merge from gcc
[gdb/gnu.git] / bfd / elflink.c
blob99b7ca1c2243a1a1b3a088d9f5b27ce685ea2289
1 /* ELF linking support for BFD.
2 Copyright 1995-2013 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29 #include "objalloc.h"
31 /* This struct is used to pass information to routines called via
32 elf_link_hash_traverse which must return failure. */
34 struct elf_info_failed
36 struct bfd_link_info *info;
37 bfd_boolean failed;
40 /* This structure is used to pass information to
41 _bfd_elf_link_find_version_dependencies. */
43 struct elf_find_verdep_info
45 /* General link information. */
46 struct bfd_link_info *info;
47 /* The number of dependencies. */
48 unsigned int vers;
49 /* Whether we had a failure. */
50 bfd_boolean failed;
53 static bfd_boolean _bfd_elf_fix_symbol_flags
54 (struct elf_link_hash_entry *, struct elf_info_failed *);
56 /* Define a symbol in a dynamic linkage section. */
58 struct elf_link_hash_entry *
59 _bfd_elf_define_linkage_sym (bfd *abfd,
60 struct bfd_link_info *info,
61 asection *sec,
62 const char *name)
64 struct elf_link_hash_entry *h;
65 struct bfd_link_hash_entry *bh;
66 const struct elf_backend_data *bed;
68 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
69 if (h != NULL)
71 /* Zap symbol defined in an as-needed lib that wasn't linked.
72 This is a symptom of a larger problem: Absolute symbols
73 defined in shared libraries can't be overridden, because we
74 lose the link to the bfd which is via the symbol section. */
75 h->root.type = bfd_link_hash_new;
78 bh = &h->root;
79 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
80 sec, 0, NULL, FALSE,
81 get_elf_backend_data (abfd)->collect,
82 &bh))
83 return NULL;
84 h = (struct elf_link_hash_entry *) bh;
85 h->def_regular = 1;
86 h->non_elf = 0;
87 h->type = STT_OBJECT;
88 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
89 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
91 bed = get_elf_backend_data (abfd);
92 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
93 return h;
96 bfd_boolean
97 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 flagword flags;
100 asection *s;
101 struct elf_link_hash_entry *h;
102 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
103 struct elf_link_hash_table *htab = elf_hash_table (info);
105 /* This function may be called more than once. */
106 s = bfd_get_linker_section (abfd, ".got");
107 if (s != NULL)
108 return TRUE;
110 flags = bed->dynamic_sec_flags;
112 s = bfd_make_section_anyway_with_flags (abfd,
113 (bed->rela_plts_and_copies_p
114 ? ".rela.got" : ".rel.got"),
115 (bed->dynamic_sec_flags
116 | SEC_READONLY));
117 if (s == NULL
118 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
119 return FALSE;
120 htab->srelgot = s;
122 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
123 if (s == NULL
124 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
125 return FALSE;
126 htab->sgot = s;
128 if (bed->want_got_plt)
130 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
131 if (s == NULL
132 || !bfd_set_section_alignment (abfd, s,
133 bed->s->log_file_align))
134 return FALSE;
135 htab->sgotplt = s;
138 /* The first bit of the global offset table is the header. */
139 s->size += bed->got_header_size;
141 if (bed->want_got_sym)
143 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
144 (or .got.plt) section. We don't do this in the linker script
145 because we don't want to define the symbol if we are not creating
146 a global offset table. */
147 h = _bfd_elf_define_linkage_sym (abfd, info, s,
148 "_GLOBAL_OFFSET_TABLE_");
149 elf_hash_table (info)->hgot = h;
150 if (h == NULL)
151 return FALSE;
154 return TRUE;
157 /* Create a strtab to hold the dynamic symbol names. */
158 static bfd_boolean
159 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 struct elf_link_hash_table *hash_table;
163 hash_table = elf_hash_table (info);
164 if (hash_table->dynobj == NULL)
165 hash_table->dynobj = abfd;
167 if (hash_table->dynstr == NULL)
169 hash_table->dynstr = _bfd_elf_strtab_init ();
170 if (hash_table->dynstr == NULL)
171 return FALSE;
173 return TRUE;
176 /* Create some sections which will be filled in with dynamic linking
177 information. ABFD is an input file which requires dynamic sections
178 to be created. The dynamic sections take up virtual memory space
179 when the final executable is run, so we need to create them before
180 addresses are assigned to the output sections. We work out the
181 actual contents and size of these sections later. */
183 bfd_boolean
184 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
186 flagword flags;
187 asection *s;
188 const struct elf_backend_data *bed;
189 struct elf_link_hash_entry *h;
191 if (! is_elf_hash_table (info->hash))
192 return FALSE;
194 if (elf_hash_table (info)->dynamic_sections_created)
195 return TRUE;
197 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
198 return FALSE;
200 abfd = elf_hash_table (info)->dynobj;
201 bed = get_elf_backend_data (abfd);
203 flags = bed->dynamic_sec_flags;
205 /* A dynamically linked executable has a .interp section, but a
206 shared library does not. */
207 if (info->executable)
209 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
210 flags | SEC_READONLY);
211 if (s == NULL)
212 return FALSE;
215 /* Create sections to hold version informations. These are removed
216 if they are not needed. */
217 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
218 flags | SEC_READONLY);
219 if (s == NULL
220 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
221 return FALSE;
223 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
224 flags | SEC_READONLY);
225 if (s == NULL
226 || ! bfd_set_section_alignment (abfd, s, 1))
227 return FALSE;
229 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
230 flags | SEC_READONLY);
231 if (s == NULL
232 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
233 return FALSE;
235 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
236 flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
241 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
242 flags | SEC_READONLY);
243 if (s == NULL)
244 return FALSE;
246 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
251 /* The special symbol _DYNAMIC is always set to the start of the
252 .dynamic section. We could set _DYNAMIC in a linker script, but we
253 only want to define it if we are, in fact, creating a .dynamic
254 section. We don't want to define it if there is no .dynamic
255 section, since on some ELF platforms the start up code examines it
256 to decide how to initialize the process. */
257 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
258 elf_hash_table (info)->hdynamic = h;
259 if (h == NULL)
260 return FALSE;
262 if (info->emit_hash)
264 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
265 flags | SEC_READONLY);
266 if (s == NULL
267 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
268 return FALSE;
269 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
272 if (info->emit_gnu_hash)
274 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
275 flags | SEC_READONLY);
276 if (s == NULL
277 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
278 return FALSE;
279 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
280 4 32-bit words followed by variable count of 64-bit words, then
281 variable count of 32-bit words. */
282 if (bed->s->arch_size == 64)
283 elf_section_data (s)->this_hdr.sh_entsize = 0;
284 else
285 elf_section_data (s)->this_hdr.sh_entsize = 4;
288 /* Let the backend create the rest of the sections. This lets the
289 backend set the right flags. The backend will normally create
290 the .got and .plt sections. */
291 if (bed->elf_backend_create_dynamic_sections == NULL
292 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
293 return FALSE;
295 elf_hash_table (info)->dynamic_sections_created = TRUE;
297 return TRUE;
300 /* Create dynamic sections when linking against a dynamic object. */
302 bfd_boolean
303 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
305 flagword flags, pltflags;
306 struct elf_link_hash_entry *h;
307 asection *s;
308 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
309 struct elf_link_hash_table *htab = elf_hash_table (info);
311 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
312 .rel[a].bss sections. */
313 flags = bed->dynamic_sec_flags;
315 pltflags = flags;
316 if (bed->plt_not_loaded)
317 /* We do not clear SEC_ALLOC here because we still want the OS to
318 allocate space for the section; it's just that there's nothing
319 to read in from the object file. */
320 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
321 else
322 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
323 if (bed->plt_readonly)
324 pltflags |= SEC_READONLY;
326 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
327 if (s == NULL
328 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
329 return FALSE;
330 htab->splt = s;
332 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
333 .plt section. */
334 if (bed->want_plt_sym)
336 h = _bfd_elf_define_linkage_sym (abfd, info, s,
337 "_PROCEDURE_LINKAGE_TABLE_");
338 elf_hash_table (info)->hplt = h;
339 if (h == NULL)
340 return FALSE;
343 s = bfd_make_section_anyway_with_flags (abfd,
344 (bed->rela_plts_and_copies_p
345 ? ".rela.plt" : ".rel.plt"),
346 flags | SEC_READONLY);
347 if (s == NULL
348 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
349 return FALSE;
350 htab->srelplt = s;
352 if (! _bfd_elf_create_got_section (abfd, info))
353 return FALSE;
355 if (bed->want_dynbss)
357 /* The .dynbss section is a place to put symbols which are defined
358 by dynamic objects, are referenced by regular objects, and are
359 not functions. We must allocate space for them in the process
360 image and use a R_*_COPY reloc to tell the dynamic linker to
361 initialize them at run time. The linker script puts the .dynbss
362 section into the .bss section of the final image. */
363 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
364 (SEC_ALLOC | SEC_LINKER_CREATED));
365 if (s == NULL)
366 return FALSE;
368 /* The .rel[a].bss section holds copy relocs. This section is not
369 normally needed. We need to create it here, though, so that the
370 linker will map it to an output section. We can't just create it
371 only if we need it, because we will not know whether we need it
372 until we have seen all the input files, and the first time the
373 main linker code calls BFD after examining all the input files
374 (size_dynamic_sections) the input sections have already been
375 mapped to the output sections. If the section turns out not to
376 be needed, we can discard it later. We will never need this
377 section when generating a shared object, since they do not use
378 copy relocs. */
379 if (! info->shared)
381 s = bfd_make_section_anyway_with_flags (abfd,
382 (bed->rela_plts_and_copies_p
383 ? ".rela.bss" : ".rel.bss"),
384 flags | SEC_READONLY);
385 if (s == NULL
386 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
387 return FALSE;
391 return TRUE;
394 /* Record a new dynamic symbol. We record the dynamic symbols as we
395 read the input files, since we need to have a list of all of them
396 before we can determine the final sizes of the output sections.
397 Note that we may actually call this function even though we are not
398 going to output any dynamic symbols; in some cases we know that a
399 symbol should be in the dynamic symbol table, but only if there is
400 one. */
402 bfd_boolean
403 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
404 struct elf_link_hash_entry *h)
406 if (h->dynindx == -1)
408 struct elf_strtab_hash *dynstr;
409 char *p;
410 const char *name;
411 bfd_size_type indx;
413 /* XXX: The ABI draft says the linker must turn hidden and
414 internal symbols into STB_LOCAL symbols when producing the
415 DSO. However, if ld.so honors st_other in the dynamic table,
416 this would not be necessary. */
417 switch (ELF_ST_VISIBILITY (h->other))
419 case STV_INTERNAL:
420 case STV_HIDDEN:
421 if (h->root.type != bfd_link_hash_undefined
422 && h->root.type != bfd_link_hash_undefweak)
424 h->forced_local = 1;
425 if (!elf_hash_table (info)->is_relocatable_executable)
426 return TRUE;
429 default:
430 break;
433 h->dynindx = elf_hash_table (info)->dynsymcount;
434 ++elf_hash_table (info)->dynsymcount;
436 dynstr = elf_hash_table (info)->dynstr;
437 if (dynstr == NULL)
439 /* Create a strtab to hold the dynamic symbol names. */
440 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
441 if (dynstr == NULL)
442 return FALSE;
445 /* We don't put any version information in the dynamic string
446 table. */
447 name = h->root.root.string;
448 p = strchr (name, ELF_VER_CHR);
449 if (p != NULL)
450 /* We know that the p points into writable memory. In fact,
451 there are only a few symbols that have read-only names, being
452 those like _GLOBAL_OFFSET_TABLE_ that are created specially
453 by the backends. Most symbols will have names pointing into
454 an ELF string table read from a file, or to objalloc memory. */
455 *p = 0;
457 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
459 if (p != NULL)
460 *p = ELF_VER_CHR;
462 if (indx == (bfd_size_type) -1)
463 return FALSE;
464 h->dynstr_index = indx;
467 return TRUE;
470 /* Mark a symbol dynamic. */
472 static void
473 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
474 struct elf_link_hash_entry *h,
475 Elf_Internal_Sym *sym)
477 struct bfd_elf_dynamic_list *d = info->dynamic_list;
479 /* It may be called more than once on the same H. */
480 if(h->dynamic || info->relocatable)
481 return;
483 if ((info->dynamic_data
484 && (h->type == STT_OBJECT
485 || (sym != NULL
486 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
487 || (d != NULL
488 && h->root.type == bfd_link_hash_new
489 && (*d->match) (&d->head, NULL, h->root.root.string)))
490 h->dynamic = 1;
493 /* Record an assignment to a symbol made by a linker script. We need
494 this in case some dynamic object refers to this symbol. */
496 bfd_boolean
497 bfd_elf_record_link_assignment (bfd *output_bfd,
498 struct bfd_link_info *info,
499 const char *name,
500 bfd_boolean provide,
501 bfd_boolean hidden)
503 struct elf_link_hash_entry *h, *hv;
504 struct elf_link_hash_table *htab;
505 const struct elf_backend_data *bed;
507 if (!is_elf_hash_table (info->hash))
508 return TRUE;
510 htab = elf_hash_table (info);
511 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
512 if (h == NULL)
513 return provide;
515 switch (h->root.type)
517 case bfd_link_hash_defined:
518 case bfd_link_hash_defweak:
519 case bfd_link_hash_common:
520 break;
521 case bfd_link_hash_undefweak:
522 case bfd_link_hash_undefined:
523 /* Since we're defining the symbol, don't let it seem to have not
524 been defined. record_dynamic_symbol and size_dynamic_sections
525 may depend on this. */
526 h->root.type = bfd_link_hash_new;
527 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
528 bfd_link_repair_undef_list (&htab->root);
529 break;
530 case bfd_link_hash_new:
531 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
532 h->non_elf = 0;
533 break;
534 case bfd_link_hash_indirect:
535 /* We had a versioned symbol in a dynamic library. We make the
536 the versioned symbol point to this one. */
537 bed = get_elf_backend_data (output_bfd);
538 hv = h;
539 while (hv->root.type == bfd_link_hash_indirect
540 || hv->root.type == bfd_link_hash_warning)
541 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
542 /* We don't need to update h->root.u since linker will set them
543 later. */
544 h->root.type = bfd_link_hash_undefined;
545 hv->root.type = bfd_link_hash_indirect;
546 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
547 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
548 break;
549 case bfd_link_hash_warning:
550 abort ();
551 break;
554 /* If this symbol is being provided by the linker script, and it is
555 currently defined by a dynamic object, but not by a regular
556 object, then mark it as undefined so that the generic linker will
557 force the correct value. */
558 if (provide
559 && h->def_dynamic
560 && !h->def_regular)
561 h->root.type = bfd_link_hash_undefined;
563 /* If this symbol is not being provided by the linker script, and it is
564 currently defined by a dynamic object, but not by a regular object,
565 then clear out any version information because the symbol will not be
566 associated with the dynamic object any more. */
567 if (!provide
568 && h->def_dynamic
569 && !h->def_regular)
570 h->verinfo.verdef = NULL;
572 h->def_regular = 1;
574 if (hidden)
576 bed = get_elf_backend_data (output_bfd);
577 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
578 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
579 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
582 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
583 and executables. */
584 if (!info->relocatable
585 && h->dynindx != -1
586 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
587 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
588 h->forced_local = 1;
590 if ((h->def_dynamic
591 || h->ref_dynamic
592 || info->shared
593 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
594 && h->dynindx == -1)
596 if (! bfd_elf_link_record_dynamic_symbol (info, h))
597 return FALSE;
599 /* If this is a weak defined symbol, and we know a corresponding
600 real symbol from the same dynamic object, make sure the real
601 symbol is also made into a dynamic symbol. */
602 if (h->u.weakdef != NULL
603 && h->u.weakdef->dynindx == -1)
605 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
606 return FALSE;
610 return TRUE;
613 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
614 success, and 2 on a failure caused by attempting to record a symbol
615 in a discarded section, eg. a discarded link-once section symbol. */
618 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
619 bfd *input_bfd,
620 long input_indx)
622 bfd_size_type amt;
623 struct elf_link_local_dynamic_entry *entry;
624 struct elf_link_hash_table *eht;
625 struct elf_strtab_hash *dynstr;
626 unsigned long dynstr_index;
627 char *name;
628 Elf_External_Sym_Shndx eshndx;
629 char esym[sizeof (Elf64_External_Sym)];
631 if (! is_elf_hash_table (info->hash))
632 return 0;
634 /* See if the entry exists already. */
635 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
636 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
637 return 1;
639 amt = sizeof (*entry);
640 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
641 if (entry == NULL)
642 return 0;
644 /* Go find the symbol, so that we can find it's name. */
645 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
646 1, input_indx, &entry->isym, esym, &eshndx))
648 bfd_release (input_bfd, entry);
649 return 0;
652 if (entry->isym.st_shndx != SHN_UNDEF
653 && entry->isym.st_shndx < SHN_LORESERVE)
655 asection *s;
657 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
658 if (s == NULL || bfd_is_abs_section (s->output_section))
660 /* We can still bfd_release here as nothing has done another
661 bfd_alloc. We can't do this later in this function. */
662 bfd_release (input_bfd, entry);
663 return 2;
667 name = (bfd_elf_string_from_elf_section
668 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
669 entry->isym.st_name));
671 dynstr = elf_hash_table (info)->dynstr;
672 if (dynstr == NULL)
674 /* Create a strtab to hold the dynamic symbol names. */
675 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
676 if (dynstr == NULL)
677 return 0;
680 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
681 if (dynstr_index == (unsigned long) -1)
682 return 0;
683 entry->isym.st_name = dynstr_index;
685 eht = elf_hash_table (info);
687 entry->next = eht->dynlocal;
688 eht->dynlocal = entry;
689 entry->input_bfd = input_bfd;
690 entry->input_indx = input_indx;
691 eht->dynsymcount++;
693 /* Whatever binding the symbol had before, it's now local. */
694 entry->isym.st_info
695 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
697 /* The dynindx will be set at the end of size_dynamic_sections. */
699 return 1;
702 /* Return the dynindex of a local dynamic symbol. */
704 long
705 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
706 bfd *input_bfd,
707 long input_indx)
709 struct elf_link_local_dynamic_entry *e;
711 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
712 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
713 return e->dynindx;
714 return -1;
717 /* This function is used to renumber the dynamic symbols, if some of
718 them are removed because they are marked as local. This is called
719 via elf_link_hash_traverse. */
721 static bfd_boolean
722 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
723 void *data)
725 size_t *count = (size_t *) data;
727 if (h->forced_local)
728 return TRUE;
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
733 return TRUE;
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
740 static bfd_boolean
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
742 void *data)
744 size_t *count = (size_t *) data;
746 if (!h->forced_local)
747 return TRUE;
749 if (h->dynindx != -1)
750 h->dynindx = ++(*count);
752 return TRUE;
755 /* Return true if the dynamic symbol for a given section should be
756 omitted when creating a shared library. */
757 bfd_boolean
758 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
759 struct bfd_link_info *info,
760 asection *p)
762 struct elf_link_hash_table *htab;
764 switch (elf_section_data (p)->this_hdr.sh_type)
766 case SHT_PROGBITS:
767 case SHT_NOBITS:
768 /* If sh_type is yet undecided, assume it could be
769 SHT_PROGBITS/SHT_NOBITS. */
770 case SHT_NULL:
771 htab = elf_hash_table (info);
772 if (p == htab->tls_sec)
773 return FALSE;
775 if (htab->text_index_section != NULL)
776 return p != htab->text_index_section && p != htab->data_index_section;
778 if (strcmp (p->name, ".got") == 0
779 || strcmp (p->name, ".got.plt") == 0
780 || strcmp (p->name, ".plt") == 0)
782 asection *ip;
784 if (htab->dynobj != NULL
785 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
786 && ip->output_section == p)
787 return TRUE;
789 return FALSE;
791 /* There shouldn't be section relative relocations
792 against any other section. */
793 default:
794 return TRUE;
798 /* Assign dynsym indices. In a shared library we generate a section
799 symbol for each output section, which come first. Next come symbols
800 which have been forced to local binding. Then all of the back-end
801 allocated local dynamic syms, followed by the rest of the global
802 symbols. */
804 static unsigned long
805 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
806 struct bfd_link_info *info,
807 unsigned long *section_sym_count)
809 unsigned long dynsymcount = 0;
811 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
813 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
814 asection *p;
815 for (p = output_bfd->sections; p ; p = p->next)
816 if ((p->flags & SEC_EXCLUDE) == 0
817 && (p->flags & SEC_ALLOC) != 0
818 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
819 elf_section_data (p)->dynindx = ++dynsymcount;
820 else
821 elf_section_data (p)->dynindx = 0;
823 *section_sym_count = dynsymcount;
825 elf_link_hash_traverse (elf_hash_table (info),
826 elf_link_renumber_local_hash_table_dynsyms,
827 &dynsymcount);
829 if (elf_hash_table (info)->dynlocal)
831 struct elf_link_local_dynamic_entry *p;
832 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
833 p->dynindx = ++dynsymcount;
836 elf_link_hash_traverse (elf_hash_table (info),
837 elf_link_renumber_hash_table_dynsyms,
838 &dynsymcount);
840 /* There is an unused NULL entry at the head of the table which
841 we must account for in our count. Unless there weren't any
842 symbols, which means we'll have no table at all. */
843 if (dynsymcount != 0)
844 ++dynsymcount;
846 elf_hash_table (info)->dynsymcount = dynsymcount;
847 return dynsymcount;
850 /* Merge st_other field. */
852 static void
853 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
854 Elf_Internal_Sym *isym, bfd_boolean definition,
855 bfd_boolean dynamic)
857 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
859 /* If st_other has a processor-specific meaning, specific
860 code might be needed here. We never merge the visibility
861 attribute with the one from a dynamic object. */
862 if (bed->elf_backend_merge_symbol_attribute)
863 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
864 dynamic);
866 /* If this symbol has default visibility and the user has requested
867 we not re-export it, then mark it as hidden. */
868 if (definition
869 && !dynamic
870 && (abfd->no_export
871 || (abfd->my_archive && abfd->my_archive->no_export))
872 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
873 isym->st_other = (STV_HIDDEN
874 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
876 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
878 unsigned char hvis, symvis, other, nvis;
880 /* Only merge the visibility. Leave the remainder of the
881 st_other field to elf_backend_merge_symbol_attribute. */
882 other = h->other & ~ELF_ST_VISIBILITY (-1);
884 /* Combine visibilities, using the most constraining one. */
885 hvis = ELF_ST_VISIBILITY (h->other);
886 symvis = ELF_ST_VISIBILITY (isym->st_other);
887 if (! hvis)
888 nvis = symvis;
889 else if (! symvis)
890 nvis = hvis;
891 else
892 nvis = hvis < symvis ? hvis : symvis;
894 h->other = other | nvis;
898 /* This function is called when we want to merge a new symbol with an
899 existing symbol. It handles the various cases which arise when we
900 find a definition in a dynamic object, or when there is already a
901 definition in a dynamic object. The new symbol is described by
902 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
903 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
904 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
905 of an old common symbol. We set OVERRIDE if the old symbol is
906 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
907 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
908 to change. By OK to change, we mean that we shouldn't warn if the
909 type or size does change. */
911 static bfd_boolean
912 _bfd_elf_merge_symbol (bfd *abfd,
913 struct bfd_link_info *info,
914 const char *name,
915 Elf_Internal_Sym *sym,
916 asection **psec,
917 bfd_vma *pvalue,
918 struct elf_link_hash_entry **sym_hash,
919 bfd **poldbfd,
920 bfd_boolean *pold_weak,
921 unsigned int *pold_alignment,
922 bfd_boolean *skip,
923 bfd_boolean *override,
924 bfd_boolean *type_change_ok,
925 bfd_boolean *size_change_ok)
927 asection *sec, *oldsec;
928 struct elf_link_hash_entry *h;
929 struct elf_link_hash_entry *hi;
930 struct elf_link_hash_entry *flip;
931 int bind;
932 bfd *oldbfd;
933 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
934 bfd_boolean newweak, oldweak, newfunc, oldfunc;
935 const struct elf_backend_data *bed;
937 *skip = FALSE;
938 *override = FALSE;
940 sec = *psec;
941 bind = ELF_ST_BIND (sym->st_info);
943 if (! bfd_is_und_section (sec))
944 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
945 else
946 h = ((struct elf_link_hash_entry *)
947 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
948 if (h == NULL)
949 return FALSE;
950 *sym_hash = h;
952 bed = get_elf_backend_data (abfd);
954 /* For merging, we only care about real symbols. But we need to make
955 sure that indirect symbol dynamic flags are updated. */
956 hi = h;
957 while (h->root.type == bfd_link_hash_indirect
958 || h->root.type == bfd_link_hash_warning)
959 h = (struct elf_link_hash_entry *) h->root.u.i.link;
961 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
962 existing symbol. */
964 oldbfd = NULL;
965 oldsec = NULL;
966 switch (h->root.type)
968 default:
969 break;
971 case bfd_link_hash_undefined:
972 case bfd_link_hash_undefweak:
973 oldbfd = h->root.u.undef.abfd;
974 break;
976 case bfd_link_hash_defined:
977 case bfd_link_hash_defweak:
978 oldbfd = h->root.u.def.section->owner;
979 oldsec = h->root.u.def.section;
980 break;
982 case bfd_link_hash_common:
983 oldbfd = h->root.u.c.p->section->owner;
984 oldsec = h->root.u.c.p->section;
985 if (pold_alignment)
986 *pold_alignment = h->root.u.c.p->alignment_power;
987 break;
989 if (poldbfd && *poldbfd == NULL)
990 *poldbfd = oldbfd;
992 /* Differentiate strong and weak symbols. */
993 newweak = bind == STB_WEAK;
994 oldweak = (h->root.type == bfd_link_hash_defweak
995 || h->root.type == bfd_link_hash_undefweak);
996 if (pold_weak)
997 *pold_weak = oldweak;
999 /* This code is for coping with dynamic objects, and is only useful
1000 if we are doing an ELF link. */
1001 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1002 return TRUE;
1004 /* We have to check it for every instance since the first few may be
1005 references and not all compilers emit symbol type for undefined
1006 symbols. */
1007 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1009 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1010 respectively, is from a dynamic object. */
1012 newdyn = (abfd->flags & DYNAMIC) != 0;
1014 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1015 syms and defined syms in dynamic libraries respectively.
1016 ref_dynamic on the other hand can be set for a symbol defined in
1017 a dynamic library, and def_dynamic may not be set; When the
1018 definition in a dynamic lib is overridden by a definition in the
1019 executable use of the symbol in the dynamic lib becomes a
1020 reference to the executable symbol. */
1021 if (newdyn)
1023 if (bfd_is_und_section (sec))
1025 if (bind != STB_WEAK)
1027 h->ref_dynamic_nonweak = 1;
1028 hi->ref_dynamic_nonweak = 1;
1031 else
1033 h->dynamic_def = 1;
1034 hi->dynamic_def = 1;
1038 /* If we just created the symbol, mark it as being an ELF symbol.
1039 Other than that, there is nothing to do--there is no merge issue
1040 with a newly defined symbol--so we just return. */
1042 if (h->root.type == bfd_link_hash_new)
1044 h->non_elf = 0;
1045 return TRUE;
1048 /* In cases involving weak versioned symbols, we may wind up trying
1049 to merge a symbol with itself. Catch that here, to avoid the
1050 confusion that results if we try to override a symbol with
1051 itself. The additional tests catch cases like
1052 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1053 dynamic object, which we do want to handle here. */
1054 if (abfd == oldbfd
1055 && (newweak || oldweak)
1056 && ((abfd->flags & DYNAMIC) == 0
1057 || !h->def_regular))
1058 return TRUE;
1060 olddyn = FALSE;
1061 if (oldbfd != NULL)
1062 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1063 else if (oldsec != NULL)
1065 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1066 indices used by MIPS ELF. */
1067 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1070 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1071 respectively, appear to be a definition rather than reference. */
1073 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1075 olddef = (h->root.type != bfd_link_hash_undefined
1076 && h->root.type != bfd_link_hash_undefweak
1077 && h->root.type != bfd_link_hash_common);
1079 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1080 respectively, appear to be a function. */
1082 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1083 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1085 oldfunc = (h->type != STT_NOTYPE
1086 && bed->is_function_type (h->type));
1088 /* When we try to create a default indirect symbol from the dynamic
1089 definition with the default version, we skip it if its type and
1090 the type of existing regular definition mismatch. We only do it
1091 if the existing regular definition won't be dynamic. */
1092 if (pold_alignment == NULL
1093 && !info->shared
1094 && !info->export_dynamic
1095 && !h->ref_dynamic
1096 && newdyn
1097 && newdef
1098 && !olddyn
1099 && (olddef || h->root.type == bfd_link_hash_common)
1100 && ELF_ST_TYPE (sym->st_info) != h->type
1101 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1102 && h->type != STT_NOTYPE
1103 && !(newfunc && oldfunc))
1105 *skip = TRUE;
1106 return TRUE;
1109 /* Plugin symbol type isn't currently set. Stop bogus errors. */
1110 if (oldbfd != NULL && (oldbfd->flags & BFD_PLUGIN) != 0)
1111 *type_change_ok = TRUE;
1113 /* Check TLS symbol. We don't check undefined symbol introduced by
1114 "ld -u". */
1115 else if (oldbfd != NULL
1116 && ELF_ST_TYPE (sym->st_info) != h->type
1117 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1119 bfd *ntbfd, *tbfd;
1120 bfd_boolean ntdef, tdef;
1121 asection *ntsec, *tsec;
1123 if (h->type == STT_TLS)
1125 ntbfd = abfd;
1126 ntsec = sec;
1127 ntdef = newdef;
1128 tbfd = oldbfd;
1129 tsec = oldsec;
1130 tdef = olddef;
1132 else
1134 ntbfd = oldbfd;
1135 ntsec = oldsec;
1136 ntdef = olddef;
1137 tbfd = abfd;
1138 tsec = sec;
1139 tdef = newdef;
1142 if (tdef && ntdef)
1143 (*_bfd_error_handler)
1144 (_("%s: TLS definition in %B section %A "
1145 "mismatches non-TLS definition in %B section %A"),
1146 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1147 else if (!tdef && !ntdef)
1148 (*_bfd_error_handler)
1149 (_("%s: TLS reference in %B "
1150 "mismatches non-TLS reference in %B"),
1151 tbfd, ntbfd, h->root.root.string);
1152 else if (tdef)
1153 (*_bfd_error_handler)
1154 (_("%s: TLS definition in %B section %A "
1155 "mismatches non-TLS reference in %B"),
1156 tbfd, tsec, ntbfd, h->root.root.string);
1157 else
1158 (*_bfd_error_handler)
1159 (_("%s: TLS reference in %B "
1160 "mismatches non-TLS definition in %B section %A"),
1161 tbfd, ntbfd, ntsec, h->root.root.string);
1163 bfd_set_error (bfd_error_bad_value);
1164 return FALSE;
1167 /* If the old symbol has non-default visibility, we ignore the new
1168 definition from a dynamic object. */
1169 if (newdyn
1170 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1171 && !bfd_is_und_section (sec))
1173 *skip = TRUE;
1174 /* Make sure this symbol is dynamic. */
1175 h->ref_dynamic = 1;
1176 hi->ref_dynamic = 1;
1177 /* A protected symbol has external availability. Make sure it is
1178 recorded as dynamic.
1180 FIXME: Should we check type and size for protected symbol? */
1181 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1182 return bfd_elf_link_record_dynamic_symbol (info, h);
1183 else
1184 return TRUE;
1186 else if (!newdyn
1187 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1188 && h->def_dynamic)
1190 /* If the new symbol with non-default visibility comes from a
1191 relocatable file and the old definition comes from a dynamic
1192 object, we remove the old definition. */
1193 if (hi->root.type == bfd_link_hash_indirect)
1195 /* Handle the case where the old dynamic definition is
1196 default versioned. We need to copy the symbol info from
1197 the symbol with default version to the normal one if it
1198 was referenced before. */
1199 if (h->ref_regular)
1201 hi->root.type = h->root.type;
1202 h->root.type = bfd_link_hash_indirect;
1203 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1205 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1206 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1208 /* If the new symbol is hidden or internal, completely undo
1209 any dynamic link state. */
1210 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1211 h->forced_local = 0;
1212 h->ref_dynamic = 0;
1214 else
1215 h->ref_dynamic = 1;
1217 h->def_dynamic = 0;
1218 /* FIXME: Should we check type and size for protected symbol? */
1219 h->size = 0;
1220 h->type = 0;
1222 h = hi;
1224 else
1225 h = hi;
1228 /* If the old symbol was undefined before, then it will still be
1229 on the undefs list. If the new symbol is undefined or
1230 common, we can't make it bfd_link_hash_new here, because new
1231 undefined or common symbols will be added to the undefs list
1232 by _bfd_generic_link_add_one_symbol. Symbols may not be
1233 added twice to the undefs list. Also, if the new symbol is
1234 undefweak then we don't want to lose the strong undef. */
1235 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1237 h->root.type = bfd_link_hash_undefined;
1238 h->root.u.undef.abfd = abfd;
1240 else
1242 h->root.type = bfd_link_hash_new;
1243 h->root.u.undef.abfd = NULL;
1246 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1248 /* If the new symbol is hidden or internal, completely undo
1249 any dynamic link state. */
1250 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1251 h->forced_local = 0;
1252 h->ref_dynamic = 0;
1254 else
1255 h->ref_dynamic = 1;
1256 h->def_dynamic = 0;
1257 /* FIXME: Should we check type and size for protected symbol? */
1258 h->size = 0;
1259 h->type = 0;
1260 return TRUE;
1263 /* If a new weak symbol definition comes from a regular file and the
1264 old symbol comes from a dynamic library, we treat the new one as
1265 strong. Similarly, an old weak symbol definition from a regular
1266 file is treated as strong when the new symbol comes from a dynamic
1267 library. Further, an old weak symbol from a dynamic library is
1268 treated as strong if the new symbol is from a dynamic library.
1269 This reflects the way glibc's ld.so works.
1271 Do this before setting *type_change_ok or *size_change_ok so that
1272 we warn properly when dynamic library symbols are overridden. */
1274 if (newdef && !newdyn && olddyn)
1275 newweak = FALSE;
1276 if (olddef && newdyn)
1277 oldweak = FALSE;
1279 /* Allow changes between different types of function symbol. */
1280 if (newfunc && oldfunc)
1281 *type_change_ok = TRUE;
1283 /* It's OK to change the type if either the existing symbol or the
1284 new symbol is weak. A type change is also OK if the old symbol
1285 is undefined and the new symbol is defined. */
1287 if (oldweak
1288 || newweak
1289 || (newdef
1290 && h->root.type == bfd_link_hash_undefined))
1291 *type_change_ok = TRUE;
1293 /* It's OK to change the size if either the existing symbol or the
1294 new symbol is weak, or if the old symbol is undefined. */
1296 if (*type_change_ok
1297 || h->root.type == bfd_link_hash_undefined)
1298 *size_change_ok = TRUE;
1300 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1301 symbol, respectively, appears to be a common symbol in a dynamic
1302 object. If a symbol appears in an uninitialized section, and is
1303 not weak, and is not a function, then it may be a common symbol
1304 which was resolved when the dynamic object was created. We want
1305 to treat such symbols specially, because they raise special
1306 considerations when setting the symbol size: if the symbol
1307 appears as a common symbol in a regular object, and the size in
1308 the regular object is larger, we must make sure that we use the
1309 larger size. This problematic case can always be avoided in C,
1310 but it must be handled correctly when using Fortran shared
1311 libraries.
1313 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1314 likewise for OLDDYNCOMMON and OLDDEF.
1316 Note that this test is just a heuristic, and that it is quite
1317 possible to have an uninitialized symbol in a shared object which
1318 is really a definition, rather than a common symbol. This could
1319 lead to some minor confusion when the symbol really is a common
1320 symbol in some regular object. However, I think it will be
1321 harmless. */
1323 if (newdyn
1324 && newdef
1325 && !newweak
1326 && (sec->flags & SEC_ALLOC) != 0
1327 && (sec->flags & SEC_LOAD) == 0
1328 && sym->st_size > 0
1329 && !newfunc)
1330 newdyncommon = TRUE;
1331 else
1332 newdyncommon = FALSE;
1334 if (olddyn
1335 && olddef
1336 && h->root.type == bfd_link_hash_defined
1337 && h->def_dynamic
1338 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1339 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1340 && h->size > 0
1341 && !oldfunc)
1342 olddyncommon = TRUE;
1343 else
1344 olddyncommon = FALSE;
1346 /* We now know everything about the old and new symbols. We ask the
1347 backend to check if we can merge them. */
1348 if (bed->merge_symbol != NULL)
1350 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1351 return FALSE;
1352 sec = *psec;
1355 /* If both the old and the new symbols look like common symbols in a
1356 dynamic object, set the size of the symbol to the larger of the
1357 two. */
1359 if (olddyncommon
1360 && newdyncommon
1361 && sym->st_size != h->size)
1363 /* Since we think we have two common symbols, issue a multiple
1364 common warning if desired. Note that we only warn if the
1365 size is different. If the size is the same, we simply let
1366 the old symbol override the new one as normally happens with
1367 symbols defined in dynamic objects. */
1369 if (! ((*info->callbacks->multiple_common)
1370 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1371 return FALSE;
1373 if (sym->st_size > h->size)
1374 h->size = sym->st_size;
1376 *size_change_ok = TRUE;
1379 /* If we are looking at a dynamic object, and we have found a
1380 definition, we need to see if the symbol was already defined by
1381 some other object. If so, we want to use the existing
1382 definition, and we do not want to report a multiple symbol
1383 definition error; we do this by clobbering *PSEC to be
1384 bfd_und_section_ptr.
1386 We treat a common symbol as a definition if the symbol in the
1387 shared library is a function, since common symbols always
1388 represent variables; this can cause confusion in principle, but
1389 any such confusion would seem to indicate an erroneous program or
1390 shared library. We also permit a common symbol in a regular
1391 object to override a weak symbol in a shared object. */
1393 if (newdyn
1394 && newdef
1395 && (olddef
1396 || (h->root.type == bfd_link_hash_common
1397 && (newweak || newfunc))))
1399 *override = TRUE;
1400 newdef = FALSE;
1401 newdyncommon = FALSE;
1403 *psec = sec = bfd_und_section_ptr;
1404 *size_change_ok = TRUE;
1406 /* If we get here when the old symbol is a common symbol, then
1407 we are explicitly letting it override a weak symbol or
1408 function in a dynamic object, and we don't want to warn about
1409 a type change. If the old symbol is a defined symbol, a type
1410 change warning may still be appropriate. */
1412 if (h->root.type == bfd_link_hash_common)
1413 *type_change_ok = TRUE;
1416 /* Handle the special case of an old common symbol merging with a
1417 new symbol which looks like a common symbol in a shared object.
1418 We change *PSEC and *PVALUE to make the new symbol look like a
1419 common symbol, and let _bfd_generic_link_add_one_symbol do the
1420 right thing. */
1422 if (newdyncommon
1423 && h->root.type == bfd_link_hash_common)
1425 *override = TRUE;
1426 newdef = FALSE;
1427 newdyncommon = FALSE;
1428 *pvalue = sym->st_size;
1429 *psec = sec = bed->common_section (oldsec);
1430 *size_change_ok = TRUE;
1433 /* Skip weak definitions of symbols that are already defined. */
1434 if (newdef && olddef && newweak)
1436 /* Don't skip new non-IR weak syms. */
1437 if (!(oldbfd != NULL
1438 && (oldbfd->flags & BFD_PLUGIN) != 0
1439 && (abfd->flags & BFD_PLUGIN) == 0))
1440 *skip = TRUE;
1442 /* Merge st_other. If the symbol already has a dynamic index,
1443 but visibility says it should not be visible, turn it into a
1444 local symbol. */
1445 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1446 if (h->dynindx != -1)
1447 switch (ELF_ST_VISIBILITY (h->other))
1449 case STV_INTERNAL:
1450 case STV_HIDDEN:
1451 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1452 break;
1456 /* If the old symbol is from a dynamic object, and the new symbol is
1457 a definition which is not from a dynamic object, then the new
1458 symbol overrides the old symbol. Symbols from regular files
1459 always take precedence over symbols from dynamic objects, even if
1460 they are defined after the dynamic object in the link.
1462 As above, we again permit a common symbol in a regular object to
1463 override a definition in a shared object if the shared object
1464 symbol is a function or is weak. */
1466 flip = NULL;
1467 if (!newdyn
1468 && (newdef
1469 || (bfd_is_com_section (sec)
1470 && (oldweak || oldfunc)))
1471 && olddyn
1472 && olddef
1473 && h->def_dynamic)
1475 /* Change the hash table entry to undefined, and let
1476 _bfd_generic_link_add_one_symbol do the right thing with the
1477 new definition. */
1479 h->root.type = bfd_link_hash_undefined;
1480 h->root.u.undef.abfd = h->root.u.def.section->owner;
1481 *size_change_ok = TRUE;
1483 olddef = FALSE;
1484 olddyncommon = FALSE;
1486 /* We again permit a type change when a common symbol may be
1487 overriding a function. */
1489 if (bfd_is_com_section (sec))
1491 if (oldfunc)
1493 /* If a common symbol overrides a function, make sure
1494 that it isn't defined dynamically nor has type
1495 function. */
1496 h->def_dynamic = 0;
1497 h->type = STT_NOTYPE;
1499 *type_change_ok = TRUE;
1502 if (hi->root.type == bfd_link_hash_indirect)
1503 flip = hi;
1504 else
1505 /* This union may have been set to be non-NULL when this symbol
1506 was seen in a dynamic object. We must force the union to be
1507 NULL, so that it is correct for a regular symbol. */
1508 h->verinfo.vertree = NULL;
1511 /* Handle the special case of a new common symbol merging with an
1512 old symbol that looks like it might be a common symbol defined in
1513 a shared object. Note that we have already handled the case in
1514 which a new common symbol should simply override the definition
1515 in the shared library. */
1517 if (! newdyn
1518 && bfd_is_com_section (sec)
1519 && olddyncommon)
1521 /* It would be best if we could set the hash table entry to a
1522 common symbol, but we don't know what to use for the section
1523 or the alignment. */
1524 if (! ((*info->callbacks->multiple_common)
1525 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1526 return FALSE;
1528 /* If the presumed common symbol in the dynamic object is
1529 larger, pretend that the new symbol has its size. */
1531 if (h->size > *pvalue)
1532 *pvalue = h->size;
1534 /* We need to remember the alignment required by the symbol
1535 in the dynamic object. */
1536 BFD_ASSERT (pold_alignment);
1537 *pold_alignment = h->root.u.def.section->alignment_power;
1539 olddef = FALSE;
1540 olddyncommon = FALSE;
1542 h->root.type = bfd_link_hash_undefined;
1543 h->root.u.undef.abfd = h->root.u.def.section->owner;
1545 *size_change_ok = TRUE;
1546 *type_change_ok = TRUE;
1548 if (hi->root.type == bfd_link_hash_indirect)
1549 flip = hi;
1550 else
1551 h->verinfo.vertree = NULL;
1554 if (flip != NULL)
1556 /* Handle the case where we had a versioned symbol in a dynamic
1557 library and now find a definition in a normal object. In this
1558 case, we make the versioned symbol point to the normal one. */
1559 flip->root.type = h->root.type;
1560 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1561 h->root.type = bfd_link_hash_indirect;
1562 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1563 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1564 if (h->def_dynamic)
1566 h->def_dynamic = 0;
1567 flip->ref_dynamic = 1;
1571 return TRUE;
1574 /* This function is called to create an indirect symbol from the
1575 default for the symbol with the default version if needed. The
1576 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1577 set DYNSYM if the new indirect symbol is dynamic. */
1579 static bfd_boolean
1580 _bfd_elf_add_default_symbol (bfd *abfd,
1581 struct bfd_link_info *info,
1582 struct elf_link_hash_entry *h,
1583 const char *name,
1584 Elf_Internal_Sym *sym,
1585 asection *sec,
1586 bfd_vma value,
1587 bfd **poldbfd,
1588 bfd_boolean *dynsym)
1590 bfd_boolean type_change_ok;
1591 bfd_boolean size_change_ok;
1592 bfd_boolean skip;
1593 char *shortname;
1594 struct elf_link_hash_entry *hi;
1595 struct bfd_link_hash_entry *bh;
1596 const struct elf_backend_data *bed;
1597 bfd_boolean collect;
1598 bfd_boolean dynamic;
1599 bfd_boolean override;
1600 char *p;
1601 size_t len, shortlen;
1602 asection *tmp_sec;
1604 /* If this symbol has a version, and it is the default version, we
1605 create an indirect symbol from the default name to the fully
1606 decorated name. This will cause external references which do not
1607 specify a version to be bound to this version of the symbol. */
1608 p = strchr (name, ELF_VER_CHR);
1609 if (p == NULL || p[1] != ELF_VER_CHR)
1610 return TRUE;
1612 bed = get_elf_backend_data (abfd);
1613 collect = bed->collect;
1614 dynamic = (abfd->flags & DYNAMIC) != 0;
1616 shortlen = p - name;
1617 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1618 if (shortname == NULL)
1619 return FALSE;
1620 memcpy (shortname, name, shortlen);
1621 shortname[shortlen] = '\0';
1623 /* We are going to create a new symbol. Merge it with any existing
1624 symbol with this name. For the purposes of the merge, act as
1625 though we were defining the symbol we just defined, although we
1626 actually going to define an indirect symbol. */
1627 type_change_ok = FALSE;
1628 size_change_ok = FALSE;
1629 tmp_sec = sec;
1630 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1631 &hi, poldbfd, NULL, NULL, &skip, &override,
1632 &type_change_ok, &size_change_ok))
1633 return FALSE;
1635 if (skip)
1636 goto nondefault;
1638 if (! override)
1640 bh = &hi->root;
1641 if (! (_bfd_generic_link_add_one_symbol
1642 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1643 0, name, FALSE, collect, &bh)))
1644 return FALSE;
1645 hi = (struct elf_link_hash_entry *) bh;
1647 else
1649 /* In this case the symbol named SHORTNAME is overriding the
1650 indirect symbol we want to add. We were planning on making
1651 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1652 is the name without a version. NAME is the fully versioned
1653 name, and it is the default version.
