
689 . {* entsize, kept_section, moving_line_filepos, *} \
690 . 0, NULL, 0, \
692 . {* target_index, used_by_bfd, constructor_chain, owner, *} \
693 . 0, NULL, NULL, NULL, \
695 . {* symbol, symbol_ptr_ptr, *} \
696 . (struct bfd_symbol *) SYM, &SEC.symbol, \
698 . {* map_head, map_tail *} \
699 . { NULL }, { NULL } \
704 /* We use a macro to initialize the static asymbol structures because
705 traditional C does not permit us to initialize a union member while
706 gcc warns if we don't initialize it. */
707 /* the_bfd, name, value, attr, section [, udata] */
708 #ifdef __STDC__
709 #define GLOBAL_SYM_INIT(NAME, SECTION) \
710 { 0, NAME, 0, BSF_SECTION_SYM, SECTION, { 0 }}
711 #else
712 #define GLOBAL_SYM_INIT(NAME, SECTION) \
713 { 0, NAME, 0, BSF_SECTION_SYM, SECTION }
714 #endif
716 /* These symbols are global, not specific to any BFD. Therefore, anything
717 that tries to change them is broken, and should be repaired. */
719 static const asymbol global_syms[] =
721 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, bfd_com_section_ptr),
722 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, bfd_und_section_ptr),
723 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, bfd_abs_section_ptr),
724 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, bfd_ind_section_ptr)
727 #define STD_SECTION(NAME, IDX, FLAGS) \
728 BFD_FAKE_SECTION(_bfd_std_section[IDX], FLAGS, &global_syms[IDX], NAME, IDX)
730 asection _bfd_std_section[] = {
731 STD_SECTION (BFD_COM_SECTION_NAME, 0, SEC_IS_COMMON),
732 STD_SECTION (BFD_UND_SECTION_NAME, 1, 0),
733 STD_SECTION (BFD_ABS_SECTION_NAME, 2, 0),
734 STD_SECTION (BFD_IND_SECTION_NAME, 3, 0)
736 #undef STD_SECTION
738 /* Initialize an entry in the section hash table. */
740 struct bfd_hash_entry *
741 bfd_section_hash_newfunc (struct bfd_hash_entry *entry,
742 struct bfd_hash_table *table,
743 const char *string)
745 /* Allocate the structure if it has not already been allocated by a
746 subclass. */
747 if (entry == NULL)
749 entry = (struct bfd_hash_entry *)
750 bfd_hash_allocate (table, sizeof (struct section_hash_entry));
751 if (entry == NULL)
752 return entry;
755 /* Call the allocation method of the superclass. */
756 entry = bfd_hash_newfunc (entry, table, string);
757 if (entry != NULL)
758 memset (&((struct section_hash_entry *) entry)->section, 0,
759 sizeof (asection));
761 return entry;
764 #define section_hash_lookup(table, string, create, copy) \
765 ((struct section_hash_entry *) \
766 bfd_hash_lookup ((table), (string), (create), (copy)))
768 /* Create a symbol whose only job is to point to this section. This
769 is useful for things like relocs which are relative to the base
770 of a section. */
772 bfd_boolean
773 _bfd_generic_new_section_hook (bfd *abfd, asection *newsect)
775 newsect->symbol = bfd_make_empty_symbol (abfd);
776 if (newsect->symbol == NULL)
777 return FALSE;
779 newsect->symbol->name = newsect->name;
780 newsect->symbol->value = 0;
781 newsect->symbol->section = newsect;
782 newsect->symbol->flags = BSF_SECTION_SYM;
784 newsect->symbol_ptr_ptr = &newsect->symbol;
785 return TRUE;
788 /* Initializes a new section. NEWSECT->NAME is already set. */
790 static asection *
791 bfd_section_init (bfd *abfd, asection *newsect)
793 static int section_id = 0x10; /* id 0 to 3 used by STD_SECTION. */
795 newsect->id = section_id;
796 newsect->index = abfd->section_count;
797 newsect->owner = abfd;
799 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
800 return NULL;
802 section_id++;
803 abfd->section_count++;
804 bfd_section_list_append (abfd, newsect);
805 return newsect;
809 DOCDD
810 INODE
811 section prototypes, , typedef asection, Sections
812 SUBSECTION
813 Section prototypes
815 These are the functions exported by the section handling part of BFD.
819 FUNCTION
820 bfd_section_list_clear
822 SYNOPSIS
823 void bfd_section_list_clear (bfd *);
825 DESCRIPTION
826 Clears the section list, and also resets the section count and
827 hash table entries.
