merge from gcc
[gdb/gnu.git] / bfd / elf32-xtensa.c
blob28ed9aa907d04f7fb62089c39850ef3f3e7ee44c
1 /* Xtensa-specific support for 32-bit ELF.
2 Copyright 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public License as
9 published by the Free Software Foundation; either version 3 of the
10 License, or (at your option) any later version.
12 This program is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 #include "sysdep.h"
23 #include "bfd.h"
25 #include <stdarg.h>
26 #include <strings.h>
28 #include "bfdlink.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31 #include "elf/xtensa.h"
32 #include "xtensa-isa.h"
33 #include "xtensa-config.h"
35 #define XTENSA_NO_NOP_REMOVAL 0
37 /* Local helper functions. */
39 static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
40 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
41 static bfd_reloc_status_type bfd_elf_xtensa_reloc
42 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43 static bfd_boolean do_fix_for_relocatable_link
44 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
45 static void do_fix_for_final_link
46 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
48 /* Local functions to handle Xtensa configurability. */
50 static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
51 static bfd_boolean is_direct_call_opcode (xtensa_opcode);
52 static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
53 static xtensa_opcode get_const16_opcode (void);
54 static xtensa_opcode get_l32r_opcode (void);
55 static bfd_vma l32r_offset (bfd_vma, bfd_vma);
56 static int get_relocation_opnd (xtensa_opcode, int);
57 static int get_relocation_slot (int);
58 static xtensa_opcode get_relocation_opcode
59 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
60 static bfd_boolean is_l32r_relocation
61 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
62 static bfd_boolean is_alt_relocation (int);
63 static bfd_boolean is_operand_relocation (int);
64 static bfd_size_type insn_decode_len
65 (bfd_byte *, bfd_size_type, bfd_size_type);
66 static xtensa_opcode insn_decode_opcode
67 (bfd_byte *, bfd_size_type, bfd_size_type, int);
68 static bfd_boolean check_branch_target_aligned
69 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
70 static bfd_boolean check_loop_aligned
71 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
72 static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
73 static bfd_size_type get_asm_simplify_size
74 (bfd_byte *, bfd_size_type, bfd_size_type);
76 /* Functions for link-time code simplifications. */
78 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
79 (bfd_byte *, bfd_vma, bfd_vma, char **);
80 static bfd_reloc_status_type contract_asm_expansion
81 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
82 static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
83 static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
85 /* Access to internal relocations, section contents and symbols. */
87 static Elf_Internal_Rela *retrieve_internal_relocs
88 (bfd *, asection *, bfd_boolean);
89 static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
90 static void release_internal_relocs (asection *, Elf_Internal_Rela *);
91 static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
92 static void pin_contents (asection *, bfd_byte *);
93 static void release_contents (asection *, bfd_byte *);
94 static Elf_Internal_Sym *retrieve_local_syms (bfd *);
96 /* Miscellaneous utility functions. */
98 static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
99 static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
100 static asection *get_elf_r_symndx_section (bfd *, unsigned long);
101 static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
102 (bfd *, unsigned long);
103 static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
104 static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
105 static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
106 static bfd_boolean xtensa_is_property_section (asection *);
107 static bfd_boolean xtensa_is_insntable_section (asection *);
108 static bfd_boolean xtensa_is_littable_section (asection *);
109 static bfd_boolean xtensa_is_proptable_section (asection *);
110 static int internal_reloc_compare (const void *, const void *);
111 static int internal_reloc_matches (const void *, const void *);
112 static asection *xtensa_get_property_section (asection *, const char *);
113 extern asection *xtensa_make_property_section (asection *, const char *);
114 static flagword xtensa_get_property_predef_flags (asection *);
116 /* Other functions called directly by the linker. */
118 typedef void (*deps_callback_t)
119 (asection *, bfd_vma, asection *, bfd_vma, void *);
120 extern bfd_boolean xtensa_callback_required_dependence
121 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
124 /* Globally visible flag for choosing size optimization of NOP removal
125 instead of branch-target-aware minimization for NOP removal.
126 When nonzero, narrow all instructions and remove all NOPs possible
127 around longcall expansions. */
129 int elf32xtensa_size_opt;
132 /* The "new_section_hook" is used to set up a per-section
133 "xtensa_relax_info" data structure with additional information used
134 during relaxation. */
136 typedef struct xtensa_relax_info_struct xtensa_relax_info;
139 /* The GNU tools do not easily allow extending interfaces to pass around
140 the pointer to the Xtensa ISA information, so instead we add a global
141 variable here (in BFD) that can be used by any of the tools that need
142 this information. */
144 xtensa_isa xtensa_default_isa;
147 /* When this is true, relocations may have been modified to refer to
148 symbols from other input files. The per-section list of "fix"
149 records needs to be checked when resolving relocations. */
151 static bfd_boolean relaxing_section = FALSE;
153 /* When this is true, during final links, literals that cannot be
154 coalesced and their relocations may be moved to other sections. */
156 int elf32xtensa_no_literal_movement = 1;
158 /* Rename one of the generic section flags to better document how it
159 is used here. */
160 /* Whether relocations have been processed. */
161 #define reloc_done sec_flg0
163 static reloc_howto_type elf_howto_table[] =
165 HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
166 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
167 FALSE, 0, 0, FALSE),
168 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
169 bfd_elf_xtensa_reloc, "R_XTENSA_32",
170 TRUE, 0xffffffff, 0xffffffff, FALSE),
172 /* Replace a 32-bit value with a value from the runtime linker (only
173 used by linker-generated stub functions). The r_addend value is
174 special: 1 means to substitute a pointer to the runtime linker's
175 dynamic resolver function; 2 means to substitute the link map for
176 the shared object. */
177 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
178 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
180 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
181 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
182 FALSE, 0, 0xffffffff, FALSE),
183 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
184 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
185 FALSE, 0, 0xffffffff, FALSE),
186 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
187 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
188 FALSE, 0, 0xffffffff, FALSE),
189 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
190 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
191 FALSE, 0, 0xffffffff, FALSE),
193 EMPTY_HOWTO (7),
195 /* Old relocations for backward compatibility. */
196 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
197 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
198 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
199 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
200 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
201 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
203 /* Assembly auto-expansion. */
204 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
205 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
206 /* Relax assembly auto-expansion. */
207 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
208 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
210 EMPTY_HOWTO (13),
212 HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
213 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
214 FALSE, 0, 0xffffffff, TRUE),
216 /* GNU extension to record C++ vtable hierarchy. */
217 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
218 NULL, "R_XTENSA_GNU_VTINHERIT",
219 FALSE, 0, 0, FALSE),
220 /* GNU extension to record C++ vtable member usage. */
221 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
222 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
223 FALSE, 0, 0, FALSE),
225 /* Relocations for supporting difference of symbols. */
226 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
227 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
228 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
229 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
230 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
231 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
233 /* General immediate operand relocations. */
234 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
235 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
236 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
237 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
238 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
239 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
240 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