1655 Overriding means that we already saw a definition for the
1656 symbol SHORTNAME in a regular object, and it is overriding
1657 the symbol defined in the dynamic object.
1659 When this happens, we actually want to change NAME, the
1660 symbol we just added, to refer to SHORTNAME. This will cause
1661 references to NAME in the shared object to become references
1662 to SHORTNAME in the regular object. This is what we expect
1663 when we override a function in a shared object: that the
1664 references in the shared object will be mapped to the
1665 definition in the regular object. */
1667 while (hi->root.type == bfd_link_hash_indirect
1668 || hi->root.type == bfd_link_hash_warning)
1669 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1671 h->root.type = bfd_link_hash_indirect;
1672 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1673 if (h->def_dynamic)
1675 h->def_dynamic = 0;
1676 hi->ref_dynamic = 1;
1677 if (hi->ref_regular
1678 || hi->def_regular)
1680 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1681 return FALSE;
1685 /* Now set HI to H, so that the following code will set the
1686 other fields correctly. */
1687 hi = h;
1690 /* Check if HI is a warning symbol. */
1691 if (hi->root.type == bfd_link_hash_warning)
1692 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1694 /* If there is a duplicate definition somewhere, then HI may not
1695 point to an indirect symbol. We will have reported an error to
1696 the user in that case. */
1698 if (hi->root.type == bfd_link_hash_indirect)
1700 struct elf_link_hash_entry *ht;
1702 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1703 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1705 /* See if the new flags lead us to realize that the symbol must
1706 be dynamic. */
1707 if (! *dynsym)
1709 if (! dynamic)
1711 if (! info->executable
1712 || hi->def_dynamic
1713 || hi->ref_dynamic)
1714 *dynsym = TRUE;
1716 else
1718 if (hi->ref_regular)
1719 *dynsym = TRUE;
1724 /* We also need to define an indirection from the nondefault version
1725 of the symbol. */
1727 nondefault:
1728 len = strlen (name);
1729 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1730 if (shortname == NULL)
1731 return FALSE;
1732 memcpy (shortname, name, shortlen);
1733 memcpy (shortname + shortlen, p + 1, len - shortlen);
1735 /* Once again, merge with any existing symbol. */
1736 type_change_ok = FALSE;
1737 size_change_ok = FALSE;
1738 tmp_sec = sec;
1739 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1740 &hi, NULL, NULL, NULL, &skip, &override,
1741 &type_change_ok, &size_change_ok))
1742 return FALSE;
1744 if (skip)
1745 return TRUE;
1747 if (override)
1749 /* Here SHORTNAME is a versioned name, so we don't expect to see
1750 the type of override we do in the case above unless it is
1751 overridden by a versioned definition. */
1752 if (hi->root.type != bfd_link_hash_defined
1753 && hi->root.type != bfd_link_hash_defweak)
1754 (*_bfd_error_handler)
1755 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1756 abfd, shortname);
1758 else
1760 bh = &hi->root;
1761 if (! (_bfd_generic_link_add_one_symbol
1762 (info, abfd, shortname, BSF_INDIRECT,
1763 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1764 return FALSE;
1765 hi = (struct elf_link_hash_entry *) bh;
1767 /* If there is a duplicate definition somewhere, then HI may not
1768 point to an indirect symbol. We will have reported an error
1769 to the user in that case. */
1771 if (hi->root.type == bfd_link_hash_indirect)
1773 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1775 /* See if the new flags lead us to realize that the symbol
1776 must be dynamic. */
1777 if (! *dynsym)
1779 if (! dynamic)
1781 if (! info->executable
1782 || hi->ref_dynamic)
1783 *dynsym = TRUE;
1785 else
1787 if (hi->ref_regular)
1788 *dynsym = TRUE;
1794 return TRUE;
1797 /* This routine is used to export all defined symbols into the dynamic
1798 symbol table. It is called via elf_link_hash_traverse. */
1800 static bfd_boolean
1801 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1803 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1805 /* Ignore indirect symbols. These are added by the versioning code. */
1806 if (h->root.type == bfd_link_hash_indirect)
1807 return TRUE;
1809 /* Ignore this if we won't export it. */
1810 if (!eif->info->export_dynamic && !h->dynamic)
1811 return TRUE;
1813 if (h->dynindx == -1
1814 && (h->def_regular || h->ref_regular)
1815 && ! bfd_hide_sym_by_version (eif->info->version_info,
1816 h->root.root.string))
1818 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1820 eif->failed = TRUE;
1821 return FALSE;
1825 return TRUE;
1828 /* Look through the symbols which are defined in other shared
1829 libraries and referenced here. Update the list of version
1830 dependencies. This will be put into the .gnu.version_r section.
1831 This function is called via elf_link_hash_traverse. */
1833 static bfd_boolean
1834 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1835 void *data)
1837 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1838 Elf_Internal_Verneed *t;
1839 Elf_Internal_Vernaux *a;
1840 bfd_size_type amt;
1842 /* We only care about symbols defined in shared objects with version
1843 information. */
1844 if (!h->def_dynamic
1845 || h->def_regular
1846 || h->dynindx == -1
1847 || h->verinfo.verdef == NULL)
1848 return TRUE;
1850 /* See if we already know about this version. */
1851 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1852 t != NULL;
1853 t = t->vn_nextref)
1855 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1856 continue;
1858 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1859 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1860 return TRUE;
1862 break;
1865 /* This is a new version. Add it to tree we are building. */
1867 if (t == NULL)
1869 amt = sizeof *t;
1870 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1871 if (t == NULL)
1873 rinfo->failed = TRUE;
1874 return FALSE;
1877 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1878 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1879 elf_tdata (rinfo->info->output_bfd)->verref = t;
1882 amt = sizeof *a;
1883 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1884 if (a == NULL)
1886 rinfo->failed = TRUE;
1887 return FALSE;
1890 /* Note that we are copying a string pointer here, and testing it
1891 above. If bfd_elf_string_from_elf_section is ever changed to
1892 discard the string data when low in memory, this will have to be
1893 fixed. */
1894 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1896 a->vna_flags = h->verinfo.verdef->vd_flags;
1897 a->vna_nextptr = t->vn_auxptr;
1899 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1900 ++rinfo->vers;
1902 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1904 t->vn_auxptr = a;
1906 return TRUE;
1909 /* Figure out appropriate versions for all the symbols. We may not
1910 have the version number script until we have read all of the input
1911 files, so until that point we don't know which symbols should be
1912 local. This function is called via elf_link_hash_traverse. */
1914 static bfd_boolean
1915 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1917 struct elf_info_failed *sinfo;
1918 struct bfd_link_info *info;
1919 const struct elf_backend_data *bed;
1920 struct elf_info_failed eif;
1921 char *p;
1922 bfd_size_type amt;
1924 sinfo = (struct elf_info_failed *) data;
1925 info = sinfo->info;
1927 /* Fix the symbol flags. */
1928 eif.failed = FALSE;
1929 eif.info = info;
1930 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1932 if (eif.failed)
1933 sinfo->failed = TRUE;
1934 return FALSE;
1937 /* We only need version numbers for symbols defined in regular
1938 objects. */
1939 if (!h->def_regular)
1940 return TRUE;
1942 bed = get_elf_backend_data (info->output_bfd);
1943 p = strchr (h->root.root.string, ELF_VER_CHR);
1944 if (p != NULL && h->verinfo.vertree == NULL)
1946 struct bfd_elf_version_tree *t;
1947 bfd_boolean hidden;
1949 hidden = TRUE;
1951 /* There are two consecutive ELF_VER_CHR characters if this is
1952 not a hidden symbol. */
1953 ++p;
1954 if (*p == ELF_VER_CHR)
1956 hidden = FALSE;
1957 ++p;
1960 /* If there is no version string, we can just return out. */
1961 if (*p == '\0')
1963 if (hidden)
1964 h->hidden = 1;
1965 return TRUE;
1968 /* Look for the version. If we find it, it is no longer weak. */
1969 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1971 if (strcmp (t->name, p) == 0)
1973 size_t len;
1974 char *alc;
1975 struct bfd_elf_version_expr *d;
1977 len = p - h->root.root.string;
1978 alc = (char *) bfd_malloc (len);
1979 if (alc == NULL)
1981 sinfo->failed = TRUE;
1982 return FALSE;
1984 memcpy (alc, h->root.root.string, len - 1);
1985 alc[len - 1] = '\0';
1986 if (alc[len - 2] == ELF_VER_CHR)
1987 alc[len - 2] = '\0';
1989 h->verinfo.vertree = t;
1990 t->used = TRUE;
1991 d = NULL;
1993 if (t->globals.list != NULL)
1994 d = (*t->match) (&t->globals, NULL, alc);
1996 /* See if there is anything to force this symbol to
1997 local scope. */
1998 if (d == NULL && t->locals.list != NULL)
2000 d = (*t->match) (&t->locals, NULL, alc);
2001 if (d != NULL
2002 && h->dynindx != -1
2003 && ! info->export_dynamic)
2004 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2007 free (alc);
2008 break;
2012 /* If we are building an application, we need to create a
2013 version node for this version. */
2014 if (t == NULL && info->executable)
2016 struct bfd_elf_version_tree **pp;
2017 int version_index;
2019 /* If we aren't going to export this symbol, we don't need
2020 to worry about it. */
2021 if (h->dynindx == -1)
2022 return TRUE;
2024 amt = sizeof *t;
2025 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2026 if (t == NULL)
2028 sinfo->failed = TRUE;
2029 return FALSE;
2032 t->name = p;
2033 t->name_indx = (unsigned int) -1;
2034 t->used = TRUE;
2036 version_index = 1;
2037 /* Don't count anonymous version tag. */
2038 if (sinfo->info->version_info != NULL
2039 && sinfo->info->version_info->vernum == 0)
2040 version_index = 0;
2041 for (pp = &sinfo->info->version_info;
2042 *pp != NULL;
2043 pp = &(*pp)->next)
2044 ++version_index;
2045 t->vernum = version_index;
2047 *pp = t;
2049 h->verinfo.vertree = t;
2051 else if (t == NULL)
2053 /* We could not find the version for a symbol when
2054 generating a shared archive. Return an error. */
2055 (*_bfd_error_handler)
2056 (_("%B: version node not found for symbol %s"),
2057 info->output_bfd, h->root.root.string);
2058 bfd_set_error (bfd_error_bad_value);
2059 sinfo->failed = TRUE;
2060 return FALSE;
2063 if (hidden)
2064 h->hidden = 1;
2067 /* If we don't have a version for this symbol, see if we can find
2068 something. */
2069 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2071 bfd_boolean hide;
2073 h->verinfo.vertree
2074 = bfd_find_version_for_sym (sinfo->info->version_info,
2075 h->root.root.string, &hide);
2076 if (h->verinfo.vertree != NULL && hide)
2077 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2080 return TRUE;
2083 /* Read and swap the relocs from the section indicated by SHDR. This
2084 may be either a REL or a RELA section. The relocations are
2085 translated into RELA relocations and stored in INTERNAL_RELOCS,
2086 which should have already been allocated to contain enough space.
2087 The EXTERNAL_RELOCS are a buffer where the external form of the
2088 relocations should be stored.
2090 Returns FALSE if something goes wrong. */
2092 static bfd_boolean
2093 elf_link_read_relocs_from_section (bfd *abfd,
2094 asection *sec,
2095 Elf_Internal_Shdr *shdr,
2096 void *external_relocs,
2097 Elf_Internal_Rela *internal_relocs)
2099 const struct elf_backend_data *bed;
2100 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2101 const bfd_byte *erela;
2102 const bfd_byte *erelaend;
2103 Elf_Internal_Rela *irela;
2104 Elf_Internal_Shdr *symtab_hdr;
2105 size_t nsyms;
2107 /* Position ourselves at the start of the section. */
2108 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2109 return FALSE;
2111 /* Read the relocations. */
2112 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2113 return FALSE;
2115 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2116 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2118 bed = get_elf_backend_data (abfd);
2120 /* Convert the external relocations to the internal format. */
2121 if (shdr->sh_entsize == bed->s->sizeof_rel)
2122 swap_in = bed->s->swap_reloc_in;
2123 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2124 swap_in = bed->s->swap_reloca_in;
2125 else
2127 bfd_set_error (bfd_error_wrong_format);
2128 return FALSE;
2131 erela = (const bfd_byte *) external_relocs;
2132 erelaend = erela + shdr->sh_size;
2133 irela = internal_relocs;
2134 while (erela < erelaend)
2136 bfd_vma r_symndx;
2138 (*swap_in) (abfd, erela, irela);
2139 r_symndx = ELF32_R_SYM (irela->r_info);
2140 if (bed->s->arch_size == 64)
2141 r_symndx >>= 24;
2142 if (nsyms > 0)
2144 if ((size_t) r_symndx >= nsyms)
2146 (*_bfd_error_handler)
2147 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2148 " for offset 0x%lx in section `%A'"),
2149 abfd, sec,
2150 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2151 bfd_set_error (bfd_error_bad_value);
2152 return FALSE;
2155 else if (r_symndx != STN_UNDEF)
2157 (*_bfd_error_handler)
2158 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2159 " when the object file has no symbol table"),
2160 abfd, sec,
2161 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2162 bfd_set_error (bfd_error_bad_value);
2163 return FALSE;
2165 irela += bed->s->int_rels_per_ext_rel;
2166 erela += shdr->sh_entsize;
2169 return TRUE;
2172 /* Read and swap the relocs for a section O. They may have been
2173 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2174 not NULL, they are used as buffers to read into. They are known to
2175 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2176 the return value is allocated using either malloc or bfd_alloc,
2177 according to the KEEP_MEMORY argument. If O has two relocation
2178 sections (both REL and RELA relocations), then the REL_HDR
2179 relocations will appear first in INTERNAL_RELOCS, followed by the
2180 RELA_HDR relocations. */
2182 Elf_Internal_Rela *
2183 _bfd_elf_link_read_relocs (bfd *abfd,
2184 asection *o,
2185 void *external_relocs,
2186 Elf_Internal_Rela *internal_relocs,
2187 bfd_boolean keep_memory)
2189 void *alloc1 = NULL;
2190 Elf_Internal_Rela *alloc2 = NULL;
2191 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2192 struct bfd_elf_section_data *esdo = elf_section_data (o);
2193 Elf_Internal_Rela *internal_rela_relocs;
2195 if (esdo->relocs != NULL)
2196 return esdo->relocs;
2198 if (o->reloc_count == 0)
2199 return NULL;
2201 if (internal_relocs == NULL)
2203 bfd_size_type size;
2205 size = o->reloc_count;
2206 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2207 if (keep_memory)
2208 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2209 else
2210 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2211 if (internal_relocs == NULL)
2212 goto error_return;
2215 if (external_relocs == NULL)
2217 bfd_size_type size = 0;
2219 if (esdo->rel.hdr)
2220 size += esdo->rel.hdr->sh_size;
2221 if (esdo->rela.hdr)
2222 size += esdo->rela.hdr->sh_size;
2224 alloc1 = bfd_malloc (size);
2225 if (alloc1 == NULL)
2226 goto error_return;
2227 external_relocs = alloc1;
2230 internal_rela_relocs = internal_relocs;
2231 if (esdo->rel.hdr)
2233 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2234 external_relocs,
2235 internal_relocs))
2236 goto error_return;
2237 external_relocs = (((bfd_byte *) external_relocs)
2238 + esdo->rel.hdr->sh_size);
2239 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2240 * bed->s->int_rels_per_ext_rel);
2243 if (esdo->rela.hdr
2244 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2245 external_relocs,
2246 internal_rela_relocs)))
2247 goto error_return;
2249 /* Cache the results for next time, if we can. */
2250 if (keep_memory)
2251 esdo->relocs = internal_relocs;
2253 if (alloc1 != NULL)
2254 free (alloc1);
2256 /* Don't free alloc2, since if it was allocated we are passing it
2257 back (under the name of internal_relocs). */
2259 return internal_relocs;
2261 error_return:
2262 if (alloc1 != NULL)
2263 free (alloc1);
2264 if (alloc2 != NULL)
2266 if (keep_memory)
2267 bfd_release (abfd, alloc2);
2268 else
2269 free (alloc2);
2271 return NULL;
2274 /* Compute the size of, and allocate space for, REL_HDR which is the
2275 section header for a section containing relocations for O. */
2277 static bfd_boolean
2278 _bfd_elf_link_size_reloc_section (bfd *abfd,
2279 struct bfd_elf_section_reloc_data *reldata)
2281 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2283 /* That allows us to calculate the size of the section. */
2284 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2286 /* The contents field must last into write_object_contents, so we
2287 allocate it with bfd_alloc rather than malloc. Also since we
2288 cannot be sure that the contents will actually be filled in,
2289 we zero the allocated space. */
2290 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2291 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2292 return FALSE;
2294 if (reldata->hashes == NULL && reldata->count)
2296 struct elf_link_hash_entry **p;
2298 p = (struct elf_link_hash_entry **)
2299 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2300 if (p == NULL)
2301 return FALSE;
2303 reldata->hashes = p;
2306 return TRUE;
2309 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2310 originated from the section given by INPUT_REL_HDR) to the
2311 OUTPUT_BFD. */
2313 bfd_boolean
2314 _bfd_elf_link_output_relocs (bfd *output_bfd,
2315 asection *input_section,
2316 Elf_Internal_Shdr *input_rel_hdr,
2317 Elf_Internal_Rela *internal_relocs,
2318 struct elf_link_hash_entry **rel_hash
2319 ATTRIBUTE_UNUSED)
2321 Elf_Internal_Rela *irela;
2322 Elf_Internal_Rela *irelaend;
2323 bfd_byte *erel;
2324 struct bfd_elf_section_reloc_data *output_reldata;
2325 asection *output_section;
2326 const struct elf_backend_data *bed;
2327 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2328 struct bfd_elf_section_data *esdo;
2330 output_section = input_section->output_section;
2332 bed = get_elf_backend_data (output_bfd);
2333 esdo = elf_section_data (output_section);
2334 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2336 output_reldata = &esdo->rel;
2337 swap_out = bed->s->swap_reloc_out;
2339 else if (esdo->rela.hdr
2340 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2342 output_reldata = &esdo->rela;
2343 swap_out = bed->s->swap_reloca_out;
2345 else
2347 (*_bfd_error_handler)
2348 (_("%B: relocation size mismatch in %B section %A"),
2349 output_bfd, input_section->owner, input_section);
2350 bfd_set_error (bfd_error_wrong_format);
2351 return FALSE;
2354 erel = output_reldata->hdr->contents;
2355 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2356 irela = internal_relocs;
2357 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2358 * bed->s->int_rels_per_ext_rel);
2359 while (irela < irelaend)
2361 (*swap_out) (output_bfd, irela, erel);
2362 irela += bed->s->int_rels_per_ext_rel;
2363 erel += input_rel_hdr->sh_entsize;
2366 /* Bump the counter, so that we know where to add the next set of
2367 relocations. */
2368 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2370 return TRUE;
2373 /* Make weak undefined symbols in PIE dynamic. */
2375 bfd_boolean
2376 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2377 struct elf_link_hash_entry *h)
2379 if (info->pie
2380 && h->dynindx == -1
2381 && h->root.type == bfd_link_hash_undefweak)
2382 return bfd_elf_link_record_dynamic_symbol (info, h);
2384 return TRUE;
2387 /* Fix up the flags for a symbol. This handles various cases which
2388 can only be fixed after all the input files are seen. This is
2389 currently called by both adjust_dynamic_symbol and
2390 assign_sym_version, which is unnecessary but perhaps more robust in
2391 the face of future changes. */
2393 static bfd_boolean
2394 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2395 struct elf_info_failed *eif)
2397 const struct elf_backend_data *bed;
2399 /* If this symbol was mentioned in a non-ELF file, try to set
2400 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2401 permit a non-ELF file to correctly refer to a symbol defined in
2402 an ELF dynamic object. */
2403 if (h->non_elf)
2405 while (h->root.type == bfd_link_hash_indirect)
2406 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2408 if (h->root.type != bfd_link_hash_defined
2409 && h->root.type != bfd_link_hash_defweak)
2411 h->ref_regular = 1;
2412 h->ref_regular_nonweak = 1;
2414 else
2416 if (h->root.u.def.section->owner != NULL
2417 && (bfd_get_flavour (h->root.u.def.section->owner)
2418 == bfd_target_elf_flavour))
2420 h->ref_regular = 1;
2421 h->ref_regular_nonweak = 1;
2423 else
2424 h->def_regular = 1;
2427 if (h->dynindx == -1
2428 && (h->def_dynamic
2429 || h->ref_dynamic))
2431 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2433 eif->failed = TRUE;
2434 return FALSE;
2438 else
2440 /* Unfortunately, NON_ELF is only correct if the symbol
2441 was first seen in a non-ELF file. Fortunately, if the symbol
2442 was first seen in an ELF file, we're probably OK unless the
2443 symbol was defined in a non-ELF file. Catch that case here.
2444 FIXME: We're still in trouble if the symbol was first seen in
2445 a dynamic object, and then later in a non-ELF regular object. */
2446 if ((h->root.type == bfd_link_hash_defined
2447 || h->root.type == bfd_link_hash_defweak)
2448 && !h->def_regular
2449 && (h->root.u.def.section->owner != NULL
2450 ? (bfd_get_flavour (h->root.u.def.section->owner)
2451 != bfd_target_elf_flavour)
2452 : (bfd_is_abs_section (h->root.u.def.section)
2453 && !h->def_dynamic)))
2454 h->def_regular = 1;
2457 /* Backend specific symbol fixup. */
2458 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2459 if (bed->elf_backend_fixup_symbol
2460 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2461 return FALSE;
2463 /* If this is a final link, and the symbol was defined as a common
2464 symbol in a regular object file, and there was no definition in
2465 any dynamic object, then the linker will have allocated space for
2466 the symbol in a common section but the DEF_REGULAR
2467 flag will not have been set. */
2468 if (h->root.type == bfd_link_hash_defined
2469 && !h->def_regular
2470 && h->ref_regular
2471 && !h->def_dynamic
2472 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2473 h->def_regular = 1;
2475 /* If -Bsymbolic was used (which means to bind references to global
2476 symbols to the definition within the shared object), and this
2477 symbol was defined in a regular object, then it actually doesn't
2478 need a PLT entry. Likewise, if the symbol has non-default
2479 visibility. If the symbol has hidden or internal visibility, we
2480 will force it local. */
2481 if (h->needs_plt
2482 && eif->info->shared
2483 && is_elf_hash_table (eif->info->hash)
2484 && (SYMBOLIC_BIND (eif->info, h)
2485 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2486 && h->def_regular)
2488 bfd_boolean force_local;
2490 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2491 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2492 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2495 /* If a weak undefined symbol has non-default visibility, we also
2496 hide it from the dynamic linker. */
2497 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2498 && h->root.type == bfd_link_hash_undefweak)
2499 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2501 /* If this is a weak defined symbol in a dynamic object, and we know
2502 the real definition in the dynamic object, copy interesting flags
2503 over to the real definition. */
2504 if (h->u.weakdef != NULL)
2506 /* If the real definition is defined by a regular object file,
2507 don't do anything special. See the longer description in
2508 _bfd_elf_adjust_dynamic_symbol, below. */
2509 if (h->u.weakdef->def_regular)
2510 h->u.weakdef = NULL;
2511 else
2513 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2515 while (h->root.type == bfd_link_hash_indirect)
2516 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2518 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2519 || h->root.type == bfd_link_hash_defweak);
2520 BFD_ASSERT (weakdef->def_dynamic);
2521 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2522 || weakdef->root.type == bfd_link_hash_defweak);
2523 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2527 return TRUE;
2530 /* Make the backend pick a good value for a dynamic symbol. This is
2531 called via elf_link_hash_traverse, and also calls itself
2532 recursively. */
2534 static bfd_boolean
2535 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2537 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2538 bfd *dynobj;
2539 const struct elf_backend_data *bed;
2541 if (! is_elf_hash_table (eif->info->hash))
2542 return FALSE;
2544 /* Ignore indirect symbols. These are added by the versioning code. */
2545 if (h->root.type == bfd_link_hash_indirect)
2546 return TRUE;
2548 /* Fix the symbol flags. */
2549 if (! _bfd_elf_fix_symbol_flags (h, eif))
2550 return FALSE;
2552 /* If this symbol does not require a PLT entry, and it is not
2553 defined by a dynamic object, or is not referenced by a regular
2554 object, ignore it. We do have to handle a weak defined symbol,
2555 even if no regular object refers to it, if we decided to add it
2556 to the dynamic symbol table. FIXME: Do we normally need to worry
2557 about symbols which are defined by one dynamic object and
2558 referenced by another one? */
2559 if (!h->needs_plt
2560 && h->type != STT_GNU_IFUNC
2561 && (h->def_regular
2562 || !h->def_dynamic
2563 || (!h->ref_regular
2564 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2566 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2567 return TRUE;
2570 /* If we've already adjusted this symbol, don't do it again. This
2571 can happen via a recursive call. */
2572 if (h->dynamic_adjusted)
2573 return TRUE;
2575 /* Don't look at this symbol again. Note that we must set this
2576 after checking the above conditions, because we may look at a
2577 symbol once, decide not to do anything, and then get called
2578 recursively later after REF_REGULAR is set below. */
2579 h->dynamic_adjusted = 1;
2581 /* If this is a weak definition, and we know a real definition, and
2582 the real symbol is not itself defined by a regular object file,
2583 then get a good value for the real definition. We handle the
2584 real symbol first, for the convenience of the backend routine.
2586 Note that there is a confusing case here. If the real definition
2587 is defined by a regular object file, we don't get the real symbol
2588 from the dynamic object, but we do get the weak symbol. If the
2589 processor backend uses a COPY reloc, then if some routine in the
2590 dynamic object changes the real symbol, we will not see that
2591 change in the corresponding weak symbol. This is the way other
2592 ELF linkers work as well, and seems to be a result of the shared
2593 library model.
2595 I will clarify this issue. Most SVR4 shared libraries define the
2596 variable _timezone and define timezone as a weak synonym. The
2597 tzset call changes _timezone. If you write
2598 extern int timezone;
2599 int _timezone = 5;
2600 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2601 you might expect that, since timezone is a synonym for _timezone,
2602 the same number will print both times. However, if the processor
2603 backend uses a COPY reloc, then actually timezone will be copied
2604 into your process image, and, since you define _timezone
2605 yourself, _timezone will not. Thus timezone and _timezone will
2606 wind up at different memory locations. The tzset call will set
2607 _timezone, leaving timezone unchanged. */
2609 if (h->u.weakdef != NULL)
2611 /* If we get to this point, there is an implicit reference to
2612 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2613 h->u.weakdef->ref_regular = 1;
2615 /* Ensure that the backend adjust_dynamic_symbol function sees
2616 H->U.WEAKDEF before H by recursively calling ourselves. */
2617 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2618 return FALSE;
2621 /* If a symbol has no type and no size and does not require a PLT
2622 entry, then we are probably about to do the wrong thing here: we
2623 are probably going to create a COPY reloc for an empty object.
2624 This case can arise when a shared object is built with assembly
2625 code, and the assembly code fails to set the symbol type. */
2626 if (h->size == 0
2627 && h->type == STT_NOTYPE
2628 && !h->needs_plt)
2629 (*_bfd_error_handler)
2630 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2631 h->root.root.string);
2633 dynobj = elf_hash_table (eif->info)->dynobj;
2634 bed = get_elf_backend_data (dynobj);
2636 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2638 eif->failed = TRUE;
2639 return FALSE;
2642 return TRUE;
2645 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2646 DYNBSS. */
2648 bfd_boolean
2649 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2650 asection *dynbss)
2652 unsigned int power_of_two;
2653 bfd_vma mask;
2654 asection *sec = h->root.u.def.section;
2656 /* The section aligment of definition is the maximum alignment
2657 requirement of symbols defined in the section. Since we don't
2658 know the symbol alignment requirement, we start with the
2659 maximum alignment and check low bits of the symbol address
2660 for the minimum alignment. */
2661 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2662 mask = ((bfd_vma) 1 << power_of_two) - 1;
2663 while ((h->root.u.def.value & mask) != 0)
2665 mask >>= 1;
2666 --power_of_two;
2669 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2670 dynbss))
2672 /* Adjust the section alignment if needed. */
2673 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2674 power_of_two))
2675 return FALSE;
2678 /* We make sure that the symbol will be aligned properly. */
2679 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2681 /* Define the symbol as being at this point in DYNBSS. */
2682 h->root.u.def.section = dynbss;
2683 h->root.u.def.value = dynbss->size;
2685 /* Increment the size of DYNBSS to make room for the symbol. */
2686 dynbss->size += h->size;
2688 return TRUE;
2691 /* Adjust all external symbols pointing into SEC_MERGE sections
2692 to reflect the object merging within the sections. */
2694 static bfd_boolean
2695 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2697 asection *sec;
2699 if ((h->root.type == bfd_link_hash_defined
2700 || h->root.type == bfd_link_hash_defweak)
2701 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2702 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2704 bfd *output_bfd = (bfd *) data;
2706 h->root.u.def.value =
2707 _bfd_merged_section_offset (output_bfd,
2708 &h->root.u.def.section,
2709 elf_section_data (sec)->sec_info,
2710 h->root.u.def.value);
2713 return TRUE;
2716 /* Returns false if the symbol referred to by H should be considered
2717 to resolve local to the current module, and true if it should be
2718 considered to bind dynamically. */
2720 bfd_boolean
2721 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2722 struct bfd_link_info *info,
2723 bfd_boolean not_local_protected)
2725 bfd_boolean binding_stays_local_p;
2726 const struct elf_backend_data *bed;
2727 struct elf_link_hash_table *hash_table;
2729 if (h == NULL)
2730 return FALSE;
2732 while (h->root.type == bfd_link_hash_indirect
2733 || h->root.type == bfd_link_hash_warning)
2734 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2736 /* If it was forced local, then clearly it's not dynamic. */
2737 if (h->dynindx == -1)
2738 return FALSE;
2739 if (h->forced_local)
2740 return FALSE;
2742 /* Identify the cases where name binding rules say that a
2743 visible symbol resolves locally. */
2744 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2746 switch (ELF_ST_VISIBILITY (h->other))
2748 case STV_INTERNAL:
2749 case STV_HIDDEN:
2750 return FALSE;
2752 case STV_PROTECTED:
2753 hash_table = elf_hash_table (info);
2754 if (!is_elf_hash_table (hash_table))
2755 return FALSE;
2757 bed = get_elf_backend_data (hash_table->dynobj);
2759 /* Proper resolution for function pointer equality may require
2760 that these symbols perhaps be resolved dynamically, even though
2761 we should be resolving them to the current module. */
2762 if (!not_local_protected || !bed->is_function_type (h->type))
2763 binding_stays_local_p = TRUE;
2764 break;
2766 default:
2767 break;
2770 /* If it isn't defined locally, then clearly it's dynamic. */
2771 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2772 return TRUE;
2774 /* Otherwise, the symbol is dynamic if binding rules don't tell
2775 us that it remains local. */
2776 return !binding_stays_local_p;
2779 /* Return true if the symbol referred to by H should be considered
2780 to resolve local to the current module, and false otherwise. Differs
2781 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2782 undefined symbols. The two functions are virtually identical except
2783 for the place where forced_local and dynindx == -1 are tested. If
2784 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2785 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2786 the symbol is local only for defined symbols.
2787 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2788 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2789 treatment of undefined weak symbols. For those that do not make
2790 undefined weak symbols dynamic, both functions may return false. */
2792 bfd_boolean
2793 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2794 struct bfd_link_info *info,
2795 bfd_boolean local_protected)
2797 const struct elf_backend_data *bed;
2798 struct elf_link_hash_table *hash_table;
2800 /* If it's a local sym, of course we resolve locally. */
2801 if (h == NULL)
2802 return TRUE;
2804 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2805 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2806 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2807 return TRUE;
2809 /* Common symbols that become definitions don't get the DEF_REGULAR
2810 flag set, so test it first, and don't bail out. */
2811 if (ELF_COMMON_DEF_P (h))
2812 /* Do nothing. */;
2813 /* If we don't have a definition in a regular file, then we can't
2814 resolve locally. The sym is either undefined or dynamic. */
2815 else if (!h->def_regular)
2816 return FALSE;
2818 /* Forced local symbols resolve locally. */
2819 if (h->forced_local)
2820 return TRUE;
2822 /* As do non-dynamic symbols. */
2823 if (h->dynindx == -1)
2824 return TRUE;
2826 /* At this point, we know the symbol is defined and dynamic. In an
2827 executable it must resolve locally, likewise when building symbolic
2828 shared libraries. */
2829 if (info->executable || SYMBOLIC_BIND (info, h))
2830 return TRUE;
2832 /* Now deal with defined dynamic symbols in shared libraries. Ones
2833 with default visibility might not resolve locally. */
2834 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2835 return FALSE;
2837 hash_table = elf_hash_table (info);
2838 if (!is_elf_hash_table (hash_table))
2839 return TRUE;
2841 bed = get_elf_backend_data (hash_table->dynobj);
2843 /* STV_PROTECTED non-function symbols are local. */
2844 if (!bed->is_function_type (h->type))
2845 return TRUE;
2847 /* Function pointer equality tests may require that STV_PROTECTED
2848 symbols be treated as dynamic symbols. If the address of a
2849 function not defined in an executable is set to that function's
2850 plt entry in the executable, then the address of the function in
2851 a shared library must also be the plt entry in the executable. */
2852 return local_protected;
2855 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2856 aligned. Returns the first TLS output section. */
2858 struct bfd_section *
2859 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2861 struct bfd_section *sec, *tls;
2862 unsigned int align = 0;
2864 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2865 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2866 break;
2867 tls = sec;
2869 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2870 if (sec->alignment_power > align)
2871 align = sec->alignment_power;
2873 elf_hash_table (info)->tls_sec = tls;
2875 /* Ensure the alignment of the first section is the largest alignment,
2876 so that the tls segment starts aligned. */
2877 if (tls != NULL)
2878 tls->alignment_power = align;
2880 return tls;
2883 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2884 static bfd_boolean
2885 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2886 Elf_Internal_Sym *sym)
2888 const struct elf_backend_data *bed;
2890 /* Local symbols do not count, but target specific ones might. */
2891 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2892 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2893 return FALSE;
2895 bed = get_elf_backend_data (abfd);
2896 /* Function symbols do not count. */
2897 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2898 return FALSE;
2900 /* If the section is undefined, then so is the symbol. */
2901 if (sym->st_shndx == SHN_UNDEF)
2902 return FALSE;
2904 /* If the symbol is defined in the common section, then
2905 it is a common definition and so does not count. */
2906 if (bed->common_definition (sym))
2907 return FALSE;
2909 /* If the symbol is in a target specific section then we
2910 must rely upon the backend to tell us what it is. */
2911 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2912 /* FIXME - this function is not coded yet:
2914 return _bfd_is_global_symbol_definition (abfd, sym);
2916 Instead for now assume that the definition is not global,
2917 Even if this is wrong, at least the linker will behave
2918 in the same way that it used to do. */
2919 return FALSE;
2921 return TRUE;
2924 /* Search the symbol table of the archive element of the archive ABFD
2925 whose archive map contains a mention of SYMDEF, and determine if
2926 the symbol is defined in this element. */
2927 static bfd_boolean
2928 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2930 Elf_Internal_Shdr * hdr;
2931 bfd_size_type symcount;
2932 bfd_size_type extsymcount;
2933 bfd_size_type extsymoff;
2934 Elf_Internal_Sym *isymbuf;
2935 Elf_Internal_Sym *isym;
2936 Elf_Internal_Sym *isymend;
2937 bfd_boolean result;
2939 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2940 if (abfd == NULL)
2941 return FALSE;
2943 if (! bfd_check_format (abfd, bfd_object))
2944 return FALSE;
2946 /* If we have already included the element containing this symbol in the
2947 link then we do not need to include it again. Just claim that any symbol
2948 it contains is not a definition, so that our caller will not decide to
2949 (re)include this element. */
2950 if (abfd->archive_pass)
2951 return FALSE;
2953 /* Select the appropriate symbol table. */
2954 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2955 hdr = &elf_tdata (abfd)->symtab_hdr;
2956 else
2957 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2959 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2961 /* The sh_info field of the symtab header tells us where the
2962 external symbols start. We don't care about the local symbols. */
2963 if (elf_bad_symtab (abfd))
2965 extsymcount = symcount;
2966 extsymoff = 0;
2968 else
2970 extsymcount = symcount - hdr->sh_info;
2971 extsymoff = hdr->sh_info;
2974 if (extsymcount == 0)
2975 return FALSE;
2977 /* Read in the symbol table. */
2978 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2979 NULL, NULL, NULL);
2980 if (isymbuf == NULL)
2981 return FALSE;
2983 /* Scan the symbol table looking for SYMDEF. */
2984 result = FALSE;
2985 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2987 const char *name;
2989 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2990 isym->st_name);
2991 if (name == NULL)
2992 break;
2994 if (strcmp (name, symdef->name) == 0)
2996 result = is_global_data_symbol_definition (abfd, isym);
2997 break;
3001 free (isymbuf);
3003 return result;
3006 /* Add an entry to the .dynamic table. */
3008 bfd_boolean
3009 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3010 bfd_vma tag,
3011 bfd_vma val)
3013 struct elf_link_hash_table *hash_table;
3014 const struct elf_backend_data *bed;
3015 asection *s;
3016 bfd_size_type newsize;
3017 bfd_byte *newcontents;
3018 Elf_Internal_Dyn dyn;
3020 hash_table = elf_hash_table (info);
3021 if (! is_elf_hash_table (hash_table))
3022 return FALSE;
3024 bed = get_elf_backend_data (hash_table->dynobj);
3025 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3026 BFD_ASSERT (s != NULL);
3028 newsize = s->size + bed->s->sizeof_dyn;
3029 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3030 if (newcontents == NULL)
3031 return FALSE;
3033 dyn.d_tag = tag;
3034 dyn.d_un.d_val = val;
3035 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3037 s->size = newsize;
3038 s->contents = newcontents;
3040 return TRUE;
3043 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3044 otherwise just check whether one already exists. Returns -1 on error,
3045 1 if a DT_NEEDED tag already exists, and 0 on success. */
3047 static int
3048 elf_add_dt_needed_tag (bfd *abfd,
3049 struct bfd_link_info *info,
3050 const char *soname,
3051 bfd_boolean do_it)
3053 struct elf_link_hash_table *hash_table;
3054 bfd_size_type strindex;
3056 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3057 return -1;
3059 hash_table = elf_hash_table (info);
3060 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3061 if (strindex == (bfd_size_type) -1)
3062 return -1;
3064 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3066 asection *sdyn;
3067 const struct elf_backend_data *bed;
3068 bfd_byte *extdyn;
3070 bed = get_elf_backend_data (hash_table->dynobj);
3071 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3072 if (sdyn != NULL)
3073 for (extdyn = sdyn->contents;
3074 extdyn < sdyn->contents + sdyn->size;
3075 extdyn += bed->s->sizeof_dyn)
3077 Elf_Internal_Dyn dyn;
3079 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3080 if (dyn.d_tag == DT_NEEDED
3081 && dyn.d_un.d_val == strindex)
3083 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3084 return 1;
3089 if (do_it)
3091 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3092 return -1;
3094 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3095 return -1;
3097 else
3098 /* We were just checking for existence of the tag. */
3099 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3101 return 0;
3104 static bfd_boolean
3105 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3107 for (; needed != NULL; needed = needed->next)
3108 if (strcmp (soname, needed->name) == 0)
3109 return TRUE;
3111 return FALSE;
3114 /* Sort symbol by value, section, and size. */
3115 static int
3116 elf_sort_symbol (const void *arg1, const void *arg2)
3118 const struct elf_link_hash_entry *h1;
3119 const struct elf_link_hash_entry *h2;
3120 bfd_signed_vma vdiff;
3122 h1 = *(const struct elf_link_hash_entry **) arg1;
3123 h2 = *(const struct elf_link_hash_entry **) arg2;
3124 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3125 if (vdiff != 0)
3126 return vdiff > 0 ? 1 : -1;
3127 else
3129 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3130 if (sdiff != 0)
3131 return sdiff > 0 ? 1 : -1;
3133 vdiff = h1->size - h2->size;
3134 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3137 /* This function is used to adjust offsets into .dynstr for
3138 dynamic symbols. This is called via elf_link_hash_traverse. */
3140 static bfd_boolean
3141 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3143 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3145 if (h->dynindx != -1)
3146 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3147 return TRUE;
3150 /* Assign string offsets in .dynstr, update all structures referencing
3151 them. */
3153 static bfd_boolean
3154 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3156 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3157 struct elf_link_local_dynamic_entry *entry;
3158 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3159 bfd *dynobj = hash_table->dynobj;
3160 asection *sdyn;
3161 bfd_size_type size;
3162 const struct elf_backend_data *bed;
3163 bfd_byte *extdyn;
3165 _bfd_elf_strtab_finalize (dynstr);
3166 size = _bfd_elf_strtab_size (dynstr);
3168 bed = get_elf_backend_data (dynobj);
3169 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3170 BFD_ASSERT (sdyn != NULL);
3172 /* Update all .dynamic entries referencing .dynstr strings. */
3173 for (extdyn = sdyn->contents;
3174 extdyn < sdyn->contents + sdyn->size;
3175 extdyn += bed->s->sizeof_dyn)
3177 Elf_Internal_Dyn dyn;
3179 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3180 switch (dyn.d_tag)
3182 case DT_STRSZ:
3183 dyn.d_un.d_val = size;
3184 break;
3185 case DT_NEEDED:
3186 case DT_SONAME:
3187 case DT_RPATH:
3188 case DT_RUNPATH:
3189 case DT_FILTER:
3190 case DT_AUXILIARY:
3191 case DT_AUDIT:
3192 case DT_DEPAUDIT:
3193 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3194 break;
3195 default:
3196 continue;
3198 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3201 /* Now update local dynamic symbols. */
3202 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3203 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3204 entry->isym.st_name);
3206 /* And the rest of dynamic symbols. */
3207 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3209 /* Adjust version definitions. */
3210 if (elf_tdata (output_bfd)->cverdefs)
3212 asection *s;
3213 bfd_byte *p;
3214 bfd_size_type i;
3215 Elf_Internal_Verdef def;
3216 Elf_Internal_Verdaux defaux;
3218 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3219 p = s->contents;
3222 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3223 &def);
3224 p += sizeof (Elf_External_Verdef);
3225 if (def.vd_aux != sizeof (Elf_External_Verdef))
3226 continue;
3227 for (i = 0; i < def.vd_cnt; ++i)
3229 _bfd_elf_swap_verdaux_in (output_bfd,
3230 (Elf_External_Verdaux *) p, &defaux);
3231 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3232 defaux.vda_name);
3233 _bfd_elf_swap_verdaux_out (output_bfd,
3234 &defaux, (Elf_External_Verdaux *) p);
3235 p += sizeof (Elf_External_Verdaux);
3238 while (def.vd_next);
3241 /* Adjust version references. */
3242 if (elf_tdata (output_bfd)->verref)
3244 asection *s;
3245 bfd_byte *p;
3246 bfd_size_type i;
3247 Elf_Internal_Verneed need;
3248 Elf_Internal_Vernaux needaux;
3250 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3251 p = s->contents;
3254 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3255 &need);
3256 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3257 _bfd_elf_swap_verneed_out (output_bfd, &need,
3258 (Elf_External_Verneed *) p);
3259 p += sizeof (Elf_External_Verneed);
3260 for (i = 0; i < need.vn_cnt; ++i)
3262 _bfd_elf_swap_vernaux_in (output_bfd,
3263 (Elf_External_Vernaux *) p, &needaux);
3264 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3265 needaux.vna_name);
3266 _bfd_elf_swap_vernaux_out (output_bfd,
3267 &needaux,
3268 (Elf_External_Vernaux *) p);
3269 p += sizeof (Elf_External_Vernaux);
3272 while (need.vn_next);
3275 return TRUE;
3278 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3279 The default is to only match when the INPUT and OUTPUT are exactly
3280 the same target. */
3282 bfd_boolean
3283 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3284 const bfd_target *output)
3286 return input == output;
3289 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3290 This version is used when different targets for the same architecture
3291 are virtually identical. */
3293 bfd_boolean
3294 _bfd_elf_relocs_compatible (const bfd_target *input,
3295 const bfd_target *output)
3297 const struct elf_backend_data *obed, *ibed;
3299 if (input == output)
3300 return TRUE;
3302 ibed = xvec_get_elf_backend_data (input);
3303 obed = xvec_get_elf_backend_data (output);
3305 if (ibed->arch != obed->arch)
3306 return FALSE;
3308 /* If both backends are using this function, deem them compatible. */
3309 return ibed->relocs_compatible == obed->relocs_compatible;
3312 /* Make a special call to the linker "notice" function to tell it that
3313 we are about to handle an as-needed lib, or have finished
3314 processing the lib. */
3316 bfd_boolean
3317 _bfd_elf_notice_as_needed (bfd *ibfd,
3318 struct bfd_link_info *info,
3319 enum notice_asneeded_action act)
3321 return (*info->callbacks->notice) (info, NULL, ibfd, NULL, act, 0, NULL);
3324 /* Add symbols from an ELF object file to the linker hash table. */
3326 static bfd_boolean
3327 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3329 Elf_Internal_Ehdr *ehdr;
3330 Elf_Internal_Shdr *hdr;
3331 bfd_size_type symcount;
3332 bfd_size_type extsymcount;
3333 bfd_size_type extsymoff;
3334 struct elf_link_hash_entry **sym_hash;
3335 bfd_boolean dynamic;
3336 Elf_External_Versym *extversym = NULL;
3337 Elf_External_Versym *ever;
3338 struct elf_link_hash_entry *weaks;
3339 struct elf_link_hash_entry **nondeflt_vers = NULL;
3340 bfd_size_type nondeflt_vers_cnt = 0;
3341 Elf_Internal_Sym *isymbuf = NULL;
3342 Elf_Internal_Sym *isym;
3343 Elf_Internal_Sym *isymend;
3344 const struct elf_backend_data *bed;
3345 bfd_boolean add_needed;
3346 struct elf_link_hash_table *htab;
3347 bfd_size_type amt;
3348 void *alloc_mark = NULL;
3349 struct bfd_hash_entry **old_table = NULL;
3350 unsigned int old_size = 0;
3351 unsigned int old_count = 0;
3352 void *old_tab = NULL;
3353 void *old_ent;
3354 struct bfd_link_hash_entry *old_undefs = NULL;
3355 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3356 long old_dynsymcount = 0;
3357 bfd_size_type old_dynstr_size = 0;
3358 size_t tabsize = 0;
3359 asection *s;
3361 htab = elf_hash_table (info);
3362 bed = get_elf_backend_data (abfd);
3364 if ((abfd->flags & DYNAMIC) == 0)
3365 dynamic = FALSE;
3366 else
3368 dynamic = TRUE;
3370 /* You can't use -r against a dynamic object. Also, there's no
3371 hope of using a dynamic object which does not exactly match
3372 the format of the output file. */
3373 if (info->relocatable
3374 || !is_elf_hash_table (htab)
3375 || info->output_bfd->xvec != abfd->xvec)
3377 if (info->relocatable)
3378 bfd_set_error (bfd_error_invalid_operation);
3379 else
3380 bfd_set_error (bfd_error_wrong_format);
3381 goto error_return;
3385 ehdr = elf_elfheader (abfd);
3386 if (info->warn_alternate_em
3387 && bed->elf_machine_code != ehdr->e_machine
3388 && ((bed->elf_machine_alt1 != 0
3389 && ehdr->e_machine == bed->elf_machine_alt1)
3390 || (bed->elf_machine_alt2 != 0
3391 && ehdr->e_machine == bed->elf_machine_alt2)))
3392 info->callbacks->einfo
3393 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3394 ehdr->e_machine, abfd, bed->elf_machine_code);
3396 /* As a GNU extension, any input sections which are named
3397 .gnu.warning.SYMBOL are treated as warning symbols for the given
3398 symbol. This differs from .gnu.warning sections, which generate
3399 warnings when they are included in an output file. */
3400 /* PR 12761: Also generate this warning when building shared libraries. */
3401 for (s = abfd->sections; s != NULL; s = s->next)
3403 const char *name;
3405 name = bfd_get_section_name (abfd, s);
3406 if (CONST_STRNEQ (name, ".gnu.warning."))