830 void
831 bfd_section_list_clear (bfd *abfd)
833 abfd->sections = NULL;
834 abfd->section_last = NULL;
835 abfd->section_count = 0;
836 memset (abfd->section_htab.table, 0,
837 abfd->section_htab.size * sizeof (struct bfd_hash_entry *));
838 abfd->section_htab.count = 0;
842 FUNCTION
843 bfd_get_section_by_name
845 SYNOPSIS
846 asection *bfd_get_section_by_name (bfd *abfd, const char *name);
848 DESCRIPTION
849 Return the most recently created section attached to @var{abfd}
850 named @var{name}. Return NULL if no such section exists.
853 asection *
854 bfd_get_section_by_name (bfd *abfd, const char *name)
856 struct section_hash_entry *sh;
858 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
859 if (sh != NULL)
860 return &sh->section;
862 return NULL;
866 FUNCTION
867 bfd_get_next_section_by_name
869 SYNOPSIS
870 asection *bfd_get_next_section_by_name (asection *sec);
872 DESCRIPTION
873 Given @var{sec} is a section returned by @code{bfd_get_section_by_name},
874 return the next most recently created section attached to the same
875 BFD with the same name. Return NULL if no such section exists.
878 asection *
879 bfd_get_next_section_by_name (asection *sec)
881 struct section_hash_entry *sh;
882 const char *name;
883 unsigned long hash;
885 sh = ((struct section_hash_entry *)
886 ((char *) sec - offsetof (struct section_hash_entry, section)));
888 hash = sh->root.hash;
889 name = sec->name;
890 for (sh = (struct section_hash_entry *) sh->root.next;
891 sh != NULL;
892 sh = (struct section_hash_entry *) sh->root.next)
893 if (sh->root.hash == hash
894 && strcmp (sh->root.string, name) == 0)
895 return &sh->section;
897 return NULL;
901 FUNCTION
902 bfd_get_linker_section
904 SYNOPSIS
905 asection *bfd_get_linker_section (bfd *abfd, const char *name);
907 DESCRIPTION
908 Return the linker created section attached to @var{abfd}
909 named @var{name}. Return NULL if no such section exists.
912 asection *
913 bfd_get_linker_section (bfd *abfd, const char *name)
915 asection *sec = bfd_get_section_by_name (abfd, name);
917 while (sec != NULL && (sec->flags & SEC_LINKER_CREATED) == 0)
918 sec = bfd_get_next_section_by_name (sec);
919 return sec;
923 FUNCTION
924 bfd_get_section_by_name_if
926 SYNOPSIS
927 asection *bfd_get_section_by_name_if
928 (bfd *abfd,
929 const char *name,
930 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
931 void *obj);
933 DESCRIPTION
934 Call the provided function @var{func} for each section
935 attached to the BFD @var{abfd} whose name matches @var{name},
936 passing @var{obj} as an argument. The function will be called
937 as if by
939 | func (abfd, the_section, obj);
941 It returns the first section for which @var{func} returns true,
942 otherwise <<NULL>>.
946 asection *
947 bfd_get_section_by_name_if (bfd *abfd, const char *name,
948 bfd_boolean (*operation) (bfd *,
949 asection *,
950 void *),
951 void *user_storage)
953 struct section_hash_entry *sh;
954 unsigned long hash;
956 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
957 if (sh == NULL)
958 return NULL;
960 hash = sh->root.hash;
963 if ((*operation) (abfd, &sh->section, user_storage))
964 return &sh->section;
965 sh = (struct section_hash_entry *) sh->root.next;
967 while (sh != NULL && sh->root.hash == hash
968 && strcmp (sh->root.string, name) == 0);
970 return NULL;
974 FUNCTION
975 bfd_get_unique_section_name
977 SYNOPSIS
978 char *bfd_get_unique_section_name
979 (bfd *abfd, const char *templat, int *count);
981 DESCRIPTION
982 Invent a section name that is unique in @var{abfd} by tacking
983 a dot and a digit suffix onto the original @var{templat}. If
984 @var{count} is non-NULL, then it specifies the first number
985 tried as a suffix to generate a unique name. The value
986 pointed to by @var{count} will be incremented in this case.