241 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
242 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
243 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
244 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
245 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
246 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
247 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
248 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
249 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
250 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
251 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
252 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
253 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
254 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
255 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
256 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
257 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
258 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
259 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
260 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
261 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
262 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
263 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
265 /* "Alternate" relocations. The meaning of these is opcode-specific. */
266 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
267 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
268 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
269 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
270 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
271 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
272 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
273 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
274 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
275 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
276 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
277 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
278 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
279 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
280 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
281 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
282 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
283 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
284 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
285 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
286 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
287 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
288 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
289 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
290 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
291 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
292 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
293 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
294 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
295 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
297 /* TLS relocations. */
298 HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont,
299 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN",
300 FALSE, 0, 0xffffffff, FALSE),
301 HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont,
302 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG",
303 FALSE, 0, 0xffffffff, FALSE),
304 HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
305 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF",
306 FALSE, 0, 0xffffffff, FALSE),
307 HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
308 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF",
309 FALSE, 0, 0xffffffff, FALSE),
310 HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont,
311 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC",
312 FALSE, 0, 0, FALSE),
313 HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont,
314 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG",
315 FALSE, 0, 0, FALSE),
316 HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont,
317 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL",
318 FALSE, 0, 0, FALSE),
321 #if DEBUG_GEN_RELOC
322 #define TRACE(str) \
323 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
324 #else
325 #define TRACE(str)
326 #endif
328 static reloc_howto_type *
329 elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
330 bfd_reloc_code_real_type code)
332 switch (code)
334 case BFD_RELOC_NONE:
335 TRACE ("BFD_RELOC_NONE");
336 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
338 case BFD_RELOC_32:
339 TRACE ("BFD_RELOC_32");
340 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
342 case BFD_RELOC_32_PCREL:
343 TRACE ("BFD_RELOC_32_PCREL");
344 return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
346 case BFD_RELOC_XTENSA_DIFF8:
347 TRACE ("BFD_RELOC_XTENSA_DIFF8");
348 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
350 case BFD_RELOC_XTENSA_DIFF16:
351 TRACE ("BFD_RELOC_XTENSA_DIFF16");
352 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
354 case BFD_RELOC_XTENSA_DIFF32:
355 TRACE ("BFD_RELOC_XTENSA_DIFF32");
356 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
358 case BFD_RELOC_XTENSA_RTLD:
359 TRACE ("BFD_RELOC_XTENSA_RTLD");
360 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
362 case BFD_RELOC_XTENSA_GLOB_DAT:
363 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
364 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
366 case BFD_RELOC_XTENSA_JMP_SLOT:
367 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
368 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
370 case BFD_RELOC_XTENSA_RELATIVE:
371 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
372 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
374 case BFD_RELOC_XTENSA_PLT:
375 TRACE ("BFD_RELOC_XTENSA_PLT");
376 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
378 case BFD_RELOC_XTENSA_OP0:
379 TRACE ("BFD_RELOC_XTENSA_OP0");
380 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
382 case BFD_RELOC_XTENSA_OP1:
383 TRACE ("BFD_RELOC_XTENSA_OP1");
384 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
386 case BFD_RELOC_XTENSA_OP2:
387 TRACE ("BFD_RELOC_XTENSA_OP2");
388 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
390 case BFD_RELOC_XTENSA_ASM_EXPAND:
391 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
392 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
394 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
395 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
396 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
398 case BFD_RELOC_VTABLE_INHERIT:
399 TRACE ("BFD_RELOC_VTABLE_INHERIT");
400 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
402 case BFD_RELOC_VTABLE_ENTRY:
403 TRACE ("BFD_RELOC_VTABLE_ENTRY");
404 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
406 case BFD_RELOC_XTENSA_TLSDESC_FN:
407 TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
408 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ];
410 case BFD_RELOC_XTENSA_TLSDESC_ARG:
411 TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
412 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ];
414 case BFD_RELOC_XTENSA_TLS_DTPOFF:
415 TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
416 return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ];
418 case BFD_RELOC_XTENSA_TLS_TPOFF:
419 TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
420 return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ];
422 case BFD_RELOC_XTENSA_TLS_FUNC:
423 TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
424 return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ];
426 case BFD_RELOC_XTENSA_TLS_ARG:
427 TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
428 return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ];
430 case BFD_RELOC_XTENSA_TLS_CALL:
431 TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
432 return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ];
434 default:
435 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
436 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
438 unsigned n = (R_XTENSA_SLOT0_OP +
439 (code - BFD_RELOC_XTENSA_SLOT0_OP));
440 return &elf_howto_table[n];
443 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
444 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
446 unsigned n = (R_XTENSA_SLOT0_ALT +
447 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
448 return &elf_howto_table[n];
451 break;
454 TRACE ("Unknown");
455 return NULL;
458 static reloc_howto_type *
459 elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
460 const char *r_name)
462 unsigned int i;
464 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
465 if (elf_howto_table[i].name != NULL
466 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
467 return &elf_howto_table[i];
469 return NULL;
473 /* Given an ELF "rela" relocation, find the corresponding howto and record
474 it in the BFD internal arelent representation of the relocation. */
476 static void
477 elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
478 arelent *cache_ptr,
479 Elf_Internal_Rela *dst)
481 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
483 BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max);
484 cache_ptr->howto = &elf_howto_table[r_type];
488 /* Functions for the Xtensa ELF linker. */
490 /* The name of the dynamic interpreter. This is put in the .interp
491 section. */
493 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
495 /* The size in bytes of an entry in the procedure linkage table.