3408 char *msg;
3409 bfd_size_type sz;
3411 name += sizeof ".gnu.warning." - 1;
3413 /* If this is a shared object, then look up the symbol
3414 in the hash table. If it is there, and it is already
3415 been defined, then we will not be using the entry
3416 from this shared object, so we don't need to warn.
3417 FIXME: If we see the definition in a regular object
3418 later on, we will warn, but we shouldn't. The only
3419 fix is to keep track of what warnings we are supposed
3420 to emit, and then handle them all at the end of the
3421 link. */
3422 if (dynamic)
3424 struct elf_link_hash_entry *h;
3426 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3428 /* FIXME: What about bfd_link_hash_common? */
3429 if (h != NULL
3430 && (h->root.type == bfd_link_hash_defined
3431 || h->root.type == bfd_link_hash_defweak))
3432 continue;
3435 sz = s->size;
3436 msg = (char *) bfd_alloc (abfd, sz + 1);
3437 if (msg == NULL)
3438 goto error_return;
3440 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3441 goto error_return;
3443 msg[sz] = '\0';
3445 if (! (_bfd_generic_link_add_one_symbol
3446 (info, abfd, name, BSF_WARNING, s, 0, msg,
3447 FALSE, bed->collect, NULL)))
3448 goto error_return;
3450 if (!info->relocatable && info->executable)
3452 /* Clobber the section size so that the warning does
3453 not get copied into the output file. */
3454 s->size = 0;
3456 /* Also set SEC_EXCLUDE, so that symbols defined in
3457 the warning section don't get copied to the output. */
3458 s->flags |= SEC_EXCLUDE;
3463 add_needed = TRUE;
3464 if (! dynamic)
3466 /* If we are creating a shared library, create all the dynamic
3467 sections immediately. We need to attach them to something,
3468 so we attach them to this BFD, provided it is the right
3469 format. FIXME: If there are no input BFD's of the same
3470 format as the output, we can't make a shared library. */
3471 if (info->shared
3472 && is_elf_hash_table (htab)
3473 && info->output_bfd->xvec == abfd->xvec
3474 && !htab->dynamic_sections_created)
3476 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3477 goto error_return;
3480 else if (!is_elf_hash_table (htab))
3481 goto error_return;
3482 else
3484 const char *soname = NULL;
3485 char *audit = NULL;
3486 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3487 int ret;
3489 /* ld --just-symbols and dynamic objects don't mix very well.
3490 ld shouldn't allow it. */
3491 if ((s = abfd->sections) != NULL
3492 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3493 abort ();
3495 /* If this dynamic lib was specified on the command line with
3496 --as-needed in effect, then we don't want to add a DT_NEEDED
3497 tag unless the lib is actually used. Similary for libs brought
3498 in by another lib's DT_NEEDED. When --no-add-needed is used
3499 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3500 any dynamic library in DT_NEEDED tags in the dynamic lib at
3501 all. */
3502 add_needed = (elf_dyn_lib_class (abfd)
3503 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3504 | DYN_NO_NEEDED)) == 0;
3506 s = bfd_get_section_by_name (abfd, ".dynamic");
3507 if (s != NULL)
3509 bfd_byte *dynbuf;
3510 bfd_byte *extdyn;
3511 unsigned int elfsec;
3512 unsigned long shlink;
3514 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3516 error_free_dyn:
3517 free (dynbuf);
3518 goto error_return;
3521 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3522 if (elfsec == SHN_BAD)
3523 goto error_free_dyn;
3524 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3526 for (extdyn = dynbuf;
3527 extdyn < dynbuf + s->size;
3528 extdyn += bed->s->sizeof_dyn)
3530 Elf_Internal_Dyn dyn;
3532 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3533 if (dyn.d_tag == DT_SONAME)
3535 unsigned int tagv = dyn.d_un.d_val;
3536 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3537 if (soname == NULL)
3538 goto error_free_dyn;
3540 if (dyn.d_tag == DT_NEEDED)
3542 struct bfd_link_needed_list *n, **pn;
3543 char *fnm, *anm;
3544 unsigned int tagv = dyn.d_un.d_val;
3546 amt = sizeof (struct bfd_link_needed_list);
3547 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3548 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3549 if (n == NULL || fnm == NULL)
3550 goto error_free_dyn;
3551 amt = strlen (fnm) + 1;
3552 anm = (char *) bfd_alloc (abfd, amt);
3553 if (anm == NULL)
3554 goto error_free_dyn;
3555 memcpy (anm, fnm, amt);
3556 n->name = anm;
3557 n->by = abfd;
3558 n->next = NULL;
3559 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3561 *pn = n;
3563 if (dyn.d_tag == DT_RUNPATH)
3565 struct bfd_link_needed_list *n, **pn;
3566 char *fnm, *anm;
3567 unsigned int tagv = dyn.d_un.d_val;
3569 amt = sizeof (struct bfd_link_needed_list);
3570 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3571 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3572 if (n == NULL || fnm == NULL)
3573 goto error_free_dyn;
3574 amt = strlen (fnm) + 1;
3575 anm = (char *) bfd_alloc (abfd, amt);
3576 if (anm == NULL)
3577 goto error_free_dyn;
3578 memcpy (anm, fnm, amt);
3579 n->name = anm;
3580 n->by = abfd;
3581 n->next = NULL;
3582 for (pn = & runpath;
3583 *pn != NULL;
3584 pn = &(*pn)->next)
3586 *pn = n;
3588 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3589 if (!runpath && dyn.d_tag == DT_RPATH)
3591 struct bfd_link_needed_list *n, **pn;
3592 char *fnm, *anm;
3593 unsigned int tagv = dyn.d_un.d_val;
3595 amt = sizeof (struct bfd_link_needed_list);
3596 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3597 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3598 if (n == NULL || fnm == NULL)
3599 goto error_free_dyn;
3600 amt = strlen (fnm) + 1;
3601 anm = (char *) bfd_alloc (abfd, amt);
3602 if (anm == NULL)
3603 goto error_free_dyn;
3604 memcpy (anm, fnm, amt);
3605 n->name = anm;
3606 n->by = abfd;
3607 n->next = NULL;
3608 for (pn = & rpath;
3609 *pn != NULL;
3610 pn = &(*pn)->next)
3612 *pn = n;
3614 if (dyn.d_tag == DT_AUDIT)
3616 unsigned int tagv = dyn.d_un.d_val;
3617 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3621 free (dynbuf);
3624 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3625 frees all more recently bfd_alloc'd blocks as well. */
3626 if (runpath)
3627 rpath = runpath;
3629 if (rpath)
3631 struct bfd_link_needed_list **pn;
3632 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3634 *pn = rpath;
3637 /* We do not want to include any of the sections in a dynamic
3638 object in the output file. We hack by simply clobbering the
3639 list of sections in the BFD. This could be handled more
3640 cleanly by, say, a new section flag; the existing
3641 SEC_NEVER_LOAD flag is not the one we want, because that one
3642 still implies that the section takes up space in the output
3643 file. */
3644 bfd_section_list_clear (abfd);
3646 /* Find the name to use in a DT_NEEDED entry that refers to this
3647 object. If the object has a DT_SONAME entry, we use it.
3648 Otherwise, if the generic linker stuck something in
3649 elf_dt_name, we use that. Otherwise, we just use the file
3650 name. */
3651 if (soname == NULL || *soname == '\0')
3653 soname = elf_dt_name (abfd);
3654 if (soname == NULL || *soname == '\0')
3655 soname = bfd_get_filename (abfd);
3658 /* Save the SONAME because sometimes the linker emulation code
3659 will need to know it. */
3660 elf_dt_name (abfd) = soname;
3662 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3663 if (ret < 0)
3664 goto error_return;
3666 /* If we have already included this dynamic object in the
3667 link, just ignore it. There is no reason to include a
3668 particular dynamic object more than once. */
3669 if (ret > 0)
3670 return TRUE;
3672 /* Save the DT_AUDIT entry for the linker emulation code. */
3673 elf_dt_audit (abfd) = audit;
3676 /* If this is a dynamic object, we always link against the .dynsym
3677 symbol table, not the .symtab symbol table. The dynamic linker
3678 will only see the .dynsym symbol table, so there is no reason to
3679 look at .symtab for a dynamic object. */
3681 if (! dynamic || elf_dynsymtab (abfd) == 0)
3682 hdr = &elf_tdata (abfd)->symtab_hdr;
3683 else
3684 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3686 symcount = hdr->sh_size / bed->s->sizeof_sym;
3688 /* The sh_info field of the symtab header tells us where the
3689 external symbols start. We don't care about the local symbols at
3690 this point. */
3691 if (elf_bad_symtab (abfd))
3693 extsymcount = symcount;
3694 extsymoff = 0;
3696 else
3698 extsymcount = symcount - hdr->sh_info;
3699 extsymoff = hdr->sh_info;
3702 sym_hash = elf_sym_hashes (abfd);
3703 if (extsymcount != 0)
3705 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3706 NULL, NULL, NULL);
3707 if (isymbuf == NULL)
3708 goto error_return;
3710 if (sym_hash == NULL)
3712 /* We store a pointer to the hash table entry for each
3713 external symbol. */
3714 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3715 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3716 if (sym_hash == NULL)
3717 goto error_free_sym;
3718 elf_sym_hashes (abfd) = sym_hash;
3722 if (dynamic)
3724 /* Read in any version definitions. */
3725 if (!_bfd_elf_slurp_version_tables (abfd,
3726 info->default_imported_symver))
3727 goto error_free_sym;
3729 /* Read in the symbol versions, but don't bother to convert them
3730 to internal format. */
3731 if (elf_dynversym (abfd) != 0)
3733 Elf_Internal_Shdr *versymhdr;
3735 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3736 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3737 if (extversym == NULL)
3738 goto error_free_sym;
3739 amt = versymhdr->sh_size;
3740 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3741 || bfd_bread (extversym, amt, abfd) != amt)
3742 goto error_free_vers;
3746 /* If we are loading an as-needed shared lib, save the symbol table
3747 state before we start adding symbols. If the lib turns out
3748 to be unneeded, restore the state. */
3749 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3751 unsigned int i;
3752 size_t entsize;
3754 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3756 struct bfd_hash_entry *p;
3757 struct elf_link_hash_entry *h;
3759 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3761 h = (struct elf_link_hash_entry *) p;
3762 entsize += htab->root.table.entsize;
3763 if (h->root.type == bfd_link_hash_warning)
3764 entsize += htab->root.table.entsize;
3768 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3769 old_tab = bfd_malloc (tabsize + entsize);
3770 if (old_tab == NULL)
3771 goto error_free_vers;
3773 /* Remember the current objalloc pointer, so that all mem for
3774 symbols added can later be reclaimed. */
3775 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3776 if (alloc_mark == NULL)
3777 goto error_free_vers;
3779 /* Make a special call to the linker "notice" function to
3780 tell it that we are about to handle an as-needed lib. */
3781 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
3782 goto error_free_vers;
3784 /* Clone the symbol table. Remember some pointers into the
3785 symbol table, and dynamic symbol count. */
3786 old_ent = (char *) old_tab + tabsize;
3787 memcpy (old_tab, htab->root.table.table, tabsize);
3788 old_undefs = htab->root.undefs;
3789 old_undefs_tail = htab->root.undefs_tail;
3790 old_table = htab->root.table.table;
3791 old_size = htab->root.table.size;
3792 old_count = htab->root.table.count;
3793 old_dynsymcount = htab->dynsymcount;
3794 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3796 for (i = 0; i < htab->root.table.size; i++)
3798 struct bfd_hash_entry *p;
3799 struct elf_link_hash_entry *h;
3801 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3803 memcpy (old_ent, p, htab->root.table.entsize);
3804 old_ent = (char *) old_ent + htab->root.table.entsize;
3805 h = (struct elf_link_hash_entry *) p;
3806 if (h->root.type == bfd_link_hash_warning)
3808 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3809 old_ent = (char *) old_ent + htab->root.table.entsize;
3815 weaks = NULL;
3816 ever = extversym != NULL ? extversym + extsymoff : NULL;
3817 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3818 isym < isymend;
3819 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3821 int bind;
3822 bfd_vma value;
3823 asection *sec, *new_sec;
3824 flagword flags;
3825 const char *name;
3826 struct elf_link_hash_entry *h;
3827 struct elf_link_hash_entry *hi;
3828 bfd_boolean definition;
3829 bfd_boolean size_change_ok;
3830 bfd_boolean type_change_ok;
3831 bfd_boolean new_weakdef;
3832 bfd_boolean new_weak;
3833 bfd_boolean old_weak;
3834 bfd_boolean override;
3835 bfd_boolean common;
3836 unsigned int old_alignment;
3837 bfd *old_bfd;
3839 override = FALSE;
3841 flags = BSF_NO_FLAGS;
3842 sec = NULL;
3843 value = isym->st_value;
3844 common = bed->common_definition (isym);
3846 bind = ELF_ST_BIND (isym->st_info);
3847 switch (bind)
3849 case STB_LOCAL:
3850 /* This should be impossible, since ELF requires that all
3851 global symbols follow all local symbols, and that sh_info
3852 point to the first global symbol. Unfortunately, Irix 5
3853 screws this up. */
3854 continue;
3856 case STB_GLOBAL:
3857 if (isym->st_shndx != SHN_UNDEF && !common)
3858 flags = BSF_GLOBAL;
3859 break;
3861 case STB_WEAK:
3862 flags = BSF_WEAK;
3863 break;
3865 case STB_GNU_UNIQUE:
3866 flags = BSF_GNU_UNIQUE;
3867 break;
3869 default:
3870 /* Leave it up to the processor backend. */
3871 break;
3874 if (isym->st_shndx == SHN_UNDEF)
3875 sec = bfd_und_section_ptr;
3876 else if (isym->st_shndx == SHN_ABS)
3877 sec = bfd_abs_section_ptr;
3878 else if (isym->st_shndx == SHN_COMMON)
3880 sec = bfd_com_section_ptr;
3881 /* What ELF calls the size we call the value. What ELF
3882 calls the value we call the alignment. */
3883 value = isym->st_size;
3885 else
3887 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3888 if (sec == NULL)
3889 sec = bfd_abs_section_ptr;
3890 else if (discarded_section (sec))
3892 /* Symbols from discarded section are undefined. We keep
3893 its visibility. */
3894 sec = bfd_und_section_ptr;
3895 isym->st_shndx = SHN_UNDEF;
3897 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3898 value -= sec->vma;
3901 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3902 isym->st_name);
3903 if (name == NULL)
3904 goto error_free_vers;
3906 if (isym->st_shndx == SHN_COMMON
3907 && (abfd->flags & BFD_PLUGIN) != 0)
3909 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3911 if (xc == NULL)
3913 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3914 | SEC_EXCLUDE);
3915 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3916 if (xc == NULL)
3917 goto error_free_vers;
3919 sec = xc;
3921 else if (isym->st_shndx == SHN_COMMON
3922 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3923 && !info->relocatable)
3925 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3927 if (tcomm == NULL)
3929 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3930 | SEC_LINKER_CREATED);
3931 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3932 if (tcomm == NULL)
3933 goto error_free_vers;
3935 sec = tcomm;
3937 else if (bed->elf_add_symbol_hook)
3939 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3940 &sec, &value))
3941 goto error_free_vers;
3943 /* The hook function sets the name to NULL if this symbol
3944 should be skipped for some reason. */
3945 if (name == NULL)
3946 continue;
3949 /* Sanity check that all possibilities were handled. */
3950 if (sec == NULL)
3952 bfd_set_error (bfd_error_bad_value);
3953 goto error_free_vers;
3956 /* Silently discard TLS symbols from --just-syms. There's
3957 no way to combine a static TLS block with a new TLS block
3958 for this executable. */
3959 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
3960 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3961 continue;
3963 if (bfd_is_und_section (sec)
3964 || bfd_is_com_section (sec))
3965 definition = FALSE;
3966 else
3967 definition = TRUE;
3969 size_change_ok = FALSE;
3970 type_change_ok = bed->type_change_ok;
3971 old_weak = FALSE;
3972 old_alignment = 0;
3973 old_bfd = NULL;
3974 new_sec = sec;
3976 if (is_elf_hash_table (htab))
3978 Elf_Internal_Versym iver;
3979 unsigned int vernum = 0;
3980 bfd_boolean skip;
3982 if (ever == NULL)
3984 if (info->default_imported_symver)
3985 /* Use the default symbol version created earlier. */
3986 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3987 else
3988 iver.vs_vers = 0;
3990 else
3991 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3993 vernum = iver.vs_vers & VERSYM_VERSION;
3995 /* If this is a hidden symbol, or if it is not version
3996 1, we append the version name to the symbol name.
3997 However, we do not modify a non-hidden absolute symbol
3998 if it is not a function, because it might be the version
3999 symbol itself. FIXME: What if it isn't? */
4000 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4001 || (vernum > 1
4002 && (!bfd_is_abs_section (sec)
4003 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4005 const char *verstr;
4006 size_t namelen, verlen, newlen;
4007 char *newname, *p;
4009 if (isym->st_shndx != SHN_UNDEF)
4011 if (vernum > elf_tdata (abfd)->cverdefs)
4012 verstr = NULL;
4013 else if (vernum > 1)
4014 verstr =
4015 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4016 else
4017 verstr = "";
4019 if (verstr == NULL)
4021 (*_bfd_error_handler)
4022 (_("%B: %s: invalid version %u (max %d)"),
4023 abfd, name, vernum,
4024 elf_tdata (abfd)->cverdefs);
4025 bfd_set_error (bfd_error_bad_value);
4026 goto error_free_vers;
4029 else
4031 /* We cannot simply test for the number of
4032 entries in the VERNEED section since the
4033 numbers for the needed versions do not start
4034 at 0. */
4035 Elf_Internal_Verneed *t;
4037 verstr = NULL;
4038 for (t = elf_tdata (abfd)->verref;
4039 t != NULL;
4040 t = t->vn_nextref)
4042 Elf_Internal_Vernaux *a;
4044 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4046 if (a->vna_other == vernum)
4048 verstr = a->vna_nodename;
4049 break;
4052 if (a != NULL)
4053 break;
4055 if (verstr == NULL)
4057 (*_bfd_error_handler)
4058 (_("%B: %s: invalid needed version %d"),
4059 abfd, name, vernum);
4060 bfd_set_error (bfd_error_bad_value);
4061 goto error_free_vers;
4065 namelen = strlen (name);
4066 verlen = strlen (verstr);
4067 newlen = namelen + verlen + 2;
4068 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4069 && isym->st_shndx != SHN_UNDEF)
4070 ++newlen;
4072 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4073 if (newname == NULL)
4074 goto error_free_vers;
4075 memcpy (newname, name, namelen);
4076 p = newname + namelen;
4077 *p++ = ELF_VER_CHR;
4078 /* If this is a defined non-hidden version symbol,
4079 we add another @ to the name. This indicates the
4080 default version of the symbol. */
4081 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4082 && isym->st_shndx != SHN_UNDEF)
4083 *p++ = ELF_VER_CHR;
4084 memcpy (p, verstr, verlen + 1);
4086 name = newname;
4089 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4090 sym_hash, &old_bfd, &old_weak,
4091 &old_alignment, &skip, &override,
4092 &type_change_ok, &size_change_ok))
4093 goto error_free_vers;
4095 if (skip)
4096 continue;
4098 if (override)
4099 definition = FALSE;
4101 h = *sym_hash;
4102 while (h->root.type == bfd_link_hash_indirect
4103 || h->root.type == bfd_link_hash_warning)
4104 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4106 if (elf_tdata (abfd)->verdef != NULL
4107 && vernum > 1
4108 && definition)
4109 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4112 if (! (_bfd_generic_link_add_one_symbol
4113 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4114 (struct bfd_link_hash_entry **) sym_hash)))
4115 goto error_free_vers;
4117 h = *sym_hash;
4118 /* We need to make sure that indirect symbol dynamic flags are
4119 updated. */
4120 hi = h;
4121 while (h->root.type == bfd_link_hash_indirect
4122 || h->root.type == bfd_link_hash_warning)
4123 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4125 *sym_hash = h;
4127 new_weak = (flags & BSF_WEAK) != 0;
4128 new_weakdef = FALSE;
4129 if (dynamic
4130 && definition
4131 && new_weak
4132 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4133 && is_elf_hash_table (htab)
4134 && h->u.weakdef == NULL)
4136 /* Keep a list of all weak defined non function symbols from
4137 a dynamic object, using the weakdef field. Later in this
4138 function we will set the weakdef field to the correct
4139 value. We only put non-function symbols from dynamic
4140 objects on this list, because that happens to be the only
4141 time we need to know the normal symbol corresponding to a
4142 weak symbol, and the information is time consuming to
4143 figure out. If the weakdef field is not already NULL,
4144 then this symbol was already defined by some previous
4145 dynamic object, and we will be using that previous
4146 definition anyhow. */
4148 h->u.weakdef = weaks;
4149 weaks = h;
4150 new_weakdef = TRUE;
4153 /* Set the alignment of a common symbol. */
4154 if ((common || bfd_is_com_section (sec))
4155 && h->root.type == bfd_link_hash_common)
4157 unsigned int align;
4159 if (common)
4160 align = bfd_log2 (isym->st_value);
4161 else
4163 /* The new symbol is a common symbol in a shared object.
4164 We need to get the alignment from the section. */
4165 align = new_sec->alignment_power;
4167 if (align > old_alignment)
4168 h->root.u.c.p->alignment_power = align;
4169 else
4170 h->root.u.c.p->alignment_power = old_alignment;
4173 if (is_elf_hash_table (htab))
4175 /* Set a flag in the hash table entry indicating the type of
4176 reference or definition we just found. A dynamic symbol
4177 is one which is referenced or defined by both a regular
4178 object and a shared object. */
4179 bfd_boolean dynsym = FALSE;
4181 /* Plugin symbols aren't normal. Don't set def_regular or
4182 ref_regular for them, or make them dynamic. */
4183 if ((abfd->flags & BFD_PLUGIN) != 0)
4185 else if (! dynamic)
4187 if (! definition)
4189 h->ref_regular = 1;
4190 if (bind != STB_WEAK)
4191 h->ref_regular_nonweak = 1;
4193 else
4195 h->def_regular = 1;
4196 if (h->def_dynamic)
4198 h->def_dynamic = 0;
4199 h->ref_dynamic = 1;
4203 /* If the indirect symbol has been forced local, don't
4204 make the real symbol dynamic. */
4205 if ((h == hi || !hi->forced_local)
4206 && (! info->executable
4207 || h->def_dynamic
4208 || h->ref_dynamic))
4209 dynsym = TRUE;
4211 else
4213 if (! definition)
4215 h->ref_dynamic = 1;
4216 hi->ref_dynamic = 1;
4218 else
4220 h->def_dynamic = 1;
4221 hi->def_dynamic = 1;
4224 /* If the indirect symbol has been forced local, don't
4225 make the real symbol dynamic. */
4226 if ((h == hi || !hi->forced_local)
4227 && (h->def_regular
4228 || h->ref_regular
4229 || (h->u.weakdef != NULL
4230 && ! new_weakdef
4231 && h->u.weakdef->dynindx != -1)))
4232 dynsym = TRUE;
4235 /* Check to see if we need to add an indirect symbol for
4236 the default name. */
4237 if (definition
4238 || (!override && h->root.type == bfd_link_hash_common))
4239 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4240 sec, value, &old_bfd, &dynsym))
4241 goto error_free_vers;
4243 /* Check the alignment when a common symbol is involved. This
4244 can change when a common symbol is overridden by a normal
4245 definition or a common symbol is ignored due to the old
4246 normal definition. We need to make sure the maximum
4247 alignment is maintained. */
4248 if ((old_alignment || common)
4249 && h->root.type != bfd_link_hash_common)
4251 unsigned int common_align;
4252 unsigned int normal_align;
4253 unsigned int symbol_align;
4254 bfd *normal_bfd;
4255 bfd *common_bfd;
4257 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4258 || h->root.type == bfd_link_hash_defweak);
4260 symbol_align = ffs (h->root.u.def.value) - 1;
4261 if (h->root.u.def.section->owner != NULL
4262 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4264 normal_align = h->root.u.def.section->alignment_power;
4265 if (normal_align > symbol_align)
4266 normal_align = symbol_align;
4268 else
4269 normal_align = symbol_align;
4271 if (old_alignment)
4273 common_align = old_alignment;
4274 common_bfd = old_bfd;
4275 normal_bfd = abfd;
4277 else
4279 common_align = bfd_log2 (isym->st_value);
4280 common_bfd = abfd;
4281 normal_bfd = old_bfd;
4284 if (normal_align < common_align)
4286 /* PR binutils/2735 */
4287 if (normal_bfd == NULL)
4288 (*_bfd_error_handler)
4289 (_("Warning: alignment %u of common symbol `%s' in %B is"
4290 " greater than the alignment (%u) of its section %A"),
4291 common_bfd, h->root.u.def.section,
4292 1 << common_align, name, 1 << normal_align);
4293 else
4294 (*_bfd_error_handler)
4295 (_("Warning: alignment %u of symbol `%s' in %B"
4296 " is smaller than %u in %B"),
4297 normal_bfd, common_bfd,
4298 1 << normal_align, name, 1 << common_align);
4302 /* Remember the symbol size if it isn't undefined. */
4303 if (isym->st_size != 0
4304 && isym->st_shndx != SHN_UNDEF
4305 && (definition || h->size == 0))
4307 if (h->size != 0
4308 && h->size != isym->st_size
4309 && ! size_change_ok)
4310 (*_bfd_error_handler)
4311 (_("Warning: size of symbol `%s' changed"
4312 " from %lu in %B to %lu in %B"),
4313 old_bfd, abfd,
4314 name, (unsigned long) h->size,
4315 (unsigned long) isym->st_size);
4317 h->size = isym->st_size;
4320 /* If this is a common symbol, then we always want H->SIZE
4321 to be the size of the common symbol. The code just above
4322 won't fix the size if a common symbol becomes larger. We
4323 don't warn about a size change here, because that is
4324 covered by --warn-common. Allow changes between different
4325 function types. */
4326 if (h->root.type == bfd_link_hash_common)
4327 h->size = h->root.u.c.size;
4329 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4330 && ((definition && !new_weak)
4331 || (old_weak && h->root.type == bfd_link_hash_common)
4332 || h->type == STT_NOTYPE))
4334 unsigned int type = ELF_ST_TYPE (isym->st_info);
4336 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4337 symbol. */
4338 if (type == STT_GNU_IFUNC
4339 && (abfd->flags & DYNAMIC) != 0)
4340 type = STT_FUNC;
4342 if (h->type != type)
4344 if (h->type != STT_NOTYPE && ! type_change_ok)
4345 (*_bfd_error_handler)
4346 (_("Warning: type of symbol `%s' changed"
4347 " from %d to %d in %B"),
4348 abfd, name, h->type, type);
4350 h->type = type;
4354 /* Merge st_other field. */
4355 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4357 /* We don't want to make debug symbol dynamic. */
4358 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4359 dynsym = FALSE;
4361 /* Nor should we make plugin symbols dynamic. */
4362 if ((abfd->flags & BFD_PLUGIN) != 0)
4363 dynsym = FALSE;
4365 if (definition)
4367 h->target_internal = isym->st_target_internal;
4368 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4371 if (definition && !dynamic)
4373 char *p = strchr (name, ELF_VER_CHR);
4374 if (p != NULL && p[1] != ELF_VER_CHR)
4376 /* Queue non-default versions so that .symver x, x@FOO
4377 aliases can be checked. */
4378 if (!nondeflt_vers)
4380 amt = ((isymend - isym + 1)
4381 * sizeof (struct elf_link_hash_entry *));
4382 nondeflt_vers =
4383 (struct elf_link_hash_entry **) bfd_malloc (amt);
4384 if (!nondeflt_vers)
4385 goto error_free_vers;
4387 nondeflt_vers[nondeflt_vers_cnt++] = h;
4391 if (dynsym && h->dynindx == -1)
4393 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4394 goto error_free_vers;
4395 if (h->u.weakdef != NULL
4396 && ! new_weakdef
4397 && h->u.weakdef->dynindx == -1)
4399 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4400 goto error_free_vers;
4403 else if (dynsym && h->dynindx != -1)
4404 /* If the symbol already has a dynamic index, but
4405 visibility says it should not be visible, turn it into
4406 a local symbol. */
4407 switch (ELF_ST_VISIBILITY (h->other))
4409 case STV_INTERNAL:
4410 case STV_HIDDEN:
4411 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4412 dynsym = FALSE;
4413 break;
4416 /* Don't add DT_NEEDED for references from the dummy bfd. */
4417 if (!add_needed
4418 && definition
4419 && ((dynsym
4420 && h->ref_regular_nonweak
4421 && (old_bfd == NULL
4422 || (old_bfd->flags & BFD_PLUGIN) == 0))
4423 || (h->ref_dynamic_nonweak
4424 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4425 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4427 int ret;
4428 const char *soname = elf_dt_name (abfd);
4430 /* A symbol from a library loaded via DT_NEEDED of some
4431 other library is referenced by a regular object.
4432 Add a DT_NEEDED entry for it. Issue an error if
4433 --no-add-needed is used and the reference was not
4434 a weak one. */
4435 if (old_bfd != NULL
4436 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4438 (*_bfd_error_handler)
4439 (_("%B: undefined reference to symbol '%s'"),
4440 old_bfd, name);
4441 bfd_set_error (bfd_error_missing_dso);
4442 goto error_free_vers;
4445 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4446 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4448 add_needed = TRUE;
4449 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4450 if (ret < 0)
4451 goto error_free_vers;
4453 BFD_ASSERT (ret == 0);
4458 if (extversym != NULL)
4460 free (extversym);
4461 extversym = NULL;
4464 if (isymbuf != NULL)
4466 free (isymbuf);
4467 isymbuf = NULL;
4470 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4472 unsigned int i;
4474 /* Restore the symbol table. */
4475 old_ent = (char *) old_tab + tabsize;
4476 memset (elf_sym_hashes (abfd), 0,
4477 extsymcount * sizeof (struct elf_link_hash_entry *));
4478 htab->root.table.table = old_table;
4479 htab->root.table.size = old_size;
4480 htab->root.table.count = old_count;
4481 memcpy (htab->root.table.table, old_tab, tabsize);
4482 htab->root.undefs = old_undefs;
4483 htab->root.undefs_tail = old_undefs_tail;
4484 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4485 for (i = 0; i < htab->root.table.size; i++)
4487 struct bfd_hash_entry *p;
4488 struct elf_link_hash_entry *h;
4489 bfd_size_type size;
4490 unsigned int alignment_power;
4492 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4494 h = (struct elf_link_hash_entry *) p;
4495 if (h->root.type == bfd_link_hash_warning)
4496 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4497 if (h->dynindx >= old_dynsymcount
4498 && h->dynstr_index < old_dynstr_size)
4499 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4501 /* Preserve the maximum alignment and size for common
4502 symbols even if this dynamic lib isn't on DT_NEEDED
4503 since it can still be loaded at run time by another
4504 dynamic lib. */
4505 if (h->root.type == bfd_link_hash_common)
4507 size = h->root.u.c.size;
4508 alignment_power = h->root.u.c.p->alignment_power;
4510 else
4512 size = 0;
4513 alignment_power = 0;
4515 memcpy (p, old_ent, htab->root.table.entsize);
4516 old_ent = (char *) old_ent + htab->root.table.entsize;
4517 h = (struct elf_link_hash_entry *) p;
4518 if (h->root.type == bfd_link_hash_warning)
4520 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4521 old_ent = (char *) old_ent + htab->root.table.entsize;
4522 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4524 if (h->root.type == bfd_link_hash_common)
4526 if (size > h->root.u.c.size)
4527 h->root.u.c.size = size;
4528 if (alignment_power > h->root.u.c.p->alignment_power)
4529 h->root.u.c.p->alignment_power = alignment_power;
4534 /* Make a special call to the linker "notice" function to
4535 tell it that symbols added for crefs may need to be removed. */
4536 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4537 goto error_free_vers;
4539 free (old_tab);
4540 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4541 alloc_mark);
4542 if (nondeflt_vers != NULL)
4543 free (nondeflt_vers);
4544 return TRUE;
4547 if (old_tab != NULL)
4549 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4550 goto error_free_vers;
4551 free (old_tab);
4552 old_tab = NULL;
4555 /* Now that all the symbols from this input file are created, handle
4556 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4557 if (nondeflt_vers != NULL)
4559 bfd_size_type cnt, symidx;
4561 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4563 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4564 char *shortname, *p;
4566 p = strchr (h->root.root.string, ELF_VER_CHR);
4567 if (p == NULL
4568 || (h->root.type != bfd_link_hash_defined
4569 && h->root.type != bfd_link_hash_defweak))
4570 continue;
4572 amt = p - h->root.root.string;
4573 shortname = (char *) bfd_malloc (amt + 1);
4574 if (!shortname)
4575 goto error_free_vers;
4576 memcpy (shortname, h->root.root.string, amt);
4577 shortname[amt] = '\0';
4579 hi = (struct elf_link_hash_entry *)
4580 bfd_link_hash_lookup (&htab->root, shortname,
4581 FALSE, FALSE, FALSE);
4582 if (hi != NULL
4583 && hi->root.type == h->root.type
4584 && hi->root.u.def.value == h->root.u.def.value
4585 && hi->root.u.def.section == h->root.u.def.section)
4587 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4588 hi->root.type = bfd_link_hash_indirect;
4589 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4590 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4591 sym_hash = elf_sym_hashes (abfd);
4592 if (sym_hash)
4593 for (symidx = 0; symidx < extsymcount; ++symidx)
4594 if (sym_hash[symidx] == hi)
4596 sym_hash[symidx] = h;
4597 break;
4600 free (shortname);
4602 free (nondeflt_vers);
4603 nondeflt_vers = NULL;
4606 /* Now set the weakdefs field correctly for all the weak defined
4607 symbols we found. The only way to do this is to search all the
4608 symbols. Since we only need the information for non functions in
4609 dynamic objects, that's the only time we actually put anything on
4610 the list WEAKS. We need this information so that if a regular
4611 object refers to a symbol defined weakly in a dynamic object, the
4612 real symbol in the dynamic object is also put in the dynamic
4613 symbols; we also must arrange for both symbols to point to the
4614 same memory location. We could handle the general case of symbol
4615 aliasing, but a general symbol alias can only be generated in
4616 assembler code, handling it correctly would be very time
4617 consuming, and other ELF linkers don't handle general aliasing
4618 either. */
4619 if (weaks != NULL)
4621 struct elf_link_hash_entry **hpp;
4622 struct elf_link_hash_entry **hppend;
4623 struct elf_link_hash_entry **sorted_sym_hash;
4624 struct elf_link_hash_entry *h;
4625 size_t sym_count;
4627 /* Since we have to search the whole symbol list for each weak
4628 defined symbol, search time for N weak defined symbols will be
4629 O(N^2). Binary search will cut it down to O(NlogN). */
4630 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4631 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4632 if (sorted_sym_hash == NULL)
4633 goto error_return;
4634 sym_hash = sorted_sym_hash;
4635 hpp = elf_sym_hashes (abfd);
4636 hppend = hpp + extsymcount;
4637 sym_count = 0;
4638 for (; hpp < hppend; hpp++)
4640 h = *hpp;
4641 if (h != NULL
4642 && h->root.type == bfd_link_hash_defined
4643 && !bed->is_function_type (h->type))
4645 *sym_hash = h;
4646 sym_hash++;
4647 sym_count++;
4651 qsort (sorted_sym_hash, sym_count,
4652 sizeof (struct elf_link_hash_entry *),
4653 elf_sort_symbol);
4655 while (weaks != NULL)
4657 struct elf_link_hash_entry *hlook;
4658 asection *slook;
4659 bfd_vma vlook;
4660 size_t i, j, idx = 0;
4662 hlook = weaks;
4663 weaks = hlook->u.weakdef;
4664 hlook->u.weakdef = NULL;
4666 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4667 || hlook->root.type == bfd_link_hash_defweak
4668 || hlook->root.type == bfd_link_hash_common
4669 || hlook->root.type == bfd_link_hash_indirect);
4670 slook = hlook->root.u.def.section;
4671 vlook = hlook->root.u.def.value;
4673 i = 0;
4674 j = sym_count;
4675 while (i != j)
4677 bfd_signed_vma vdiff;
4678 idx = (i + j) / 2;
4679 h = sorted_sym_hash[idx];
4680 vdiff = vlook - h->root.u.def.value;
4681 if (vdiff < 0)
4682 j = idx;
4683 else if (vdiff > 0)
4684 i = idx + 1;
4685 else
4687 long sdiff = slook->id - h->root.u.def.section->id;
4688 if (sdiff < 0)
4689 j = idx;
4690 else if (sdiff > 0)
4691 i = idx + 1;
4692 else
4693 break;
4697 /* We didn't find a value/section match. */
4698 if (i == j)
4699 continue;
4701 /* With multiple aliases, or when the weak symbol is already
4702 strongly defined, we have multiple matching symbols and
4703 the binary search above may land on any of them. Step
4704 one past the matching symbol(s). */
4705 while (++idx != j)
4707 h = sorted_sym_hash[idx];
4708 if (h->root.u.def.section != slook
4709 || h->root.u.def.value != vlook)
4710 break;
4713 /* Now look back over the aliases. Since we sorted by size
4714 as well as value and section, we'll choose the one with
4715 the largest size. */
4716 while (idx-- != i)
4718 h = sorted_sym_hash[idx];
4720 /* Stop if value or section doesn't match. */
4721 if (h->root.u.def.section != slook
4722 || h->root.u.def.value != vlook)
4723 break;
4724 else if (h != hlook)
4726 hlook->u.weakdef = h;
4728 /* If the weak definition is in the list of dynamic
4729 symbols, make sure the real definition is put
4730 there as well. */
4731 if (hlook->dynindx != -1 && h->dynindx == -1)
4733 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4735 err_free_sym_hash:
4736 free (sorted_sym_hash);
4737 goto error_return;
4741 /* If the real definition is in the list of dynamic
4742 symbols, make sure the weak definition is put
4743 there as well. If we don't do this, then the
4744 dynamic loader might not merge the entries for the
4745 real definition and the weak definition. */
4746 if (h->dynindx != -1 && hlook->dynindx == -1)
4748 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4749 goto err_free_sym_hash;
4751 break;
4756 free (sorted_sym_hash);
4759 if (bed->check_directives
4760 && !(*bed->check_directives) (abfd, info))
4761 return FALSE;
4763 /* If this object is the same format as the output object, and it is
4764 not a shared library, then let the backend look through the
4765 relocs.
4767 This is required to build global offset table entries and to
4768 arrange for dynamic relocs. It is not required for the
4769 particular common case of linking non PIC code, even when linking
4770 against shared libraries, but unfortunately there is no way of
4771 knowing whether an object file has been compiled PIC or not.
4772 Looking through the relocs is not particularly time consuming.
4773 The problem is that we must either (1) keep the relocs in memory,
4774 which causes the linker to require additional runtime memory or
4775 (2) read the relocs twice from the input file, which wastes time.