989 char *
990 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count)
992 int num;
993 unsigned int len;
994 char *sname;
996 len = strlen (templat);
997 sname = (char *) bfd_malloc (len + 8);
998 if (sname == NULL)
999 return NULL;
1000 memcpy (sname, templat, len);
1001 num = 1;
1002 if (count != NULL)
1003 num = *count;
1007 /* If we have a million sections, something is badly wrong. */
1008 if (num > 999999)
1009 abort ();
1010 sprintf (sname + len, ".%d", num++);
1012 while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE));
1014 if (count != NULL)
1015 *count = num;
1016 return sname;
1020 FUNCTION
1021 bfd_make_section_old_way
1023 SYNOPSIS
1024 asection *bfd_make_section_old_way (bfd *abfd, const char *name);
1026 DESCRIPTION
1027 Create a new empty section called @var{name}
1028 and attach it to the end of the chain of sections for the
1029 BFD @var{abfd}. An attempt to create a section with a name which
1030 is already in use returns its pointer without changing the
1031 section chain.
1033 It has the funny name since this is the way it used to be
1034 before it was rewritten....
1036 Possible errors are:
1037 o <<bfd_error_invalid_operation>> -
1038 If output has already started for this BFD.
1039 o <<bfd_error_no_memory>> -
1040 If memory allocation fails.
1044 asection *
1045 bfd_make_section_old_way (bfd *abfd, const char *name)
1047 asection *newsect;
1049 if (abfd->output_has_begun)
1051 bfd_set_error (bfd_error_invalid_operation);
1052 return NULL;
1055 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0)
1056 newsect = bfd_abs_section_ptr;
1057 else if (strcmp (name, BFD_COM_SECTION_NAME) == 0)
1058 newsect = bfd_com_section_ptr;
1059 else if (strcmp (name, BFD_UND_SECTION_NAME) == 0)
1060 newsect = bfd_und_section_ptr;
1061 else if (strcmp (name, BFD_IND_SECTION_NAME) == 0)
1062 newsect = bfd_ind_section_ptr;
1063 else
1065 struct section_hash_entry *sh;
1067 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1068 if (sh == NULL)
1069 return NULL;
1071 newsect = &sh->section;
1072 if (newsect->name != NULL)
1074 /* Section already exists. */
1075 return newsect;
1078 newsect->name = name;
1079 return bfd_section_init (abfd, newsect);
1082 /* Call new_section_hook when "creating" the standard abs, com, und
1083 and ind sections to tack on format specific section data.
1084 Also, create a proper section symbol. */
1085 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
1086 return NULL;
1087 return newsect;
1091 FUNCTION
1092 bfd_make_section_anyway_with_flags
1094 SYNOPSIS
1095 asection *bfd_make_section_anyway_with_flags
1096 (bfd *abfd, const char *name, flagword flags);
1098 DESCRIPTION
1099 Create a new empty section called @var{name} and attach it to the end of
1100 the chain of sections for @var{abfd}. Create a new section even if there
1101 is already a section with that name. Also set the attributes of the
1102 new section to the value @var{flags}.
1104 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1105 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1106 o <<bfd_error_no_memory>> - If memory allocation fails.
1109 sec_ptr
1110 bfd_make_section_anyway_with_flags (bfd *abfd, const char *name,
1111 flagword flags)
1113 struct section_hash_entry *sh;
1114 asection *newsect;
1116 if (abfd->output_has_begun)
1118 bfd_set_error (bfd_error_invalid_operation);
1119 return NULL;
1122 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1123 if (sh == NULL)
1124 return NULL;
1126 newsect = &sh->section;
1127 if (newsect->name != NULL)
1129 /* We are making a section of the same name. Put it in the
1130 section hash table. Even though we can't find it directly by a
1131 hash lookup, we'll be able to find the section by traversing
1132 sh->root.next quicker than looking at all the bfd sections. */
1133 struct section_hash_entry *new_sh;
1134 new_sh = (struct section_hash_entry *)
1135 bfd_section_hash_newfunc (NULL, &abfd->section_htab, name);
1136 if (new_sh == NULL)
1137 return NULL;
1139 new_sh->root = sh->root;
1140 sh->root.next = &new_sh->root;
1141 newsect = &new_sh->section;
1144 newsect->flags = flags;
1145 newsect->name = name;
1146 return bfd_section_init (abfd, newsect);
1150 FUNCTION
1151 bfd_make_section_anyway
1153 SYNOPSIS
1154 asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1156 DESCRIPTION
1157 Create a new empty section called @var{name} and attach it to the end of
1158 the chain of sections for @var{abfd}. Create a new section even if there
1159 is already a section with that name.