496 (This does _not_ include the space for the literals associated with
497 the PLT entry.) */
499 #define PLT_ENTRY_SIZE 16
501 /* For _really_ large PLTs, we may need to alternate between literals
502 and code to keep the literals within the 256K range of the L32R
503 instructions in the code. It's unlikely that anyone would ever need
504 such a big PLT, but an arbitrary limit on the PLT size would be bad.
505 Thus, we split the PLT into chunks. Since there's very little
506 overhead (2 extra literals) for each chunk, the chunk size is kept
507 small so that the code for handling multiple chunks get used and
508 tested regularly. With 254 entries, there are 1K of literals for
509 each chunk, and that seems like a nice round number. */
511 #define PLT_ENTRIES_PER_CHUNK 254
513 /* PLT entries are actually used as stub functions for lazy symbol
514 resolution. Once the symbol is resolved, the stub function is never
515 invoked. Note: the 32-byte frame size used here cannot be changed
516 without a corresponding change in the runtime linker. */
518 static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
520 0x6c, 0x10, 0x04, /* entry sp, 32 */
521 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
522 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
523 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
524 0x0a, 0x80, 0x00, /* jx a8 */
525 0 /* unused */
528 static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
530 0x36, 0x41, 0x00, /* entry sp, 32 */
531 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
532 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
533 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
534 0xa0, 0x08, 0x00, /* jx a8 */
535 0 /* unused */
538 /* The size of the thread control block. */
539 #define TCB_SIZE 8
541 struct elf_xtensa_link_hash_entry
543 struct elf_link_hash_entry elf;
545 bfd_signed_vma tlsfunc_refcount;
547 #define GOT_UNKNOWN 0
548 #define GOT_NORMAL 1
549 #define GOT_TLS_GD 2 /* global or local dynamic */
550 #define GOT_TLS_IE 4 /* initial or local exec */
551 #define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE)
552 unsigned char tls_type;
555 #define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
557 struct elf_xtensa_obj_tdata
559 struct elf_obj_tdata root;
561 /* tls_type for each local got entry. */
562 char *local_got_tls_type;
564 bfd_signed_vma *local_tlsfunc_refcounts;
567 #define elf_xtensa_tdata(abfd) \
568 ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
570 #define elf_xtensa_local_got_tls_type(abfd) \
571 (elf_xtensa_tdata (abfd)->local_got_tls_type)
573 #define elf_xtensa_local_tlsfunc_refcounts(abfd) \
574 (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
576 #define is_xtensa_elf(bfd) \
577 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
578 && elf_tdata (bfd) != NULL \
579 && elf_object_id (bfd) == XTENSA_ELF_DATA)
581 static bfd_boolean
582 elf_xtensa_mkobject (bfd *abfd)
584 return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata),
585 XTENSA_ELF_DATA);
588 /* Xtensa ELF linker hash table. */
590 struct elf_xtensa_link_hash_table
592 struct elf_link_hash_table elf;
594 /* Short-cuts to get to dynamic linker sections. */
595 asection *sgot;
596 asection *sgotplt;
597 asection *srelgot;
598 asection *splt;
599 asection *srelplt;
600 asection *sgotloc;
601 asection *spltlittbl;
603 /* Total count of PLT relocations seen during check_relocs.
604 The actual PLT code must be split into multiple sections and all
605 the sections have to be created before size_dynamic_sections,
606 where we figure out the exact number of PLT entries that will be
607 needed. It is OK if this count is an overestimate, e.g., some
608 relocations may be removed by GC. */
609 int plt_reloc_count;
611 struct elf_xtensa_link_hash_entry *tlsbase;
614 /* Get the Xtensa ELF linker hash table from a link_info structure. */
616 #define elf_xtensa_hash_table(p) \
617 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
618 == XTENSA_ELF_DATA ? ((struct elf_xtensa_link_hash_table *) ((p)->hash)) : NULL)
620 /* Create an entry in an Xtensa ELF linker hash table. */
622 static struct bfd_hash_entry *
623 elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry,
624 struct bfd_hash_table *table,
625 const char *string)
627 /* Allocate the structure if it has not already been allocated by a
628 subclass. */
629 if (entry == NULL)
631 entry = bfd_hash_allocate (table,
632 sizeof (struct elf_xtensa_link_hash_entry));
633 if (entry == NULL)
634 return entry;
637 /* Call the allocation method of the superclass. */
638 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
639 if (entry != NULL)
641 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry);
642 eh->tlsfunc_refcount = 0;
643 eh->tls_type = GOT_UNKNOWN;
646 return entry;
649 /* Create an Xtensa ELF linker hash table. */
651 static struct bfd_link_hash_table *
652 elf_xtensa_link_hash_table_create (bfd *abfd)
654 struct elf_link_hash_entry *tlsbase;
655 struct elf_xtensa_link_hash_table *ret;
656 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
658 ret = bfd_zmalloc (amt);
659 if (ret == NULL)
660 return NULL;
662 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
663 elf_xtensa_link_hash_newfunc,
664 sizeof (struct elf_xtensa_link_hash_entry),
665 XTENSA_ELF_DATA))
667 free (ret);
668 return NULL;
671 /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
672 for it later. */
673 tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_",
674 TRUE, FALSE, FALSE);
675 tlsbase->root.type = bfd_link_hash_new;
676 tlsbase->root.u.undef.abfd = NULL;
677 tlsbase->non_elf = 0;
678 ret->tlsbase = elf_xtensa_hash_entry (tlsbase);
679 ret->tlsbase->tls_type = GOT_UNKNOWN;
681 return &ret->elf.root;
684 /* Copy the extra info we tack onto an elf_link_hash_entry. */
686 static void
687 elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info,
688 struct elf_link_hash_entry *dir,
689 struct elf_link_hash_entry *ind)
691 struct elf_xtensa_link_hash_entry *edir, *eind;
693 edir = elf_xtensa_hash_entry (dir);