4776 This would be a good case for using mmap.
4778 I have no idea how to handle linking PIC code into a file of a
4779 different format. It probably can't be done. */
4780 if (! dynamic
4781 && is_elf_hash_table (htab)
4782 && bed->check_relocs != NULL
4783 && elf_object_id (abfd) == elf_hash_table_id (htab)
4784 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4786 asection *o;
4788 for (o = abfd->sections; o != NULL; o = o->next)
4790 Elf_Internal_Rela *internal_relocs;
4791 bfd_boolean ok;
4793 if ((o->flags & SEC_RELOC) == 0
4794 || o->reloc_count == 0
4795 || ((info->strip == strip_all || info->strip == strip_debugger)
4796 && (o->flags & SEC_DEBUGGING) != 0)
4797 || bfd_is_abs_section (o->output_section))
4798 continue;
4800 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4801 info->keep_memory);
4802 if (internal_relocs == NULL)
4803 goto error_return;
4805 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4807 if (elf_section_data (o)->relocs != internal_relocs)
4808 free (internal_relocs);
4810 if (! ok)
4811 goto error_return;
4815 /* If this is a non-traditional link, try to optimize the handling
4816 of the .stab/.stabstr sections. */
4817 if (! dynamic
4818 && ! info->traditional_format
4819 && is_elf_hash_table (htab)
4820 && (info->strip != strip_all && info->strip != strip_debugger))
4822 asection *stabstr;
4824 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4825 if (stabstr != NULL)
4827 bfd_size_type string_offset = 0;
4828 asection *stab;
4830 for (stab = abfd->sections; stab; stab = stab->next)
4831 if (CONST_STRNEQ (stab->name, ".stab")
4832 && (!stab->name[5] ||
4833 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4834 && (stab->flags & SEC_MERGE) == 0
4835 && !bfd_is_abs_section (stab->output_section))
4837 struct bfd_elf_section_data *secdata;
4839 secdata = elf_section_data (stab);
4840 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4841 stabstr, &secdata->sec_info,
4842 &string_offset))
4843 goto error_return;
4844 if (secdata->sec_info)
4845 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4850 if (is_elf_hash_table (htab) && add_needed)
4852 /* Add this bfd to the loaded list. */
4853 struct elf_link_loaded_list *n;
4855 n = (struct elf_link_loaded_list *)
4856 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4857 if (n == NULL)
4858 goto error_return;
4859 n->abfd = abfd;
4860 n->next = htab->loaded;
4861 htab->loaded = n;
4864 return TRUE;
4866 error_free_vers:
4867 if (old_tab != NULL)
4868 free (old_tab);
4869 if (nondeflt_vers != NULL)
4870 free (nondeflt_vers);
4871 if (extversym != NULL)
4872 free (extversym);
4873 error_free_sym:
4874 if (isymbuf != NULL)
4875 free (isymbuf);
4876 error_return:
4877 return FALSE;
4880 /* Return the linker hash table entry of a symbol that might be
4881 satisfied by an archive symbol. Return -1 on error. */
4883 struct elf_link_hash_entry *
4884 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4885 struct bfd_link_info *info,
4886 const char *name)
4888 struct elf_link_hash_entry *h;
4889 char *p, *copy;
4890 size_t len, first;
4892 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4893 if (h != NULL)
4894 return h;
4896 /* If this is a default version (the name contains @@), look up the
4897 symbol again with only one `@' as well as without the version.
4898 The effect is that references to the symbol with and without the
4899 version will be matched by the default symbol in the archive. */
4901 p = strchr (name, ELF_VER_CHR);
4902 if (p == NULL || p[1] != ELF_VER_CHR)
4903 return h;
4905 /* First check with only one `@'. */
4906 len = strlen (name);
4907 copy = (char *) bfd_alloc (abfd, len);
4908 if (copy == NULL)
4909 return (struct elf_link_hash_entry *) 0 - 1;
4911 first = p - name + 1;
4912 memcpy (copy, name, first);
4913 memcpy (copy + first, name + first + 1, len - first);
4915 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4916 if (h == NULL)
4918 /* We also need to check references to the symbol without the
4919 version. */
4920 copy[first - 1] = '\0';
4921 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4922 FALSE, FALSE, TRUE);
4925 bfd_release (abfd, copy);
4926 return h;
4929 /* Add symbols from an ELF archive file to the linker hash table. We
4930 don't use _bfd_generic_link_add_archive_symbols because of a
4931 problem which arises on UnixWare. The UnixWare libc.so is an
4932 archive which includes an entry libc.so.1 which defines a bunch of
4933 symbols. The libc.so archive also includes a number of other
4934 object files, which also define symbols, some of which are the same
4935 as those defined in libc.so.1. Correct linking requires that we
4936 consider each object file in turn, and include it if it defines any
4937 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4938 this; it looks through the list of undefined symbols, and includes
4939 any object file which defines them. When this algorithm is used on
4940 UnixWare, it winds up pulling in libc.so.1 early and defining a
4941 bunch of symbols. This means that some of the other objects in the
4942 archive are not included in the link, which is incorrect since they
4943 precede libc.so.1 in the archive.
4945 Fortunately, ELF archive handling is simpler than that done by
4946 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4947 oddities. In ELF, if we find a symbol in the archive map, and the
4948 symbol is currently undefined, we know that we must pull in that
4949 object file.
4951 Unfortunately, we do have to make multiple passes over the symbol
4952 table until nothing further is resolved. */
4954 static bfd_boolean
4955 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4957 symindex c;
4958 bfd_boolean *defined = NULL;
4959 bfd_boolean *included = NULL;
4960 carsym *symdefs;
4961 bfd_boolean loop;
4962 bfd_size_type amt;
4963 const struct elf_backend_data *bed;
4964 struct elf_link_hash_entry * (*archive_symbol_lookup)
4965 (bfd *, struct bfd_link_info *, const char *);
4967 if (! bfd_has_map (abfd))
4969 /* An empty archive is a special case. */
4970 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4971 return TRUE;
4972 bfd_set_error (bfd_error_no_armap);
4973 return FALSE;
4976 /* Keep track of all symbols we know to be already defined, and all
4977 files we know to be already included. This is to speed up the
4978 second and subsequent passes. */
4979 c = bfd_ardata (abfd)->symdef_count;
4980 if (c == 0)
4981 return TRUE;
4982 amt = c;
4983 amt *= sizeof (bfd_boolean);
4984 defined = (bfd_boolean *) bfd_zmalloc (amt);
4985 included = (bfd_boolean *) bfd_zmalloc (amt);
4986 if (defined == NULL || included == NULL)
4987 goto error_return;
4989 symdefs = bfd_ardata (abfd)->symdefs;
4990 bed = get_elf_backend_data (abfd);
4991 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4995 file_ptr last;
4996 symindex i;
4997 carsym *symdef;
4998 carsym *symdefend;
5000 loop = FALSE;
5001 last = -1;
5003 symdef = symdefs;
5004 symdefend = symdef + c;
5005 for (i = 0; symdef < symdefend; symdef++, i++)
5007 struct elf_link_hash_entry *h;
5008 bfd *element;
5009 struct bfd_link_hash_entry *undefs_tail;
5010 symindex mark;
5012 if (defined[i] || included[i])
5013 continue;
5014 if (symdef->file_offset == last)
5016 included[i] = TRUE;
5017 continue;
5020 h = archive_symbol_lookup (abfd, info, symdef->name);
5021 if (h == (struct elf_link_hash_entry *) 0 - 1)
5022 goto error_return;
5024 if (h == NULL)
5025 continue;
5027 if (h->root.type == bfd_link_hash_common)
5029 /* We currently have a common symbol. The archive map contains
5030 a reference to this symbol, so we may want to include it. We
5031 only want to include it however, if this archive element
5032 contains a definition of the symbol, not just another common
5033 declaration of it.
5035 Unfortunately some archivers (including GNU ar) will put
5036 declarations of common symbols into their archive maps, as
5037 well as real definitions, so we cannot just go by the archive
5038 map alone. Instead we must read in the element's symbol
5039 table and check that to see what kind of symbol definition
5040 this is. */
5041 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5042 continue;
5044 else if (h->root.type != bfd_link_hash_undefined)
5046 if (h->root.type != bfd_link_hash_undefweak)
5047 defined[i] = TRUE;
5048 continue;
5051 /* We need to include this archive member. */
5052 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5053 if (element == NULL)
5054 goto error_return;
5056 if (! bfd_check_format (element, bfd_object))
5057 goto error_return;
5059 /* Doublecheck that we have not included this object
5060 already--it should be impossible, but there may be
5061 something wrong with the archive. */
5062 if (element->archive_pass != 0)
5064 bfd_set_error (bfd_error_bad_value);
5065 goto error_return;
5067 element->archive_pass = 1;
5069 undefs_tail = info->hash->undefs_tail;
5071 if (!(*info->callbacks
5072 ->add_archive_element) (info, element, symdef->name, &element))
5073 goto error_return;
5074 if (!bfd_link_add_symbols (element, info))
5075 goto error_return;
5077 /* If there are any new undefined symbols, we need to make
5078 another pass through the archive in order to see whether
5079 they can be defined. FIXME: This isn't perfect, because
5080 common symbols wind up on undefs_tail and because an
5081 undefined symbol which is defined later on in this pass
5082 does not require another pass. This isn't a bug, but it
5083 does make the code less efficient than it could be. */
5084 if (undefs_tail != info->hash->undefs_tail)
5085 loop = TRUE;
5087 /* Look backward to mark all symbols from this object file
5088 which we have already seen in this pass. */
5089 mark = i;
5092 included[mark] = TRUE;
5093 if (mark == 0)
5094 break;
5095 --mark;
5097 while (symdefs[mark].file_offset == symdef->file_offset);
5099 /* We mark subsequent symbols from this object file as we go
5100 on through the loop. */
5101 last = symdef->file_offset;
5104 while (loop);
5106 free (defined);
5107 free (included);
5109 return TRUE;
5111 error_return:
5112 if (defined != NULL)
5113 free (defined);
5114 if (included != NULL)
5115 free (included);
5116 return FALSE;
5119 /* Given an ELF BFD, add symbols to the global hash table as
5120 appropriate. */
5122 bfd_boolean
5123 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5125 switch (bfd_get_format (abfd))
5127 case bfd_object:
5128 return elf_link_add_object_symbols (abfd, info);
5129 case bfd_archive:
5130 return elf_link_add_archive_symbols (abfd, info);
5131 default:
5132 bfd_set_error (bfd_error_wrong_format);
5133 return FALSE;
5137 struct hash_codes_info
5139 unsigned long *hashcodes;
5140 bfd_boolean error;
5143 /* This function will be called though elf_link_hash_traverse to store
5144 all hash value of the exported symbols in an array. */
5146 static bfd_boolean
5147 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5149 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5150 const char *name;
5151 char *p;
5152 unsigned long ha;
5153 char *alc = NULL;
5155 /* Ignore indirect symbols. These are added by the versioning code. */
5156 if (h->dynindx == -1)
5157 return TRUE;
5159 name = h->root.root.string;
5160 p = strchr (name, ELF_VER_CHR);
5161 if (p != NULL)
5163 alc = (char *) bfd_malloc (p - name + 1);
5164 if (alc == NULL)
5166 inf->error = TRUE;
5167 return FALSE;
5169 memcpy (alc, name, p - name);
5170 alc[p - name] = '\0';
5171 name = alc;
5174 /* Compute the hash value. */
5175 ha = bfd_elf_hash (name);
5177 /* Store the found hash value in the array given as the argument. */
5178 *(inf->hashcodes)++ = ha;
5180 /* And store it in the struct so that we can put it in the hash table
5181 later. */
5182 h->u.elf_hash_value = ha;
5184 if (alc != NULL)
5185 free (alc);
5187 return TRUE;
5190 struct collect_gnu_hash_codes
5192 bfd *output_bfd;
5193 const struct elf_backend_data *bed;
5194 unsigned long int nsyms;
5195 unsigned long int maskbits;
5196 unsigned long int *hashcodes;
5197 unsigned long int *hashval;
5198 unsigned long int *indx;
5199 unsigned long int *counts;
5200 bfd_vma *bitmask;
5201 bfd_byte *contents;
5202 long int min_dynindx;
5203 unsigned long int bucketcount;
5204 unsigned long int symindx;
5205 long int local_indx;
5206 long int shift1, shift2;
5207 unsigned long int mask;
5208 bfd_boolean error;
5211 /* This function will be called though elf_link_hash_traverse to store
5212 all hash value of the exported symbols in an array. */
5214 static bfd_boolean
5215 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5217 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5218 const char *name;
5219 char *p;
5220 unsigned long ha;
5221 char *alc = NULL;
5223 /* Ignore indirect symbols. These are added by the versioning code. */
5224 if (h->dynindx == -1)
5225 return TRUE;
5227 /* Ignore also local symbols and undefined symbols. */
5228 if (! (*s->bed->elf_hash_symbol) (h))
5229 return TRUE;
5231 name = h->root.root.string;
5232 p = strchr (name, ELF_VER_CHR);
5233 if (p != NULL)
5235 alc = (char *) bfd_malloc (p - name + 1);
5236 if (alc == NULL)
5238 s->error = TRUE;
5239 return FALSE;
5241 memcpy (alc, name, p - name);
5242 alc[p - name] = '\0';
5243 name = alc;
5246 /* Compute the hash value. */
5247 ha = bfd_elf_gnu_hash (name);
5249 /* Store the found hash value in the array for compute_bucket_count,
5250 and also for .dynsym reordering purposes. */
5251 s->hashcodes[s->nsyms] = ha;
5252 s->hashval[h->dynindx] = ha;
5253 ++s->nsyms;
5254 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5255 s->min_dynindx = h->dynindx;
5257 if (alc != NULL)
5258 free (alc);
5260 return TRUE;
5263 /* This function will be called though elf_link_hash_traverse to do
5264 final dynaminc symbol renumbering. */
5266 static bfd_boolean
5267 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5269 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5270 unsigned long int bucket;
5271 unsigned long int val;
5273 /* Ignore indirect symbols. */
5274 if (h->dynindx == -1)
5275 return TRUE;
5277 /* Ignore also local symbols and undefined symbols. */
5278 if (! (*s->bed->elf_hash_symbol) (h))
5280 if (h->dynindx >= s->min_dynindx)
5281 h->dynindx = s->local_indx++;
5282 return TRUE;
5285 bucket = s->hashval[h->dynindx] % s->bucketcount;
5286 val = (s->hashval[h->dynindx] >> s->shift1)
5287 & ((s->maskbits >> s->shift1) - 1);
5288 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5289 s->bitmask[val]
5290 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5291 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5292 if (s->counts[bucket] == 1)
5293 /* Last element terminates the chain. */
5294 val |= 1;
5295 bfd_put_32 (s->output_bfd, val,
5296 s->contents + (s->indx[bucket] - s->symindx) * 4);
5297 --s->counts[bucket];
5298 h->dynindx = s->indx[bucket]++;
5299 return TRUE;
5302 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5304 bfd_boolean
5305 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5307 return !(h->forced_local
5308 || h->root.type == bfd_link_hash_undefined
5309 || h->root.type == bfd_link_hash_undefweak
5310 || ((h->root.type == bfd_link_hash_defined
5311 || h->root.type == bfd_link_hash_defweak)
5312 && h->root.u.def.section->output_section == NULL));
5315 /* Array used to determine the number of hash table buckets to use
5316 based on the number of symbols there are. If there are fewer than
5317 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5318 fewer than 37 we use 17 buckets, and so forth. We never use more
5319 than 32771 buckets. */
5321 static const size_t elf_buckets[] =
5323 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5324 16411, 32771, 0
5327 /* Compute bucket count for hashing table. We do not use a static set
5328 of possible tables sizes anymore. Instead we determine for all
5329 possible reasonable sizes of the table the outcome (i.e., the
5330 number of collisions etc) and choose the best solution. The
5331 weighting functions are not too simple to allow the table to grow
5332 without bounds. Instead one of the weighting factors is the size.
5333 Therefore the result is always a good payoff between few collisions
5334 (= short chain lengths) and table size. */
5335 static size_t
5336 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5337 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5338 unsigned long int nsyms,
5339 int gnu_hash)
5341 size_t best_size = 0;
5342 unsigned long int i;
5344 /* We have a problem here. The following code to optimize the table
5345 size requires an integer type with more the 32 bits. If
5346 BFD_HOST_U_64_BIT is set we know about such a type. */
5347 #ifdef BFD_HOST_U_64_BIT
5348 if (info->optimize)
5350 size_t minsize;
5351 size_t maxsize;
5352 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5353 bfd *dynobj = elf_hash_table (info)->dynobj;
5354 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5355 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5356 unsigned long int *counts;
5357 bfd_size_type amt;
5358 unsigned int no_improvement_count = 0;
5360 /* Possible optimization parameters: if we have NSYMS symbols we say
5361 that the hashing table must at least have NSYMS/4 and at most
5362 2*NSYMS buckets. */
5363 minsize = nsyms / 4;
5364 if (minsize == 0)
5365 minsize = 1;
5366 best_size = maxsize = nsyms * 2;
5367 if (gnu_hash)
5369 if (minsize < 2)
5370 minsize = 2;
5371 if ((best_size & 31) == 0)
5372 ++best_size;
5375 /* Create array where we count the collisions in. We must use bfd_malloc
5376 since the size could be large. */
5377 amt = maxsize;
5378 amt *= sizeof (unsigned long int);
5379 counts = (unsigned long int *) bfd_malloc (amt);
5380 if (counts == NULL)
5381 return 0;
5383 /* Compute the "optimal" size for the hash table. The criteria is a
5384 minimal chain length. The minor criteria is (of course) the size
5385 of the table. */
5386 for (i = minsize; i < maxsize; ++i)
5388 /* Walk through the array of hashcodes and count the collisions. */
5389 BFD_HOST_U_64_BIT max;
5390 unsigned long int j;
5391 unsigned long int fact;
5393 if (gnu_hash && (i & 31) == 0)
5394 continue;
5396 memset (counts, '\0', i * sizeof (unsigned long int));
5398 /* Determine how often each hash bucket is used. */
5399 for (j = 0; j < nsyms; ++j)
5400 ++counts[hashcodes[j] % i];
5402 /* For the weight function we need some information about the
5403 pagesize on the target. This is information need not be 100%
5404 accurate. Since this information is not available (so far) we
5405 define it here to a reasonable default value. If it is crucial
5406 to have a better value some day simply define this value. */
5407 # ifndef BFD_TARGET_PAGESIZE
5408 # define BFD_TARGET_PAGESIZE (4096)
5409 # endif
5411 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5412 and the chains. */
5413 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5415 # if 1
5416 /* Variant 1: optimize for short chains. We add the squares
5417 of all the chain lengths (which favors many small chain
5418 over a few long chains). */
5419 for (j = 0; j < i; ++j)
5420 max += counts[j] * counts[j];
5422 /* This adds penalties for the overall size of the table. */
5423 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5424 max *= fact * fact;
5425 # else
5426 /* Variant 2: Optimize a lot more for small table. Here we
5427 also add squares of the size but we also add penalties for
5428 empty slots (the +1 term). */
5429 for (j = 0; j < i; ++j)
5430 max += (1 + counts[j]) * (1 + counts[j]);
5432 /* The overall size of the table is considered, but not as
5433 strong as in variant 1, where it is squared. */
5434 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5435 max *= fact;
5436 # endif
5438 /* Compare with current best results. */
5439 if (max < best_chlen)
5441 best_chlen = max;
5442 best_size = i;
5443 no_improvement_count = 0;
5445 /* PR 11843: Avoid futile long searches for the best bucket size
5446 when there are a large number of symbols. */
5447 else if (++no_improvement_count == 100)
5448 break;
5451 free (counts);
5453 else
5454 #endif /* defined (BFD_HOST_U_64_BIT) */
5456 /* This is the fallback solution if no 64bit type is available or if we
5457 are not supposed to spend much time on optimizations. We select the
5458 bucket count using a fixed set of numbers. */
5459 for (i = 0; elf_buckets[i] != 0; i++)
5461 best_size = elf_buckets[i];
5462 if (nsyms < elf_buckets[i + 1])
5463 break;
5465 if (gnu_hash && best_size < 2)
5466 best_size = 2;
5469 return best_size;
5472 /* Size any SHT_GROUP section for ld -r. */
5474 bfd_boolean
5475 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5477 bfd *ibfd;
5479 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5480 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5481 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5482 return FALSE;
5483 return TRUE;
5486 /* Set a default stack segment size. The value in INFO wins. If it
5487 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5488 undefined it is initialized. */
5490 bfd_boolean
5491 bfd_elf_stack_segment_size (bfd *output_bfd,
5492 struct bfd_link_info *info,
5493 const char *legacy_symbol,
5494 bfd_vma default_size)
5496 struct elf_link_hash_entry *h = NULL;
5498 /* Look for legacy symbol. */
5499 if (legacy_symbol)
5500 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5501 FALSE, FALSE, FALSE);
5502 if (h && (h->root.type == bfd_link_hash_defined
5503 || h->root.type == bfd_link_hash_defweak)
5504 && h->def_regular
5505 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5507 /* The symbol has no type if specified on the command line. */
5508 h->type = STT_OBJECT;
5509 if (info->stacksize)
5510 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5511 output_bfd, legacy_symbol);
5512 else if (h->root.u.def.section != bfd_abs_section_ptr)
5513 (*_bfd_error_handler) (_("%B: %s not absolute"),
5514 output_bfd, legacy_symbol);
5515 else
5516 info->stacksize = h->root.u.def.value;
5519 if (!info->stacksize)
5520 /* If the user didn't set a size, or explicitly inhibit the
5521 size, set it now. */
5522 info->stacksize = default_size;
5524 /* Provide the legacy symbol, if it is referenced. */
5525 if (h && (h->root.type == bfd_link_hash_undefined
5526 || h->root.type == bfd_link_hash_undefweak))
5528 struct bfd_link_hash_entry *bh = NULL;
5530 if (!(_bfd_generic_link_add_one_symbol
5531 (info, output_bfd, legacy_symbol,
5532 BSF_GLOBAL, bfd_abs_section_ptr,
5533 info->stacksize >= 0 ? info->stacksize : 0,
5534 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5535 return FALSE;
5537 h = (struct elf_link_hash_entry *) bh;
5538 h->def_regular = 1;
5539 h->type = STT_OBJECT;
5542 return TRUE;
5545 /* Set up the sizes and contents of the ELF dynamic sections. This is
5546 called by the ELF linker emulation before_allocation routine. We
5547 must set the sizes of the sections before the linker sets the
5548 addresses of the various sections. */
5550 bfd_boolean
5551 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5552 const char *soname,
5553 const char *rpath,
5554 const char *filter_shlib,
5555 const char *audit,
5556 const char *depaudit,
5557 const char * const *auxiliary_filters,
5558 struct bfd_link_info *info,
5559 asection **sinterpptr)
5561 bfd_size_type soname_indx;
5562 bfd *dynobj;
5563 const struct elf_backend_data *bed;
5564 struct elf_info_failed asvinfo;
5566 *sinterpptr = NULL;
5568 soname_indx = (bfd_size_type) -1;
5570 if (!is_elf_hash_table (info->hash))
5571 return TRUE;
5573 bed = get_elf_backend_data (output_bfd);
5575 /* Any syms created from now on start with -1 in
5576 got.refcount/offset and plt.refcount/offset. */
5577 elf_hash_table (info)->init_got_refcount
5578 = elf_hash_table (info)->init_got_offset;
5579 elf_hash_table (info)->init_plt_refcount
5580 = elf_hash_table (info)->init_plt_offset;
5582 if (info->relocatable
5583 && !_bfd_elf_size_group_sections (info))
5584 return FALSE;
5586 /* The backend may have to create some sections regardless of whether
5587 we're dynamic or not. */
5588 if (bed->elf_backend_always_size_sections
5589 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5590 return FALSE;
5592 /* Determine any GNU_STACK segment requirements, after the backend
5593 has had a chance to set a default segment size. */
5594 if (info->execstack)
5595 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5596 else if (info->noexecstack)
5597 elf_stack_flags (output_bfd) = PF_R | PF_W;
5598 else
5600 bfd *inputobj;
5601 asection *notesec = NULL;
5602 int exec = 0;
5604 for (inputobj = info->input_bfds;
5605 inputobj;
5606 inputobj = inputobj->link_next)
5608 asection *s;
5610 if (inputobj->flags
5611 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5612 continue;
5613 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5614 if (s)
5616 if (s->flags & SEC_CODE)
5617 exec = PF_X;
5618 notesec = s;
5620 else if (bed->default_execstack)
5621 exec = PF_X;
5623 if (notesec || info->stacksize > 0)
5624 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5625 if (notesec && exec && info->relocatable
5626 && notesec->output_section != bfd_abs_section_ptr)
5627 notesec->output_section->flags |= SEC_CODE;
5630 dynobj = elf_hash_table (info)->dynobj;
5632 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5634 struct elf_info_failed eif;
5635 struct elf_link_hash_entry *h;
5636 asection *dynstr;
5637 struct bfd_elf_version_tree *t;
5638 struct bfd_elf_version_expr *d;
5639 asection *s;
5640 bfd_boolean all_defined;
5642 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5643 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5645 if (soname != NULL)
5647 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5648 soname, TRUE);
5649 if (soname_indx == (bfd_size_type) -1
5650 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5651 return FALSE;
5654 if (info->symbolic)
5656 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5657 return FALSE;
5658 info->flags |= DF_SYMBOLIC;
5661 if (rpath != NULL)
5663 bfd_size_type indx;
5664 bfd_vma tag;
5666 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5667 TRUE);
5668 if (indx == (bfd_size_type) -1)
5669 return FALSE;
5671 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5672 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5673 return FALSE;
5676 if (filter_shlib != NULL)
5678 bfd_size_type indx;
5680 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5681 filter_shlib, TRUE);
5682 if (indx == (bfd_size_type) -1
5683 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5684 return FALSE;
5687 if (auxiliary_filters != NULL)
5689 const char * const *p;
5691 for (p = auxiliary_filters; *p != NULL; p++)
5693 bfd_size_type indx;
5695 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5696 *p, TRUE);
5697 if (indx == (bfd_size_type) -1
5698 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5699 return FALSE;
5703 if (audit != NULL)
5705 bfd_size_type indx;
5707 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5708 TRUE);
5709 if (indx == (bfd_size_type) -1
5710 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5711 return FALSE;
5714 if (depaudit != NULL)
5716 bfd_size_type indx;
5718 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5719 TRUE);
5720 if (indx == (bfd_size_type) -1
5721 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5722 return FALSE;
5725 eif.info = info;
5726 eif.failed = FALSE;
5728 /* If we are supposed to export all symbols into the dynamic symbol
5729 table (this is not the normal case), then do so. */
5730 if (info->export_dynamic
5731 || (info->executable && info->dynamic))
5733 elf_link_hash_traverse (elf_hash_table (info),
5734 _bfd_elf_export_symbol,
5735 &eif);
5736 if (eif.failed)
5737 return FALSE;
5740 /* Make all global versions with definition. */
5741 for (t = info->version_info; t != NULL; t = t->next)
5742 for (d = t->globals.list; d != NULL; d = d->next)
5743 if (!d->symver && d->literal)
5745 const char *verstr, *name;
5746 size_t namelen, verlen, newlen;
5747 char *newname, *p, leading_char;
5748 struct elf_link_hash_entry *newh;
5750 leading_char = bfd_get_symbol_leading_char (output_bfd);
5751 name = d->pattern;
5752 namelen = strlen (name) + (leading_char != '\0');
5753 verstr = t->name;
5754 verlen = strlen (verstr);
5755 newlen = namelen + verlen + 3;
5757 newname = (char *) bfd_malloc (newlen);
5758 if (newname == NULL)
5759 return FALSE;
5760 newname[0] = leading_char;
5761 memcpy (newname + (leading_char != '\0'), name, namelen);
5763 /* Check the hidden versioned definition. */
5764 p = newname + namelen;
5765 *p++ = ELF_VER_CHR;
5766 memcpy (p, verstr, verlen + 1);
5767 newh = elf_link_hash_lookup (elf_hash_table (info),
5768 newname, FALSE, FALSE,
5769 FALSE);
5770 if (newh == NULL
5771 || (newh->root.type != bfd_link_hash_defined
5772 && newh->root.type != bfd_link_hash_defweak))
5774 /* Check the default versioned definition. */
5775 *p++ = ELF_VER_CHR;
5776 memcpy (p, verstr, verlen + 1);
5777 newh = elf_link_hash_lookup (elf_hash_table (info),
5778 newname, FALSE, FALSE,
5779 FALSE);
5781 free (newname);
5783 /* Mark this version if there is a definition and it is
5784 not defined in a shared object. */
5785 if (newh != NULL
5786 && !newh->def_dynamic
5787 && (newh->root.type == bfd_link_hash_defined
5788 || newh->root.type == bfd_link_hash_defweak))
5789 d->symver = 1;
5792 /* Attach all the symbols to their version information. */
5793 asvinfo.info = info;
5794 asvinfo.failed = FALSE;
5796 elf_link_hash_traverse (elf_hash_table (info),
5797 _bfd_elf_link_assign_sym_version,
5798 &asvinfo);
5799 if (asvinfo.failed)
5800 return FALSE;
5802 if (!info->allow_undefined_version)
5804 /* Check if all global versions have a definition. */
5805 all_defined = TRUE;
5806 for (t = info->version_info; t != NULL; t = t->next)
5807 for (d = t->globals.list; d != NULL; d = d->next)
5808 if (d->literal && !d->symver && !d->script)
5810 (*_bfd_error_handler)
5811 (_("%s: undefined version: %s"),
5812 d->pattern, t->name);
5813 all_defined = FALSE;
5816 if (!all_defined)
5818 bfd_set_error (bfd_error_bad_value);
5819 return FALSE;
5823 /* Find all symbols which were defined in a dynamic object and make
5824 the backend pick a reasonable value for them. */
5825 elf_link_hash_traverse (elf_hash_table (info),
5826 _bfd_elf_adjust_dynamic_symbol,
5827 &eif);
5828 if (eif.failed)
5829 return FALSE;
5831 /* Add some entries to the .dynamic section. We fill in some of the
5832 values later, in bfd_elf_final_link, but we must add the entries
5833 now so that we know the final size of the .dynamic section. */
5835 /* If there are initialization and/or finalization functions to
5836 call then add the corresponding DT_INIT/DT_FINI entries. */
5837 h = (info->init_function
5838 ? elf_link_hash_lookup (elf_hash_table (info),
5839 info->init_function, FALSE,
5840 FALSE, FALSE)
5841 : NULL);
5842 if (h != NULL
5843 && (h->ref_regular
5844 || h->def_regular))
5846 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5847 return FALSE;
5849 h = (info->fini_function
5850 ? elf_link_hash_lookup (elf_hash_table (info),
5851 info->fini_function, FALSE,
5852 FALSE, FALSE)
5853 : NULL);
5854 if (h != NULL
5855 && (h->ref_regular
5856 || h->def_regular))
5858 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5859 return FALSE;
5862 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5863 if (s != NULL && s->linker_has_input)
5865 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5866 if (! info->executable)
5868 bfd *sub;
5869 asection *o;
5871 for (sub = info->input_bfds; sub != NULL;
5872 sub = sub->link_next)
5873 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5874 for (o = sub->sections; o != NULL; o = o->next)
5875 if (elf_section_data (o)->this_hdr.sh_type
5876 == SHT_PREINIT_ARRAY)
5878 (*_bfd_error_handler)
5879 (_("%B: .preinit_array section is not allowed in DSO"),
5880 sub);
5881 break;
5884 bfd_set_error (bfd_error_nonrepresentable_section);
5885 return FALSE;
5888 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5889 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5890 return FALSE;
5892 s = bfd_get_section_by_name (output_bfd, ".init_array");
5893 if (s != NULL && s->linker_has_input)
5895 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5896 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5897 return FALSE;
5899 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5900 if (s != NULL && s->linker_has_input)
5902 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5903 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5904 return FALSE;
5907 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5908 /* If .dynstr is excluded from the link, we don't want any of
5909 these tags. Strictly, we should be checking each section
5910 individually; This quick check covers for the case where
5911 someone does a /DISCARD/ : { *(*) }. */
5912 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5914 bfd_size_type strsize;
5916 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5917 if ((info->emit_hash
5918 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5919 || (info->emit_gnu_hash
5920 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5921 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5922 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5923 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5924 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5925 bed->s->sizeof_sym))
5926 return FALSE;
5930 /* The backend must work out the sizes of all the other dynamic
5931 sections. */
5932 if (dynobj != NULL
5933 && bed->elf_backend_size_dynamic_sections != NULL
5934 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5935 return FALSE;
5937 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5938 return FALSE;
5940 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5942 unsigned long section_sym_count;
5943 struct bfd_elf_version_tree *verdefs;
5944 asection *s;
5946 /* Set up the version definition section. */
5947 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
5948 BFD_ASSERT (s != NULL);
5950 /* We may have created additional version definitions if we are
5951 just linking a regular application. */
5952 verdefs = info->version_info;
5954 /* Skip anonymous version tag. */
5955 if (verdefs != NULL && verdefs->vernum == 0)
5956 verdefs = verdefs->next;
5958 if (verdefs == NULL && !info->create_default_symver)
5959 s->flags |= SEC_EXCLUDE;
5960 else
5962 unsigned int cdefs;
5963 bfd_size_type size;
5964 struct bfd_elf_version_tree *t;
5965 bfd_byte *p;
5966 Elf_Internal_Verdef def;
5967 Elf_Internal_Verdaux defaux;
5968 struct bfd_link_hash_entry *bh;
5969 struct elf_link_hash_entry *h;
5970 const char *name;
5972 cdefs = 0;
5973 size = 0;
5975 /* Make space for the base version. */
5976 size += sizeof (Elf_External_Verdef);
5977 size += sizeof (Elf_External_Verdaux);
5978 ++cdefs;
5980 /* Make space for the default version. */
5981 if (info->create_default_symver)
5983 size += sizeof (Elf_External_Verdef);
5984 ++cdefs;
5987 for (t = verdefs; t != NULL; t = t->next)
5989 struct bfd_elf_version_deps *n;
5991 /* Don't emit base version twice. */
5992 if (t->vernum == 0)
5993 continue;
5995 size += sizeof (Elf_External_Verdef);
5996 size += sizeof (Elf_External_Verdaux);
5997 ++cdefs;
5999 for (n = t->deps; n != NULL; n = n->next)
6000 size += sizeof (Elf_External_Verdaux);
6003 s->size = size;
6004 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6005 if (s->contents == NULL && s->size != 0)
6006 return FALSE;
6008 /* Fill in the version definition section. */
6010 p = s->contents;
6012 def.vd_version = VER_DEF_CURRENT;
6013 def.vd_flags = VER_FLG_BASE;
6014 def.vd_ndx = 1;
6015 def.vd_cnt = 1;
6016 if (info->create_default_symver)
6018 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6019 def.vd_next = sizeof (Elf_External_Verdef);
6021 else
6023 def.vd_aux = sizeof (Elf_External_Verdef);
6024 def.vd_next = (sizeof (Elf_External_Verdef)
6025 + sizeof (Elf_External_Verdaux));
6028 if (soname_indx != (bfd_size_type) -1)
6030 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6031 soname_indx);
6032 def.vd_hash = bfd_elf_hash (soname);
6033 defaux.vda_name = soname_indx;
6034 name = soname;
6036 else
6038 bfd_size_type indx;
6040 name = lbasename (output_bfd->filename);
6041 def.vd_hash = bfd_elf_hash (name);
6042 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6043 name, FALSE);
6044 if (indx == (bfd_size_type) -1)
6045 return FALSE;
6046 defaux.vda_name = indx;
6048 defaux.vda_next = 0;
6050 _bfd_elf_swap_verdef_out (output_bfd, &def,
6051 (Elf_External_Verdef *) p);
6052 p += sizeof (Elf_External_Verdef);
6053 if (info->create_default_symver)
6055 /* Add a symbol representing this version. */
6056 bh = NULL;
6057 if (! (_bfd_generic_link_add_one_symbol
6058 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6059 0, NULL, FALSE,
6060 get_elf_backend_data (dynobj)->collect, &bh)))
6061 return FALSE;
6062 h = (struct elf_link_hash_entry *) bh;
6063 h->non_elf = 0;
6064 h->def_regular = 1;
6065 h->type = STT_OBJECT;
6066 h->verinfo.vertree = NULL;
6068 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6069 return FALSE;
6071 /* Create a duplicate of the base version with the same
6072 aux block, but different flags. */
6073 def.vd_flags = 0;
6074 def.vd_ndx = 2;
6075 def.vd_aux = sizeof (Elf_External_Verdef);
6076 if (verdefs)
6077 def.vd_next = (sizeof (Elf_External_Verdef)
6078 + sizeof (Elf_External_Verdaux));
6079 else
6080 def.vd_next = 0;
6081 _bfd_elf_swap_verdef_out (output_bfd, &def,
6082 (Elf_External_Verdef *) p);
6083 p += sizeof (Elf_External_Verdef);
6085 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6086 (Elf_External_Verdaux *) p);
6087 p += sizeof (Elf_External_Verdaux);
6089 for (t = verdefs; t != NULL; t = t->next)
6091 unsigned int cdeps;
6092 struct bfd_elf_version_deps *n;
6094 /* Don't emit the base version twice. */
6095 if (t->vernum == 0)
6096 continue;
6098 cdeps = 0;
6099 for (n = t->deps; n != NULL; n = n->next)
6100 ++cdeps;
6102 /* Add a symbol representing this version. */
6103 bh = NULL;
6104 if (! (_bfd_generic_link_add_one_symbol
6105 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6106 0, NULL, FALSE,
6107 get_elf_backend_data (dynobj)->collect, &bh)))
6108 return FALSE;
6109 h = (struct elf_link_hash_entry *) bh;
6110 h->non_elf = 0;
6111 h->def_regular = 1;
6112 h->type = STT_OBJECT;
6113 h->verinfo.vertree = t;
6115 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6116 return FALSE;
6118 def.vd_version = VER_DEF_CURRENT;
6119 def.vd_flags = 0;
6120 if (t->globals.list == NULL
6121 && t->locals.list == NULL
6122 && ! t->used)
6123 def.vd_flags |= VER_FLG_WEAK;
6124 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6125 def.vd_cnt = cdeps + 1;
6126 def.vd_hash = bfd_elf_hash (t->name);
6127 def.vd_aux = sizeof (Elf_External_Verdef);
6128 def.vd_next = 0;
6130 /* If a basever node is next, it *must* be the last node in
6131 the chain, otherwise Verdef construction breaks. */
6132 if (t->next != NULL && t->next->vernum == 0)
6133 BFD_ASSERT (t->next->next == NULL);
6135 if (t->next != NULL && t->next->vernum != 0)
6136 def.vd_next = (sizeof (Elf_External_Verdef)
6137 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6139 _bfd_elf_swap_verdef_out (output_bfd, &def,
6140 (Elf_External_Verdef *) p);
6141 p += sizeof (Elf_External_Verdef);
6143 defaux.vda_name = h->dynstr_index;
6144 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6145 h->dynstr_index);
6146 defaux.vda_next = 0;
6147 if (t->deps != NULL)
6148 defaux.vda_next = sizeof (Elf_External_Verdaux);
6149 t->name_indx = defaux.vda_name;
6151 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6152 (Elf_External_Verdaux *) p);
6153 p += sizeof (Elf_External_Verdaux);
6155 for (n = t->deps; n != NULL; n = n->next)
6157 if (n->version_needed == NULL)
6159 /* This can happen if there was an error in the
6160 version script. */
6161 defaux.vda_name = 0;
6163 else
6165 defaux.vda_name = n->version_needed->name_indx;
6166 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6167 defaux.vda_name);
6169 if (n->next == NULL)
6170 defaux.vda_next = 0;
6171 else
6172 defaux.vda_next = sizeof (Elf_External_Verdaux);
6174 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6175 (Elf_External_Verdaux *) p);
6176 p += sizeof (Elf_External_Verdaux);
6180 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6181 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6182 return FALSE;
6184 elf_tdata (output_bfd)->cverdefs = cdefs;
6187 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6189 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6190 return FALSE;
6192 else if (info->flags & DF_BIND_NOW)
6194 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6195 return FALSE;
6198 if (info->flags_1)
6200 if (info->executable)
6201 info->flags_1 &= ~ (DF_1_INITFIRST
6202 | DF_1_NODELETE
6203 | DF_1_NOOPEN);
6204 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6205 return FALSE;
6208 /* Work out the size of the version reference section. */
6210 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6211 BFD_ASSERT (s != NULL);
6213 struct elf_find_verdep_info sinfo;
6215 sinfo.info = info;
6216 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6217 if (sinfo.vers == 0)
6218 sinfo.vers = 1;
6219 sinfo.failed = FALSE;
6221 elf_link_hash_traverse (elf_hash_table (info),
6222 _bfd_elf_link_find_version_dependencies,
6223 &sinfo);
6224 if (sinfo.failed)
6225 return FALSE;
6227 if (elf_tdata (output_bfd)->verref == NULL)
6228 s->flags |= SEC_EXCLUDE;
6229 else
6231 Elf_Internal_Verneed *t;
6232 unsigned int size;
6233 unsigned int crefs;
6234 bfd_byte *p;
6236 /* Build the version dependency section. */
6237 size = 0;
6238 crefs = 0;
6239 for (t = elf_tdata (output_bfd)->verref;
6240 t != NULL;
6241 t = t->vn_nextref)
6243 Elf_Internal_Vernaux *a;
6245 size += sizeof (Elf_External_Verneed);
6246 ++crefs;
6247 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6248 size += sizeof (Elf_External_Vernaux);
6251 s->size = size;
6252 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6253 if (s->contents == NULL)
6254 return FALSE;
6256 p = s->contents;
6257 for (t = elf_tdata (output_bfd)->verref;
6258 t != NULL;
6259 t = t->vn_nextref)
6261 unsigned int caux;
6262 Elf_Internal_Vernaux *a;
6263 bfd_size_type indx;
6265 caux = 0;
6266 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6267 ++caux;
6269 t->vn_version = VER_NEED_CURRENT;
6270 t->vn_cnt = caux;
6271 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6272 elf_dt_name (t->vn_bfd) != NULL
6273 ? elf_dt_name (t->vn_bfd)
6274 : lbasename (t->vn_bfd->filename),
6275 FALSE);
6276 if (indx == (bfd_size_type) -1)
6277 return FALSE;
6278 t->vn_file = indx;
6279 t->vn_aux = sizeof (Elf_External_Verneed);
6280 if (t->vn_nextref == NULL)
6281 t->vn_next = 0;
6282 else
6283 t->vn_next = (sizeof (Elf_External_Verneed)
6284 + caux * sizeof (Elf_External_Vernaux));
6286 _bfd_elf_swap_verneed_out (output_bfd, t,
6287 (Elf_External_Verneed *) p);
6288 p += sizeof (Elf_External_Verneed);
6290 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6292 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6293 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6294 a->vna_nodename, FALSE);
6295 if (indx == (bfd_size_type) -1)
6296 return FALSE;
6297 a->vna_name = indx;
6298 if (a->vna_nextptr == NULL)
6299 a->vna_next = 0;
6300 else
6301 a->vna_next = sizeof (Elf_External_Vernaux);
6303 _bfd_elf_swap_vernaux_out (output_bfd, a,
6304 (Elf_External_Vernaux *) p);
6305 p += sizeof (Elf_External_Vernaux);
6309 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6310 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6311 return FALSE;
6313 elf_tdata (output_bfd)->cverrefs = crefs;
6317 if ((elf_tdata (output_bfd)->cverrefs == 0
6318 && elf_tdata (output_bfd)->cverdefs == 0)
6319 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6320 &section_sym_count) == 0)
6322 s = bfd_get_linker_section (dynobj, ".gnu.version");
6323 s->flags |= SEC_EXCLUDE;
6326 return TRUE;
6329 /* Find the first non-excluded output section. We'll use its
6330 section symbol for some emitted relocs. */
6331 void
6332 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6334 asection *s;
6336 for (s = output_bfd->sections; s != NULL; s = s->next)
6337 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6338 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6340 elf_hash_table (info)->text_index_section = s;
6341 break;
6345 /* Find two non-excluded output sections, one for code, one for data.
6346 We'll use their section symbols for some emitted relocs. */
6347 void
6348 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6350 asection *s;
6352 /* Data first, since setting text_index_section changes
6353 _bfd_elf_link_omit_section_dynsym. */
6354 for (s = output_bfd->sections; s != NULL; s = s->next)
6355 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6356 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6358 elf_hash_table (info)->data_index_section = s;
6359 break;
6362 for (s = output_bfd->sections; s != NULL; s = s->next)
6363 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6364 == (SEC_ALLOC | SEC_READONLY))
6365 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6367 elf_hash_table (info)->text_index_section = s;
6368 break;
6371 if (elf_hash_table (info)->text_index_section == NULL)
6372 elf_hash_table (info)->text_index_section
6373 = elf_hash_table (info)->data_index_section;
6376 bfd_boolean
6377 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6379 const struct elf_backend_data *bed;
6381 if (!is_elf_hash_table (info->hash))
6382 return TRUE;
6384 bed = get_elf_backend_data (output_bfd);
6385 (*bed->elf_backend_init_index_section) (output_bfd, info);
6387 if (elf_hash_table (info)->dynamic_sections_created)
6389 bfd *dynobj;
6390 asection *s;
6391 bfd_size_type dynsymcount;
6392 unsigned long section_sym_count;
6393 unsigned int dtagcount;
6395 dynobj = elf_hash_table (info)->dynobj;
6397 /* Assign dynsym indicies. In a shared library we generate a
6398 section symbol for each output section, which come first.
6399 Next come all of the back-end allocated local dynamic syms,
6400 followed by the rest of the global symbols. */
6402 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6403 &section_sym_count);
6405 /* Work out the size of the symbol version section. */
6406 s = bfd_get_linker_section (dynobj, ".gnu.version");
6407 BFD_ASSERT (s != NULL);
6408 if (dynsymcount != 0
6409 && (s->flags & SEC_EXCLUDE) == 0)
6411 s->size = dynsymcount * sizeof (Elf_External_Versym);
6412 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6413 if (s->contents == NULL)
6414 return FALSE;
6416 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6417 return FALSE;
6420 /* Set the size of the .dynsym and .hash sections. We counted
6421 the number of dynamic symbols in elf_link_add_object_symbols.