1161 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1162 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1163 o <<bfd_error_no_memory>> - If memory allocation fails.
1166 sec_ptr
1167 bfd_make_section_anyway (bfd *abfd, const char *name)
1169 return bfd_make_section_anyway_with_flags (abfd, name, 0);
1173 FUNCTION
1174 bfd_make_section_with_flags
1176 SYNOPSIS
1177 asection *bfd_make_section_with_flags
1178 (bfd *, const char *name, flagword flags);
1180 DESCRIPTION
1181 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1182 bfd_set_error ()) without changing the section chain if there is already a
1183 section named @var{name}. Also set the attributes of the new section to
1184 the value @var{flags}. If there is an error, return <<NULL>> and set
1185 <<bfd_error>>.
1188 asection *
1189 bfd_make_section_with_flags (bfd *abfd, const char *name,
1190 flagword flags)
1192 struct section_hash_entry *sh;
1193 asection *newsect;
1195 if (abfd->output_has_begun)
1197 bfd_set_error (bfd_error_invalid_operation);
1198 return NULL;
1201 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0
1202 || strcmp (name, BFD_COM_SECTION_NAME) == 0
1203 || strcmp (name, BFD_UND_SECTION_NAME) == 0
1204 || strcmp (name, BFD_IND_SECTION_NAME) == 0)
1205 return NULL;
1207 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1208 if (sh == NULL)
1209 return NULL;
1211 newsect = &sh->section;
1212 if (newsect->name != NULL)
1214 /* Section already exists. */
1215 return NULL;
1218 newsect->name = name;
1219 newsect->flags = flags;
1220 return bfd_section_init (abfd, newsect);
1224 FUNCTION
1225 bfd_make_section
1227 SYNOPSIS
1228 asection *bfd_make_section (bfd *, const char *name);
1230 DESCRIPTION
1231 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1232 bfd_set_error ()) without changing the section chain if there is already a
1233 section named @var{name}. If there is an error, return <<NULL>> and set
1234 <<bfd_error>>.
1237 asection *
1238 bfd_make_section (bfd *abfd, const char *name)
1240 return bfd_make_section_with_flags (abfd, name, 0);
1244 FUNCTION
1245 bfd_set_section_flags
1247 SYNOPSIS
1248 bfd_boolean bfd_set_section_flags
1249 (bfd *abfd, asection *sec, flagword flags);
1251 DESCRIPTION
1252 Set the attributes of the section @var{sec} in the BFD
1253 @var{abfd} to the value @var{flags}. Return <<TRUE>> on success,
1254 <<FALSE>> on error. Possible error returns are:
1256 o <<bfd_error_invalid_operation>> -
1257 The section cannot have one or more of the attributes
1258 requested. For example, a .bss section in <<a.out>> may not
1259 have the <<SEC_HAS_CONTENTS>> field set.
1263 bfd_boolean
1264 bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED,
1265 sec_ptr section,
1266 flagword flags)
1268 section->flags = flags;
1269 return TRUE;
1273 FUNCTION
1274 bfd_rename_section
1276 SYNOPSIS
1277 void bfd_rename_section
1278 (bfd *abfd, asection *sec, const char *newname);
1280 DESCRIPTION
1281 Rename section @var{sec} in @var{abfd} to @var{newname}.
1284 void
1285 bfd_rename_section (bfd *abfd, sec_ptr sec, const char *newname)
1287 struct section_hash_entry *sh;
1289 sh = (struct section_hash_entry *)
1290 ((char *) sec - offsetof (struct section_hash_entry, section));
1291 sh->section.name = newname;
1292 bfd_hash_rename (&abfd->section_htab, newname, &sh->root);
1296 FUNCTION
1297 bfd_map_over_sections
1299 SYNOPSIS
1300 void bfd_map_over_sections
1301 (bfd *abfd,
1302 void (*func) (bfd *abfd, asection *sect, void *obj),
1303 void *obj);
1305 DESCRIPTION
1306 Call the provided function @var{func} for each section
1307 attached to the BFD @var{abfd}, passing @var{obj} as an
1308 argument. The function will be called as if by
1310 | func (abfd, the_section, obj);
1312 This is the preferred method for iterating over sections; an
1313 alternative would be to use a loop:
1315 | asection *p;
1316 | for (p = abfd->sections; p != NULL; p = p->next)
1317 | func (abfd, p, ...)