694 eind = elf_xtensa_hash_entry (ind);
696 if (ind->root.type == bfd_link_hash_indirect)
698 edir->tlsfunc_refcount += eind->tlsfunc_refcount;
699 eind->tlsfunc_refcount = 0;
701 if (dir->got.refcount <= 0)
703 edir->tls_type = eind->tls_type;
704 eind->tls_type = GOT_UNKNOWN;
708 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
711 static inline bfd_boolean
712 elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
713 struct bfd_link_info *info)
715 /* Check if we should do dynamic things to this symbol. The
716 "ignore_protected" argument need not be set, because Xtensa code
717 does not require special handling of STV_PROTECTED to make function
718 pointer comparisons work properly. The PLT addresses are never
719 used for function pointers. */
721 return _bfd_elf_dynamic_symbol_p (h, info, 0);
725 static int
726 property_table_compare (const void *ap, const void *bp)
728 const property_table_entry *a = (const property_table_entry *) ap;
729 const property_table_entry *b = (const property_table_entry *) bp;
731 if (a->address == b->address)
733 if (a->size != b->size)
734 return (a->size - b->size);
736 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
737 return ((b->flags & XTENSA_PROP_ALIGN)
738 - (a->flags & XTENSA_PROP_ALIGN));
740 if ((a->flags & XTENSA_PROP_ALIGN)
741 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
742 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
743 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
744 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
746 if ((a->flags & XTENSA_PROP_UNREACHABLE)
747 != (b->flags & XTENSA_PROP_UNREACHABLE))
748 return ((b->flags & XTENSA_PROP_UNREACHABLE)
749 - (a->flags & XTENSA_PROP_UNREACHABLE));
751 return (a->flags - b->flags);
754 return (a->address - b->address);
758 static int
759 property_table_matches (const void *ap, const void *bp)
761 const property_table_entry *a = (const property_table_entry *) ap;
762 const property_table_entry *b = (const property_table_entry *) bp;
764 /* Check if one entry overlaps with the other. */
765 if ((b->address >= a->address && b->address < (a->address + a->size))
766 || (a->address >= b->address && a->address < (b->address + b->size)))
767 return 0;
769 return (a->address - b->address);
773 /* Get the literal table or property table entries for the given
774 section. Sets TABLE_P and returns the number of entries. On
775 error, returns a negative value. */
777 static int
778 xtensa_read_table_entries (bfd *abfd,
779 asection *section,
780 property_table_entry **table_p,
781 const char *sec_name,
782 bfd_boolean output_addr)
784 asection *table_section;
785 bfd_size_type table_size = 0;
786 bfd_byte *table_data;
787 property_table_entry *blocks;
788 int blk, block_count;
789 bfd_size_type num_records;
790 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
791 bfd_vma section_addr, off;
792 flagword predef_flags;
793 bfd_size_type table_entry_size, section_limit;
795 if (!section
796 || !(section->flags & SEC_ALLOC)
797 || (section->flags & SEC_DEBUGGING))
799 *table_p = NULL;
800 return 0;
803 table_section = xtensa_get_property_section (section, sec_name);
804 if (table_section)
805 table_size = table_section->size;
807 if (table_size == 0)
809 *table_p = NULL;
810 return 0;
813 predef_flags = xtensa_get_property_predef_flags (table_section);
814 table_entry_size = 12;
815 if (predef_flags)
816 table_entry_size -= 4;
818 num_records = table_size / table_entry_size;
819 table_data = retrieve_contents (abfd, table_section, TRUE);
820 blocks = (property_table_entry *)
821 bfd_malloc (num_records * sizeof (property_table_entry));
822 block_count = 0;
824 if (output_addr)
825 section_addr = section->output_section->vma + section->output_offset;
826 else
827 section_addr = section->vma;
829 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
830 if (internal_relocs && !table_section->reloc_done)
832 qsort (internal_relocs, table_section->reloc_count,
833 sizeof (Elf_Internal_Rela), internal_reloc_compare);
834 irel = internal_relocs;
836 else
837 irel = NULL;
839 section_limit = bfd_get_section_limit (abfd, section);
840 rel_end = internal_relocs + table_section->reloc_count;
842 for (off = 0; off < table_size; off += table_entry_size)
844 bfd_vma address = bfd_get_32 (abfd, table_data + off);
846 /* Skip any relocations before the current offset. This should help
847 avoid confusion caused by unexpected relocations for the preceding
848 table entry. */
849 while (irel &&
850 (irel->r_offset < off
851 || (irel->r_offset == off
852 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
854 irel += 1;
855 if (irel >= rel_end)
856 irel = 0;
859 if (irel && irel->r_offset == off)
861 bfd_vma sym_off;
862 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
863 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
865 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
866 continue;
868 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
869 BFD_ASSERT (sym_off == 0);
870 address += (section_addr + sym_off + irel->r_addend);
872 else
874 if (address < section_addr
875 || address >= section_addr + section_limit)
876 continue;
879 blocks[block_count].address = address;
880 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
881 if (predef_flags)
882 blocks[block_count].flags = predef_flags;
883 else
884 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
885 block_count++;
888 release_contents (table_section, table_data);
889 release_internal_relocs (table_section, internal_relocs);
891 if (block_count > 0)
893 /* Now sort them into address order for easy reference. */
894 qsort (blocks, block_count, sizeof (property_table_entry),
895 property_table_compare);
897 /* Check that the table contents are valid. Problems may occur,
898 for example, if an unrelocated object file is stripped. */
899 for (blk = 1; blk < block_count; blk++)
901 /* The only circumstance where two entries may legitimately
902 have the same address is when one of them is a zero-size
903 placeholder to mark a place where fill can be inserted.