6422 We will build the contents of .dynsym and .hash when we build
6423 the final symbol table, because until then we do not know the
6424 correct value to give the symbols. We built the .dynstr
6425 section as we went along in elf_link_add_object_symbols. */
6426 s = bfd_get_linker_section (dynobj, ".dynsym");
6427 BFD_ASSERT (s != NULL);
6428 s->size = dynsymcount * bed->s->sizeof_sym;
6430 if (dynsymcount != 0)
6432 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6433 if (s->contents == NULL)
6434 return FALSE;
6436 /* The first entry in .dynsym is a dummy symbol.
6437 Clear all the section syms, in case we don't output them all. */
6438 ++section_sym_count;
6439 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6442 elf_hash_table (info)->bucketcount = 0;
6444 /* Compute the size of the hashing table. As a side effect this
6445 computes the hash values for all the names we export. */
6446 if (info->emit_hash)
6448 unsigned long int *hashcodes;
6449 struct hash_codes_info hashinf;
6450 bfd_size_type amt;
6451 unsigned long int nsyms;
6452 size_t bucketcount;
6453 size_t hash_entry_size;
6455 /* Compute the hash values for all exported symbols. At the same
6456 time store the values in an array so that we could use them for
6457 optimizations. */
6458 amt = dynsymcount * sizeof (unsigned long int);
6459 hashcodes = (unsigned long int *) bfd_malloc (amt);
6460 if (hashcodes == NULL)
6461 return FALSE;
6462 hashinf.hashcodes = hashcodes;
6463 hashinf.error = FALSE;
6465 /* Put all hash values in HASHCODES. */
6466 elf_link_hash_traverse (elf_hash_table (info),
6467 elf_collect_hash_codes, &hashinf);
6468 if (hashinf.error)
6470 free (hashcodes);
6471 return FALSE;
6474 nsyms = hashinf.hashcodes - hashcodes;
6475 bucketcount
6476 = compute_bucket_count (info, hashcodes, nsyms, 0);
6477 free (hashcodes);
6479 if (bucketcount == 0)
6480 return FALSE;
6482 elf_hash_table (info)->bucketcount = bucketcount;
6484 s = bfd_get_linker_section (dynobj, ".hash");
6485 BFD_ASSERT (s != NULL);
6486 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6487 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6488 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6489 if (s->contents == NULL)
6490 return FALSE;
6492 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6493 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6494 s->contents + hash_entry_size);
6497 if (info->emit_gnu_hash)
6499 size_t i, cnt;
6500 unsigned char *contents;
6501 struct collect_gnu_hash_codes cinfo;
6502 bfd_size_type amt;
6503 size_t bucketcount;
6505 memset (&cinfo, 0, sizeof (cinfo));
6507 /* Compute the hash values for all exported symbols. At the same
6508 time store the values in an array so that we could use them for
6509 optimizations. */
6510 amt = dynsymcount * 2 * sizeof (unsigned long int);
6511 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6512 if (cinfo.hashcodes == NULL)
6513 return FALSE;
6515 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6516 cinfo.min_dynindx = -1;
6517 cinfo.output_bfd = output_bfd;
6518 cinfo.bed = bed;
6520 /* Put all hash values in HASHCODES. */
6521 elf_link_hash_traverse (elf_hash_table (info),
6522 elf_collect_gnu_hash_codes, &cinfo);
6523 if (cinfo.error)
6525 free (cinfo.hashcodes);
6526 return FALSE;
6529 bucketcount
6530 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6532 if (bucketcount == 0)
6534 free (cinfo.hashcodes);
6535 return FALSE;
6538 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6539 BFD_ASSERT (s != NULL);
6541 if (cinfo.nsyms == 0)
6543 /* Empty .gnu.hash section is special. */
6544 BFD_ASSERT (cinfo.min_dynindx == -1);
6545 free (cinfo.hashcodes);
6546 s->size = 5 * 4 + bed->s->arch_size / 8;
6547 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6548 if (contents == NULL)
6549 return FALSE;
6550 s->contents = contents;
6551 /* 1 empty bucket. */
6552 bfd_put_32 (output_bfd, 1, contents);
6553 /* SYMIDX above the special symbol 0. */
6554 bfd_put_32 (output_bfd, 1, contents + 4);
6555 /* Just one word for bitmask. */
6556 bfd_put_32 (output_bfd, 1, contents + 8);
6557 /* Only hash fn bloom filter. */
6558 bfd_put_32 (output_bfd, 0, contents + 12);
6559 /* No hashes are valid - empty bitmask. */
6560 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6561 /* No hashes in the only bucket. */
6562 bfd_put_32 (output_bfd, 0,
6563 contents + 16 + bed->s->arch_size / 8);
6565 else
6567 unsigned long int maskwords, maskbitslog2, x;
6568 BFD_ASSERT (cinfo.min_dynindx != -1);
6570 x = cinfo.nsyms;
6571 maskbitslog2 = 1;
6572 while ((x >>= 1) != 0)
6573 ++maskbitslog2;
6574 if (maskbitslog2 < 3)
6575 maskbitslog2 = 5;
6576 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6577 maskbitslog2 = maskbitslog2 + 3;
6578 else
6579 maskbitslog2 = maskbitslog2 + 2;
6580 if (bed->s->arch_size == 64)
6582 if (maskbitslog2 == 5)
6583 maskbitslog2 = 6;
6584 cinfo.shift1 = 6;
6586 else
6587 cinfo.shift1 = 5;
6588 cinfo.mask = (1 << cinfo.shift1) - 1;
6589 cinfo.shift2 = maskbitslog2;
6590 cinfo.maskbits = 1 << maskbitslog2;
6591 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6592 amt = bucketcount * sizeof (unsigned long int) * 2;
6593 amt += maskwords * sizeof (bfd_vma);
6594 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6595 if (cinfo.bitmask == NULL)
6597 free (cinfo.hashcodes);
6598 return FALSE;
6601 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6602 cinfo.indx = cinfo.counts + bucketcount;
6603 cinfo.symindx = dynsymcount - cinfo.nsyms;
6604 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6606 /* Determine how often each hash bucket is used. */
6607 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6608 for (i = 0; i < cinfo.nsyms; ++i)
6609 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6611 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6612 if (cinfo.counts[i] != 0)
6614 cinfo.indx[i] = cnt;
6615 cnt += cinfo.counts[i];
6617 BFD_ASSERT (cnt == dynsymcount);
6618 cinfo.bucketcount = bucketcount;
6619 cinfo.local_indx = cinfo.min_dynindx;
6621 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6622 s->size += cinfo.maskbits / 8;
6623 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6624 if (contents == NULL)
6626 free (cinfo.bitmask);
6627 free (cinfo.hashcodes);
6628 return FALSE;
6631 s->contents = contents;
6632 bfd_put_32 (output_bfd, bucketcount, contents);
6633 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6634 bfd_put_32 (output_bfd, maskwords, contents + 8);
6635 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6636 contents += 16 + cinfo.maskbits / 8;
6638 for (i = 0; i < bucketcount; ++i)
6640 if (cinfo.counts[i] == 0)
6641 bfd_put_32 (output_bfd, 0, contents);
6642 else
6643 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6644 contents += 4;
6647 cinfo.contents = contents;
6649 /* Renumber dynamic symbols, populate .gnu.hash section. */
6650 elf_link_hash_traverse (elf_hash_table (info),
6651 elf_renumber_gnu_hash_syms, &cinfo);
6653 contents = s->contents + 16;
6654 for (i = 0; i < maskwords; ++i)
6656 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6657 contents);
6658 contents += bed->s->arch_size / 8;
6661 free (cinfo.bitmask);
6662 free (cinfo.hashcodes);
6666 s = bfd_get_linker_section (dynobj, ".dynstr");
6667 BFD_ASSERT (s != NULL);
6669 elf_finalize_dynstr (output_bfd, info);
6671 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6673 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6674 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6675 return FALSE;
6678 return TRUE;
6681 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6683 static void
6684 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6685 asection *sec)
6687 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6688 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6691 /* Finish SHF_MERGE section merging. */
6693 bfd_boolean
6694 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6696 bfd *ibfd;
6697 asection *sec;
6699 if (!is_elf_hash_table (info->hash))
6700 return FALSE;
6702 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6703 if ((ibfd->flags & DYNAMIC) == 0)
6704 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6705 if ((sec->flags & SEC_MERGE) != 0
6706 && !bfd_is_abs_section (sec->output_section))
6708 struct bfd_elf_section_data *secdata;
6710 secdata = elf_section_data (sec);
6711 if (! _bfd_add_merge_section (abfd,
6712 &elf_hash_table (info)->merge_info,
6713 sec, &secdata->sec_info))
6714 return FALSE;
6715 else if (secdata->sec_info)
6716 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6719 if (elf_hash_table (info)->merge_info != NULL)
6720 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6721 merge_sections_remove_hook);
6722 return TRUE;
6725 /* Create an entry in an ELF linker hash table. */
6727 struct bfd_hash_entry *
6728 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6729 struct bfd_hash_table *table,
6730 const char *string)
6732 /* Allocate the structure if it has not already been allocated by a
6733 subclass. */
6734 if (entry == NULL)
6736 entry = (struct bfd_hash_entry *)
6737 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6738 if (entry == NULL)
6739 return entry;
6742 /* Call the allocation method of the superclass. */
6743 entry = _bfd_link_hash_newfunc (entry, table, string);
6744 if (entry != NULL)
6746 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6747 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6749 /* Set local fields. */
6750 ret->indx = -1;
6751 ret->dynindx = -1;
6752 ret->got = htab->init_got_refcount;
6753 ret->plt = htab->init_plt_refcount;
6754 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6755 - offsetof (struct elf_link_hash_entry, size)));
6756 /* Assume that we have been called by a non-ELF symbol reader.
6757 This flag is then reset by the code which reads an ELF input
6758 file. This ensures that a symbol created by a non-ELF symbol
6759 reader will have the flag set correctly. */
6760 ret->non_elf = 1;
6763 return entry;
6766 /* Copy data from an indirect symbol to its direct symbol, hiding the
6767 old indirect symbol. Also used for copying flags to a weakdef. */
6769 void
6770 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6771 struct elf_link_hash_entry *dir,
6772 struct elf_link_hash_entry *ind)
6774 struct elf_link_hash_table *htab;
6776 /* Copy down any references that we may have already seen to the
6777 symbol which just became indirect. */
6779 dir->ref_dynamic |= ind->ref_dynamic;
6780 dir->ref_regular |= ind->ref_regular;
6781 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6782 dir->non_got_ref |= ind->non_got_ref;
6783 dir->needs_plt |= ind->needs_plt;
6784 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6786 if (ind->root.type != bfd_link_hash_indirect)
6787 return;
6789 /* Copy over the global and procedure linkage table refcount entries.
6790 These may have been already set up by a check_relocs routine. */
6791 htab = elf_hash_table (info);
6792 if (ind->got.refcount > htab->init_got_refcount.refcount)
6794 if (dir->got.refcount < 0)
6795 dir->got.refcount = 0;
6796 dir->got.refcount += ind->got.refcount;
6797 ind->got.refcount = htab->init_got_refcount.refcount;
6800 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6802 if (dir->plt.refcount < 0)
6803 dir->plt.refcount = 0;
6804 dir->plt.refcount += ind->plt.refcount;
6805 ind->plt.refcount = htab->init_plt_refcount.refcount;
6808 if (ind->dynindx != -1)
6810 if (dir->dynindx != -1)
6811 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6812 dir->dynindx = ind->dynindx;
6813 dir->dynstr_index = ind->dynstr_index;
6814 ind->dynindx = -1;
6815 ind->dynstr_index = 0;
6819 void
6820 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6821 struct elf_link_hash_entry *h,
6822 bfd_boolean force_local)
6824 /* STT_GNU_IFUNC symbol must go through PLT. */
6825 if (h->type != STT_GNU_IFUNC)
6827 h->plt = elf_hash_table (info)->init_plt_offset;
6828 h->needs_plt = 0;
6830 if (force_local)
6832 h->forced_local = 1;
6833 if (h->dynindx != -1)
6835 h->dynindx = -1;
6836 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6837 h->dynstr_index);
6842 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6843 caller. */
6845 bfd_boolean
6846 _bfd_elf_link_hash_table_init
6847 (struct elf_link_hash_table *table,
6848 bfd *abfd,
6849 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6850 struct bfd_hash_table *,
6851 const char *),
6852 unsigned int entsize,
6853 enum elf_target_id target_id)
6855 bfd_boolean ret;
6856 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6858 table->init_got_refcount.refcount = can_refcount - 1;
6859 table->init_plt_refcount.refcount = can_refcount - 1;
6860 table->init_got_offset.offset = -(bfd_vma) 1;
6861 table->init_plt_offset.offset = -(bfd_vma) 1;
6862 /* The first dynamic symbol is a dummy. */
6863 table->dynsymcount = 1;
6865 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6867 table->root.type = bfd_link_elf_hash_table;
6868 table->hash_table_id = target_id;
6870 return ret;
6873 /* Create an ELF linker hash table. */
6875 struct bfd_link_hash_table *
6876 _bfd_elf_link_hash_table_create (bfd *abfd)
6878 struct elf_link_hash_table *ret;
6879 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6881 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6882 if (ret == NULL)
6883 return NULL;
6885 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6886 sizeof (struct elf_link_hash_entry),
6887 GENERIC_ELF_DATA))
6889 free (ret);
6890 return NULL;
6893 return &ret->root;
6896 /* Destroy an ELF linker hash table. */
6898 void
6899 _bfd_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
6901 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) hash;
6902 if (htab->dynstr != NULL)
6903 _bfd_elf_strtab_free (htab->dynstr);
6904 _bfd_merge_sections_free (htab->merge_info);
6905 _bfd_generic_link_hash_table_free (hash);
6908 /* This is a hook for the ELF emulation code in the generic linker to
6909 tell the backend linker what file name to use for the DT_NEEDED
6910 entry for a dynamic object. */
6912 void
6913 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6915 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6916 && bfd_get_format (abfd) == bfd_object)
6917 elf_dt_name (abfd) = name;
6921 bfd_elf_get_dyn_lib_class (bfd *abfd)
6923 int lib_class;
6924 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6925 && bfd_get_format (abfd) == bfd_object)
6926 lib_class = elf_dyn_lib_class (abfd);
6927 else
6928 lib_class = 0;
6929 return lib_class;
6932 void
6933 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6935 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6936 && bfd_get_format (abfd) == bfd_object)
6937 elf_dyn_lib_class (abfd) = lib_class;
6940 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6941 the linker ELF emulation code. */
6943 struct bfd_link_needed_list *
6944 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6945 struct bfd_link_info *info)
6947 if (! is_elf_hash_table (info->hash))
6948 return NULL;
6949 return elf_hash_table (info)->needed;
6952 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6953 hook for the linker ELF emulation code. */
6955 struct bfd_link_needed_list *
6956 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6957 struct bfd_link_info *info)
6959 if (! is_elf_hash_table (info->hash))
6960 return NULL;
6961 return elf_hash_table (info)->runpath;
6964 /* Get the name actually used for a dynamic object for a link. This
6965 is the SONAME entry if there is one. Otherwise, it is the string
6966 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6968 const char *
6969 bfd_elf_get_dt_soname (bfd *abfd)
6971 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6972 && bfd_get_format (abfd) == bfd_object)
6973 return elf_dt_name (abfd);
6974 return NULL;
6977 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6978 the ELF linker emulation code. */
6980 bfd_boolean
6981 bfd_elf_get_bfd_needed_list (bfd *abfd,
6982 struct bfd_link_needed_list **pneeded)
6984 asection *s;
6985 bfd_byte *dynbuf = NULL;
6986 unsigned int elfsec;
6987 unsigned long shlink;
6988 bfd_byte *extdyn, *extdynend;
6989 size_t extdynsize;
6990 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6992 *pneeded = NULL;
6994 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6995 || bfd_get_format (abfd) != bfd_object)
6996 return TRUE;
6998 s = bfd_get_section_by_name (abfd, ".dynamic");
6999 if (s == NULL || s->size == 0)
7000 return TRUE;
7002 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7003 goto error_return;
7005 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7006 if (elfsec == SHN_BAD)
7007 goto error_return;
7009 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7011 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7012 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7014 extdyn = dynbuf;
7015 extdynend = extdyn + s->size;
7016 for (; extdyn < extdynend; extdyn += extdynsize)
7018 Elf_Internal_Dyn dyn;
7020 (*swap_dyn_in) (abfd, extdyn, &dyn);
7022 if (dyn.d_tag == DT_NULL)
7023 break;
7025 if (dyn.d_tag == DT_NEEDED)
7027 const char *string;
7028 struct bfd_link_needed_list *l;
7029 unsigned int tagv = dyn.d_un.d_val;
7030 bfd_size_type amt;
7032 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7033 if (string == NULL)
7034 goto error_return;
7036 amt = sizeof *l;
7037 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7038 if (l == NULL)
7039 goto error_return;
7041 l->by = abfd;
7042 l->name = string;
7043 l->next = *pneeded;
7044 *pneeded = l;
7048 free (dynbuf);
7050 return TRUE;
7052 error_return:
7053 if (dynbuf != NULL)
7054 free (dynbuf);
7055 return FALSE;
7058 struct elf_symbuf_symbol
7060 unsigned long st_name; /* Symbol name, index in string tbl */
7061 unsigned char st_info; /* Type and binding attributes */
7062 unsigned char st_other; /* Visibilty, and target specific */
7065 struct elf_symbuf_head
7067 struct elf_symbuf_symbol *ssym;
7068 bfd_size_type count;
7069 unsigned int st_shndx;
7072 struct elf_symbol
7074 union
7076 Elf_Internal_Sym *isym;
7077 struct elf_symbuf_symbol *ssym;
7078 } u;
7079 const char *name;
7082 /* Sort references to symbols by ascending section number. */
7084 static int
7085 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7087 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7088 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7090 return s1->st_shndx - s2->st_shndx;
7093 static int
7094 elf_sym_name_compare (const void *arg1, const void *arg2)
7096 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7097 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7098 return strcmp (s1->name, s2->name);
7101 static struct elf_symbuf_head *
7102 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7104 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7105 struct elf_symbuf_symbol *ssym;
7106 struct elf_symbuf_head *ssymbuf, *ssymhead;
7107 bfd_size_type i, shndx_count, total_size;
7109 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7110 if (indbuf == NULL)
7111 return NULL;
7113 for (ind = indbuf, i = 0; i < symcount; i++)
7114 if (isymbuf[i].st_shndx != SHN_UNDEF)
7115 *ind++ = &isymbuf[i];
7116 indbufend = ind;
7118 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7119 elf_sort_elf_symbol);
7121 shndx_count = 0;
7122 if (indbufend > indbuf)
7123 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7124 if (ind[0]->st_shndx != ind[1]->st_shndx)
7125 shndx_count++;
7127 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7128 + (indbufend - indbuf) * sizeof (*ssym));
7129 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7130 if (ssymbuf == NULL)
7132 free (indbuf);
7133 return NULL;
7136 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7137 ssymbuf->ssym = NULL;
7138 ssymbuf->count = shndx_count;
7139 ssymbuf->st_shndx = 0;
7140 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7142 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7144 ssymhead++;
7145 ssymhead->ssym = ssym;
7146 ssymhead->count = 0;
7147 ssymhead->st_shndx = (*ind)->st_shndx;
7149 ssym->st_name = (*ind)->st_name;
7150 ssym->st_info = (*ind)->st_info;
7151 ssym->st_other = (*ind)->st_other;
7152 ssymhead->count++;
7154 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7155 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7156 == total_size));
7158 free (indbuf);
7159 return ssymbuf;
7162 /* Check if 2 sections define the same set of local and global
7163 symbols. */
7165 static bfd_boolean
7166 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7167 struct bfd_link_info *info)
7169 bfd *bfd1, *bfd2;
7170 const struct elf_backend_data *bed1, *bed2;
7171 Elf_Internal_Shdr *hdr1, *hdr2;
7172 bfd_size_type symcount1, symcount2;
7173 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7174 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7175 Elf_Internal_Sym *isym, *isymend;
7176 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7177 bfd_size_type count1, count2, i;
7178 unsigned int shndx1, shndx2;
7179 bfd_boolean result;
7181 bfd1 = sec1->owner;
7182 bfd2 = sec2->owner;
7184 /* Both sections have to be in ELF. */
7185 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7186 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7187 return FALSE;
7189 if (elf_section_type (sec1) != elf_section_type (sec2))
7190 return FALSE;
7192 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7193 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7194 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7195 return FALSE;
7197 bed1 = get_elf_backend_data (bfd1);
7198 bed2 = get_elf_backend_data (bfd2);
7199 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7200 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7201 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7202 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7204 if (symcount1 == 0 || symcount2 == 0)
7205 return FALSE;
7207 result = FALSE;
7208 isymbuf1 = NULL;
7209 isymbuf2 = NULL;
7210 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7211 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7213 if (ssymbuf1 == NULL)
7215 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7216 NULL, NULL, NULL);
7217 if (isymbuf1 == NULL)
7218 goto done;
7220 if (!info->reduce_memory_overheads)
7221 elf_tdata (bfd1)->symbuf = ssymbuf1
7222 = elf_create_symbuf (symcount1, isymbuf1);
7225 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7227 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7228 NULL, NULL, NULL);
7229 if (isymbuf2 == NULL)
7230 goto done;
7232 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7233 elf_tdata (bfd2)->symbuf = ssymbuf2
7234 = elf_create_symbuf (symcount2, isymbuf2);
7237 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7239 /* Optimized faster version. */
7240 bfd_size_type lo, hi, mid;
7241 struct elf_symbol *symp;
7242 struct elf_symbuf_symbol *ssym, *ssymend;
7244 lo = 0;
7245 hi = ssymbuf1->count;
7246 ssymbuf1++;
7247 count1 = 0;
7248 while (lo < hi)
7250 mid = (lo + hi) / 2;
7251 if (shndx1 < ssymbuf1[mid].st_shndx)
7252 hi = mid;
7253 else if (shndx1 > ssymbuf1[mid].st_shndx)
7254 lo = mid + 1;
7255 else
7257 count1 = ssymbuf1[mid].count;
7258 ssymbuf1 += mid;
7259 break;
7263 lo = 0;
7264 hi = ssymbuf2->count;
7265 ssymbuf2++;
7266 count2 = 0;
7267 while (lo < hi)
7269 mid = (lo + hi) / 2;
7270 if (shndx2 < ssymbuf2[mid].st_shndx)
7271 hi = mid;
7272 else if (shndx2 > ssymbuf2[mid].st_shndx)
7273 lo = mid + 1;
7274 else
7276 count2 = ssymbuf2[mid].count;
7277 ssymbuf2 += mid;
7278 break;
7282 if (count1 == 0 || count2 == 0 || count1 != count2)
7283 goto done;
7285 symtable1 = (struct elf_symbol *)
7286 bfd_malloc (count1 * sizeof (struct elf_symbol));
7287 symtable2 = (struct elf_symbol *)
7288 bfd_malloc (count2 * sizeof (struct elf_symbol));
7289 if (symtable1 == NULL || symtable2 == NULL)
7290 goto done;
7292 symp = symtable1;
7293 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7294 ssym < ssymend; ssym++, symp++)
7296 symp->u.ssym = ssym;
7297 symp->name = bfd_elf_string_from_elf_section (bfd1,
7298 hdr1->sh_link,
7299 ssym->st_name);
7302 symp = symtable2;
7303 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7304 ssym < ssymend; ssym++, symp++)
7306 symp->u.ssym = ssym;
7307 symp->name = bfd_elf_string_from_elf_section (bfd2,
7308 hdr2->sh_link,
7309 ssym->st_name);
7312 /* Sort symbol by name. */
7313 qsort (symtable1, count1, sizeof (struct elf_symbol),
7314 elf_sym_name_compare);
7315 qsort (symtable2, count1, sizeof (struct elf_symbol),
7316 elf_sym_name_compare);
7318 for (i = 0; i < count1; i++)
7319 /* Two symbols must have the same binding, type and name. */
7320 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7321 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7322 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7323 goto done;
7325 result = TRUE;
7326 goto done;
7329 symtable1 = (struct elf_symbol *)
7330 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7331 symtable2 = (struct elf_symbol *)
7332 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7333 if (symtable1 == NULL || symtable2 == NULL)
7334 goto done;
7336 /* Count definitions in the section. */
7337 count1 = 0;
7338 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7339 if (isym->st_shndx == shndx1)
7340 symtable1[count1++].u.isym = isym;
7342 count2 = 0;
7343 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7344 if (isym->st_shndx == shndx2)
7345 symtable2[count2++].u.isym = isym;
7347 if (count1 == 0 || count2 == 0 || count1 != count2)
7348 goto done;
7350 for (i = 0; i < count1; i++)
7351 symtable1[i].name
7352 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7353 symtable1[i].u.isym->st_name);
7355 for (i = 0; i < count2; i++)
7356 symtable2[i].name
7357 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7358 symtable2[i].u.isym->st_name);
7360 /* Sort symbol by name. */
7361 qsort (symtable1, count1, sizeof (struct elf_symbol),
7362 elf_sym_name_compare);
7363 qsort (symtable2, count1, sizeof (struct elf_symbol),
7364 elf_sym_name_compare);
7366 for (i = 0; i < count1; i++)
7367 /* Two symbols must have the same binding, type and name. */
7368 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7369 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7370 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7371 goto done;
7373 result = TRUE;
7375 done:
7376 if (symtable1)
7377 free (symtable1);
7378 if (symtable2)
7379 free (symtable2);
7380 if (isymbuf1)
7381 free (isymbuf1);
7382 if (isymbuf2)
7383 free (isymbuf2);
7385 return result;
7388 /* Return TRUE if 2 section types are compatible. */
7390 bfd_boolean
7391 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7392 bfd *bbfd, const asection *bsec)
7394 if (asec == NULL
7395 || bsec == NULL
7396 || abfd->xvec->flavour != bfd_target_elf_flavour
7397 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7398 return TRUE;
7400 return elf_section_type (asec) == elf_section_type (bsec);
7403 /* Final phase of ELF linker. */
7405 /* A structure we use to avoid passing large numbers of arguments. */
7407 struct elf_final_link_info
7409 /* General link information. */
7410 struct bfd_link_info *info;
7411 /* Output BFD. */
7412 bfd *output_bfd;
7413 /* Symbol string table. */
7414 struct bfd_strtab_hash *symstrtab;
7415 /* .dynsym section. */
7416 asection *dynsym_sec;
7417 /* .hash section. */
7418 asection *hash_sec;
7419 /* symbol version section (.gnu.version). */
7420 asection *symver_sec;
7421 /* Buffer large enough to hold contents of any section. */
7422 bfd_byte *contents;
7423 /* Buffer large enough to hold external relocs of any section. */
7424 void *external_relocs;
7425 /* Buffer large enough to hold internal relocs of any section. */
7426 Elf_Internal_Rela *internal_relocs;
7427 /* Buffer large enough to hold external local symbols of any input
7428 BFD. */
7429 bfd_byte *external_syms;
7430 /* And a buffer for symbol section indices. */
7431 Elf_External_Sym_Shndx *locsym_shndx;
7432 /* Buffer large enough to hold internal local symbols of any input
7433 BFD. */
7434 Elf_Internal_Sym *internal_syms;
7435 /* Array large enough to hold a symbol index for each local symbol
7436 of any input BFD. */
7437 long *indices;
7438 /* Array large enough to hold a section pointer for each local
7439 symbol of any input BFD. */
7440 asection **sections;
7441 /* Buffer to hold swapped out symbols. */
7442 bfd_byte *symbuf;
7443 /* And one for symbol section indices. */
7444 Elf_External_Sym_Shndx *symshndxbuf;
7445 /* Number of swapped out symbols in buffer. */
7446 size_t symbuf_count;
7447 /* Number of symbols which fit in symbuf. */
7448 size_t symbuf_size;
7449 /* And same for symshndxbuf. */
7450 size_t shndxbuf_size;
7451 /* Number of STT_FILE syms seen. */
7452 size_t filesym_count;
7455 /* This struct is used to pass information to elf_link_output_extsym. */
7457 struct elf_outext_info
7459 bfd_boolean failed;
7460 bfd_boolean localsyms;
7461 bfd_boolean need_second_pass;
7462 bfd_boolean second_pass;
7463 struct elf_final_link_info *flinfo;
7467 /* Support for evaluating a complex relocation.
7469 Complex relocations are generalized, self-describing relocations. The
7470 implementation of them consists of two parts: complex symbols, and the
7471 relocations themselves.
7473 The relocations are use a reserved elf-wide relocation type code (R_RELC
7474 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7475 information (start bit, end bit, word width, etc) into the addend. This
7476 information is extracted from CGEN-generated operand tables within gas.
7478 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7479 internal) representing prefix-notation expressions, including but not
7480 limited to those sorts of expressions normally encoded as addends in the
7481 addend field. The symbol mangling format is:
7483 <node> := <literal>
7484 | <unary-operator> ':' <node>
7485 | <binary-operator> ':' <node> ':' <node>
7488 <literal> := 's' <digits=N> ':' <N character symbol name>
7489 | 'S' <digits=N> ':' <N character section name>
7490 | '#' <hexdigits>
7493 <binary-operator> := as in C
7494 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7496 static void
7497 set_symbol_value (bfd *bfd_with_globals,
7498 Elf_Internal_Sym *isymbuf,
7499 size_t locsymcount,
7500 size_t symidx,
7501 bfd_vma val)
7503 struct elf_link_hash_entry **sym_hashes;
7504 struct elf_link_hash_entry *h;
7505 size_t extsymoff = locsymcount;
7507 if (symidx < locsymcount)
7509 Elf_Internal_Sym *sym;
7511 sym = isymbuf + symidx;
7512 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7514 /* It is a local symbol: move it to the
7515 "absolute" section and give it a value. */
7516 sym->st_shndx = SHN_ABS;
7517 sym->st_value = val;
7518 return;
7520 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7521 extsymoff = 0;
7524 /* It is a global symbol: set its link type
7525 to "defined" and give it a value. */
7527 sym_hashes = elf_sym_hashes (bfd_with_globals);
7528 h = sym_hashes [symidx - extsymoff];
7529 while (h->root.type == bfd_link_hash_indirect
7530 || h->root.type == bfd_link_hash_warning)
7531 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7532 h->root.type = bfd_link_hash_defined;
7533 h->root.u.def.value = val;
7534 h->root.u.def.section = bfd_abs_section_ptr;
7537 static bfd_boolean
7538 resolve_symbol (const char *name,
7539 bfd *input_bfd,
7540 struct elf_final_link_info *flinfo,
7541 bfd_vma *result,
7542 Elf_Internal_Sym *isymbuf,
7543 size_t locsymcount)
7545 Elf_Internal_Sym *sym;
7546 struct bfd_link_hash_entry *global_entry;
7547 const char *candidate = NULL;
7548 Elf_Internal_Shdr *symtab_hdr;
7549 size_t i;
7551 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7553 for (i = 0; i < locsymcount; ++ i)
7555 sym = isymbuf + i;
7557 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7558 continue;
7560 candidate = bfd_elf_string_from_elf_section (input_bfd,
7561 symtab_hdr->sh_link,
7562 sym->st_name);
7563 #ifdef DEBUG
7564 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7565 name, candidate, (unsigned long) sym->st_value);
7566 #endif
7567 if (candidate && strcmp (candidate, name) == 0)
7569 asection *sec = flinfo->sections [i];
7571 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7572 *result += sec->output_offset + sec->output_section->vma;
7573 #ifdef DEBUG
7574 printf ("Found symbol with value %8.8lx\n",
7575 (unsigned long) *result);
7576 #endif
7577 return TRUE;
7581 /* Hmm, haven't found it yet. perhaps it is a global. */
7582 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7583 FALSE, FALSE, TRUE);
7584 if (!global_entry)
7585 return FALSE;
7587 if (global_entry->type == bfd_link_hash_defined
7588 || global_entry->type == bfd_link_hash_defweak)
7590 *result = (global_entry->u.def.value
7591 + global_entry->u.def.section->output_section->vma
7592 + global_entry->u.def.section->output_offset);
7593 #ifdef DEBUG
7594 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7595 global_entry->root.string, (unsigned long) *result);
7596 #endif
7597 return TRUE;
7600 return FALSE;
7603 static bfd_boolean
7604 resolve_section (const char *name,
7605 asection *sections,
7606 bfd_vma *result)
7608 asection *curr;
7609 unsigned int len;
7611 for (curr = sections; curr; curr = curr->next)
7612 if (strcmp (curr->name, name) == 0)
7614 *result = curr->vma;
7615 return TRUE;
7618 /* Hmm. still haven't found it. try pseudo-section names. */
7619 for (curr = sections; curr; curr = curr->next)
7621 len = strlen (curr->name);
7622 if (len > strlen (name))
7623 continue;
7625 if (strncmp (curr->name, name, len) == 0)
7627 if (strncmp (".end", name + len, 4) == 0)
7629 *result = curr->vma + curr->size;
7630 return TRUE;
7633 /* Insert more pseudo-section names here, if you like. */
7637 return FALSE;
7640 static void
7641 undefined_reference (const char *reftype, const char *name)
7643 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7644 reftype, name);
7647 static bfd_boolean
7648 eval_symbol (bfd_vma *result,
7649 const char **symp,
7650 bfd *input_bfd,
7651 struct elf_final_link_info *flinfo,
7652 bfd_vma dot,
7653 Elf_Internal_Sym *isymbuf,
7654 size_t locsymcount,
7655 int signed_p)
7657 size_t len;
7658 size_t symlen;
7659 bfd_vma a;
7660 bfd_vma b;
7661 char symbuf[4096];
7662 const char *sym = *symp;
7663 const char *symend;
7664 bfd_boolean symbol_is_section = FALSE;
7666 len = strlen (sym);
7667 symend = sym + len;
7669 if (len < 1 || len > sizeof (symbuf))
7671 bfd_set_error (bfd_error_invalid_operation);
7672 return FALSE;
7675 switch (* sym)
7677 case '.':
7678 *result = dot;
7679 *symp = sym + 1;
7680 return TRUE;
7682 case '#':
7683 ++sym;
7684 *result = strtoul (sym, (char **) symp, 16);
7685 return TRUE;
7687 case 'S':
7688 symbol_is_section = TRUE;
7689 case 's':
7690 ++sym;
7691 symlen = strtol (sym, (char **) symp, 10);
7692 sym = *symp + 1; /* Skip the trailing ':'. */
7694 if (symend < sym || symlen + 1 > sizeof (symbuf))
7696 bfd_set_error (bfd_error_invalid_operation);
7697 return FALSE;
7700 memcpy (symbuf, sym, symlen);
7701 symbuf[symlen] = '\0';
7702 *symp = sym + symlen;
7704 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7705 the symbol as a section, or vice-versa. so we're pretty liberal in our
7706 interpretation here; section means "try section first", not "must be a
7707 section", and likewise with symbol. */
7709 if (symbol_is_section)
7711 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7712 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7713 isymbuf, locsymcount))
7715 undefined_reference ("section", symbuf);
7716 return FALSE;
7719 else
7721 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7722 isymbuf, locsymcount)
7723 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7724 result))
7726 undefined_reference ("symbol", symbuf);
7727 return FALSE;
7731 return TRUE;
7733 /* All that remains are operators. */
7735 #define UNARY_OP(op) \
7736 if (strncmp (sym, #op, strlen (#op)) == 0) \
7738 sym += strlen (#op); \
7739 if (*sym == ':') \
7740 ++sym; \
7741 *symp = sym; \
7742 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7743 isymbuf, locsymcount, signed_p)) \
7744 return FALSE; \
7745 if (signed_p) \
7746 *result = op ((bfd_signed_vma) a); \
7747 else \
7748 *result = op a; \
7749 return TRUE; \
7752 #define BINARY_OP(op) \
7753 if (strncmp (sym, #op, strlen (#op)) == 0) \
7755 sym += strlen (#op); \
7756 if (*sym == ':') \
7757 ++sym; \
7758 *symp = sym; \
7759 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7760 isymbuf, locsymcount, signed_p)) \
7761 return FALSE; \
7762 ++*symp; \
7763 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7764 isymbuf, locsymcount, signed_p)) \
7765 return FALSE; \
7766 if (signed_p) \
7767 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7768 else \
7769 *result = a op b; \
7770 return TRUE; \
7773 default:
7774 UNARY_OP (0-);
7775 BINARY_OP (<<);
7776 BINARY_OP (>>);
7777 BINARY_OP (==);
7778 BINARY_OP (!=);
7779 BINARY_OP (<=);
7780 BINARY_OP (>=);
7781 BINARY_OP (&&);
7782 BINARY_OP (||);
7783 UNARY_OP (~);
7784 UNARY_OP (!);
7785 BINARY_OP (*);
7786 BINARY_OP (/);
7787 BINARY_OP (%);
7788 BINARY_OP (^);
7789 BINARY_OP (|);
7790 BINARY_OP (&);
7791 BINARY_OP (+);
7792 BINARY_OP (-);
7793 BINARY_OP (<);
7794 BINARY_OP (>);
7795 #undef UNARY_OP
7796 #undef BINARY_OP
7797 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7798 bfd_set_error (bfd_error_invalid_operation);
7799 return FALSE;
7803 static void
7804 put_value (bfd_vma size,
7805 unsigned long chunksz,
7806 bfd *input_bfd,
7807 bfd_vma x,
7808 bfd_byte *location)
7810 location += (size - chunksz);
7812 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7814 switch (chunksz)
7816 default:
7817 case 0:
7818 abort ();
7819 case 1:
7820 bfd_put_8 (input_bfd, x, location);
7821 break;
7822 case 2:
7823 bfd_put_16 (input_bfd, x, location);
7824 break;
7825 case 4:
7826 bfd_put_32 (input_bfd, x, location);
7827 break;
7828 case 8:
7829 #ifdef BFD64
7830 bfd_put_64 (input_bfd, x, location);
7831 #else
7832 abort ();
7833 #endif
7834 break;
7839 static bfd_vma
7840 get_value (bfd_vma size,
7841 unsigned long chunksz,
7842 bfd *input_bfd,
7843 bfd_byte *location)
7845 int shift;
7846 bfd_vma x = 0;
7848 /* Sanity checks. */
7849 BFD_ASSERT (chunksz <= sizeof (x)
7850 && size >= chunksz
7851 && chunksz != 0
7852 && (size % chunksz) == 0
7853 && input_bfd != NULL
7854 && location != NULL);
7856 if (chunksz == sizeof (x))
7858 BFD_ASSERT (size == chunksz);
7860 /* Make sure that we do not perform an undefined shift operation.
7861 We know that size == chunksz so there will only be one iteration
7862 of the loop below. */
7863 shift = 0;
7865 else
7866 shift = 8 * chunksz;
7868 for (; size; size -= chunksz, location += chunksz)
7870 switch (chunksz)
7872 case 1:
7873 x = (x << shift) | bfd_get_8 (input_bfd, location);
7874 break;
7875 case 2:
7876 x = (x << shift) | bfd_get_16 (input_bfd, location);
7877 break;
7878 case 4:
7879 x = (x << shift) | bfd_get_32 (input_bfd, location);
7880 break;
7881 #ifdef BFD64
7882 case 8:
7883 x = (x << shift) | bfd_get_64 (input_bfd, location);
7884 break;
7885 #endif
7886 default:
7887 abort ();
7890 return x;
7893 static void
7894 decode_complex_addend (unsigned long *start, /* in bits */
7895 unsigned long *oplen, /* in bits */
7896 unsigned long *len, /* in bits */
7897 unsigned long *wordsz, /* in bytes */
7898 unsigned long *chunksz, /* in bytes */
7899 unsigned long *lsb0_p,
7900 unsigned long *signed_p,
7901 unsigned long *trunc_p,
7902 unsigned long encoded)
7904 * start = encoded & 0x3F;
7905 * len = (encoded >> 6) & 0x3F;
7906 * oplen = (encoded >> 12) & 0x3F;
7907 * wordsz = (encoded >> 18) & 0xF;
7908 * chunksz = (encoded >> 22) & 0xF;
7909 * lsb0_p = (encoded >> 27) & 1;
7910 * signed_p = (encoded >> 28) & 1;
7911 * trunc_p = (encoded >> 29) & 1;
7914 bfd_reloc_status_type
7915 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7916 asection *input_section ATTRIBUTE_UNUSED,
7917 bfd_byte *contents,
7918 Elf_Internal_Rela *rel,
7919 bfd_vma relocation)
7921 bfd_vma shift, x, mask;
7922 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7923 bfd_reloc_status_type r;
7925 /* Perform this reloc, since it is complex.
7926 (this is not to say that it necessarily refers to a complex
7927 symbol; merely that it is a self-describing CGEN based reloc.
7928 i.e. the addend has the complete reloc information (bit start, end,
7929 word size, etc) encoded within it.). */
7931 decode_complex_addend (&start, &oplen, &len, &wordsz,
7932 &chunksz, &lsb0_p, &signed_p,
7933 &trunc_p, rel->r_addend);
7935 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7937 if (lsb0_p)
7938 shift = (start + 1) - len;
7939 else
7940 shift = (8 * wordsz) - (start + len);
7942 /* FIXME: octets_per_byte. */
7943 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7945 #ifdef DEBUG
7946 printf ("Doing complex reloc: "
7947 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7948 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7949 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7950 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7951 oplen, (unsigned long) x, (unsigned long) mask,
7952 (unsigned long) relocation);
7953 #endif
7955 r = bfd_reloc_ok;
7956 if (! trunc_p)
7957 /* Now do an overflow check. */
7958 r = bfd_check_overflow ((signed_p
7959 ? complain_overflow_signed
7960 : complain_overflow_unsigned),
7961 len, 0, (8 * wordsz),
7962 relocation);
7964 /* Do the deed. */
7965 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7967 #ifdef DEBUG
7968 printf (" relocation: %8.8lx\n"
7969 " shifted mask: %8.8lx\n"
7970 " shifted/masked reloc: %8.8lx\n"
7971 " result: %8.8lx\n",
7972 (unsigned long) relocation, (unsigned long) (mask << shift),
7973 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7974 #endif
7975 /* FIXME: octets_per_byte. */
7976 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7977 return r;
7980 /* When performing a relocatable link, the input relocations are
7981 preserved. But, if they reference global symbols, the indices
7982 referenced must be updated. Update all the relocations found in
7983 RELDATA. */
7985 static void
7986 elf_link_adjust_relocs (bfd *abfd,
7987 struct bfd_elf_section_reloc_data *reldata)
7989 unsigned int i;
7990 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7991 bfd_byte *erela;
7992 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7993 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7994 bfd_vma r_type_mask;
7995 int r_sym_shift;
7996 unsigned int count = reldata->count;
7997 struct elf_link_hash_entry **rel_hash = reldata->hashes;
7999 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8001 swap_in = bed->s->swap_reloc_in;
8002 swap_out = bed->s->swap_reloc_out;
8004 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8006 swap_in = bed->s->swap_reloca_in;
8007 swap_out = bed->s->swap_reloca_out;
8009 else
8010 abort ();
8012 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8013 abort ();
8015 if (bed->s->arch_size == 32)
8017 r_type_mask = 0xff;
8018 r_sym_shift = 8;
8020 else
8022 r_type_mask = 0xffffffff;
8023 r_sym_shift = 32;
8026 erela = reldata->hdr->contents;
8027 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8029 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8030 unsigned int j;
8032 if (*rel_hash == NULL)
8033 continue;
8035 BFD_ASSERT ((*rel_hash)->indx >= 0);
8037 (*swap_in) (abfd, erela, irela);
8038 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8039 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8040 | (irela[j].r_info & r_type_mask));
8041 (*swap_out) (abfd, irela, erela);
8045 struct elf_link_sort_rela
8047 union {
8048 bfd_vma offset;
8049 bfd_vma sym_mask;
8050 } u;
8051 enum elf_reloc_type_class type;
8052 /* We use this as an array of size int_rels_per_ext_rel. */
8053 Elf_Internal_Rela rela[1];
8056 static int
8057 elf_link_sort_cmp1 (const void *A, const void *B)
8059 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8060 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8061 int relativea, relativeb;
8063 relativea = a->type == reloc_class_relative;
8064 relativeb = b->type == reloc_class_relative;
8066 if (relativea < relativeb)
8067 return 1;
8068 if (relativea > relativeb)
8069 return -1;
8070 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8071 return -1;
8072 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8073 return 1;
8074 if (a->rela->r_offset < b->rela->r_offset)
8075 return -1;
8076 if (a->rela->r_offset > b->rela->r_offset)
8077 return 1;
8078 return 0;
8081 static int
8082 elf_link_sort_cmp2 (const void *A, const void *B)
8084 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8085 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8087 if (a->type < b->type)
8088 return -1;
8089 if (a->type > b->type)
8090 return 1;
8091 if (a->u.offset < b->u.offset)
8092 return -1;
8093 if (a->u.offset > b->u.offset)
8094 return 1;
8095 if (a->rela->r_offset < b->rela->r_offset)
8096 return -1;
8097 if (a->rela->r_offset > b->rela->r_offset)
8098 return 1;
8099 return 0;
8102 static size_t
8103 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8105 asection *dynamic_relocs;
8106 asection *rela_dyn;
8107 asection *rel_dyn;
8108 bfd_size_type count, size;
8109 size_t i, ret, sort_elt, ext_size;
8110 bfd_byte *sort, *s_non_relative, *p;
8111 struct elf_link_sort_rela *sq;
8112 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8113 int i2e = bed->s->int_rels_per_ext_rel;
8114 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8115 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8116 struct bfd_link_order *lo;
8117 bfd_vma r_sym_mask;
8118 bfd_boolean use_rela;
8120 /* Find a dynamic reloc section. */
8121 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8122 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8123 if (rela_dyn != NULL && rela_dyn->size > 0
8124 && rel_dyn != NULL && rel_dyn->size > 0)
8126 bfd_boolean use_rela_initialised = FALSE;
8128 /* This is just here to stop gcc from complaining.