1321 void
1322 bfd_map_over_sections (bfd *abfd,
1323 void (*operation) (bfd *, asection *, void *),
1324 void *user_storage)
1326 asection *sect;
1327 unsigned int i = 0;
1329 for (sect = abfd->sections; sect != NULL; i++, sect = sect->next)
1330 (*operation) (abfd, sect, user_storage);
1332 if (i != abfd->section_count) /* Debugging */
1333 abort ();
1337 FUNCTION
1338 bfd_sections_find_if
1340 SYNOPSIS
1341 asection *bfd_sections_find_if
1342 (bfd *abfd,
1343 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
1344 void *obj);
1346 DESCRIPTION
1347 Call the provided function @var{operation} for each section
1348 attached to the BFD @var{abfd}, passing @var{obj} as an
1349 argument. The function will be called as if by
1351 | operation (abfd, the_section, obj);
1353 It returns the first section for which @var{operation} returns true.
1357 asection *
1358 bfd_sections_find_if (bfd *abfd,
1359 bfd_boolean (*operation) (bfd *, asection *, void *),
1360 void *user_storage)
1362 asection *sect;
1364 for (sect = abfd->sections; sect != NULL; sect = sect->next)
1365 if ((*operation) (abfd, sect, user_storage))
1366 break;
1368 return sect;
1372 FUNCTION
1373 bfd_set_section_size
1375 SYNOPSIS
1376 bfd_boolean bfd_set_section_size
1377 (bfd *abfd, asection *sec, bfd_size_type val);
1379 DESCRIPTION
1380 Set @var{sec} to the size @var{val}. If the operation is
1381 ok, then <<TRUE>> is returned, else <<FALSE>>.
1383 Possible error returns:
1384 o <<bfd_error_invalid_operation>> -
1385 Writing has started to the BFD, so setting the size is invalid.
1389 bfd_boolean
1390 bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val)
1392 /* Once you've started writing to any section you cannot create or change
1393 the size of any others. */
1395 if (abfd->output_has_begun)
1397 bfd_set_error (bfd_error_invalid_operation);
1398 return FALSE;
1401 ptr->size = val;
1402 return TRUE;
1406 FUNCTION
1407 bfd_set_section_contents
1409 SYNOPSIS
1410 bfd_boolean bfd_set_section_contents
1411 (bfd *abfd, asection *section, const void *data,
1412 file_ptr offset, bfd_size_type count);
1414 DESCRIPTION
1415 Sets the contents of the section @var{section} in BFD
1416 @var{abfd} to the data starting in memory at @var{data}. The
1417 data is written to the output section starting at offset
1418 @var{offset} for @var{count} octets.
1420 Normally <<TRUE>> is returned, else <<FALSE>>. Possible error
1421 returns are:
1422 o <<bfd_error_no_contents>> -
1423 The output section does not have the <<SEC_HAS_CONTENTS>>
1424 attribute, so nothing can be written to it.
1425 o and some more too
1427 This routine is front end to the back end function
1428 <<_bfd_set_section_contents>>.