904 The zero-size entry should come first. */
905 if (blocks[blk - 1].address == blocks[blk].address &&
906 blocks[blk - 1].size != 0)
908 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
909 abfd, section);
910 bfd_set_error (bfd_error_bad_value);
911 free (blocks);
912 return -1;
917 *table_p = blocks;
918 return block_count;
922 static property_table_entry *
923 elf_xtensa_find_property_entry (property_table_entry *property_table,
924 int property_table_size,
925 bfd_vma addr)
927 property_table_entry entry;
928 property_table_entry *rv;
930 if (property_table_size == 0)
931 return NULL;
933 entry.address = addr;
934 entry.size = 1;
935 entry.flags = 0;
937 rv = bsearch (&entry, property_table, property_table_size,
938 sizeof (property_table_entry), property_table_matches);
939 return rv;
943 static bfd_boolean
944 elf_xtensa_in_literal_pool (property_table_entry *lit_table,
945 int lit_table_size,
946 bfd_vma addr)
948 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
949 return TRUE;
951 return FALSE;
955 /* Look through the relocs for a section during the first phase, and
956 calculate needed space in the dynamic reloc sections. */
958 static bfd_boolean
959 elf_xtensa_check_relocs (bfd *abfd,
960 struct bfd_link_info *info,
961 asection *sec,
962 const Elf_Internal_Rela *relocs)
964 struct elf_xtensa_link_hash_table *htab;
965 Elf_Internal_Shdr *symtab_hdr;
966 struct elf_link_hash_entry **sym_hashes;
967 const Elf_Internal_Rela *rel;
968 const Elf_Internal_Rela *rel_end;
970 if (info->relocatable || (sec->flags & SEC_ALLOC) == 0)
971 return TRUE;
973 BFD_ASSERT (is_xtensa_elf (abfd));
975 htab = elf_xtensa_hash_table (info);
976 if (htab == NULL)
977 return FALSE;
979 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
980 sym_hashes = elf_sym_hashes (abfd);
982 rel_end = relocs + sec->reloc_count;
983 for (rel = relocs; rel < rel_end; rel++)
985 unsigned int r_type;
986 unsigned long r_symndx;
987 struct elf_link_hash_entry *h = NULL;
988 struct elf_xtensa_link_hash_entry *eh;
989 int tls_type, old_tls_type;
990 bfd_boolean is_got = FALSE;
991 bfd_boolean is_plt = FALSE;
992 bfd_boolean is_tlsfunc = FALSE;
994 r_symndx = ELF32_R_SYM (rel->r_info);
995 r_type = ELF32_R_TYPE (rel->r_info);
997 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
999 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1000 abfd, r_symndx);
1001 return FALSE;
1004 if (r_symndx >= symtab_hdr->sh_info)
1006 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1007 while (h->root.type == bfd_link_hash_indirect
1008 || h->root.type == bfd_link_hash_warning)
1009 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1011 /* PR15323, ref flags aren't set for references in the same
1012 object. */
1013 h->root.non_ir_ref = 1;
1015 eh = elf_xtensa_hash_entry (h);
1017 switch (r_type)
1019 case R_XTENSA_TLSDESC_FN:
1020 if (info->shared)
1022 tls_type = GOT_TLS_GD;
1023 is_got = TRUE;
1024 is_tlsfunc = TRUE;
1026 else
1027 tls_type = GOT_TLS_IE;
1028 break;
1030 case R_XTENSA_TLSDESC_ARG:
1031 if (info->shared)
1033 tls_type = GOT_TLS_GD;
1034 is_got = TRUE;
1036 else
1038 tls_type = GOT_TLS_IE;
1039 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1040 is_got = TRUE;
1042 break;
1044 case R_XTENSA_TLS_DTPOFF:
1045 if (info->shared)
1046 tls_type = GOT_TLS_GD;
1047 else
1048 tls_type = GOT_TLS_IE;
1049 break;
1051 case R_XTENSA_TLS_TPOFF:
1052 tls_type = GOT_TLS_IE;
1053 if (info->shared)
1054 info->flags |= DF_STATIC_TLS;
1055 if (info->shared || h)
1056 is_got = TRUE;
1057 break;
1059 case R_XTENSA_32:
1060 tls_type = GOT_NORMAL;
1061 is_got = TRUE;
1062 break;
1064 case R_XTENSA_PLT:
1065 tls_type = GOT_NORMAL;
1066 is_plt = TRUE;
1067 break;
1069 case R_XTENSA_GNU_VTINHERIT:
1070 /* This relocation describes the C++ object vtable hierarchy.