8129 It's initialization checking code is not perfect. */
8130 use_rela = TRUE;
8132 /* Both sections are present. Examine the sizes
8133 of the indirect sections to help us choose. */
8134 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8135 if (lo->type == bfd_indirect_link_order)
8137 asection *o = lo->u.indirect.section;
8139 if ((o->size % bed->s->sizeof_rela) == 0)
8141 if ((o->size % bed->s->sizeof_rel) == 0)
8142 /* Section size is divisible by both rel and rela sizes.
8143 It is of no help to us. */
8145 else
8147 /* Section size is only divisible by rela. */
8148 if (use_rela_initialised && (use_rela == FALSE))
8150 _bfd_error_handler
8151 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8152 bfd_set_error (bfd_error_invalid_operation);
8153 return 0;
8155 else
8157 use_rela = TRUE;
8158 use_rela_initialised = TRUE;
8162 else if ((o->size % bed->s->sizeof_rel) == 0)
8164 /* Section size is only divisible by rel. */
8165 if (use_rela_initialised && (use_rela == TRUE))
8167 _bfd_error_handler
8168 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8169 bfd_set_error (bfd_error_invalid_operation);
8170 return 0;
8172 else
8174 use_rela = FALSE;
8175 use_rela_initialised = TRUE;
8178 else
8180 /* The section size is not divisible by either - something is wrong. */
8181 _bfd_error_handler
8182 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8183 bfd_set_error (bfd_error_invalid_operation);
8184 return 0;
8188 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8189 if (lo->type == bfd_indirect_link_order)
8191 asection *o = lo->u.indirect.section;
8193 if ((o->size % bed->s->sizeof_rela) == 0)
8195 if ((o->size % bed->s->sizeof_rel) == 0)
8196 /* Section size is divisible by both rel and rela sizes.
8197 It is of no help to us. */
8199 else
8201 /* Section size is only divisible by rela. */
8202 if (use_rela_initialised && (use_rela == FALSE))
8204 _bfd_error_handler
8205 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8206 bfd_set_error (bfd_error_invalid_operation);
8207 return 0;
8209 else
8211 use_rela = TRUE;
8212 use_rela_initialised = TRUE;
8216 else if ((o->size % bed->s->sizeof_rel) == 0)
8218 /* Section size is only divisible by rel. */
8219 if (use_rela_initialised && (use_rela == TRUE))
8221 _bfd_error_handler
8222 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8223 bfd_set_error (bfd_error_invalid_operation);
8224 return 0;
8226 else
8228 use_rela = FALSE;
8229 use_rela_initialised = TRUE;
8232 else
8234 /* The section size is not divisible by either - something is wrong. */
8235 _bfd_error_handler
8236 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8237 bfd_set_error (bfd_error_invalid_operation);
8238 return 0;
8242 if (! use_rela_initialised)
8243 /* Make a guess. */
8244 use_rela = TRUE;
8246 else if (rela_dyn != NULL && rela_dyn->size > 0)
8247 use_rela = TRUE;
8248 else if (rel_dyn != NULL && rel_dyn->size > 0)
8249 use_rela = FALSE;
8250 else
8251 return 0;
8253 if (use_rela)
8255 dynamic_relocs = rela_dyn;
8256 ext_size = bed->s->sizeof_rela;
8257 swap_in = bed->s->swap_reloca_in;
8258 swap_out = bed->s->swap_reloca_out;
8260 else
8262 dynamic_relocs = rel_dyn;
8263 ext_size = bed->s->sizeof_rel;
8264 swap_in = bed->s->swap_reloc_in;
8265 swap_out = bed->s->swap_reloc_out;
8268 size = 0;
8269 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8270 if (lo->type == bfd_indirect_link_order)
8271 size += lo->u.indirect.section->size;
8273 if (size != dynamic_relocs->size)
8274 return 0;
8276 sort_elt = (sizeof (struct elf_link_sort_rela)
8277 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8279 count = dynamic_relocs->size / ext_size;
8280 if (count == 0)
8281 return 0;
8282 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8284 if (sort == NULL)
8286 (*info->callbacks->warning)
8287 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8288 return 0;
8291 if (bed->s->arch_size == 32)
8292 r_sym_mask = ~(bfd_vma) 0xff;
8293 else
8294 r_sym_mask = ~(bfd_vma) 0xffffffff;
8296 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8297 if (lo->type == bfd_indirect_link_order)
8299 bfd_byte *erel, *erelend;
8300 asection *o = lo->u.indirect.section;
8302 if (o->contents == NULL && o->size != 0)
8304 /* This is a reloc section that is being handled as a normal
8305 section. See bfd_section_from_shdr. We can't combine
8306 relocs in this case. */
8307 free (sort);
8308 return 0;
8310 erel = o->contents;
8311 erelend = o->contents + o->size;
8312 /* FIXME: octets_per_byte. */
8313 p = sort + o->output_offset / ext_size * sort_elt;
8315 while (erel < erelend)
8317 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8319 (*swap_in) (abfd, erel, s->rela);
8320 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8321 s->u.sym_mask = r_sym_mask;
8322 p += sort_elt;
8323 erel += ext_size;
8327 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8329 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8331 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8332 if (s->type != reloc_class_relative)
8333 break;
8335 ret = i;
8336 s_non_relative = p;
8338 sq = (struct elf_link_sort_rela *) s_non_relative;
8339 for (; i < count; i++, p += sort_elt)
8341 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8342 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8343 sq = sp;
8344 sp->u.offset = sq->rela->r_offset;
8347 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8349 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8350 if (lo->type == bfd_indirect_link_order)
8352 bfd_byte *erel, *erelend;
8353 asection *o = lo->u.indirect.section;
8355 erel = o->contents;
8356 erelend = o->contents + o->size;
8357 /* FIXME: octets_per_byte. */
8358 p = sort + o->output_offset / ext_size * sort_elt;
8359 while (erel < erelend)
8361 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8362 (*swap_out) (abfd, s->rela, erel);
8363 p += sort_elt;
8364 erel += ext_size;
8368 free (sort);
8369 *psec = dynamic_relocs;
8370 return ret;
8373 /* Flush the output symbols to the file. */
8375 static bfd_boolean
8376 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8377 const struct elf_backend_data *bed)
8379 if (flinfo->symbuf_count > 0)
8381 Elf_Internal_Shdr *hdr;
8382 file_ptr pos;
8383 bfd_size_type amt;
8385 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8386 pos = hdr->sh_offset + hdr->sh_size;
8387 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8388 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8389 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8390 return FALSE;
8392 hdr->sh_size += amt;
8393 flinfo->symbuf_count = 0;
8396 return TRUE;
8399 /* Add a symbol to the output symbol table. */
8401 static int
8402 elf_link_output_sym (struct elf_final_link_info *flinfo,
8403 const char *name,
8404 Elf_Internal_Sym *elfsym,
8405 asection *input_sec,
8406 struct elf_link_hash_entry *h)
8408 bfd_byte *dest;
8409 Elf_External_Sym_Shndx *destshndx;
8410 int (*output_symbol_hook)
8411 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8412 struct elf_link_hash_entry *);
8413 const struct elf_backend_data *bed;
8415 bed = get_elf_backend_data (flinfo->output_bfd);
8416 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8417 if (output_symbol_hook != NULL)
8419 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8420 if (ret != 1)
8421 return ret;
8424 if (name == NULL || *name == '\0')
8425 elfsym->st_name = 0;
8426 else if (input_sec->flags & SEC_EXCLUDE)
8427 elfsym->st_name = 0;
8428 else
8430 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8431 name, TRUE, FALSE);
8432 if (elfsym->st_name == (unsigned long) -1)
8433 return 0;
8436 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8438 if (! elf_link_flush_output_syms (flinfo, bed))
8439 return 0;
8442 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8443 destshndx = flinfo->symshndxbuf;
8444 if (destshndx != NULL)
8446 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8448 bfd_size_type amt;
8450 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8451 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8452 amt * 2);
8453 if (destshndx == NULL)
8454 return 0;
8455 flinfo->symshndxbuf = destshndx;
8456 memset ((char *) destshndx + amt, 0, amt);
8457 flinfo->shndxbuf_size *= 2;
8459 destshndx += bfd_get_symcount (flinfo->output_bfd);
8462 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8463 flinfo->symbuf_count += 1;
8464 bfd_get_symcount (flinfo->output_bfd) += 1;
8466 return 1;
8469 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8471 static bfd_boolean
8472 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8474 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8475 && sym->st_shndx < SHN_LORESERVE)
8477 /* The gABI doesn't support dynamic symbols in output sections
8478 beyond 64k. */
8479 (*_bfd_error_handler)
8480 (_("%B: Too many sections: %d (>= %d)"),
8481 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8482 bfd_set_error (bfd_error_nonrepresentable_section);
8483 return FALSE;
8485 return TRUE;
8488 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8489 allowing an unsatisfied unversioned symbol in the DSO to match a
8490 versioned symbol that would normally require an explicit version.
8491 We also handle the case that a DSO references a hidden symbol
8492 which may be satisfied by a versioned symbol in another DSO. */
8494 static bfd_boolean
8495 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8496 const struct elf_backend_data *bed,
8497 struct elf_link_hash_entry *h)
8499 bfd *abfd;
8500 struct elf_link_loaded_list *loaded;
8502 if (!is_elf_hash_table (info->hash))
8503 return FALSE;
8505 /* Check indirect symbol. */
8506 while (h->root.type == bfd_link_hash_indirect)
8507 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8509 switch (h->root.type)
8511 default:
8512 abfd = NULL;
8513 break;
8515 case bfd_link_hash_undefined:
8516 case bfd_link_hash_undefweak:
8517 abfd = h->root.u.undef.abfd;
8518 if ((abfd->flags & DYNAMIC) == 0
8519 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8520 return FALSE;
8521 break;
8523 case bfd_link_hash_defined:
8524 case bfd_link_hash_defweak:
8525 abfd = h->root.u.def.section->owner;
8526 break;
8528 case bfd_link_hash_common:
8529 abfd = h->root.u.c.p->section->owner;
8530 break;
8532 BFD_ASSERT (abfd != NULL);
8534 for (loaded = elf_hash_table (info)->loaded;
8535 loaded != NULL;
8536 loaded = loaded->next)
8538 bfd *input;
8539 Elf_Internal_Shdr *hdr;
8540 bfd_size_type symcount;
8541 bfd_size_type extsymcount;
8542 bfd_size_type extsymoff;
8543 Elf_Internal_Shdr *versymhdr;
8544 Elf_Internal_Sym *isym;
8545 Elf_Internal_Sym *isymend;
8546 Elf_Internal_Sym *isymbuf;
8547 Elf_External_Versym *ever;
8548 Elf_External_Versym *extversym;
8550 input = loaded->abfd;
8552 /* We check each DSO for a possible hidden versioned definition. */
8553 if (input == abfd
8554 || (input->flags & DYNAMIC) == 0
8555 || elf_dynversym (input) == 0)
8556 continue;
8558 hdr = &elf_tdata (input)->dynsymtab_hdr;
8560 symcount = hdr->sh_size / bed->s->sizeof_sym;
8561 if (elf_bad_symtab (input))
8563 extsymcount = symcount;
8564 extsymoff = 0;
8566 else
8568 extsymcount = symcount - hdr->sh_info;
8569 extsymoff = hdr->sh_info;
8572 if (extsymcount == 0)
8573 continue;
8575 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8576 NULL, NULL, NULL);
8577 if (isymbuf == NULL)
8578 return FALSE;
8580 /* Read in any version definitions. */
8581 versymhdr = &elf_tdata (input)->dynversym_hdr;
8582 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8583 if (extversym == NULL)
8584 goto error_ret;
8586 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8587 || (bfd_bread (extversym, versymhdr->sh_size, input)
8588 != versymhdr->sh_size))
8590 free (extversym);
8591 error_ret:
8592 free (isymbuf);
8593 return FALSE;
8596 ever = extversym + extsymoff;
8597 isymend = isymbuf + extsymcount;
8598 for (isym = isymbuf; isym < isymend; isym++, ever++)
8600 const char *name;
8601 Elf_Internal_Versym iver;
8602 unsigned short version_index;
8604 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8605 || isym->st_shndx == SHN_UNDEF)
8606 continue;
8608 name = bfd_elf_string_from_elf_section (input,
8609 hdr->sh_link,
8610 isym->st_name);
8611 if (strcmp (name, h->root.root.string) != 0)
8612 continue;
8614 _bfd_elf_swap_versym_in (input, ever, &iver);
8616 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8617 && !(h->def_regular
8618 && h->forced_local))
8620 /* If we have a non-hidden versioned sym, then it should
8621 have provided a definition for the undefined sym unless
8622 it is defined in a non-shared object and forced local.
8624 abort ();
8627 version_index = iver.vs_vers & VERSYM_VERSION;
8628 if (version_index == 1 || version_index == 2)
8630 /* This is the base or first version. We can use it. */
8631 free (extversym);
8632 free (isymbuf);
8633 return TRUE;
8637 free (extversym);
8638 free (isymbuf);
8641 return FALSE;
8644 /* Add an external symbol to the symbol table. This is called from
8645 the hash table traversal routine. When generating a shared object,
8646 we go through the symbol table twice. The first time we output
8647 anything that might have been forced to local scope in a version
8648 script. The second time we output the symbols that are still
8649 global symbols. */
8651 static bfd_boolean
8652 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8654 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8655 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8656 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8657 bfd_boolean strip;
8658 Elf_Internal_Sym sym;
8659 asection *input_sec;
8660 const struct elf_backend_data *bed;
8661 long indx;
8662 int ret;
8664 if (h->root.type == bfd_link_hash_warning)
8666 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8667 if (h->root.type == bfd_link_hash_new)
8668 return TRUE;
8671 /* Decide whether to output this symbol in this pass. */
8672 if (eoinfo->localsyms)
8674 if (!h->forced_local)
8675 return TRUE;
8676 if (eoinfo->second_pass
8677 && !((h->root.type == bfd_link_hash_defined
8678 || h->root.type == bfd_link_hash_defweak)
8679 && h->root.u.def.section->output_section != NULL))
8680 return TRUE;
8682 else
8684 if (h->forced_local)
8685 return TRUE;
8688 bed = get_elf_backend_data (flinfo->output_bfd);
8690 if (h->root.type == bfd_link_hash_undefined)
8692 /* If we have an undefined symbol reference here then it must have
8693 come from a shared library that is being linked in. (Undefined
8694 references in regular files have already been handled unless
8695 they are in unreferenced sections which are removed by garbage
8696 collection). */
8697 bfd_boolean ignore_undef = FALSE;
8699 /* Some symbols may be special in that the fact that they're
8700 undefined can be safely ignored - let backend determine that. */
8701 if (bed->elf_backend_ignore_undef_symbol)
8702 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8704 /* If we are reporting errors for this situation then do so now. */
8705 if (!ignore_undef
8706 && h->ref_dynamic
8707 && (!h->ref_regular || flinfo->info->gc_sections)
8708 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8709 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8711 if (!(flinfo->info->callbacks->undefined_symbol
8712 (flinfo->info, h->root.root.string,
8713 h->ref_regular ? NULL : h->root.u.undef.abfd,
8714 NULL, 0,
8715 (flinfo->info->unresolved_syms_in_shared_libs
8716 == RM_GENERATE_ERROR))))
8718 bfd_set_error (bfd_error_bad_value);
8719 eoinfo->failed = TRUE;
8720 return FALSE;
8725 /* We should also warn if a forced local symbol is referenced from
8726 shared libraries. */
8727 if (!flinfo->info->relocatable
8728 && flinfo->info->executable
8729 && h->forced_local
8730 && h->ref_dynamic
8731 && h->def_regular
8732 && !h->dynamic_def
8733 && h->ref_dynamic_nonweak
8734 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8736 bfd *def_bfd;
8737 const char *msg;
8738 struct elf_link_hash_entry *hi = h;
8740 /* Check indirect symbol. */
8741 while (hi->root.type == bfd_link_hash_indirect)
8742 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8744 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8745 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8746 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8747 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8748 else
8749 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8750 def_bfd = flinfo->output_bfd;
8751 if (hi->root.u.def.section != bfd_abs_section_ptr)
8752 def_bfd = hi->root.u.def.section->owner;
8753 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8754 h->root.root.string);
8755 bfd_set_error (bfd_error_bad_value);
8756 eoinfo->failed = TRUE;
8757 return FALSE;
8760 /* We don't want to output symbols that have never been mentioned by
8761 a regular file, or that we have been told to strip. However, if
8762 h->indx is set to -2, the symbol is used by a reloc and we must
8763 output it. */
8764 if (h->indx == -2)
8765 strip = FALSE;
8766 else if ((h->def_dynamic
8767 || h->ref_dynamic
8768 || h->root.type == bfd_link_hash_new)
8769 && !h->def_regular
8770 && !h->ref_regular)
8771 strip = TRUE;
8772 else if (flinfo->info->strip == strip_all)
8773 strip = TRUE;
8774 else if (flinfo->info->strip == strip_some
8775 && bfd_hash_lookup (flinfo->info->keep_hash,
8776 h->root.root.string, FALSE, FALSE) == NULL)
8777 strip = TRUE;
8778 else if ((h->root.type == bfd_link_hash_defined
8779 || h->root.type == bfd_link_hash_defweak)
8780 && ((flinfo->info->strip_discarded
8781 && discarded_section (h->root.u.def.section))
8782 || (h->root.u.def.section->owner != NULL
8783 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8784 strip = TRUE;
8785 else if ((h->root.type == bfd_link_hash_undefined
8786 || h->root.type == bfd_link_hash_undefweak)
8787 && h->root.u.undef.abfd != NULL
8788 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8789 strip = TRUE;
8790 else
8791 strip = FALSE;
8793 /* If we're stripping it, and it's not a dynamic symbol, there's
8794 nothing else to do unless it is a forced local symbol or a
8795 STT_GNU_IFUNC symbol. */
8796 if (strip
8797 && h->dynindx == -1
8798 && h->type != STT_GNU_IFUNC
8799 && !h->forced_local)
8800 return TRUE;
8802 sym.st_value = 0;
8803 sym.st_size = h->size;
8804 sym.st_other = h->other;
8805 if (h->forced_local)
8807 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8808 /* Turn off visibility on local symbol. */
8809 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8811 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
8812 else if (h->unique_global && h->def_regular)
8813 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8814 else if (h->root.type == bfd_link_hash_undefweak
8815 || h->root.type == bfd_link_hash_defweak)
8816 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8817 else
8818 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8819 sym.st_target_internal = h->target_internal;
8821 switch (h->root.type)
8823 default:
8824 case bfd_link_hash_new:
8825 case bfd_link_hash_warning:
8826 abort ();
8827 return FALSE;
8829 case bfd_link_hash_undefined:
8830 case bfd_link_hash_undefweak:
8831 input_sec = bfd_und_section_ptr;
8832 sym.st_shndx = SHN_UNDEF;
8833 break;
8835 case bfd_link_hash_defined:
8836 case bfd_link_hash_defweak:
8838 input_sec = h->root.u.def.section;
8839 if (input_sec->output_section != NULL)
8841 if (eoinfo->localsyms && flinfo->filesym_count == 1)
8843 bfd_boolean second_pass_sym
8844 = (input_sec->owner == flinfo->output_bfd
8845 || input_sec->owner == NULL
8846 || (input_sec->flags & SEC_LINKER_CREATED) != 0
8847 || (input_sec->owner->flags & BFD_LINKER_CREATED) != 0);
8849 eoinfo->need_second_pass |= second_pass_sym;
8850 if (eoinfo->second_pass != second_pass_sym)
8851 return TRUE;
8854 sym.st_shndx =
8855 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8856 input_sec->output_section);
8857 if (sym.st_shndx == SHN_BAD)
8859 (*_bfd_error_handler)
8860 (_("%B: could not find output section %A for input section %A"),
8861 flinfo->output_bfd, input_sec->output_section, input_sec);
8862 bfd_set_error (bfd_error_nonrepresentable_section);
8863 eoinfo->failed = TRUE;
8864 return FALSE;
8867 /* ELF symbols in relocatable files are section relative,
8868 but in nonrelocatable files they are virtual
8869 addresses. */
8870 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8871 if (!flinfo->info->relocatable)
8873 sym.st_value += input_sec->output_section->vma;
8874 if (h->type == STT_TLS)
8876 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
8877 if (tls_sec != NULL)
8878 sym.st_value -= tls_sec->vma;
8879 else
8881 /* The TLS section may have been garbage collected. */
8882 BFD_ASSERT (flinfo->info->gc_sections
8883 && !input_sec->gc_mark);
8888 else
8890 BFD_ASSERT (input_sec->owner == NULL
8891 || (input_sec->owner->flags & DYNAMIC) != 0);
8892 sym.st_shndx = SHN_UNDEF;
8893 input_sec = bfd_und_section_ptr;
8896 break;
8898 case bfd_link_hash_common:
8899 input_sec = h->root.u.c.p->section;
8900 sym.st_shndx = bed->common_section_index (input_sec);
8901 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8902 break;
8904 case bfd_link_hash_indirect:
8905 /* These symbols are created by symbol versioning. They point
8906 to the decorated version of the name. For example, if the
8907 symbol foo@@GNU_1.2 is the default, which should be used when
8908 foo is used with no version, then we add an indirect symbol
8909 foo which points to foo@@GNU_1.2. We ignore these symbols,
8910 since the indirected symbol is already in the hash table. */
8911 return TRUE;
8914 /* Give the processor backend a chance to tweak the symbol value,
8915 and also to finish up anything that needs to be done for this
8916 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8917 forced local syms when non-shared is due to a historical quirk.
8918 STT_GNU_IFUNC symbol must go through PLT. */
8919 if ((h->type == STT_GNU_IFUNC
8920 && h->def_regular
8921 && !flinfo->info->relocatable)
8922 || ((h->dynindx != -1
8923 || h->forced_local)
8924 && ((flinfo->info->shared
8925 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8926 || h->root.type != bfd_link_hash_undefweak))
8927 || !h->forced_local)
8928 && elf_hash_table (flinfo->info)->dynamic_sections_created))
8930 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8931 (flinfo->output_bfd, flinfo->info, h, &sym)))
8933 eoinfo->failed = TRUE;
8934 return FALSE;
8938 /* If we are marking the symbol as undefined, and there are no
8939 non-weak references to this symbol from a regular object, then
8940 mark the symbol as weak undefined; if there are non-weak
8941 references, mark the symbol as strong. We can't do this earlier,
8942 because it might not be marked as undefined until the
8943 finish_dynamic_symbol routine gets through with it. */
8944 if (sym.st_shndx == SHN_UNDEF
8945 && h->ref_regular
8946 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8947 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8949 int bindtype;
8950 unsigned int type = ELF_ST_TYPE (sym.st_info);
8952 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8953 if (type == STT_GNU_IFUNC)
8954 type = STT_FUNC;
8956 if (h->ref_regular_nonweak)
8957 bindtype = STB_GLOBAL;
8958 else
8959 bindtype = STB_WEAK;
8960 sym.st_info = ELF_ST_INFO (bindtype, type);
8963 /* If this is a symbol defined in a dynamic library, don't use the
8964 symbol size from the dynamic library. Relinking an executable
8965 against a new library may introduce gratuitous changes in the
8966 executable's symbols if we keep the size. */
8967 if (sym.st_shndx == SHN_UNDEF
8968 && !h->def_regular
8969 && h->def_dynamic)
8970 sym.st_size = 0;
8972 /* If a non-weak symbol with non-default visibility is not defined
8973 locally, it is a fatal error. */
8974 if (!flinfo->info->relocatable
8975 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8976 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8977 && h->root.type == bfd_link_hash_undefined
8978 && !h->def_regular)
8980 const char *msg;
8982 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
8983 msg = _("%B: protected symbol `%s' isn't defined");
8984 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
8985 msg = _("%B: internal symbol `%s' isn't defined");
8986 else
8987 msg = _("%B: hidden symbol `%s' isn't defined");
8988 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
8989 bfd_set_error (bfd_error_bad_value);
8990 eoinfo->failed = TRUE;
8991 return FALSE;
8994 /* If this symbol should be put in the .dynsym section, then put it
8995 there now. We already know the symbol index. We also fill in
8996 the entry in the .hash section. */
8997 if (flinfo->dynsym_sec != NULL
8998 && h->dynindx != -1
8999 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9001 bfd_byte *esym;
9003 /* Since there is no version information in the dynamic string,
9004 if there is no version info in symbol version section, we will
9005 have a run-time problem. */
9006 if (h->verinfo.verdef == NULL)
9008 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9010 if (p && p [1] != '\0')
9012 (*_bfd_error_handler)
9013 (_("%B: No symbol version section for versioned symbol `%s'"),
9014 flinfo->output_bfd, h->root.root.string);
9015 eoinfo->failed = TRUE;
9016 return FALSE;
9020 sym.st_name = h->dynstr_index;
9021 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9022 if (!check_dynsym (flinfo->output_bfd, &sym))
9024 eoinfo->failed = TRUE;
9025 return FALSE;
9027 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9029 if (flinfo->hash_sec != NULL)
9031 size_t hash_entry_size;
9032 bfd_byte *bucketpos;
9033 bfd_vma chain;
9034 size_t bucketcount;
9035 size_t bucket;
9037 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9038 bucket = h->u.elf_hash_value % bucketcount;
9040 hash_entry_size
9041 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9042 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9043 + (bucket + 2) * hash_entry_size);
9044 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9045 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9046 bucketpos);
9047 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9048 ((bfd_byte *) flinfo->hash_sec->contents
9049 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9052 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9054 Elf_Internal_Versym iversym;
9055 Elf_External_Versym *eversym;
9057 if (!h->def_regular)
9059 if (h->verinfo.verdef == NULL)
9060 iversym.vs_vers = 0;
9061 else
9062 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9064 else
9066 if (h->verinfo.vertree == NULL)
9067 iversym.vs_vers = 1;
9068 else
9069 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9070 if (flinfo->info->create_default_symver)
9071 iversym.vs_vers++;
9074 if (h->hidden)
9075 iversym.vs_vers |= VERSYM_HIDDEN;
9077 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9078 eversym += h->dynindx;
9079 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9083 /* If we're stripping it, then it was just a dynamic symbol, and
9084 there's nothing else to do. */
9085 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
9086 return TRUE;
9088 indx = bfd_get_symcount (flinfo->output_bfd);
9089 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9090 if (ret == 0)
9092 eoinfo->failed = TRUE;
9093 return FALSE;
9095 else if (ret == 1)
9096 h->indx = indx;
9097 else if (h->indx == -2)
9098 abort();
9100 return TRUE;
9103 /* Return TRUE if special handling is done for relocs in SEC against
9104 symbols defined in discarded sections. */
9106 static bfd_boolean
9107 elf_section_ignore_discarded_relocs (asection *sec)
9109 const struct elf_backend_data *bed;
9111 switch (sec->sec_info_type)
9113 case SEC_INFO_TYPE_STABS:
9114 case SEC_INFO_TYPE_EH_FRAME:
9115 return TRUE;
9116 default:
9117 break;
9120 bed = get_elf_backend_data (sec->owner);
9121 if (bed->elf_backend_ignore_discarded_relocs != NULL
9122 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9123 return TRUE;
9125 return FALSE;
9128 /* Return a mask saying how ld should treat relocations in SEC against
9129 symbols defined in discarded sections. If this function returns
9130 COMPLAIN set, ld will issue a warning message. If this function
9131 returns PRETEND set, and the discarded section was link-once and the
9132 same size as the kept link-once section, ld will pretend that the
9133 symbol was actually defined in the kept section. Otherwise ld will
9134 zero the reloc (at least that is the intent, but some cooperation by
9135 the target dependent code is needed, particularly for REL targets). */
9137 unsigned int
9138 _bfd_elf_default_action_discarded (asection *sec)
9140 if (sec->flags & SEC_DEBUGGING)
9141 return PRETEND;
9143 if (strcmp (".eh_frame", sec->name) == 0)
9144 return 0;
9146 if (strcmp (".gcc_except_table", sec->name) == 0)
9147 return 0;
9149 return COMPLAIN | PRETEND;
9152 /* Find a match between a section and a member of a section group. */
9154 static asection *
9155 match_group_member (asection *sec, asection *group,
9156 struct bfd_link_info *info)
9158 asection *first = elf_next_in_group (group);
9159 asection *s = first;
9161 while (s != NULL)
9163 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9164 return s;
9166 s = elf_next_in_group (s);
9167 if (s == first)
9168 break;
9171 return NULL;
9174 /* Check if the kept section of a discarded section SEC can be used
9175 to replace it. Return the replacement if it is OK. Otherwise return
9176 NULL. */
9178 asection *
9179 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9181 asection *kept;
9183 kept = sec->kept_section;
9184 if (kept != NULL)
9186 if ((kept->flags & SEC_GROUP) != 0)
9187 kept = match_group_member (sec, kept, info);
9188 if (kept != NULL
9189 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9190 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9191 kept = NULL;
9192 sec->kept_section = kept;
9194 return kept;
9197 /* Link an input file into the linker output file. This function
9198 handles all the sections and relocations of the input file at once.
9199 This is so that we only have to read the local symbols once, and
9200 don't have to keep them in memory. */
9202 static bfd_boolean
9203 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9205 int (*relocate_section)
9206 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9207 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9208 bfd *output_bfd;
9209 Elf_Internal_Shdr *symtab_hdr;
9210 size_t locsymcount;
9211 size_t extsymoff;
9212 Elf_Internal_Sym *isymbuf;
9213 Elf_Internal_Sym *isym;
9214 Elf_Internal_Sym *isymend;
9215 long *pindex;
9216 asection **ppsection;
9217 asection *o;
9218 const struct elf_backend_data *bed;
9219 struct elf_link_hash_entry **sym_hashes;
9220 bfd_size_type address_size;
9221 bfd_vma r_type_mask;
9222 int r_sym_shift;
9223 bfd_boolean have_file_sym = FALSE;
9225 output_bfd = flinfo->output_bfd;
9226 bed = get_elf_backend_data (output_bfd);
9227 relocate_section = bed->elf_backend_relocate_section;
9229 /* If this is a dynamic object, we don't want to do anything here:
9230 we don't want the local symbols, and we don't want the section
9231 contents. */
9232 if ((input_bfd->flags & DYNAMIC) != 0)
9233 return TRUE;
9235 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9236 if (elf_bad_symtab (input_bfd))
9238 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9239 extsymoff = 0;
9241 else
9243 locsymcount = symtab_hdr->sh_info;
9244 extsymoff = symtab_hdr->sh_info;
9247 /* Read the local symbols. */
9248 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9249 if (isymbuf == NULL && locsymcount != 0)
9251 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9252 flinfo->internal_syms,
9253 flinfo->external_syms,
9254 flinfo->locsym_shndx);
9255 if (isymbuf == NULL)
9256 return FALSE;
9259 /* Find local symbol sections and adjust values of symbols in
9260 SEC_MERGE sections. Write out those local symbols we know are
9261 going into the output file. */
9262 isymend = isymbuf + locsymcount;
9263 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9264 isym < isymend;
9265 isym++, pindex++, ppsection++)
9267 asection *isec;
9268 const char *name;
9269 Elf_Internal_Sym osym;
9270 long indx;
9271 int ret;
9273 *pindex = -1;
9275 if (elf_bad_symtab (input_bfd))
9277 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9279 *ppsection = NULL;
9280 continue;
9284 if (isym->st_shndx == SHN_UNDEF)
9285 isec = bfd_und_section_ptr;
9286 else if (isym->st_shndx == SHN_ABS)
9287 isec = bfd_abs_section_ptr;
9288 else if (isym->st_shndx == SHN_COMMON)
9289 isec = bfd_com_section_ptr;
9290 else
9292 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9293 if (isec == NULL)
9295 /* Don't attempt to output symbols with st_shnx in the
9296 reserved range other than SHN_ABS and SHN_COMMON. */
9297 *ppsection = NULL;
9298 continue;
9300 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9301 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9302 isym->st_value =
9303 _bfd_merged_section_offset (output_bfd, &isec,
9304 elf_section_data (isec)->sec_info,
9305 isym->st_value);
9308 *ppsection = isec;
9310 /* Don't output the first, undefined, symbol. */
9311 if (ppsection == flinfo->sections)
9312 continue;
9314 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9316 /* We never output section symbols. Instead, we use the
9317 section symbol of the corresponding section in the output
9318 file. */
9319 continue;
9322 /* If we are stripping all symbols, we don't want to output this
9323 one. */
9324 if (flinfo->info->strip == strip_all)
9325 continue;
9327 /* If we are discarding all local symbols, we don't want to
9328 output this one. If we are generating a relocatable output
9329 file, then some of the local symbols may be required by
9330 relocs; we output them below as we discover that they are
9331 needed. */
9332 if (flinfo->info->discard == discard_all)
9333 continue;
9335 /* If this symbol is defined in a section which we are
9336 discarding, we don't need to keep it. */
9337 if (isym->st_shndx != SHN_UNDEF
9338 && isym->st_shndx < SHN_LORESERVE
9339 && bfd_section_removed_from_list (output_bfd,
9340 isec->output_section))
9341 continue;
9343 /* Get the name of the symbol. */
9344 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9345 isym->st_name);
9346 if (name == NULL)
9347 return FALSE;
9349 /* See if we are discarding symbols with this name. */
9350 if ((flinfo->info->strip == strip_some
9351 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9352 == NULL))
9353 || (((flinfo->info->discard == discard_sec_merge
9354 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9355 || flinfo->info->discard == discard_l)
9356 && bfd_is_local_label_name (input_bfd, name)))
9357 continue;
9359 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9361 have_file_sym = TRUE;
9362 flinfo->filesym_count += 1;
9364 if (!have_file_sym)
9366 /* In the absence of debug info, bfd_find_nearest_line uses
9367 FILE symbols to determine the source file for local
9368 function symbols. Provide a FILE symbol here if input
9369 files lack such, so that their symbols won't be
9370 associated with a previous input file. It's not the
9371 source file, but the best we can do. */
9372 have_file_sym = TRUE;
9373 flinfo->filesym_count += 1;
9374 memset (&osym, 0, sizeof (osym));
9375 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9376 osym.st_shndx = SHN_ABS;
9377 if (!elf_link_output_sym (flinfo, input_bfd->filename, &osym,
9378 bfd_abs_section_ptr, NULL))
9379 return FALSE;
9382 osym = *isym;
9384 /* Adjust the section index for the output file. */
9385 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9386 isec->output_section);
9387 if (osym.st_shndx == SHN_BAD)
9388 return FALSE;
9390 /* ELF symbols in relocatable files are section relative, but
9391 in executable files they are virtual addresses. Note that
9392 this code assumes that all ELF sections have an associated
9393 BFD section with a reasonable value for output_offset; below
9394 we assume that they also have a reasonable value for
9395 output_section. Any special sections must be set up to meet
9396 these requirements. */
9397 osym.st_value += isec->output_offset;
9398 if (!flinfo->info->relocatable)
9400 osym.st_value += isec->output_section->vma;
9401 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9403 /* STT_TLS symbols are relative to PT_TLS segment base. */
9404 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9405 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9409 indx = bfd_get_symcount (output_bfd);
9410 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9411 if (ret == 0)
9412 return FALSE;
9413 else if (ret == 1)
9414 *pindex = indx;
9417 if (bed->s->arch_size == 32)
9419 r_type_mask = 0xff;
9420 r_sym_shift = 8;
9421 address_size = 4;
9423 else
9425 r_type_mask = 0xffffffff;
9426 r_sym_shift = 32;
9427 address_size = 8;
9430 /* Relocate the contents of each section. */
9431 sym_hashes = elf_sym_hashes (input_bfd);
9432 for (o = input_bfd->sections; o != NULL; o = o->next)
9434 bfd_byte *contents;
9436 if (! o->linker_mark)
9438 /* This section was omitted from the link. */
9439 continue;
9442 if (flinfo->info->relocatable
9443 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9445 /* Deal with the group signature symbol. */
9446 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9447 unsigned long symndx = sec_data->this_hdr.sh_info;
9448 asection *osec = o->output_section;
9450 if (symndx >= locsymcount
9451 || (elf_bad_symtab (input_bfd)
9452 && flinfo->sections[symndx] == NULL))
9454 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9455 while (h->root.type == bfd_link_hash_indirect
9456 || h->root.type == bfd_link_hash_warning)
9457 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9458 /* Arrange for symbol to be output. */
9459 h->indx = -2;
9460 elf_section_data (osec)->this_hdr.sh_info = -2;
9462 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9464 /* We'll use the output section target_index. */
9465 asection *sec = flinfo->sections[symndx]->output_section;
9466 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9468 else
9470 if (flinfo->indices[symndx] == -1)
9472 /* Otherwise output the local symbol now. */
9473 Elf_Internal_Sym sym = isymbuf[symndx];
9474 asection *sec = flinfo->sections[symndx]->output_section;
9475 const char *name;
9476 long indx;
9477 int ret;
9479 name = bfd_elf_string_from_elf_section (input_bfd,
9480 symtab_hdr->sh_link,
9481 sym.st_name);
9482 if (name == NULL)
9483 return FALSE;
9485 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9486 sec);
9487 if (sym.st_shndx == SHN_BAD)
9488 return FALSE;
9490 sym.st_value += o->output_offset;
9492 indx = bfd_get_symcount (output_bfd);
9493 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9494 if (ret == 0)
9495 return FALSE;
9496 else if (ret == 1)
9497 flinfo->indices[symndx] = indx;
9498 else
9499 abort ();
9501 elf_section_data (osec)->this_hdr.sh_info
9502 = flinfo->indices[symndx];
9506 if ((o->flags & SEC_HAS_CONTENTS) == 0
9507 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9508 continue;
9510 if ((o->flags & SEC_LINKER_CREATED) != 0)
9512 /* Section was created by _bfd_elf_link_create_dynamic_sections
9513 or somesuch. */
9514 continue;
9517 /* Get the contents of the section. They have been cached by a
9518 relaxation routine. Note that o is a section in an input
9519 file, so the contents field will not have been set by any of
9520 the routines which work on output files. */
9521 if (elf_section_data (o)->this_hdr.contents != NULL)
9522 contents = elf_section_data (o)->this_hdr.contents;
9523 else
9525 contents = flinfo->contents;
9526 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9527 return FALSE;
9530 if ((o->flags & SEC_RELOC) != 0)
9532 Elf_Internal_Rela *internal_relocs;
9533 Elf_Internal_Rela *rel, *relend;
9534 int action_discarded;
9535 int ret;
9537 /* Get the swapped relocs. */
9538 internal_relocs
9539 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9540 flinfo->internal_relocs, FALSE);
9541 if (internal_relocs == NULL
9542 && o->reloc_count > 0)
9543 return FALSE;
9545 /* We need to reverse-copy input .ctors/.dtors sections if
9546 they are placed in .init_array/.finit_array for output. */
9547 if (o->size > address_size
9548 && ((strncmp (o->name, ".ctors", 6) == 0
9549 && strcmp (o->output_section->name,
9550 ".init_array") == 0)
9551 || (strncmp (o->name, ".dtors", 6) == 0
9552 && strcmp (o->output_section->name,
9553 ".fini_array") == 0))
9554 && (o->name[6] == 0 || o->name[6] == '.'))
9556 if (o->size != o->reloc_count * address_size)
9558 (*_bfd_error_handler)
9559 (_("error: %B: size of section %A is not "
9560 "multiple of address size"),
9561 input_bfd, o);
9562 bfd_set_error (bfd_error_on_input);
9563 return FALSE;
9565 o->flags |= SEC_ELF_REVERSE_COPY;
9568 action_discarded = -1;
9569 if (!elf_section_ignore_discarded_relocs (o))
9570 action_discarded = (*bed->action_discarded) (o);
9572 /* Run through the relocs evaluating complex reloc symbols and
9573 looking for relocs against symbols from discarded sections
9574 or section symbols from removed link-once sections.
9575 Complain about relocs against discarded sections. Zero
9576 relocs against removed link-once sections. */
9578 rel = internal_relocs;
9579 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9580 for ( ; rel < relend; rel++)
9582 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9583 unsigned int s_type;
9584 asection **ps, *sec;
9585 struct elf_link_hash_entry *h = NULL;
9586 const char *sym_name;
9588 if (r_symndx == STN_UNDEF)
9589 continue;
9591 if (r_symndx >= locsymcount
9592 || (elf_bad_symtab (input_bfd)
9593 && flinfo->sections[r_symndx] == NULL))
9595 h = sym_hashes[r_symndx - extsymoff];
9597 /* Badly formatted input files can contain relocs that
9598 reference non-existant symbols. Check here so that
9599 we do not seg fault. */
9600 if (h == NULL)
9602 char buffer [32];
9604 sprintf_vma (buffer, rel->r_info);
9605 (*_bfd_error_handler)
9606 (_("error: %B contains a reloc (0x%s) for section %A "
9607 "that references a non-existent global symbol"),
9608 input_bfd, o, buffer);
9609 bfd_set_error (bfd_error_bad_value);
9610 return FALSE;
9613 while (h->root.type == bfd_link_hash_indirect
9614 || h->root.type == bfd_link_hash_warning)
9615 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9617 s_type = h->type;
9619 ps = NULL;
9620 if (h->root.type == bfd_link_hash_defined
9621 || h->root.type == bfd_link_hash_defweak)
9622 ps = &h->root.u.def.section;
9624 sym_name = h->root.root.string;
9626 else
9628 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9630 s_type = ELF_ST_TYPE (sym->st_info);
9631 ps = &flinfo->sections[r_symndx];
9632 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9633 sym, *ps);
9636 if ((s_type == STT_RELC || s_type == STT_SRELC)
9637 && !flinfo->info->relocatable)
9639 bfd_vma val;
9640 bfd_vma dot = (rel->r_offset
9641 + o->output_offset + o->output_section->vma);
9642 #ifdef DEBUG
9643 printf ("Encountered a complex symbol!");
9644 printf (" (input_bfd %s, section %s, reloc %ld\n",
9645 input_bfd->filename, o->name,
9646 (long) (rel - internal_relocs));
9647 printf (" symbol: idx %8.8lx, name %s\n",
9648 r_symndx, sym_name);
9649 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9650 (unsigned long) rel->r_info,
9651 (unsigned long) rel->r_offset);
9652 #endif
9653 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9654 isymbuf, locsymcount, s_type == STT_SRELC))
9655 return FALSE;
9657 /* Symbol evaluated OK. Update to absolute value. */
9658 set_symbol_value (input_bfd, isymbuf, locsymcount,
9659 r_symndx, val);
9660 continue;
9663 if (action_discarded != -1 && ps != NULL)
9665 /* Complain if the definition comes from a
9666 discarded section. */
9667 if ((sec = *ps) != NULL && discarded_section (sec))
9669 BFD_ASSERT (r_symndx != STN_UNDEF);
9670 if (action_discarded & COMPLAIN)
9671 (*flinfo->info->callbacks->einfo)
9672 (_("%X`%s' referenced in section `%A' of %B: "
9673 "defined in discarded section `%A' of %B\n"),
9674 sym_name, o, input_bfd, sec, sec->owner);
9676 /* Try to do the best we can to support buggy old
9677 versions of gcc. Pretend that the symbol is
9678 really defined in the kept linkonce section.
9679 FIXME: This is quite broken. Modifying the
9680 symbol here means we will be changing all later
9681 uses of the symbol, not just in this section. */
9682 if (action_discarded & PRETEND)
9684 asection *kept;
9686 kept = _bfd_elf_check_kept_section (sec,
9687 flinfo->info);
9688 if (kept != NULL)
9690 *ps = kept;
9691 continue;
9698 /* Relocate the section by invoking a back end routine.
9700 The back end routine is responsible for adjusting the
9701 section contents as necessary, and (if using Rela relocs
9702 and generating a relocatable output file) adjusting the
9703 reloc addend as necessary.
9705 The back end routine does not have to worry about setting
9706 the reloc address or the reloc symbol index.
9708 The back end routine is given a pointer to the swapped in
9709 internal symbols, and can access the hash table entries
9710 for the external symbols via elf_sym_hashes (input_bfd).