1432 bfd_boolean
1433 bfd_set_section_contents (bfd *abfd,
1434 sec_ptr section,
1435 const void *location,
1436 file_ptr offset,
1437 bfd_size_type count)
1439 bfd_size_type sz;
1441 if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS))
1443 bfd_set_error (bfd_error_no_contents);
1444 return FALSE;
1447 sz = section->size;
1448 if ((bfd_size_type) offset > sz
1449 || count > sz
1450 || offset + count > sz
1451 || count != (size_t) count)
1453 bfd_set_error (bfd_error_bad_value);
1454 return FALSE;
1457 if (!bfd_write_p (abfd))
1459 bfd_set_error (bfd_error_invalid_operation);
1460 return FALSE;
1463 /* Record a copy of the data in memory if desired. */
1464 if (section->contents
1465 && location != section->contents + offset)
1466 memcpy (section->contents + offset, location, (size_t) count);
1468 if (BFD_SEND (abfd, _bfd_set_section_contents,
1469 (abfd, section, location, offset, count)))
1471 abfd->output_has_begun = TRUE;
1472 return TRUE;
1475 return FALSE;
1479 FUNCTION
1480 bfd_get_section_contents
1482 SYNOPSIS
1483 bfd_boolean bfd_get_section_contents
1484 (bfd *abfd, asection *section, void *location, file_ptr offset,
1485 bfd_size_type count);
1487 DESCRIPTION
1488 Read data from @var{section} in BFD @var{abfd}
1489 into memory starting at @var{location}. The data is read at an
1490 offset of @var{offset} from the start of the input section,
1491 and is read for @var{count} bytes.
1493 If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1494 flag set are requested or if the section does not have the
1495 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1496 with zeroes. If no errors occur, <<TRUE>> is returned, else
1497 <<FALSE>>.
1500 bfd_boolean
1501 bfd_get_section_contents (bfd *abfd,
1502 sec_ptr section,
1503 void *location,
1504 file_ptr offset,
1505 bfd_size_type count)
1507 bfd_size_type sz;
1509 if (section->flags & SEC_CONSTRUCTOR)
1511 memset (location, 0, (size_t) count);
1512 return TRUE;
1515 if (abfd->direction != write_direction && section->rawsize != 0)
1516 sz = section->rawsize;
1517 else
1518 sz = section->size;
1519 if ((bfd_size_type) offset > sz
1520 || count > sz
1521 || offset + count > sz
1522 || count != (size_t) count)
1524 bfd_set_error (bfd_error_bad_value);
1525 return FALSE;
1528 if (count == 0)
1529 /* Don't bother. */
1530 return TRUE;
1532 if ((section->flags & SEC_HAS_CONTENTS) == 0)
1534 memset (location, 0, (size_t) count);
1535 return TRUE;
1538 if ((section->flags & SEC_IN_MEMORY) != 0)
1540 if (section->contents == NULL)
1542 /* This can happen because of errors earlier on in the linking process.
1543 We do not want to seg-fault here, so clear the flag and return an
1544 error code. */
1545 section->flags &= ~ SEC_IN_MEMORY;
1546 bfd_set_error (bfd_error_invalid_operation);
1547 return FALSE;
1550 memmove (location, section->contents + offset, (size_t) count);
1551 return TRUE;
1554 return BFD_SEND (abfd, _bfd_get_section_contents,
1555 (abfd, section, location, offset, count));
1559 FUNCTION
1560 bfd_malloc_and_get_section
1562 SYNOPSIS
1563 bfd_boolean bfd_malloc_and_get_section
1564 (bfd *abfd, asection *section, bfd_byte **buf);
1566 DESCRIPTION
1567 Read all data from @var{section} in BFD @var{abfd}
1568 into a buffer, *@var{buf}, malloc'd by this function.
1571 bfd_boolean
1572 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf)
1574 *buf = NULL;
1575 return bfd_get_full_section_contents (abfd, sec, buf);
1578 FUNCTION
1579 bfd_copy_private_section_data
1581 SYNOPSIS
1582 bfd_boolean bfd_copy_private_section_data
1583 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1585 DESCRIPTION
1586 Copy private section information from @var{isec} in the BFD
1587 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1588 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
1589 returns are:
1591 o <<bfd_error_no_memory>> -
1592 Not enough memory exists to create private data for @var{osec}.
1594 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1595 . BFD_SEND (obfd, _bfd_copy_private_section_data, \
1596 . (ibfd, isection, obfd, osection))
1600 FUNCTION
1601 bfd_generic_is_group_section
1603 SYNOPSIS
1604 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
1606 DESCRIPTION
1607 Returns TRUE if @var{sec} is a member of a group.
1610 bfd_boolean
1611 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED,
1612 const asection *sec ATTRIBUTE_UNUSED)
1614 return FALSE;
1618 FUNCTION
1619 bfd_generic_discard_group
1621 SYNOPSIS
1622 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
1624 DESCRIPTION
1625 Remove all members of @var{group} from the output.
1628 bfd_boolean
1629 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
1630 asection *group ATTRIBUTE_UNUSED)
1632 return TRUE;