1071 Reconstruct it for later use during GC. */
1072 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1073 return FALSE;
1074 continue;
1076 case R_XTENSA_GNU_VTENTRY:
1077 /* This relocation describes which C++ vtable entries are actually
1078 used. Record for later use during GC. */
1079 BFD_ASSERT (h != NULL);
1080 if (h != NULL
1081 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1082 return FALSE;
1083 continue;
1085 default:
1086 /* Nothing to do for any other relocations. */
1087 continue;
1090 if (h)
1092 if (is_plt)
1094 if (h->plt.refcount <= 0)
1096 h->needs_plt = 1;
1097 h->plt.refcount = 1;
1099 else
1100 h->plt.refcount += 1;
1102 /* Keep track of the total PLT relocation count even if we
1103 don't yet know whether the dynamic sections will be
1104 created. */
1105 htab->plt_reloc_count += 1;
1107 if (elf_hash_table (info)->dynamic_sections_created)
1109 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1110 return FALSE;
1113 else if (is_got)
1115 if (h->got.refcount <= 0)
1116 h->got.refcount = 1;
1117 else
1118 h->got.refcount += 1;
1121 if (is_tlsfunc)
1122 eh->tlsfunc_refcount += 1;
1124 old_tls_type = eh->tls_type;
1126 else
1128 /* Allocate storage the first time. */
1129 if (elf_local_got_refcounts (abfd) == NULL)
1131 bfd_size_type size = symtab_hdr->sh_info;
1132 void *mem;
1134 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1135 if (mem == NULL)
1136 return FALSE;
1137 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem;
1139 mem = bfd_zalloc (abfd, size);
1140 if (mem == NULL)
1141 return FALSE;
1142 elf_xtensa_local_got_tls_type (abfd) = (char *) mem;
1144 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1145 if (mem == NULL)
1146 return FALSE;
1147 elf_xtensa_local_tlsfunc_refcounts (abfd)
1148 = (bfd_signed_vma *) mem;
1151 /* This is a global offset table entry for a local symbol. */
1152 if (is_got || is_plt)
1153 elf_local_got_refcounts (abfd) [r_symndx] += 1;
1155 if (is_tlsfunc)
1156 elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1;
1158 old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx];
1161 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
1162 tls_type |= old_tls_type;
1163 /* If a TLS symbol is accessed using IE at least once,
1164 there is no point to use a dynamic model for it. */
1165 else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1166 && ((old_tls_type & GOT_TLS_GD) == 0
1167 || (tls_type & GOT_TLS_IE) == 0))
1169 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD))
1170 tls_type = old_tls_type;
1171 else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD))
1172 tls_type |= old_tls_type;
1173 else
1175 (*_bfd_error_handler)
1176 (_("%B: `%s' accessed both as normal and thread local symbol"),
1177 abfd,
1178 h ? h->root.root.string : "<local>");
1179 return FALSE;
1183 if (old_tls_type != tls_type)
1185 if (eh)
1186 eh->tls_type = tls_type;
1187 else
1188 elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type;
1192 return TRUE;
1196 static void
1197 elf_xtensa_make_sym_local (struct bfd_link_info *info,
1198 struct elf_link_hash_entry *h)
1200 if (info->shared)
1202 if (h->plt.refcount > 0)
1204 /* For shared objects, there's no need for PLT entries for local
1205 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
1206 if (h->got.refcount < 0)
1207 h->got.refcount = 0;
1208 h->got.refcount += h->plt.refcount;
1209 h->plt.refcount = 0;
1212 else
1214 /* Don't need any dynamic relocations at all. */
1215 h->plt.refcount = 0;
1216 h->got.refcount = 0;
1221 static void
1222 elf_xtensa_hide_symbol (struct bfd_link_info *info,
1223 struct elf_link_hash_entry *h,
1224 bfd_boolean force_local)
1226 /* For a shared link, move the plt refcount to the got refcount to leave
1227 space for RELATIVE relocs. */
1228 elf_xtensa_make_sym_local (info, h);
1230 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
1234 /* Return the section that should be marked against GC for a given
1235 relocation. */
1237 static asection *
1238 elf_xtensa_gc_mark_hook (asection *sec,
1239 struct bfd_link_info *info,
1240 Elf_Internal_Rela *rel,
1241 struct elf_link_hash_entry *h,
1242 Elf_Internal_Sym *sym)
1244 /* Property sections are marked "KEEP" in the linker scripts, but they
1245 should not cause other sections to be marked. (This approach relies
1246 on elf_xtensa_discard_info to remove property table entries that
1247 describe discarded sections. Alternatively, it might be more
1248 efficient to avoid using "KEEP" in the linker scripts and instead use
1249 the gc_mark_extra_sections hook to mark only the property sections
1250 that describe marked sections. That alternative does not work well
1251 with the current property table sections, which do not correspond
1252 one-to-one with the sections they describe, but that should be fixed
1253 someday.) */
1254 if (xtensa_is_property_section (sec))
1255 return NULL;
1257 if (h != NULL)
1258 switch (ELF32_R_TYPE (rel->r_info))
1260 case R_XTENSA_GNU_VTINHERIT:
1261 case R_XTENSA_GNU_VTENTRY:
1262 return NULL;
1265 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1269 /* Update the GOT & PLT entry reference counts
1270 for the section being removed. */
1272 static bfd_boolean
1273 elf_xtensa_gc_sweep_hook (bfd *abfd,
1274 struct bfd_link_info *info,
1275 asection *sec,
1276 const Elf_Internal_Rela *relocs)
1278 Elf_Internal_Shdr *symtab_hdr;
1279 struct elf_link_hash_entry **sym_hashes;
1280 const Elf_Internal_Rela *rel, *relend;
1281 struct elf_xtensa_link_hash_table *htab;
1283 htab = elf_xtensa_hash_table (info);
1284 if (htab == NULL)
1285 return FALSE;
1287 if (info->relocatable)
1288 return TRUE;
1290 if ((sec->flags & SEC_ALLOC) == 0)
1291 return TRUE;
1293 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1294 sym_hashes = elf_sym_hashes (abfd);
1296 relend = relocs + sec->reloc_count;
1297 for (rel = relocs; rel < relend; rel++)
1299 unsigned long r_symndx;
1300 unsigned int r_type;