9712 When generating relocatable output, the back end routine
9713 must handle STB_LOCAL/STT_SECTION symbols specially. The
9714 output symbol is going to be a section symbol
9715 corresponding to the output section, which will require
9716 the addend to be adjusted. */
9718 ret = (*relocate_section) (output_bfd, flinfo->info,
9719 input_bfd, o, contents,
9720 internal_relocs,
9721 isymbuf,
9722 flinfo->sections);
9723 if (!ret)
9724 return FALSE;
9726 if (ret == 2
9727 || flinfo->info->relocatable
9728 || flinfo->info->emitrelocations)
9730 Elf_Internal_Rela *irela;
9731 Elf_Internal_Rela *irelaend, *irelamid;
9732 bfd_vma last_offset;
9733 struct elf_link_hash_entry **rel_hash;
9734 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9735 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9736 unsigned int next_erel;
9737 bfd_boolean rela_normal;
9738 struct bfd_elf_section_data *esdi, *esdo;
9740 esdi = elf_section_data (o);
9741 esdo = elf_section_data (o->output_section);
9742 rela_normal = FALSE;
9744 /* Adjust the reloc addresses and symbol indices. */
9746 irela = internal_relocs;
9747 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9748 rel_hash = esdo->rel.hashes + esdo->rel.count;
9749 /* We start processing the REL relocs, if any. When we reach
9750 IRELAMID in the loop, we switch to the RELA relocs. */
9751 irelamid = irela;
9752 if (esdi->rel.hdr != NULL)
9753 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9754 * bed->s->int_rels_per_ext_rel);
9755 rel_hash_list = rel_hash;
9756 rela_hash_list = NULL;
9757 last_offset = o->output_offset;
9758 if (!flinfo->info->relocatable)
9759 last_offset += o->output_section->vma;
9760 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9762 unsigned long r_symndx;
9763 asection *sec;
9764 Elf_Internal_Sym sym;
9766 if (next_erel == bed->s->int_rels_per_ext_rel)
9768 rel_hash++;
9769 next_erel = 0;
9772 if (irela == irelamid)
9774 rel_hash = esdo->rela.hashes + esdo->rela.count;
9775 rela_hash_list = rel_hash;
9776 rela_normal = bed->rela_normal;
9779 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9780 flinfo->info, o,
9781 irela->r_offset);
9782 if (irela->r_offset >= (bfd_vma) -2)
9784 /* This is a reloc for a deleted entry or somesuch.
9785 Turn it into an R_*_NONE reloc, at the same
9786 offset as the last reloc. elf_eh_frame.c and
9787 bfd_elf_discard_info rely on reloc offsets
9788 being ordered. */
9789 irela->r_offset = last_offset;
9790 irela->r_info = 0;
9791 irela->r_addend = 0;
9792 continue;
9795 irela->r_offset += o->output_offset;
9797 /* Relocs in an executable have to be virtual addresses. */
9798 if (!flinfo->info->relocatable)
9799 irela->r_offset += o->output_section->vma;
9801 last_offset = irela->r_offset;
9803 r_symndx = irela->r_info >> r_sym_shift;
9804 if (r_symndx == STN_UNDEF)
9805 continue;
9807 if (r_symndx >= locsymcount
9808 || (elf_bad_symtab (input_bfd)
9809 && flinfo->sections[r_symndx] == NULL))
9811 struct elf_link_hash_entry *rh;
9812 unsigned long indx;
9814 /* This is a reloc against a global symbol. We
9815 have not yet output all the local symbols, so
9816 we do not know the symbol index of any global
9817 symbol. We set the rel_hash entry for this
9818 reloc to point to the global hash table entry
9819 for this symbol. The symbol index is then
9820 set at the end of bfd_elf_final_link. */
9821 indx = r_symndx - extsymoff;
9822 rh = elf_sym_hashes (input_bfd)[indx];
9823 while (rh->root.type == bfd_link_hash_indirect
9824 || rh->root.type == bfd_link_hash_warning)
9825 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9827 /* Setting the index to -2 tells
9828 elf_link_output_extsym that this symbol is
9829 used by a reloc. */
9830 BFD_ASSERT (rh->indx < 0);
9831 rh->indx = -2;
9833 *rel_hash = rh;
9835 continue;
9838 /* This is a reloc against a local symbol. */
9840 *rel_hash = NULL;
9841 sym = isymbuf[r_symndx];
9842 sec = flinfo->sections[r_symndx];
9843 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9845 /* I suppose the backend ought to fill in the
9846 section of any STT_SECTION symbol against a
9847 processor specific section. */
9848 r_symndx = STN_UNDEF;
9849 if (bfd_is_abs_section (sec))
9851 else if (sec == NULL || sec->owner == NULL)
9853 bfd_set_error (bfd_error_bad_value);
9854 return FALSE;
9856 else
9858 asection *osec = sec->output_section;
9860 /* If we have discarded a section, the output
9861 section will be the absolute section. In
9862 case of discarded SEC_MERGE sections, use
9863 the kept section. relocate_section should
9864 have already handled discarded linkonce
9865 sections. */
9866 if (bfd_is_abs_section (osec)
9867 && sec->kept_section != NULL
9868 && sec->kept_section->output_section != NULL)
9870 osec = sec->kept_section->output_section;
9871 irela->r_addend -= osec->vma;
9874 if (!bfd_is_abs_section (osec))
9876 r_symndx = osec->target_index;
9877 if (r_symndx == STN_UNDEF)
9879 irela->r_addend += osec->vma;
9880 osec = _bfd_nearby_section (output_bfd, osec,
9881 osec->vma);
9882 irela->r_addend -= osec->vma;
9883 r_symndx = osec->target_index;
9888 /* Adjust the addend according to where the
9889 section winds up in the output section. */
9890 if (rela_normal)
9891 irela->r_addend += sec->output_offset;
9893 else
9895 if (flinfo->indices[r_symndx] == -1)
9897 unsigned long shlink;
9898 const char *name;
9899 asection *osec;
9900 long indx;
9902 if (flinfo->info->strip == strip_all)
9904 /* You can't do ld -r -s. */
9905 bfd_set_error (bfd_error_invalid_operation);
9906 return FALSE;
9909 /* This symbol was skipped earlier, but
9910 since it is needed by a reloc, we
9911 must output it now. */
9912 shlink = symtab_hdr->sh_link;
9913 name = (bfd_elf_string_from_elf_section
9914 (input_bfd, shlink, sym.st_name));
9915 if (name == NULL)
9916 return FALSE;
9918 osec = sec->output_section;
9919 sym.st_shndx =
9920 _bfd_elf_section_from_bfd_section (output_bfd,
9921 osec);
9922 if (sym.st_shndx == SHN_BAD)
9923 return FALSE;
9925 sym.st_value += sec->output_offset;
9926 if (!flinfo->info->relocatable)
9928 sym.st_value += osec->vma;
9929 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9931 /* STT_TLS symbols are relative to PT_TLS
9932 segment base. */
9933 BFD_ASSERT (elf_hash_table (flinfo->info)
9934 ->tls_sec != NULL);
9935 sym.st_value -= (elf_hash_table (flinfo->info)
9936 ->tls_sec->vma);
9940 indx = bfd_get_symcount (output_bfd);
9941 ret = elf_link_output_sym (flinfo, name, &sym, sec,
9942 NULL);
9943 if (ret == 0)
9944 return FALSE;
9945 else if (ret == 1)
9946 flinfo->indices[r_symndx] = indx;
9947 else
9948 abort ();
9951 r_symndx = flinfo->indices[r_symndx];
9954 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9955 | (irela->r_info & r_type_mask));
9958 /* Swap out the relocs. */
9959 input_rel_hdr = esdi->rel.hdr;
9960 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
9962 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9963 input_rel_hdr,
9964 internal_relocs,
9965 rel_hash_list))
9966 return FALSE;
9967 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9968 * bed->s->int_rels_per_ext_rel);
9969 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9972 input_rela_hdr = esdi->rela.hdr;
9973 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
9975 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9976 input_rela_hdr,
9977 internal_relocs,
9978 rela_hash_list))
9979 return FALSE;
9984 /* Write out the modified section contents. */
9985 if (bed->elf_backend_write_section
9986 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
9987 contents))
9989 /* Section written out. */
9991 else switch (o->sec_info_type)
9993 case SEC_INFO_TYPE_STABS:
9994 if (! (_bfd_write_section_stabs
9995 (output_bfd,
9996 &elf_hash_table (flinfo->info)->stab_info,
9997 o, &elf_section_data (o)->sec_info, contents)))
9998 return FALSE;
9999 break;
10000 case SEC_INFO_TYPE_MERGE:
10001 if (! _bfd_write_merged_section (output_bfd, o,
10002 elf_section_data (o)->sec_info))
10003 return FALSE;
10004 break;
10005 case SEC_INFO_TYPE_EH_FRAME:
10007 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10008 o, contents))
10009 return FALSE;
10011 break;
10012 default:
10014 /* FIXME: octets_per_byte. */
10015 if (! (o->flags & SEC_EXCLUDE))
10017 file_ptr offset = (file_ptr) o->output_offset;
10018 bfd_size_type todo = o->size;
10019 if ((o->flags & SEC_ELF_REVERSE_COPY))
10021 /* Reverse-copy input section to output. */
10024 todo -= address_size;
10025 if (! bfd_set_section_contents (output_bfd,
10026 o->output_section,
10027 contents + todo,
10028 offset,
10029 address_size))
10030 return FALSE;
10031 if (todo == 0)
10032 break;
10033 offset += address_size;
10035 while (1);
10037 else if (! bfd_set_section_contents (output_bfd,
10038 o->output_section,
10039 contents,
10040 offset, todo))
10041 return FALSE;
10044 break;
10048 return TRUE;
10051 /* Generate a reloc when linking an ELF file. This is a reloc
10052 requested by the linker, and does not come from any input file. This
10053 is used to build constructor and destructor tables when linking
10054 with -Ur. */
10056 static bfd_boolean
10057 elf_reloc_link_order (bfd *output_bfd,
10058 struct bfd_link_info *info,
10059 asection *output_section,
10060 struct bfd_link_order *link_order)
10062 reloc_howto_type *howto;
10063 long indx;
10064 bfd_vma offset;
10065 bfd_vma addend;
10066 struct bfd_elf_section_reloc_data *reldata;
10067 struct elf_link_hash_entry **rel_hash_ptr;
10068 Elf_Internal_Shdr *rel_hdr;
10069 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10070 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10071 bfd_byte *erel;
10072 unsigned int i;
10073 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10075 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10076 if (howto == NULL)
10078 bfd_set_error (bfd_error_bad_value);
10079 return FALSE;
10082 addend = link_order->u.reloc.p->addend;
10084 if (esdo->rel.hdr)
10085 reldata = &esdo->rel;
10086 else if (esdo->rela.hdr)
10087 reldata = &esdo->rela;
10088 else
10090 reldata = NULL;
10091 BFD_ASSERT (0);
10094 /* Figure out the symbol index. */
10095 rel_hash_ptr = reldata->hashes + reldata->count;
10096 if (link_order->type == bfd_section_reloc_link_order)
10098 indx = link_order->u.reloc.p->u.section->target_index;
10099 BFD_ASSERT (indx != 0);
10100 *rel_hash_ptr = NULL;
10102 else
10104 struct elf_link_hash_entry *h;
10106 /* Treat a reloc against a defined symbol as though it were
10107 actually against the section. */
10108 h = ((struct elf_link_hash_entry *)
10109 bfd_wrapped_link_hash_lookup (output_bfd, info,
10110 link_order->u.reloc.p->u.name,
10111 FALSE, FALSE, TRUE));
10112 if (h != NULL
10113 && (h->root.type == bfd_link_hash_defined
10114 || h->root.type == bfd_link_hash_defweak))
10116 asection *section;
10118 section = h->root.u.def.section;
10119 indx = section->output_section->target_index;
10120 *rel_hash_ptr = NULL;
10121 /* It seems that we ought to add the symbol value to the
10122 addend here, but in practice it has already been added
10123 because it was passed to constructor_callback. */
10124 addend += section->output_section->vma + section->output_offset;
10126 else if (h != NULL)
10128 /* Setting the index to -2 tells elf_link_output_extsym that
10129 this symbol is used by a reloc. */
10130 h->indx = -2;
10131 *rel_hash_ptr = h;
10132 indx = 0;
10134 else
10136 if (! ((*info->callbacks->unattached_reloc)
10137 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10138 return FALSE;
10139 indx = 0;
10143 /* If this is an inplace reloc, we must write the addend into the
10144 object file. */
10145 if (howto->partial_inplace && addend != 0)
10147 bfd_size_type size;
10148 bfd_reloc_status_type rstat;
10149 bfd_byte *buf;
10150 bfd_boolean ok;
10151 const char *sym_name;
10153 size = (bfd_size_type) bfd_get_reloc_size (howto);
10154 buf = (bfd_byte *) bfd_zmalloc (size);
10155 if (buf == NULL)
10156 return FALSE;
10157 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10158 switch (rstat)
10160 case bfd_reloc_ok:
10161 break;
10163 default:
10164 case bfd_reloc_outofrange:
10165 abort ();
10167 case bfd_reloc_overflow:
10168 if (link_order->type == bfd_section_reloc_link_order)
10169 sym_name = bfd_section_name (output_bfd,
10170 link_order->u.reloc.p->u.section);
10171 else
10172 sym_name = link_order->u.reloc.p->u.name;
10173 if (! ((*info->callbacks->reloc_overflow)
10174 (info, NULL, sym_name, howto->name, addend, NULL,
10175 NULL, (bfd_vma) 0)))
10177 free (buf);
10178 return FALSE;
10180 break;
10182 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10183 link_order->offset, size);
10184 free (buf);
10185 if (! ok)
10186 return FALSE;
10189 /* The address of a reloc is relative to the section in a
10190 relocatable file, and is a virtual address in an executable
10191 file. */
10192 offset = link_order->offset;
10193 if (! info->relocatable)
10194 offset += output_section->vma;
10196 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10198 irel[i].r_offset = offset;
10199 irel[i].r_info = 0;
10200 irel[i].r_addend = 0;
10202 if (bed->s->arch_size == 32)
10203 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10204 else
10205 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10207 rel_hdr = reldata->hdr;
10208 erel = rel_hdr->contents;
10209 if (rel_hdr->sh_type == SHT_REL)
10211 erel += reldata->count * bed->s->sizeof_rel;
10212 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10214 else
10216 irel[0].r_addend = addend;
10217 erel += reldata->count * bed->s->sizeof_rela;
10218 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10221 ++reldata->count;
10223 return TRUE;
10227 /* Get the output vma of the section pointed to by the sh_link field. */
10229 static bfd_vma
10230 elf_get_linked_section_vma (struct bfd_link_order *p)
10232 Elf_Internal_Shdr **elf_shdrp;
10233 asection *s;
10234 int elfsec;
10236 s = p->u.indirect.section;
10237 elf_shdrp = elf_elfsections (s->owner);
10238 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10239 elfsec = elf_shdrp[elfsec]->sh_link;
10240 /* PR 290:
10241 The Intel C compiler generates SHT_IA_64_UNWIND with
10242 SHF_LINK_ORDER. But it doesn't set the sh_link or
10243 sh_info fields. Hence we could get the situation
10244 where elfsec is 0. */
10245 if (elfsec == 0)
10247 const struct elf_backend_data *bed
10248 = get_elf_backend_data (s->owner);
10249 if (bed->link_order_error_handler)
10250 bed->link_order_error_handler
10251 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10252 return 0;
10254 else
10256 s = elf_shdrp[elfsec]->bfd_section;
10257 return s->output_section->vma + s->output_offset;
10262 /* Compare two sections based on the locations of the sections they are
10263 linked to. Used by elf_fixup_link_order. */
10265 static int
10266 compare_link_order (const void * a, const void * b)
10268 bfd_vma apos;
10269 bfd_vma bpos;
10271 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10272 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10273 if (apos < bpos)
10274 return -1;
10275 return apos > bpos;
10279 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10280 order as their linked sections. Returns false if this could not be done
10281 because an output section includes both ordered and unordered
10282 sections. Ideally we'd do this in the linker proper. */
10284 static bfd_boolean
10285 elf_fixup_link_order (bfd *abfd, asection *o)
10287 int seen_linkorder;
10288 int seen_other;
10289 int n;
10290 struct bfd_link_order *p;
10291 bfd *sub;
10292 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10293 unsigned elfsec;
10294 struct bfd_link_order **sections;
10295 asection *s, *other_sec, *linkorder_sec;
10296 bfd_vma offset;
10298 other_sec = NULL;
10299 linkorder_sec = NULL;
10300 seen_other = 0;
10301 seen_linkorder = 0;
10302 for (p = o->map_head.link_order; p != NULL; p = p->next)
10304 if (p->type == bfd_indirect_link_order)
10306 s = p->u.indirect.section;
10307 sub = s->owner;
10308 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10309 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10310 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10311 && elfsec < elf_numsections (sub)
10312 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10313 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10315 seen_linkorder++;
10316 linkorder_sec = s;
10318 else
10320 seen_other++;
10321 other_sec = s;
10324 else
10325 seen_other++;
10327 if (seen_other && seen_linkorder)
10329 if (other_sec && linkorder_sec)
10330 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10331 o, linkorder_sec,
10332 linkorder_sec->owner, other_sec,
10333 other_sec->owner);
10334 else
10335 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10337 bfd_set_error (bfd_error_bad_value);
10338 return FALSE;
10342 if (!seen_linkorder)
10343 return TRUE;
10345 sections = (struct bfd_link_order **)
10346 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10347 if (sections == NULL)
10348 return FALSE;
10349 seen_linkorder = 0;
10351 for (p = o->map_head.link_order; p != NULL; p = p->next)
10353 sections[seen_linkorder++] = p;
10355 /* Sort the input sections in the order of their linked section. */
10356 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10357 compare_link_order);
10359 /* Change the offsets of the sections. */
10360 offset = 0;
10361 for (n = 0; n < seen_linkorder; n++)
10363 s = sections[n]->u.indirect.section;
10364 offset &= ~(bfd_vma) 0 << s->alignment_power;
10365 s->output_offset = offset;
10366 sections[n]->offset = offset;
10367 /* FIXME: octets_per_byte. */
10368 offset += sections[n]->size;
10371 free (sections);
10372 return TRUE;
10375 static void
10376 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10378 asection *o;
10380 if (flinfo->symstrtab != NULL)
10381 _bfd_stringtab_free (flinfo->symstrtab);
10382 if (flinfo->contents != NULL)
10383 free (flinfo->contents);
10384 if (flinfo->external_relocs != NULL)
10385 free (flinfo->external_relocs);
10386 if (flinfo->internal_relocs != NULL)
10387 free (flinfo->internal_relocs);
10388 if (flinfo->external_syms != NULL)
10389 free (flinfo->external_syms);
10390 if (flinfo->locsym_shndx != NULL)
10391 free (flinfo->locsym_shndx);
10392 if (flinfo->internal_syms != NULL)
10393 free (flinfo->internal_syms);
10394 if (flinfo->indices != NULL)
10395 free (flinfo->indices);
10396 if (flinfo->sections != NULL)
10397 free (flinfo->sections);
10398 if (flinfo->symbuf != NULL)
10399 free (flinfo->symbuf);
10400 if (flinfo->symshndxbuf != NULL)
10401 free (flinfo->symshndxbuf);
10402 for (o = obfd->sections; o != NULL; o = o->next)
10404 struct bfd_elf_section_data *esdo = elf_section_data (o);
10405 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10406 free (esdo->rel.hashes);
10407 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10408 free (esdo->rela.hashes);
10412 /* Do the final step of an ELF link. */
10414 bfd_boolean
10415 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10417 bfd_boolean dynamic;
10418 bfd_boolean emit_relocs;
10419 bfd *dynobj;
10420 struct elf_final_link_info flinfo;
10421 asection *o;
10422 struct bfd_link_order *p;
10423 bfd *sub;
10424 bfd_size_type max_contents_size;
10425 bfd_size_type max_external_reloc_size;
10426 bfd_size_type max_internal_reloc_count;
10427 bfd_size_type max_sym_count;
10428 bfd_size_type max_sym_shndx_count;
10429 file_ptr off;
10430 Elf_Internal_Sym elfsym;
10431 unsigned int i;
10432 Elf_Internal_Shdr *symtab_hdr;
10433 Elf_Internal_Shdr *symtab_shndx_hdr;
10434 Elf_Internal_Shdr *symstrtab_hdr;
10435 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10436 struct elf_outext_info eoinfo;
10437 bfd_boolean merged;
10438 size_t relativecount = 0;
10439 asection *reldyn = 0;
10440 bfd_size_type amt;
10441 asection *attr_section = NULL;
10442 bfd_vma attr_size = 0;
10443 const char *std_attrs_section;
10445 if (! is_elf_hash_table (info->hash))
10446 return FALSE;
10448 if (info->shared)
10449 abfd->flags |= DYNAMIC;
10451 dynamic = elf_hash_table (info)->dynamic_sections_created;
10452 dynobj = elf_hash_table (info)->dynobj;
10454 emit_relocs = (info->relocatable
10455 || info->emitrelocations);
10457 flinfo.info = info;
10458 flinfo.output_bfd = abfd;
10459 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10460 if (flinfo.symstrtab == NULL)
10461 return FALSE;
10463 if (! dynamic)
10465 flinfo.dynsym_sec = NULL;
10466 flinfo.hash_sec = NULL;
10467 flinfo.symver_sec = NULL;
10469 else
10471 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10472 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10473 /* Note that dynsym_sec can be NULL (on VMS). */
10474 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10475 /* Note that it is OK if symver_sec is NULL. */
10478 flinfo.contents = NULL;
10479 flinfo.external_relocs = NULL;
10480 flinfo.internal_relocs = NULL;
10481 flinfo.external_syms = NULL;
10482 flinfo.locsym_shndx = NULL;
10483 flinfo.internal_syms = NULL;
10484 flinfo.indices = NULL;
10485 flinfo.sections = NULL;
10486 flinfo.symbuf = NULL;
10487 flinfo.symshndxbuf = NULL;
10488 flinfo.symbuf_count = 0;
10489 flinfo.shndxbuf_size = 0;
10490 flinfo.filesym_count = 0;
10492 /* The object attributes have been merged. Remove the input
10493 sections from the link, and set the contents of the output
10494 secton. */
10495 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10496 for (o = abfd->sections; o != NULL; o = o->next)
10498 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10499 || strcmp (o->name, ".gnu.attributes") == 0)
10501 for (p = o->map_head.link_order; p != NULL; p = p->next)
10503 asection *input_section;
10505 if (p->type != bfd_indirect_link_order)
10506 continue;
10507 input_section = p->u.indirect.section;
10508 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10509 elf_link_input_bfd ignores this section. */
10510 input_section->flags &= ~SEC_HAS_CONTENTS;
10513 attr_size = bfd_elf_obj_attr_size (abfd);
10514 if (attr_size)
10516 bfd_set_section_size (abfd, o, attr_size);
10517 attr_section = o;
10518 /* Skip this section later on. */
10519 o->map_head.link_order = NULL;
10521 else
10522 o->flags |= SEC_EXCLUDE;
10526 /* Count up the number of relocations we will output for each output
10527 section, so that we know the sizes of the reloc sections. We
10528 also figure out some maximum sizes. */
10529 max_contents_size = 0;
10530 max_external_reloc_size = 0;
10531 max_internal_reloc_count = 0;
10532 max_sym_count = 0;
10533 max_sym_shndx_count = 0;
10534 merged = FALSE;
10535 for (o = abfd->sections; o != NULL; o = o->next)
10537 struct bfd_elf_section_data *esdo = elf_section_data (o);
10538 o->reloc_count = 0;
10540 for (p = o->map_head.link_order; p != NULL; p = p->next)
10542 unsigned int reloc_count = 0;
10543 struct bfd_elf_section_data *esdi = NULL;
10545 if (p->type == bfd_section_reloc_link_order
10546 || p->type == bfd_symbol_reloc_link_order)
10547 reloc_count = 1;
10548 else if (p->type == bfd_indirect_link_order)
10550 asection *sec;
10552 sec = p->u.indirect.section;
10553 esdi = elf_section_data (sec);
10555 /* Mark all sections which are to be included in the
10556 link. This will normally be every section. We need
10557 to do this so that we can identify any sections which
10558 the linker has decided to not include. */
10559 sec->linker_mark = TRUE;
10561 if (sec->flags & SEC_MERGE)
10562 merged = TRUE;
10564 if (esdo->this_hdr.sh_type == SHT_REL
10565 || esdo->this_hdr.sh_type == SHT_RELA)
10566 /* Some backends use reloc_count in relocation sections
10567 to count particular types of relocs. Of course,
10568 reloc sections themselves can't have relocations. */
10569 reloc_count = 0;
10570 else if (info->relocatable || info->emitrelocations)
10571 reloc_count = sec->reloc_count;
10572 else if (bed->elf_backend_count_relocs)
10573 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10575 if (sec->rawsize > max_contents_size)
10576 max_contents_size = sec->rawsize;
10577 if (sec->size > max_contents_size)
10578 max_contents_size = sec->size;
10580 /* We are interested in just local symbols, not all
10581 symbols. */
10582 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10583 && (sec->owner->flags & DYNAMIC) == 0)
10585 size_t sym_count;
10587 if (elf_bad_symtab (sec->owner))
10588 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10589 / bed->s->sizeof_sym);
10590 else
10591 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10593 if (sym_count > max_sym_count)
10594 max_sym_count = sym_count;
10596 if (sym_count > max_sym_shndx_count
10597 && elf_symtab_shndx (sec->owner) != 0)
10598 max_sym_shndx_count = sym_count;
10600 if ((sec->flags & SEC_RELOC) != 0)
10602 size_t ext_size = 0;
10604 if (esdi->rel.hdr != NULL)
10605 ext_size = esdi->rel.hdr->sh_size;
10606 if (esdi->rela.hdr != NULL)
10607 ext_size += esdi->rela.hdr->sh_size;
10609 if (ext_size > max_external_reloc_size)
10610 max_external_reloc_size = ext_size;
10611 if (sec->reloc_count > max_internal_reloc_count)
10612 max_internal_reloc_count = sec->reloc_count;
10617 if (reloc_count == 0)
10618 continue;
10620 o->reloc_count += reloc_count;
10622 if (p->type == bfd_indirect_link_order
10623 && (info->relocatable || info->emitrelocations))
10625 if (esdi->rel.hdr)
10626 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10627 if (esdi->rela.hdr)
10628 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10630 else
10632 if (o->use_rela_p)
10633 esdo->rela.count += reloc_count;
10634 else
10635 esdo->rel.count += reloc_count;
10639 if (o->reloc_count > 0)
10640 o->flags |= SEC_RELOC;
10641 else
10643 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10644 set it (this is probably a bug) and if it is set
10645 assign_section_numbers will create a reloc section. */
10646 o->flags &=~ SEC_RELOC;
10649 /* If the SEC_ALLOC flag is not set, force the section VMA to
10650 zero. This is done in elf_fake_sections as well, but forcing
10651 the VMA to 0 here will ensure that relocs against these
10652 sections are handled correctly. */
10653 if ((o->flags & SEC_ALLOC) == 0
10654 && ! o->user_set_vma)
10655 o->vma = 0;
10658 if (! info->relocatable && merged)
10659 elf_link_hash_traverse (elf_hash_table (info),
10660 _bfd_elf_link_sec_merge_syms, abfd);
10662 /* Figure out the file positions for everything but the symbol table
10663 and the relocs. We set symcount to force assign_section_numbers
10664 to create a symbol table. */
10665 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10666 BFD_ASSERT (! abfd->output_has_begun);
10667 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10668 goto error_return;
10670 /* Set sizes, and assign file positions for reloc sections. */
10671 for (o = abfd->sections; o != NULL; o = o->next)
10673 struct bfd_elf_section_data *esdo = elf_section_data (o);
10674 if ((o->flags & SEC_RELOC) != 0)
10676 if (esdo->rel.hdr
10677 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10678 goto error_return;
10680 if (esdo->rela.hdr
10681 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10682 goto error_return;
10685 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10686 to count upwards while actually outputting the relocations. */
10687 esdo->rel.count = 0;
10688 esdo->rela.count = 0;
10691 _bfd_elf_assign_file_positions_for_relocs (abfd);
10693 /* We have now assigned file positions for all the sections except
10694 .symtab and .strtab. We start the .symtab section at the current
10695 file position, and write directly to it. We build the .strtab
10696 section in memory. */
10697 bfd_get_symcount (abfd) = 0;
10698 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10699 /* sh_name is set in prep_headers. */
10700 symtab_hdr->sh_type = SHT_SYMTAB;
10701 /* sh_flags, sh_addr and sh_size all start off zero. */
10702 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10703 /* sh_link is set in assign_section_numbers. */
10704 /* sh_info is set below. */
10705 /* sh_offset is set just below. */
10706 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10708 off = elf_next_file_pos (abfd);
10709 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10711 /* Note that at this point elf_next_file_pos (abfd) is
10712 incorrect. We do not yet know the size of the .symtab section.
10713 We correct next_file_pos below, after we do know the size. */
10715 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10716 continuously seeking to the right position in the file. */
10717 if (! info->keep_memory || max_sym_count < 20)
10718 flinfo.symbuf_size = 20;
10719 else
10720 flinfo.symbuf_size = max_sym_count;
10721 amt = flinfo.symbuf_size;
10722 amt *= bed->s->sizeof_sym;
10723 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10724 if (flinfo.symbuf == NULL)
10725 goto error_return;
10726 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10728 /* Wild guess at number of output symbols. realloc'd as needed. */
10729 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10730 flinfo.shndxbuf_size = amt;
10731 amt *= sizeof (Elf_External_Sym_Shndx);
10732 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10733 if (flinfo.symshndxbuf == NULL)
10734 goto error_return;
10737 /* Start writing out the symbol table. The first symbol is always a
10738 dummy symbol. */
10739 if (info->strip != strip_all
10740 || emit_relocs)
10742 elfsym.st_value = 0;
10743 elfsym.st_size = 0;
10744 elfsym.st_info = 0;
10745 elfsym.st_other = 0;
10746 elfsym.st_shndx = SHN_UNDEF;
10747 elfsym.st_target_internal = 0;
10748 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10749 NULL) != 1)
10750 goto error_return;
10753 /* Output a symbol for each section. We output these even if we are
10754 discarding local symbols, since they are used for relocs. These
10755 symbols have no names. We store the index of each one in the
10756 index field of the section, so that we can find it again when
10757 outputting relocs. */
10758 if (info->strip != strip_all
10759 || emit_relocs)
10761 elfsym.st_size = 0;
10762 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10763 elfsym.st_other = 0;
10764 elfsym.st_value = 0;
10765 elfsym.st_target_internal = 0;
10766 for (i = 1; i < elf_numsections (abfd); i++)
10768 o = bfd_section_from_elf_index (abfd, i);
10769 if (o != NULL)
10771 o->target_index = bfd_get_symcount (abfd);
10772 elfsym.st_shndx = i;
10773 if (!info->relocatable)
10774 elfsym.st_value = o->vma;
10775 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10776 goto error_return;
10781 /* Allocate some memory to hold information read in from the input
10782 files. */
10783 if (max_contents_size != 0)
10785 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10786 if (flinfo.contents == NULL)
10787 goto error_return;
10790 if (max_external_reloc_size != 0)
10792 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10793 if (flinfo.external_relocs == NULL)
10794 goto error_return;
10797 if (max_internal_reloc_count != 0)
10799 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10800 amt *= sizeof (Elf_Internal_Rela);
10801 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10802 if (flinfo.internal_relocs == NULL)
10803 goto error_return;
10806 if (max_sym_count != 0)
10808 amt = max_sym_count * bed->s->sizeof_sym;
10809 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10810 if (flinfo.external_syms == NULL)
10811 goto error_return;
10813 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10814 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10815 if (flinfo.internal_syms == NULL)
10816 goto error_return;
10818 amt = max_sym_count * sizeof (long);
10819 flinfo.indices = (long int *) bfd_malloc (amt);
10820 if (flinfo.indices == NULL)
10821 goto error_return;
10823 amt = max_sym_count * sizeof (asection *);
10824 flinfo.sections = (asection **) bfd_malloc (amt);
10825 if (flinfo.sections == NULL)
10826 goto error_return;
10829 if (max_sym_shndx_count != 0)
10831 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10832 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10833 if (flinfo.locsym_shndx == NULL)
10834 goto error_return;
10837 if (elf_hash_table (info)->tls_sec)
10839 bfd_vma base, end = 0;
10840 asection *sec;
10842 for (sec = elf_hash_table (info)->tls_sec;
10843 sec && (sec->flags & SEC_THREAD_LOCAL);
10844 sec = sec->next)
10846 bfd_size_type size = sec->size;
10848 if (size == 0
10849 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10851 struct bfd_link_order *ord = sec->map_tail.link_order;
10853 if (ord != NULL)
10854 size = ord->offset + ord->size;
10856 end = sec->vma + size;
10858 base = elf_hash_table (info)->tls_sec->vma;
10859 /* Only align end of TLS section if static TLS doesn't have special
10860 alignment requirements. */
10861 if (bed->static_tls_alignment == 1)
10862 end = align_power (end,
10863 elf_hash_table (info)->tls_sec->alignment_power);
10864 elf_hash_table (info)->tls_size = end - base;
10867 /* Reorder SHF_LINK_ORDER sections. */
10868 for (o = abfd->sections; o != NULL; o = o->next)
10870 if (!elf_fixup_link_order (abfd, o))
10871 return FALSE;
10874 /* Since ELF permits relocations to be against local symbols, we
10875 must have the local symbols available when we do the relocations.
10876 Since we would rather only read the local symbols once, and we
10877 would rather not keep them in memory, we handle all the
10878 relocations for a single input file at the same time.
10880 Unfortunately, there is no way to know the total number of local
10881 symbols until we have seen all of them, and the local symbol
10882 indices precede the global symbol indices. This means that when
10883 we are generating relocatable output, and we see a reloc against
10884 a global symbol, we can not know the symbol index until we have
10885 finished examining all the local symbols to see which ones we are
10886 going to output. To deal with this, we keep the relocations in
10887 memory, and don't output them until the end of the link. This is
10888 an unfortunate waste of memory, but I don't see a good way around
10889 it. Fortunately, it only happens when performing a relocatable
10890 link, which is not the common case. FIXME: If keep_memory is set
10891 we could write the relocs out and then read them again; I don't
10892 know how bad the memory loss will be. */
10894 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10895 sub->output_has_begun = FALSE;
10896 for (o = abfd->sections; o != NULL; o = o->next)
10898 for (p = o->map_head.link_order; p != NULL; p = p->next)
10900 if (p->type == bfd_indirect_link_order
10901 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10902 == bfd_target_elf_flavour)
10903 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10905 if (! sub->output_has_begun)
10907 if (! elf_link_input_bfd (&flinfo, sub))
10908 goto error_return;
10909 sub->output_has_begun = TRUE;
10912 else if (p->type == bfd_section_reloc_link_order
10913 || p->type == bfd_symbol_reloc_link_order)
10915 if (! elf_reloc_link_order (abfd, info, o, p))
10916 goto error_return;
10918 else
10920 if (! _bfd_default_link_order (abfd, info, o, p))
10922 if (p->type == bfd_indirect_link_order
10923 && (bfd_get_flavour (sub)
10924 == bfd_target_elf_flavour)
10925 && (elf_elfheader (sub)->e_ident[EI_CLASS]
10926 != bed->s->elfclass))
10928 const char *iclass, *oclass;
10930 if (bed->s->elfclass == ELFCLASS64)
10932 iclass = "ELFCLASS32";
10933 oclass = "ELFCLASS64";
10935 else
10937 iclass = "ELFCLASS64";
10938 oclass = "ELFCLASS32";
10941 bfd_set_error (bfd_error_wrong_format);
10942 (*_bfd_error_handler)
10943 (_("%B: file class %s incompatible with %s"),
10944 sub, iclass, oclass);
10947 goto error_return;
10953 /* Free symbol buffer if needed. */
10954 if (!info->reduce_memory_overheads)
10956 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10957 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10958 && elf_tdata (sub)->symbuf)
10960 free (elf_tdata (sub)->symbuf);
10961 elf_tdata (sub)->symbuf = NULL;
10965 /* Output a FILE symbol so that following locals are not associated
10966 with the wrong input file. */
10967 memset (&elfsym, 0, sizeof (elfsym));
10968 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10969 elfsym.st_shndx = SHN_ABS;
10971 if (flinfo.filesym_count > 1
10972 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
10973 bfd_und_section_ptr, NULL))
10974 return FALSE;
10976 /* Output any global symbols that got converted to local in a
10977 version script or due to symbol visibility. We do this in a
10978 separate step since ELF requires all local symbols to appear
10979 prior to any global symbols. FIXME: We should only do this if
10980 some global symbols were, in fact, converted to become local.
10981 FIXME: Will this work correctly with the Irix 5 linker? */
10982 eoinfo.failed = FALSE;
10983 eoinfo.flinfo = &flinfo;
10984 eoinfo.localsyms = TRUE;
10985 eoinfo.need_second_pass = FALSE;
10986 eoinfo.second_pass = FALSE;
10987 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
10988 if (eoinfo.failed)
10989 return FALSE;
10991 if (flinfo.filesym_count == 1
10992 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
10993 bfd_und_section_ptr, NULL))
10994 return FALSE;
10996 if (eoinfo.need_second_pass)
10998 eoinfo.second_pass = TRUE;
10999 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11000 if (eoinfo.failed)
11001 return FALSE;
11004 /* If backend needs to output some local symbols not present in the hash
11005 table, do it now. */
11006 if (bed->elf_backend_output_arch_local_syms)
11008 typedef int (*out_sym_func)
11009 (void *, const char *, Elf_Internal_Sym *, asection *,
11010 struct elf_link_hash_entry *);
11012 if (! ((*bed->elf_backend_output_arch_local_syms)
11013 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11014 return FALSE;
11017 /* That wrote out all the local symbols. Finish up the symbol table
11018 with the global symbols. Even if we want to strip everything we
11019 can, we still need to deal with those global symbols that got
11020 converted to local in a version script. */
11022 /* The sh_info field records the index of the first non local symbol. */
11023 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11025 if (dynamic
11026 && flinfo.dynsym_sec != NULL
11027 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11029 Elf_Internal_Sym sym;
11030 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11031 long last_local = 0;
11033 /* Write out the section symbols for the output sections. */
11034 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11036 asection *s;
11038 sym.st_size = 0;
11039 sym.st_name = 0;
11040 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11041 sym.st_other = 0;
11042 sym.st_target_internal = 0;
11044 for (s = abfd->sections; s != NULL; s = s->next)
11046 int indx;
11047 bfd_byte *dest;
11048 long dynindx;
11050 dynindx = elf_section_data (s)->dynindx;
11051 if (dynindx <= 0)
11052 continue;
11053 indx = elf_section_data (s)->this_idx;
11054 BFD_ASSERT (indx > 0);
11055 sym.st_shndx = indx;
11056 if (! check_dynsym (abfd, &sym))
11057 return FALSE;
11058 sym.st_value = s->vma;
11059 dest = dynsym + dynindx * bed->s->sizeof_sym;
11060 if (last_local < dynindx)
11061 last_local = dynindx;
11062 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11066 /* Write out the local dynsyms. */
11067 if (elf_hash_table (info)->dynlocal)
11069 struct elf_link_local_dynamic_entry *e;
11070 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11072 asection *s;
11073 bfd_byte *dest;
11075 /* Copy the internal symbol and turn off visibility.
11076 Note that we saved a word of storage and overwrote
11077 the original st_name with the dynstr_index. */
11078 sym = e->isym;
11079 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11081 s = bfd_section_from_elf_index (e->input_bfd,
11082 e->isym.st_shndx);
11083 if (s != NULL)
11085 sym.st_shndx =
11086 elf_section_data (s->output_section)->this_idx;
11087 if (! check_dynsym (abfd, &sym))
11088 return FALSE;
11089 sym.st_value = (s->output_section->vma
11090 + s->output_offset
11091 + e->isym.st_value);
11094 if (last_local < e->dynindx)
11095 last_local = e->dynindx;
11097 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11098 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11102 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11103 last_local + 1;
11106 /* We get the global symbols from the hash table. */
11107 eoinfo.failed = FALSE;
11108 eoinfo.localsyms = FALSE;
11109 eoinfo.flinfo = &flinfo;
11110 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11111 if (eoinfo.failed)
11112 return FALSE;
11114 /* If backend needs to output some symbols not present in the hash
11115 table, do it now. */
11116 if (bed->elf_backend_output_arch_syms)
11118 typedef int (*out_sym_func)
11119 (void *, const char *, Elf_Internal_Sym *, asection *,
11120 struct elf_link_hash_entry *);
11122 if (! ((*bed->elf_backend_output_arch_syms)
11123 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11124 return FALSE;
11127 /* Flush all symbols to the file. */
11128 if (! elf_link_flush_output_syms (&flinfo, bed))
11129 return FALSE;
11131 /* Now we know the size of the symtab section. */
11132 off += symtab_hdr->sh_size;
11134 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11135 if (symtab_shndx_hdr->sh_name != 0)
11137 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11138 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11139 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11140 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11141 symtab_shndx_hdr->sh_size = amt;
11143 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11144 off, TRUE);
11146 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11147 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11148 return FALSE;
11152 /* Finish up and write out the symbol string table (.strtab)
11153 section. */
11154 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11155 /* sh_name was set in prep_headers. */
11156 symstrtab_hdr->sh_type = SHT_STRTAB;
11157 symstrtab_hdr->sh_flags = 0;
11158 symstrtab_hdr->sh_addr = 0;
11159 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11160 symstrtab_hdr->sh_entsize = 0;
11161 symstrtab_hdr->sh_link = 0;
11162 symstrtab_hdr->sh_info = 0;
11163 /* sh_offset is set just below. */
11164 symstrtab_hdr->sh_addralign = 1;
11166 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
11167 elf_next_file_pos (abfd) = off;
11169 if (bfd_get_symcount (abfd) > 0)
11171 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11172 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11173 return FALSE;
11176 /* Adjust the relocs to have the correct symbol indices. */
11177 for (o = abfd->sections; o != NULL; o = o->next)
11179 struct bfd_elf_section_data *esdo = elf_section_data (o);
11180 if ((o->flags & SEC_RELOC) == 0)
11181 continue;
11183 if (esdo->rel.hdr != NULL)
11184 elf_link_adjust_relocs (abfd, &esdo->rel);
11185 if (esdo->rela.hdr != NULL)
11186 elf_link_adjust_relocs (abfd, &esdo->rela);
11188 /* Set the reloc_count field to 0 to prevent write_relocs from
11189 trying to swap the relocs out itself. */
11190 o->reloc_count = 0;
11193 if (dynamic && info->combreloc && dynobj != NULL)
11194 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11196 /* If we are linking against a dynamic object, or generating a
11197 shared library, finish up the dynamic linking information. */
11198 if (dynamic)
11200 bfd_byte *dyncon, *dynconend;
11202 /* Fix up .dynamic entries. */
11203 o = bfd_get_linker_section (dynobj, ".dynamic");
11204 BFD_ASSERT (o != NULL);
11206 dyncon = o->contents;
11207 dynconend = o->contents + o->size;
11208 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11210 Elf_Internal_Dyn dyn;
11211 const char *name;
11212 unsigned int type;
11214 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11216 switch (dyn.d_tag)
11218 default:
11219 continue;
11220 case DT_NULL:
11221 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11223 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11225 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11226 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11227 default: continue;
11229 dyn.d_un.d_val = relativecount;
11230 relativecount = 0;
11231 break;
11233 continue;
11235 case DT_INIT:
11236 name = info->init_function;
11237 goto get_sym;
11238 case DT_FINI:
11239 name = info->fini_function;
11240 get_sym:
11242 struct elf_link_hash_entry *h;
11244 h = elf_link_hash_lookup (elf_hash_table (info), name,
11245 FALSE, FALSE, TRUE);
11246 if (h != NULL
11247 && (h->root.type == bfd_link_hash_defined
11248 || h->root.type == bfd_link_hash_defweak))
11250 dyn.d_un.d_ptr = h->root.u.def.value;
11251 o = h->root.u.def.section;
11252 if (o->output_section != NULL)
11253 dyn.d_un.d_ptr += (o->output_section->vma
11254 + o->output_offset);
11255 else
11257 /* The symbol is imported from another shared
11258 library and does not apply to this one. */
11259 dyn.d_un.d_ptr = 0;
11261 break;
11264 continue;
11266 case DT_PREINIT_ARRAYSZ:
11267 name = ".preinit_array";
11268 goto get_size;
11269 case DT_INIT_ARRAYSZ:
11270 name = ".init_array";
11271 goto get_size;
11272 case DT_FINI_ARRAYSZ:
11273 name = ".fini_array";
11274 get_size:
11275 o = bfd_get_section_by_name (abfd, name);
11276 if (o == NULL)
11278 (*_bfd_error_handler)
11279 (_("%B: could not find output section %s"), abfd, name);
11280 goto error_return;
11282 if (o->size == 0)
11283 (*_bfd_error_handler)
11284 (_("warning: %s section has zero size"), name);
11285 dyn.d_un.d_val = o->size;
11286 break;
11288 case DT_PREINIT_ARRAY:
11289 name = ".preinit_array";
11290 goto get_vma;
11291 case DT_INIT_ARRAY:
11292 name = ".init_array";
11293 goto get_vma;
11294 case DT_FINI_ARRAY:
11295 name = ".fini_array";
11296 goto get_vma;
11298 case DT_HASH:
11299 name = ".hash";
11300 goto get_vma;
11301 case DT_GNU_HASH:
11302 name = ".gnu.hash";
11303 goto get_vma;
11304 case DT_STRTAB:
11305 name = ".dynstr";
11306 goto get_vma;
11307 case DT_SYMTAB:
11308 name = ".dynsym";
11309 goto get_vma;
11310 case DT_VERDEF:
11311 name = ".gnu.version_d";
11312 goto get_vma;
11313 case DT_VERNEED:
11314 name = ".gnu.version_r";
11315 goto get_vma;
11316 case DT_VERSYM:
11317 name = ".gnu.version";
11318 get_vma:
11319 o = bfd_get_section_by_name (abfd, name);
11320 if (o == NULL)
11322 (*_bfd_error_handler)
11323 (_("%B: could not find output section %s"), abfd, name);
11324 goto error_return;
11326 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11328 (*_bfd_error_handler)
11329 (_("warning: section '%s' is being made into a note"), name);
11330 bfd_set_error (bfd_error_nonrepresentable_section);
11331 goto error_return;
11333 dyn.d_un.d_ptr = o->vma;
11334 break;
11336 case DT_REL:
11337 case DT_RELA:
11338 case DT_RELSZ:
11339 case DT_RELASZ:
11340 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11341 type = SHT_REL;
11342 else
11343 type = SHT_RELA;
11344 dyn.d_un.d_val = 0;
11345 dyn.d_un.d_ptr = 0;
11346 for (i = 1; i < elf_numsections (abfd); i++)
11348 Elf_Internal_Shdr *hdr;
11350 hdr = elf_elfsections (abfd)[i];
11351 if (hdr->sh_type == type
11352 && (hdr->sh_flags & SHF_ALLOC) != 0)
11354 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11355 dyn.d_un.d_val += hdr->sh_size;
11356 else
11358 if (dyn.d_un.d_ptr == 0
11359 || hdr->sh_addr < dyn.d_un.d_ptr)
11360 dyn.d_un.d_ptr = hdr->sh_addr;
11364 break;
11366 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11370 /* If we have created any dynamic sections, then output them. */
11371 if (dynobj != NULL)
11373 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11374 goto error_return;
11376 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11377 if (((info->warn_shared_textrel && info->shared)
11378 || info->error_textrel)
11379 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11381 bfd_byte *dyncon, *dynconend;
11383 dyncon = o->contents;
11384 dynconend = o->contents + o->size;
11385 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11387 Elf_Internal_Dyn dyn;
11389 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11391 if (dyn.d_tag == DT_TEXTREL)
11393 if (info->error_textrel)
11394 info->callbacks->einfo
11395 (_("%P%X: read-only segment has dynamic relocations.\n"));
11396 else
11397 info->callbacks->einfo
11398 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11399 break;
11404 for (o = dynobj->sections; o != NULL; o = o->next)
11406 if ((o->flags & SEC_HAS_CONTENTS) == 0
11407 || o->size == 0
11408 || o->output_section == bfd_abs_section_ptr)
11409 continue;
11410 if ((o->flags & SEC_LINKER_CREATED) == 0)
11412 /* At this point, we are only interested in sections
11413 created by _bfd_elf_link_create_dynamic_sections. */
11414 continue;
11416 if (elf_hash_table (info)->stab_info.stabstr == o)
11417 continue;
11418 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11419 continue;
11420 if (strcmp (o->name, ".dynstr") != 0)
11422 /* FIXME: octets_per_byte. */
11423 if (! bfd_set_section_contents (abfd, o->output_section,
11424 o->contents,
11425 (file_ptr) o->output_offset,
11426 o->size))
11427 goto error_return;
11429 else
11431 /* The contents of the .dynstr section are actually in a
11432 stringtab. */
11433 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11434 if (bfd_seek (abfd, off, SEEK_SET) != 0
11435 || ! _bfd_elf_strtab_emit (abfd,
11436 elf_hash_table (info)->dynstr))
11437 goto error_return;
11442 if (info->relocatable)
11444 bfd_boolean failed = FALSE;
11446 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11447 if (failed)
11448 goto error_return;
11451 /* If we have optimized stabs strings, output them. */
11452 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11454 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11455 goto error_return;
11458 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11459 goto error_return;
11461 elf_final_link_free (abfd, &flinfo);
11463 elf_linker (abfd) = TRUE;
11465 if (attr_section)
11467 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11468 if (contents == NULL)
11469 return FALSE; /* Bail out and fail. */
11470 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11471 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11472 free (contents);
11475 return TRUE;
11477 error_return:
11478 elf_final_link_free (abfd, &flinfo);
11479 return FALSE;
11482 /* Initialize COOKIE for input bfd ABFD. */
11484 static bfd_boolean
11485 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11486 struct bfd_link_info *info, bfd *abfd)
11488 Elf_Internal_Shdr *symtab_hdr;
11489 const struct elf_backend_data *bed;
11491 bed = get_elf_backend_data (abfd);
11492 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11494 cookie->abfd = abfd;
11495 cookie->sym_hashes = elf_sym_hashes (abfd);
11496 cookie->bad_symtab = elf_bad_symtab (abfd);
11497 if (cookie->bad_symtab)
11499 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11500 cookie->extsymoff = 0;
11502 else
11504 cookie->locsymcount = symtab_hdr->sh_info;
11505 cookie->extsymoff = symtab_hdr->sh_info;
11508 if (bed->s->arch_size == 32)
11509 cookie->r_sym_shift = 8;
11510 else
11511 cookie->r_sym_shift = 32;
11513 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11514 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11516 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11517 cookie->locsymcount, 0,
11518 NULL, NULL, NULL);
11519 if (cookie->locsyms == NULL)
11521 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11522 return FALSE;
11524 if (info->keep_memory)
11525 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11527 return TRUE;
11530 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11532 static void
11533 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11535 Elf_Internal_Shdr *symtab_hdr;
11537 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11538 if (cookie->locsyms != NULL
11539 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11540 free (cookie->locsyms);
11543 /* Initialize the relocation information in COOKIE for input section SEC
11544 of input bfd ABFD. */
11546 static bfd_boolean
11547 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11548 struct bfd_link_info *info, bfd *abfd,
11549 asection *sec)
11551 const struct elf_backend_data *bed;
11553 if (sec->reloc_count == 0)
11555 cookie->rels = NULL;
11556 cookie->relend = NULL;
11558 else
11560 bed = get_elf_backend_data (abfd);
11562 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11563 info->keep_memory);
11564 if (cookie->rels == NULL)
11565 return FALSE;
11566 cookie->rel = cookie->rels;
11567 cookie->relend = (cookie->rels
11568 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11570 cookie->rel = cookie->rels;
11571 return TRUE;
11574 /* Free the memory allocated by init_reloc_cookie_rels,
11575 if appropriate. */
11577 static void
11578 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11579 asection *sec)
11581 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11582 free (cookie->rels);
11585 /* Initialize the whole of COOKIE for input section SEC. */
11587 static bfd_boolean
11588 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11589 struct bfd_link_info *info,
11590 asection *sec)
11592 if (!init_reloc_cookie (cookie, info, sec->owner))
11593 goto error1;
11594 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11595 goto error2;
11596 return TRUE;
11598 error2:
11599 fini_reloc_cookie (cookie, sec->owner);
11600 error1:
11601 return FALSE;
11604 /* Free the memory allocated by init_reloc_cookie_for_section,
11605 if appropriate. */
11607 static void
11608 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11609 asection *sec)
11611 fini_reloc_cookie_rels (cookie, sec);
11612 fini_reloc_cookie (cookie, sec->owner);
11615 /* Garbage collect unused sections. */
11617 /* Default gc_mark_hook. */
11619 asection *
11620 _bfd_elf_gc_mark_hook (asection *sec,
11621 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11622 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11623 struct elf_link_hash_entry *h,
11624 Elf_Internal_Sym *sym)
11626 const char *sec_name;
11628 if (h != NULL)
11630 switch (h->root.type)
11632 case bfd_link_hash_defined:
11633 case bfd_link_hash_defweak:
11634 return h->root.u.def.section;
11636 case bfd_link_hash_common:
11637 return h->root.u.c.p->section;
11639 case bfd_link_hash_undefined:
11640 case bfd_link_hash_undefweak:
11641 /* To work around a glibc bug, keep all XXX input sections
11642 when there is an as yet undefined reference to __start_XXX
11643 or __stop_XXX symbols. The linker will later define such
11644 symbols for orphan input sections that have a name
11645 representable as a C identifier. */
11646 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11647 sec_name = h->root.root.string + 8;
11648 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11649 sec_name = h->root.root.string + 7;
11650 else
11651 sec_name = NULL;
11653 if (sec_name && *sec_name != '\0')
11655 bfd *i;
11657 for (i = info->input_bfds; i; i = i->link_next)
11659 sec = bfd_get_section_by_name (i, sec_name);
11660 if (sec)
11661 sec->flags |= SEC_KEEP;
11664 break;
11666 default:
11667 break;
11670 else
11671 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11673 return NULL;
11676 /* COOKIE->rel describes a relocation against section SEC, which is
11677 a section we've decided to keep. Return the section that contains
11678 the relocation symbol, or NULL if no section contains it. */
11680 asection *
11681 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11682 elf_gc_mark_hook_fn gc_mark_hook,
11683 struct elf_reloc_cookie *cookie)
11685 unsigned long r_symndx;
11686 struct elf_link_hash_entry *h;
11688 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11689 if (r_symndx == STN_UNDEF)
11690 return NULL;
11692 if (r_symndx >= cookie->locsymcount
11693 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11695 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11696 while (h->root.type == bfd_link_hash_indirect
11697 || h->root.type == bfd_link_hash_warning)
11698 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11699 h->mark = 1;
11700 /* If this symbol is weak and there is a non-weak definition, we
11701 keep the non-weak definition because many backends put
11702 dynamic reloc info on the non-weak definition for code
11703 handling copy relocs. */
11704 if (h->u.weakdef != NULL)
11705 h->u.weakdef->mark = 1;
11706 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11709 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11710 &cookie->locsyms[r_symndx]);
11713 /* COOKIE->rel describes a relocation against section SEC, which is
11714 a section we've decided to keep. Mark the section that contains
11715 the relocation symbol. */
11717 bfd_boolean
11718 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11719 asection *sec,
11720 elf_gc_mark_hook_fn gc_mark_hook,
11721 struct elf_reloc_cookie *cookie)
11723 asection *rsec;
11725 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11726 if (rsec && !rsec->gc_mark)
11728 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11729 || (rsec->owner->flags & DYNAMIC) != 0)
11730 rsec->gc_mark = 1;
11731 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11732 return FALSE;
11734 return TRUE;
11737 /* The mark phase of garbage collection. For a given section, mark
11738 it and any sections in this section's group, and all the sections
11739 which define symbols to which it refers. */
11741 bfd_boolean
11742 _bfd_elf_gc_mark (struct bfd_link_info *info,
11743 asection *sec,
11744 elf_gc_mark_hook_fn gc_mark_hook)
11746 bfd_boolean ret;
11747 asection *group_sec, *eh_frame;
11749 sec->gc_mark = 1;
11751 /* Mark all the sections in the group. */
11752 group_sec = elf_section_data (sec)->next_in_group;
11753 if (group_sec && !group_sec->gc_mark)
11754 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11755 return FALSE;
11757 /* Look through the section relocs. */
11758 ret = TRUE;
11759 eh_frame = elf_eh_frame_section (sec->owner);
11760 if ((sec->flags & SEC_RELOC) != 0
11761 && sec->reloc_count > 0
11762 && sec != eh_frame)
11764 struct elf_reloc_cookie cookie;
11766 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11767 ret = FALSE;
11768 else
11770 for (; cookie.rel < cookie.relend; cookie.rel++)
11771 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11773 ret = FALSE;
11774 break;
11776 fini_reloc_cookie_for_section (&cookie, sec);
11780 if (ret && eh_frame && elf_fde_list (sec))
11782 struct elf_reloc_cookie cookie;
11784 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11785 ret = FALSE;
11786 else
11788 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11789 gc_mark_hook, &cookie))
11790 ret = FALSE;
11791 fini_reloc_cookie_for_section (&cookie, eh_frame);
11795 return ret;
11798 /* Keep debug and special sections. */
11800 bfd_boolean
11801 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11802 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11804 bfd *ibfd;
11806 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11808 asection *isec;
11809 bfd_boolean some_kept;
11810 bfd_boolean debug_frag_seen;
11812 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11813 continue;
11815 /* Ensure all linker created sections are kept,
11816 see if any other section is already marked,
11817 and note if we have any fragmented debug sections. */
11818 debug_frag_seen = some_kept = FALSE;
11819 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11821 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11822 isec->gc_mark = 1;
11823 else if (isec->gc_mark)
11824 some_kept = TRUE;
11826 if (debug_frag_seen == FALSE
11827 && (isec->flags & SEC_DEBUGGING)
11828 && CONST_STRNEQ (isec->name, ".debug_line."))
11829 debug_frag_seen = TRUE;
11832 /* If no section in this file will be kept, then we can
11833 toss out the debug and special sections. */
11834 if (!some_kept)
11835 continue;
11837 /* Keep debug and special sections like .comment when they are
11838 not part of a group, or when we have single-member groups. */
11839 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11840 if ((elf_next_in_group (isec) == NULL
11841 || elf_next_in_group (isec) == isec)
11842 && ((isec->flags & SEC_DEBUGGING) != 0
11843 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11844 isec->gc_mark = 1;
11846 if (! debug_frag_seen)
11847 continue;
11849 /* Look for CODE sections which are going to be discarded,
11850 and find and discard any fragmented debug sections which
11851 are associated with that code section. */
11852 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11853 if ((isec->flags & SEC_CODE) != 0
11854 && isec->gc_mark == 0)
11856 unsigned int ilen;
11857 asection *dsec;
11859 ilen = strlen (isec->name);
11861 /* Association is determined by the name of the debug section
11862 containing the name of the code section as a suffix. For
11863 example .debug_line.text.foo is a debug section associated
11864 with .text.foo. */
11865 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
11867 unsigned int dlen;
11869 if (dsec->gc_mark == 0
11870 || (dsec->flags & SEC_DEBUGGING) == 0)
11871 continue;
11873 dlen = strlen (dsec->name);
11875 if (dlen > ilen
11876 && strncmp (dsec->name + (dlen - ilen),
11877 isec->name, ilen) == 0)
11879 dsec->gc_mark = 0;
11880 break;
11885 return TRUE;
11888 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11890 struct elf_gc_sweep_symbol_info
11892 struct bfd_link_info *info;
11893 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11894 bfd_boolean);
11897 static bfd_boolean
11898 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11900 if (!h->mark
11901 && (((h->root.type == bfd_link_hash_defined
11902 || h->root.type == bfd_link_hash_defweak)
11903 && !(h->def_regular
11904 && h->root.u.def.section->gc_mark))
11905 || h->root.type == bfd_link_hash_undefined
11906 || h->root.type == bfd_link_hash_undefweak))
11908 struct elf_gc_sweep_symbol_info *inf;
11910 inf = (struct elf_gc_sweep_symbol_info *) data;
11911 (*inf->hide_symbol) (inf->info, h, TRUE);
11912 h->def_regular = 0;
11913 h->ref_regular = 0;
11914 h->ref_regular_nonweak = 0;
11917 return TRUE;
11920 /* The sweep phase of garbage collection. Remove all garbage sections. */
11922 typedef bfd_boolean (*gc_sweep_hook_fn)
11923 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11925 static bfd_boolean
11926 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11928 bfd *sub;
11929 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11930 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11931 unsigned long section_sym_count;
11932 struct elf_gc_sweep_symbol_info sweep_info;
11934 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11936 asection *o;
11938 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11939 continue;
11941 for (o = sub->sections; o != NULL; o = o->next)
11943 /* When any section in a section group is kept, we keep all
11944 sections in the section group. If the first member of
11945 the section group is excluded, we will also exclude the
11946 group section. */
11947 if (o->flags & SEC_GROUP)
11949 asection *first = elf_next_in_group (o);
11950 o->gc_mark = first->gc_mark;
11953 if (o->gc_mark)
11954 continue;
11956 /* Skip sweeping sections already excluded. */
11957 if (o->flags & SEC_EXCLUDE)
11958 continue;
11960 /* Since this is early in the link process, it is simple
11961 to remove a section from the output. */
11962 o->flags |= SEC_EXCLUDE;
11964 if (info->print_gc_sections && o->size != 0)
11965 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11967 /* But we also have to update some of the relocation
11968 info we collected before. */
11969 if (gc_sweep_hook
11970 && (o->flags & SEC_RELOC) != 0
11971 && o->reloc_count > 0
11972 && !bfd_is_abs_section (o->output_section))
11974 Elf_Internal_Rela *internal_relocs;
11975 bfd_boolean r;
11977 internal_relocs
11978 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11979 info->keep_memory);
11980 if (internal_relocs == NULL)
11981 return FALSE;
11983 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11985 if (elf_section_data (o)->relocs != internal_relocs)
11986 free (internal_relocs);
11988 if (!r)
11989 return FALSE;
11994 /* Remove the symbols that were in the swept sections from the dynamic
11995 symbol table. GCFIXME: Anyone know how to get them out of the
11996 static symbol table as well? */
11997 sweep_info.info = info;
11998 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11999 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12000 &sweep_info);
12002 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12003 return TRUE;
12006 /* Propagate collected vtable information. This is called through
12007 elf_link_hash_traverse. */
12009 static bfd_boolean
12010 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12012 /* Those that are not vtables. */
12013 if (h->vtable == NULL || h->vtable->parent == NULL)
12014 return TRUE;
12016 /* Those vtables that do not have parents, we cannot merge. */
12017 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12018 return TRUE;
12020 /* If we've already been done, exit. */
12021 if (h->vtable->used && h->vtable->used[-1])
12022 return TRUE;
12024 /* Make sure the parent's table is up to date. */
12025 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12027 if (h->vtable->used == NULL)
12029 /* None of this table's entries were referenced. Re-use the
12030 parent's table. */
12031 h->vtable->used = h->vtable->parent->vtable->used;
12032 h->vtable->size = h->vtable->parent->vtable->size;
12034 else
12036 size_t n;
12037 bfd_boolean *cu, *pu;
12039 /* Or the parent's entries into ours. */
12040 cu = h->vtable->used;
12041 cu[-1] = TRUE;
12042 pu = h->vtable->parent->vtable->used;
12043 if (pu != NULL)
12045 const struct elf_backend_data *bed;
12046 unsigned int log_file_align;
12048 bed = get_elf_backend_data (h->root.u.def.section->owner);
12049 log_file_align = bed->s->log_file_align;
12050 n = h->vtable->parent->vtable->size >> log_file_align;
12051 while (n--)
12053 if (*pu)
12054 *cu = TRUE;
12055 pu++;
12056 cu++;
12061 return TRUE;
12064 static bfd_boolean
12065 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12067 asection *sec;
12068 bfd_vma hstart, hend;
12069 Elf_Internal_Rela *relstart, *relend, *rel;
12070 const struct elf_backend_data *bed;
12071 unsigned int log_file_align;
12073 /* Take care of both those symbols that do not describe vtables as
12074 well as those that are not loaded. */
12075 if (h->vtable == NULL || h->vtable->parent == NULL)
12076 return TRUE;
12078 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12079 || h->root.type == bfd_link_hash_defweak);
12081 sec = h->root.u.def.section;
12082 hstart = h->root.u.def.value;
12083 hend = hstart + h->size;
12085 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12086 if (!relstart)
12087 return *(bfd_boolean *) okp = FALSE;
12088 bed = get_elf_backend_data (sec->owner);
12089 log_file_align = bed->s->log_file_align;
12091 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12093 for (rel = relstart; rel < relend; ++rel)
12094 if (rel->r_offset >= hstart && rel->r_offset < hend)
12096 /* If the entry is in use, do nothing. */
12097 if (h->vtable->used
12098 && (rel->r_offset - hstart) < h->vtable->size)
12100 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12101 if (h->vtable->used[entry])
12102 continue;
12104 /* Otherwise, kill it. */
12105 rel->r_offset = rel->r_info = rel->r_addend = 0;
12108 return TRUE;
12111 /* Mark sections containing dynamically referenced symbols. When
12112 building shared libraries, we must assume that any visible symbol is
12113 referenced. */
12115 bfd_boolean
12116 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12118 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12120 if ((h->root.type == bfd_link_hash_defined
12121 || h->root.type == bfd_link_hash_defweak)
12122 && (h->ref_dynamic
12123 || ((!info->executable || info->export_dynamic)
12124 && h->def_regular
12125 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12126 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12127 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12128 || !bfd_hide_sym_by_version (info->version_info,
12129 h->root.root.string)))))
12130 h->root.u.def.section->flags |= SEC_KEEP;
12132 return TRUE;
12135 /* Keep all sections containing symbols undefined on the command-line,
12136 and the section containing the entry symbol. */
12138 void
12139 _bfd_elf_gc_keep (struct bfd_link_info *info)
12141 struct bfd_sym_chain *sym;
12143 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12145 struct elf_link_hash_entry *h;
12147 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12148 FALSE, FALSE, FALSE);
12150 if (h != NULL
12151 && (h->root.type == bfd_link_hash_defined
12152 || h->root.type == bfd_link_hash_defweak)
12153 && !bfd_is_abs_section (h->root.u.def.section))
12154 h->root.u.def.section->flags |= SEC_KEEP;
12158 /* Do mark and sweep of unused sections. */
12160 bfd_boolean
12161 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12163 bfd_boolean ok = TRUE;
12164 bfd *sub;
12165 elf_gc_mark_hook_fn gc_mark_hook;
12166 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12168 if (!bed->can_gc_sections
12169 || !is_elf_hash_table (info->hash))
12171 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12172 return TRUE;
12175 bed->gc_keep (info);
12177 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12178 at the .eh_frame section if we can mark the FDEs individually. */
12179 _bfd_elf_begin_eh_frame_parsing (info);
12180 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12182 asection *sec;
12183 struct elf_reloc_cookie cookie;
12185 sec = bfd_get_section_by_name (sub, ".eh_frame");
12186 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12188 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12189 if (elf_section_data (sec)->sec_info
12190 && (sec->flags & SEC_LINKER_CREATED) == 0)
12191 elf_eh_frame_section (sub) = sec;
12192 fini_reloc_cookie_for_section (&cookie, sec);
12193 sec = bfd_get_next_section_by_name (sec);
12196 _bfd_elf_end_eh_frame_parsing (info);
12198 /* Apply transitive closure to the vtable entry usage info. */
12199 elf_link_hash_traverse (elf_hash_table (info),
12200 elf_gc_propagate_vtable_entries_used,
12201 &ok);
12202 if (!ok)
12203 return FALSE;
12205 /* Kill the vtable relocations that were not used. */
12206 elf_link_hash_traverse (elf_hash_table (info),
12207 elf_gc_smash_unused_vtentry_relocs,
12208 &ok);
12209 if (!ok)
12210 return FALSE;
12212 /* Mark dynamically referenced symbols. */
12213 if (elf_hash_table (info)->dynamic_sections_created)
12214 elf_link_hash_traverse (elf_hash_table (info),
12215 bed->gc_mark_dynamic_ref,
12216 info);
12218 /* Grovel through relocs to find out who stays ... */
12219 gc_mark_hook = bed->gc_mark_hook;
12220 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12222 asection *o;
12224 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12225 continue;
12227 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12228 Also treat note sections as a root, if the section is not part
12229 of a group. */
12230 for (o = sub->sections; o != NULL; o = o->next)
12231 if (!o->gc_mark
12232 && (o->flags & SEC_EXCLUDE) == 0
12233 && ((o->flags & SEC_KEEP) != 0
12234 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12235 && elf_next_in_group (o) == NULL )))
12237 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12238 return FALSE;
12242 /* Allow the backend to mark additional target specific sections. */
12243 bed->gc_mark_extra_sections (info, gc_mark_hook);
12245 /* ... and mark SEC_EXCLUDE for those that go. */
12246 return elf_gc_sweep (abfd, info);
12249 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12251 bfd_boolean
12252 bfd_elf_gc_record_vtinherit (bfd *abfd,
12253 asection *sec,
12254 struct elf_link_hash_entry *h,
12255 bfd_vma offset)
12257 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12258 struct elf_link_hash_entry **search, *child;
12259 bfd_size_type extsymcount;
12260 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12262 /* The sh_info field of the symtab header tells us where the
12263 external symbols start. We don't care about the local symbols at
12264 this point. */
12265 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12266 if (!elf_bad_symtab (abfd))
12267 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12269 sym_hashes = elf_sym_hashes (abfd);
12270 sym_hashes_end = sym_hashes + extsymcount;
12272 /* Hunt down the child symbol, which is in this section at the same
12273 offset as the relocation. */
12274 for (search = sym_hashes; search != sym_hashes_end; ++search)
12276 if ((child = *search) != NULL
12277 && (child->root.type == bfd_link_hash_defined
12278 || child->root.type == bfd_link_hash_defweak)
12279 && child->root.u.def.section == sec
12280 && child->root.u.def.value == offset)
12281 goto win;
12284 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12285 abfd, sec, (unsigned long) offset);
12286 bfd_set_error (bfd_error_invalid_operation);
12287 return FALSE;
12289 win:
12290 if (!child->vtable)
12292 child->vtable = (struct elf_link_virtual_table_entry *)
12293 bfd_zalloc (abfd, sizeof (*child->vtable));
12294 if (!child->vtable)
12295 return FALSE;
12297 if (!h)
12299 /* This *should* only be the absolute section. It could potentially
12300 be that someone has defined a non-global vtable though, which
12301 would be bad. It isn't worth paging in the local symbols to be
12302 sure though; that case should simply be handled by the assembler. */
12304 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12306 else
12307 child->vtable->parent = h;
12309 return TRUE;
12312 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12314 bfd_boolean
12315 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12316 asection *sec ATTRIBUTE_UNUSED,
12317 struct elf_link_hash_entry *h,
12318 bfd_vma addend)
12320 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12321 unsigned int log_file_align = bed->s->log_file_align;
12323 if (!h->vtable)
12325 h->vtable = (struct elf_link_virtual_table_entry *)
12326 bfd_zalloc (abfd, sizeof (*h->vtable));
12327 if (!h->vtable)
12328 return FALSE;
12331 if (addend >= h->vtable->size)
12333 size_t size, bytes, file_align;
12334 bfd_boolean *ptr = h->vtable->used;
12336 /* While the symbol is undefined, we have to be prepared to handle
12337 a zero size. */
12338 file_align = 1 << log_file_align;
12339 if (h->root.type == bfd_link_hash_undefined)
12340 size = addend + file_align;
12341 else
12343 size = h->size;
12344 if (addend >= size)
12346 /* Oops! We've got a reference past the defined end of
12347 the table. This is probably a bug -- shall we warn? */
12348 size = addend + file_align;
12351 size = (size + file_align - 1) & -file_align;
12353 /* Allocate one extra entry for use as a "done" flag for the
12354 consolidation pass. */
12355 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12357 if (ptr)
12359 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12361 if (ptr != NULL)
12363 size_t oldbytes;
12365 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12366 * sizeof (bfd_boolean));
12367 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12370 else
12371 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12373 if (ptr == NULL)
12374 return FALSE;
12376 /* And arrange for that done flag to be at index -1. */
12377 h->vtable->used = ptr + 1;
12378 h->vtable->size = size;
12381 h->vtable->used[addend >> log_file_align] = TRUE;
12383 return TRUE;
12386 /* Map an ELF section header flag to its corresponding string. */
12387 typedef struct
12389 char *flag_name;
12390 flagword flag_value;
12391 } elf_flags_to_name_table;
12393 static elf_flags_to_name_table elf_flags_to_names [] =
12395 { "SHF_WRITE", SHF_WRITE },
12396 { "SHF_ALLOC", SHF_ALLOC },
12397 { "SHF_EXECINSTR", SHF_EXECINSTR },
12398 { "SHF_MERGE", SHF_MERGE },
12399 { "SHF_STRINGS", SHF_STRINGS },
12400 { "SHF_INFO_LINK", SHF_INFO_LINK},
12401 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12402 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12403 { "SHF_GROUP", SHF_GROUP },
12404 { "SHF_TLS", SHF_TLS },
12405 { "SHF_MASKOS", SHF_MASKOS },
12406 { "SHF_EXCLUDE", SHF_EXCLUDE },
12409 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12410 bfd_boolean
12411 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12412 struct flag_info *flaginfo,
12413 asection *section)
12415 const bfd_vma sh_flags = elf_section_flags (section);
12417 if (!flaginfo->flags_initialized)
12419 bfd *obfd = info->output_bfd;
12420 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12421 struct flag_info_list *tf = flaginfo->flag_list;
12422 int with_hex = 0;
12423 int without_hex = 0;
12425 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12427 unsigned i;
12428 flagword (*lookup) (char *);
12430 lookup = bed->elf_backend_lookup_section_flags_hook;
12431 if (lookup != NULL)
12433 flagword hexval = (*lookup) ((char *) tf->name);
12435 if (hexval != 0)
12437 if (tf->with == with_flags)
12438 with_hex |= hexval;
12439 else if (tf->with == without_flags)
12440 without_hex |= hexval;
12441 tf->valid = TRUE;
12442 continue;
12445 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12447 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12449 if (tf->with == with_flags)
12450 with_hex |= elf_flags_to_names[i].flag_value;
12451 else if (tf->with == without_flags)
12452 without_hex |= elf_flags_to_names[i].flag_value;
12453 tf->valid = TRUE;
12454 break;
12457 if (!tf->valid)
12459 info->callbacks->einfo
12460 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12461 return FALSE;
12464 flaginfo->flags_initialized = TRUE;
12465 flaginfo->only_with_flags |= with_hex;
12466 flaginfo->not_with_flags |= without_hex;
12469 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12470 return FALSE;
12472 if ((flaginfo->not_with_flags & sh_flags) != 0)
12473 return FALSE;
12475 return TRUE;
12478 struct alloc_got_off_arg {
12479 bfd_vma gotoff;
12480 struct bfd_link_info *info;
12483 /* We need a special top-level link routine to convert got reference counts
12484 to real got offsets. */
12486 static bfd_boolean
12487 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12489 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12490 bfd *obfd = gofarg->info->output_bfd;
12491 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12493 if (h->got.refcount > 0)
12495 h->got.offset = gofarg->gotoff;
12496 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12498 else
12499 h->got.offset = (bfd_vma) -1;
12501 return TRUE;
12504 /* And an accompanying bit to work out final got entry offsets once
12505 we're done. Should be called from final_link. */
12507 bfd_boolean
12508 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12509 struct bfd_link_info *info)
12511 bfd *i;
12512 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12513 bfd_vma gotoff;
12514 struct alloc_got_off_arg gofarg;
12516 BFD_ASSERT (abfd == info->output_bfd);
12518 if (! is_elf_hash_table (info->hash))
12519 return FALSE;
12521 /* The GOT offset is relative to the .got section, but the GOT header is
12522 put into the .got.plt section, if the backend uses it. */
12523 if (bed->want_got_plt)
12524 gotoff = 0;
12525 else
12526 gotoff = bed->got_header_size;
12528 /* Do the local .got entries first. */
12529 for (i = info->input_bfds; i; i = i->link_next)
12531 bfd_signed_vma *local_got;
12532 bfd_size_type j, locsymcount;
12533 Elf_Internal_Shdr *symtab_hdr;
12535 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12536 continue;
12538 local_got = elf_local_got_refcounts (i);
12539 if (!local_got)
12540 continue;
12542 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12543 if (elf_bad_symtab (i))
12544 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12545 else
12546 locsymcount = symtab_hdr->sh_info;
12548 for (j = 0; j < locsymcount; ++j)
12550 if (local_got[j] > 0)
12552 local_got[j] = gotoff;
12553 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12555 else
12556 local_got[j] = (bfd_vma) -1;
12560 /* Then the global .got entries. .plt refcounts are handled by
12561 adjust_dynamic_symbol */
12562 gofarg.gotoff = gotoff;
12563 gofarg.info = info;
12564 elf_link_hash_traverse (elf_hash_table (info),
12565 elf_gc_allocate_got_offsets,
12566 &gofarg);
12567 return TRUE;
12570 /* Many folk need no more in the way of final link than this, once
12571 got entry reference counting is enabled. */
12573 bfd_boolean
12574 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12576 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12577 return FALSE;
12579 /* Invoke the regular ELF backend linker to do all the work. */
12580 return bfd_elf_final_link (abfd, info);
12583 bfd_boolean
12584 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12586 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12588 if (rcookie->bad_symtab)
12589 rcookie->rel = rcookie->rels;
12591 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12593 unsigned long r_symndx;
12595 if (! rcookie->bad_symtab)
12596 if (rcookie->rel->r_offset > offset)
12597 return FALSE;
12598 if (rcookie->rel->r_offset != offset)
12599 continue;
12601 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12602 if (r_symndx == STN_UNDEF)
12603 return TRUE;
12605 if (r_symndx >= rcookie->locsymcount
12606 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12608 struct elf_link_hash_entry *h;
12610 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12612 while (h->root.type == bfd_link_hash_indirect
12613 || h->root.type == bfd_link_hash_warning)
12614 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12616 if ((h->root.type == bfd_link_hash_defined
12617 || h->root.type == bfd_link_hash_defweak)
12618 && discarded_section (h->root.u.def.section))
12619 return TRUE;
12620 else
12621 return FALSE;
12623 else
12625 /* It's not a relocation against a global symbol,
12626 but it could be a relocation against a local
12627 symbol for a discarded section. */
12628 asection *isec;
12629 Elf_Internal_Sym *isym;
12631 /* Need to: get the symbol; get the section. */
12632 isym = &rcookie->locsyms[r_symndx];
12633 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12634 if (isec != NULL && discarded_section (isec))
12635 return TRUE;
12637 return FALSE;
12639 return FALSE;
12642 /* Discard unneeded references to discarded sections.
12643 Returns TRUE if any section's size was changed. */
12644 /* This function assumes that the relocations are in sorted order,
12645 which is true for all known assemblers. */
12647 bfd_boolean
12648 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12650 struct elf_reloc_cookie cookie;
12651 asection *stab, *eh;
12652 const struct elf_backend_data *bed;
12653 bfd *abfd;
12654 bfd_boolean ret = FALSE;
12656 if (info->traditional_format
12657 || !is_elf_hash_table (info->hash))
12658 return FALSE;
12660 _bfd_elf_begin_eh_frame_parsing (info);
12661 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12663 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12664 continue;
12666 bed = get_elf_backend_data (abfd);
12668 eh = NULL;
12669 if (!info->relocatable)
12671 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12672 while (eh != NULL
12673 && (eh->size == 0
12674 || bfd_is_abs_section (eh->output_section)))
12675 eh = bfd_get_next_section_by_name (eh);
12678 stab = bfd_get_section_by_name (abfd, ".stab");
12679 if (stab != NULL
12680 && (stab->size == 0
12681 || bfd_is_abs_section (stab->output_section)
12682 || stab->sec_info_type != SEC_INFO_TYPE_STABS))
12683 stab = NULL;
12685 if (stab == NULL
12686 && eh == NULL
12687 && bed->elf_backend_discard_info == NULL)
12688 continue;
12690 if (!init_reloc_cookie (&cookie, info, abfd))
12691 return FALSE;
12693 if (stab != NULL
12694 && stab->reloc_count > 0
12695 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12697 if (_bfd_discard_section_stabs (abfd, stab,
12698 elf_section_data (stab)->sec_info,
12699 bfd_elf_reloc_symbol_deleted_p,
12700 &cookie))
12701 ret = TRUE;
12702 fini_reloc_cookie_rels (&cookie, stab);
12705 while (eh != NULL
12706 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12708 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12709 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12710 bfd_elf_reloc_symbol_deleted_p,
12711 &cookie))
12712 ret = TRUE;
12713 fini_reloc_cookie_rels (&cookie, eh);
12714 eh = bfd_get_next_section_by_name (eh);
12717 if (bed->elf_backend_discard_info != NULL
12718 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12719 ret = TRUE;
12721 fini_reloc_cookie (&cookie, abfd);
12723 _bfd_elf_end_eh_frame_parsing (info);
12725 if (info->eh_frame_hdr
12726 && !info->relocatable
12727 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12728 ret = TRUE;
12730 return ret;
12733 bfd_boolean
12734 _bfd_elf_section_already_linked (bfd *abfd,
12735 asection *sec,
12736 struct bfd_link_info *info)
12738 flagword flags;
12739 const char *name, *key;
12740 struct bfd_section_already_linked *l;
12741 struct bfd_section_already_linked_hash_entry *already_linked_list;
12743 if (sec->output_section == bfd_abs_section_ptr)
12744 return FALSE;
12746 flags = sec->flags;
12748 /* Return if it isn't a linkonce section. A comdat group section
12749 also has SEC_LINK_ONCE set. */
12750 if ((flags & SEC_LINK_ONCE) == 0)
12751 return FALSE;
12753 /* Don't put group member sections on our list of already linked
12754 sections. They are handled as a group via their group section. */
12755 if (elf_sec_group (sec) != NULL)
12756 return FALSE;
12758 /* For a SHT_GROUP section, use the group signature as the key. */
12759 name = sec->name;
12760 if ((flags & SEC_GROUP) != 0
12761 && elf_next_in_group (sec) != NULL
12762 && elf_group_name (elf_next_in_group (sec)) != NULL)
12763 key = elf_group_name (elf_next_in_group (sec));
12764 else
12766 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12767 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12768 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12769 key++;
12770 else
12771 /* Must be a user linkonce section that doesn't follow gcc's
12772 naming convention. In this case we won't be matching
12773 single member groups. */
12774 key = name;
12777 already_linked_list = bfd_section_already_linked_table_lookup (key);
12779 for (l = already_linked_list->entry; l != NULL; l = l->next)
12781 /* We may have 2 different types of sections on the list: group
12782 sections with a signature of <key> (<key> is some string),
12783 and linkonce sections named .gnu.linkonce.<type>.<key>.
12784 Match like sections. LTO plugin sections are an exception.
12785 They are always named .gnu.linkonce.t.<key> and match either
12786 type of section. */
12787 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12788 && ((flags & SEC_GROUP) != 0
12789 || strcmp (name, l->sec->name) == 0))
12790 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12792 /* The section has already been linked. See if we should
12793 issue a warning. */
12794 if (!_bfd_handle_already_linked (sec, l, info))
12795 return FALSE;
12797 if (flags & SEC_GROUP)
12799 asection *first = elf_next_in_group (sec);
12800 asection *s = first;
12802 while (s != NULL)
12804 s->output_section = bfd_abs_section_ptr;
12805 /* Record which group discards it. */
12806 s->kept_section = l->sec;
12807 s = elf_next_in_group (s);
12808 /* These lists are circular. */
12809 if (s == first)
12810 break;
12814 return TRUE;
12818 /* A single member comdat group section may be discarded by a
12819 linkonce section and vice versa. */
12820 if ((flags & SEC_GROUP) != 0)
12822 asection *first = elf_next_in_group (sec);
12824 if (first != NULL && elf_next_in_group (first) == first)
12825 /* Check this single member group against linkonce sections. */
12826 for (l = already_linked_list->entry; l != NULL; l = l->next)
12827 if ((l->sec->flags & SEC_GROUP) == 0
12828 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12830 first->output_section = bfd_abs_section_ptr;
12831 first->kept_section = l->sec;
12832 sec->output_section = bfd_abs_section_ptr;
12833 break;
12836 else
12837 /* Check this linkonce section against single member groups. */
12838 for (l = already_linked_list->entry; l != NULL; l = l->next)
12839 if (l->sec->flags & SEC_GROUP)
12841 asection *first = elf_next_in_group (l->sec);
12843 if (first != NULL
12844 && elf_next_in_group (first) == first
12845 && bfd_elf_match_symbols_in_sections (first, sec, info))
12847 sec->output_section = bfd_abs_section_ptr;
12848 sec->kept_section = first;
12849 break;
12853 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12854 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12855 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12856 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12857 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12858 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12859 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12860 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12861 The reverse order cannot happen as there is never a bfd with only the
12862 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12863 matter as here were are looking only for cross-bfd sections. */
12865 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12866 for (l = already_linked_list->entry; l != NULL; l = l->next)
12867 if ((l->sec->flags & SEC_GROUP) == 0
12868 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12870 if (abfd != l->sec->owner)
12871 sec->output_section = bfd_abs_section_ptr;
12872 break;
12875 /* This is the first section with this name. Record it. */
12876 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12877 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12878 return sec->output_section == bfd_abs_section_ptr;
12881 bfd_boolean
12882 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12884 return sym->st_shndx == SHN_COMMON;
12887 unsigned int
12888 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12890 return SHN_COMMON;
12893 asection *
12894 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12896 return bfd_com_section_ptr;
12899 bfd_vma
12900 _bfd_elf_default_got_elt_size (bfd *abfd,
12901 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12902 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12903 bfd *ibfd ATTRIBUTE_UNUSED,
12904 unsigned long symndx ATTRIBUTE_UNUSED)
12906 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12907 return bed->s->arch_size / 8;
12910 /* Routines to support the creation of dynamic relocs. */
12912 /* Returns the name of the dynamic reloc section associated with SEC. */
12914 static const char *
12915 get_dynamic_reloc_section_name (bfd * abfd,
12916 asection * sec,
12917 bfd_boolean is_rela)
12919 char *name;
12920 const char *old_name = bfd_get_section_name (NULL, sec);
12921 const char *prefix = is_rela ? ".rela" : ".rel";
12923 if (old_name == NULL)
12924 return NULL;
12926 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12927 sprintf (name, "%s%s", prefix, old_name);
12929 return name;
12932 /* Returns the dynamic reloc section associated with SEC.
12933 If necessary compute the name of the dynamic reloc section based
12934 on SEC's name (looked up in ABFD's string table) and the setting
12935 of IS_RELA. */
12937 asection *
12938 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12939 asection * sec,
12940 bfd_boolean is_rela)
12942 asection * reloc_sec = elf_section_data (sec)->sreloc;
12944 if (reloc_sec == NULL)
12946 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12948 if (name != NULL)
12950 reloc_sec = bfd_get_linker_section (abfd, name);
12952 if (reloc_sec != NULL)
12953 elf_section_data (sec)->sreloc = reloc_sec;
12957 return reloc_sec;
12960 /* Returns the dynamic reloc section associated with SEC. If the
12961 section does not exist it is created and attached to the DYNOBJ
12962 bfd and stored in the SRELOC field of SEC's elf_section_data
12963 structure.
12965 ALIGNMENT is the alignment for the newly created section and
12966 IS_RELA defines whether the name should be .rela.<SEC's name>
12967 or .rel.<SEC's name>. The section name is looked up in the
12968 string table associated with ABFD. */
12970 asection *
12971 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12972 bfd * dynobj,
12973 unsigned int alignment,
12974 bfd * abfd,
12975 bfd_boolean is_rela)
12977 asection * reloc_sec = elf_section_data (sec)->sreloc;
12979 if (reloc_sec == NULL)
12981 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12983 if (name == NULL)
12984 return NULL;
12986 reloc_sec = bfd_get_linker_section (dynobj, name);
12988 if (reloc_sec == NULL)
12990 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
12991 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12992 if ((sec->flags & SEC_ALLOC) != 0)
12993 flags |= SEC_ALLOC | SEC_LOAD;
12995 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
12996 if (reloc_sec != NULL)
12998 /* _bfd_elf_get_sec_type_attr chooses a section type by
12999 name. Override as it may be wrong, eg. for a user
13000 section named "auto" we'll get ".relauto" which is
13001 seen to be a .rela section. */
13002 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13003 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13004 reloc_sec = NULL;
13008 elf_section_data (sec)->sreloc = reloc_sec;
13011 return reloc_sec;
13014 /* Copy the ELF symbol type associated with a linker hash entry. */
13015 void
13016 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
13017 struct bfd_link_hash_entry * hdest,
13018 struct bfd_link_hash_entry * hsrc)
13020 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
13021 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
13023 ehdest->type = ehsrc->type;
13024 ehdest->target_internal = ehsrc->target_internal;
13027 /* Append a RELA relocation REL to section S in BFD. */
13029 void
13030 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13032 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13033 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13034 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13035 bed->s->swap_reloca_out (abfd, rel, loc);
13038 /* Append a REL relocation REL to section S in BFD. */
13040 void
13041 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13043 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13044 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13045 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13046 bed->s->swap_reloc_out (abfd, rel, loc);