1301 struct elf_link_hash_entry *h = NULL;
1302 struct elf_xtensa_link_hash_entry *eh;
1303 bfd_boolean is_got = FALSE;
1304 bfd_boolean is_plt = FALSE;
1305 bfd_boolean is_tlsfunc = FALSE;
1307 r_symndx = ELF32_R_SYM (rel->r_info);
1308 if (r_symndx >= symtab_hdr->sh_info)
1310 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1311 while (h->root.type == bfd_link_hash_indirect
1312 || h->root.type == bfd_link_hash_warning)
1313 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1315 eh = elf_xtensa_hash_entry (h);
1317 r_type = ELF32_R_TYPE (rel->r_info);
1318 switch (r_type)
1320 case R_XTENSA_TLSDESC_FN:
1321 if (info->shared)
1323 is_got = TRUE;
1324 is_tlsfunc = TRUE;
1326 break;
1328 case R_XTENSA_TLSDESC_ARG:
1329 if (info->shared)
1330 is_got = TRUE;
1331 else
1333 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1334 is_got = TRUE;
1336 break;
1338 case R_XTENSA_TLS_TPOFF:
1339 if (info->shared || h)
1340 is_got = TRUE;
1341 break;
1343 case R_XTENSA_32:
1344 is_got = TRUE;
1345 break;
1347 case R_XTENSA_PLT:
1348 is_plt = TRUE;
1349 break;
1351 default:
1352 continue;
1355 if (h)
1357 if (is_plt)
1359 if (h->plt.refcount > 0)
1360 h->plt.refcount--;
1362 else if (is_got)
1364 if (h->got.refcount > 0)
1365 h->got.refcount--;
1367 if (is_tlsfunc)
1369 if (eh->tlsfunc_refcount > 0)
1370 eh->tlsfunc_refcount--;
1373 else
1375 if (is_got || is_plt)
1377 bfd_signed_vma *got_refcount
1378 = &elf_local_got_refcounts (abfd) [r_symndx];
1379 if (*got_refcount > 0)
1380 *got_refcount -= 1;
1382 if (is_tlsfunc)
1384 bfd_signed_vma *tlsfunc_refcount
1385 = &elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx];
1386 if (*tlsfunc_refcount > 0)
1387 *tlsfunc_refcount -= 1;
1392 return TRUE;
1396 /* Create all the dynamic sections. */
1398 static bfd_boolean
1399 elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
1401 struct elf_xtensa_link_hash_table *htab;
1402 flagword flags, noalloc_flags;
1404 htab = elf_xtensa_hash_table (info);
1405 if (htab == NULL)
1406 return FALSE;
1408 /* First do all the standard stuff. */
1409 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1410 return FALSE;
1411 htab->splt = bfd_get_linker_section (dynobj, ".plt");
1412 htab->srelplt = bfd_get_linker_section (dynobj, ".rela.plt");
1413 htab->sgot = bfd_get_linker_section (dynobj, ".got");
1414 htab->sgotplt = bfd_get_linker_section (dynobj, ".got.plt");
1415 htab->srelgot = bfd_get_linker_section (dynobj, ".rela.got");
1417 /* Create any extra PLT sections in case check_relocs has already
1418 been called on all the non-dynamic input files. */
1419 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1420 return FALSE;
1422 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1423 | SEC_LINKER_CREATED | SEC_READONLY);
1424 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
1426 /* Mark the ".got.plt" section READONLY. */
1427 if (htab->sgotplt == NULL
1428 || ! bfd_set_section_flags (dynobj, htab->sgotplt, flags))
1429 return FALSE;
1431 /* Create ".got.loc" (literal tables for use by dynamic linker). */
1432 htab->sgotloc = bfd_make_section_anyway_with_flags (dynobj, ".got.loc",
1433 flags);
1434 if (htab->sgotloc == NULL
1435 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
1436 return FALSE;
1438 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
1439 htab->spltlittbl = bfd_make_section_anyway_with_flags (dynobj, ".xt.lit.plt",
1440 noalloc_flags);
1441 if (htab->spltlittbl == NULL
1442 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
1443 return FALSE;
1445 return TRUE;
1449 static bfd_boolean
1450 add_extra_plt_sections (struct bfd_link_info *info, int count)
1452 bfd *dynobj = elf_hash_table (info)->dynobj;
1453 int chunk;
1455 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1456 ".got.plt" sections. */
1457 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1459 char *sname;
1460 flagword flags;
1461 asection *s;
1463 /* Stop when we find a section has already been created. */
1464 if (elf_xtensa_get_plt_section (info, chunk))
1465 break;
1467 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1468 | SEC_LINKER_CREATED | SEC_READONLY);
1470 sname = (char *) bfd_malloc (10);
1471 sprintf (sname, ".plt.%u", chunk);
1472 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags | SEC_CODE);
1473 if (s == NULL
1474 || ! bfd_set_section_alignment (dynobj, s, 2))
1475 return FALSE;
1477 sname = (char *) bfd_malloc (14);
1478 sprintf (sname, ".got.plt.%u", chunk);
1479 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags);
1480 if (s == NULL
1481 || ! bfd_set_section_alignment (dynobj, s, 2))
1482 return FALSE;
1485 return TRUE;
1489 /* Adjust a symbol defined by a dynamic object and referenced by a
1490 regular object. The current definition is in some section of the
1491 dynamic object, but we're not including those sections. We have to
1492 change the definition to something the rest of the link can
1493 understand. */
1495 static bfd_boolean
1496 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1497 struct elf_link_hash_entry *h)
1499 /* If this is a weak symbol, and there is a real definition, the
1500 processor independent code will have arranged for us to see the
1501 real definition first, and we can just use the same value. */
1502 if (h->u.weakdef)
1504 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1505 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1506 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1507 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1508 return TRUE;
1511 /* This is a reference to a symbol defined by a dynamic object. The
1512 reference must go through the GOT, so there's no need for COPY relocs,
1513 .dynbss, etc. */
1515 return TRUE;
1519 static bfd_boolean
1520 elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
1522 struct bfd_link_info *info;
1523 struct elf_xtensa_link_hash_table *htab;
1524 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h);
1526 if (h->root.type == bfd_link_hash_indirect)
1527 return TRUE;
1529 info = (struct bfd_link_info *) arg;
1530 htab = elf_xtensa_hash_table (info);
1531 if (htab == NULL)
1532 return FALSE;
1534 /* If we saw any use of an IE model for this symbol, we can then optimize
1535 away GOT entries for any TLSDESC_FN relocs. */
1536 if ((eh->tls_type & GOT_TLS_IE) != 0)
1538 BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount);
1539 h->got.refcount -= eh->tlsfunc_refcount;
1542 if (! elf_xtensa_dynamic_symbol_p (h, info))
1543 elf_xtensa_make_sym_local (info, h);
1545 if (h->plt.refcount > 0)
1546 htab->srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
1548 if (h->got.refcount > 0)
1549 htab->srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
1551 return TRUE;
1555 static void
1556 elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
1558 struct elf_xtensa_link_hash_table *htab;
1559 bfd *i;
1561 htab = elf_xtensa_hash_table (info);
1562 if (htab == NULL)
1563 return;
1565 for (i = info->input_bfds; i; i = i->link_next)
1567 bfd_signed_vma *local_got_refcounts;
1568 bfd_size_type j, cnt;
1569 Elf_Internal_Shdr *symtab_hdr;
1571 local_got_refcounts = elf_local_got_refcounts (i);
1572 if (!local_got_refcounts)
1573 continue;
1575 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1576 cnt = symtab_hdr->sh_info;
1578 for (j = 0; j < cnt; ++j)
1580 /* If we saw any use of an IE model for this symbol, we can
1581 then optimize away GOT entries for any TLSDESC_FN relocs. */
1582 if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0)
1584 bfd_signed_vma *tlsfunc_refcount
1585 = &elf_xtensa_local_tlsfunc_refcounts (i) [j];
1586 BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount);
1587 local_got_refcounts[j] -= *tlsfunc_refcount;
1590 if (local_got_refcounts[j] > 0)
1591 htab->srelgot->size += (local_got_refcounts[j]
1592 * sizeof (Elf32_External_Rela));
1598 /* Set the sizes of the dynamic sections. */
1600 static bfd_boolean
1601 elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1602 struct bfd_link_info *info)
1604 struct elf_xtensa_link_hash_table *htab;
1605 bfd *dynobj, *abfd;
1606 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
1607 bfd_boolean relplt, relgot;
1608 int plt_entries, plt_chunks, chunk;
1610 plt_entries = 0;
1611 plt_chunks = 0;
1613 htab = elf_xtensa_hash_table (info);
1614 if (htab == NULL)
1615 return FALSE;
1617 dynobj = elf_hash_table (info)->dynobj;
1618 if (dynobj == NULL)
1619 abort ();
1620 srelgot = htab->srelgot;
1621 srelplt = htab->srelplt;
1623 if (elf_hash_table (info)->dynamic_sections_created)
1625 BFD_ASSERT (htab->srelgot != NULL
1626 && htab->srelplt != NULL
1627 && htab->sgot != NULL
1628 && htab->spltlittbl != NULL
1629 && htab->sgotloc != NULL);
1631 /* Set the contents of the .interp section to the interpreter. */
1632 if (info->executable)
1634 s = bfd_get_linker_section (dynobj, ".interp");
1635 if (s == NULL)
1636 abort ();
1637 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1638 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1641 /* Allocate room for one word in ".got". */
1642 htab->sgot->size = 4;
1644 /* Allocate space in ".rela.got" for literals that reference global
1645 symbols and space in ".rela.plt" for literals that have PLT
1646 entries. */
1647 elf_link_hash_traverse (elf_hash_table (info),
1648 elf_xtensa_allocate_dynrelocs,
1649 (void *) info);
1651 /* If we are generating a shared object, we also need space in
1652 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1653 reference local symbols. */
1654 if (info->shared)
1655 elf_xtensa_allocate_local_got_size (info);
1657 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1658 each PLT entry, we need the PLT code plus a 4-byte literal.
1659 For each chunk of ".plt", we also need two more 4-byte
1660 literals, two corresponding entries in ".rela.got", and an
1661 8-byte entry in ".xt.lit.plt". */
1662 spltlittbl = htab->spltlittbl;
1663 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
1664 plt_chunks =
1665 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1667 /* Iterate over all the PLT chunks, including any extra sections
1668 created earlier because the initial count of PLT relocations
1669 was an overestimate. */
1670 for (chunk = 0;
1671 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
1672 chunk++)
1674 int chunk_entries;
1676 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1677 BFD_ASSERT (sgotplt != NULL);
1679 if (chunk < plt_chunks - 1)
1680 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1681 else if (chunk == plt_chunks - 1)
1682 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1683 else
1684 chunk_entries = 0;
1686 if (chunk_entries != 0)
1688 sgotplt->size = 4 * (chunk_entries + 2);
1689 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1690 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1691 spltlittbl->size += 8;
1693 else
1695 sgotplt->size = 0;
1696 splt->size = 0;
1700 /* Allocate space in ".got.loc" to match the total size of all the
1701 literal tables. */
1702 sgotloc = htab->sgotloc;
1703 sgotloc->size = spltlittbl->size;
1704 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1706 if (abfd->flags & DYNAMIC)
1707 continue;
1708 for (s = abfd->sections; s != NULL; s = s->next)
1710 if (! discarded_section (s)
1711 && xtensa_is_littable_section (s)
1712 && s != spltlittbl)
1713 sgotloc->size += s->size;
1718 /* Allocate memory for dynamic sections. */
1719 relplt = FALSE;
1720 relgot = FALSE;
1721 for (s = dynobj->sections; s != NULL; s = s->next)
1723 const char *name;
1725 if ((s->flags & SEC_LINKER_CREATED) == 0)
1726 continue;
1728 /* It's OK to base decisions on the section name, because none
1729 of the dynobj section names depend upon the input files. */
1730 name = bfd_get_section_name (dynobj, s);
1732 if (CONST_STRNEQ (name, ".rela"))
1734 if (s->size != 0)
1736 if (strcmp (name, ".rela.plt") == 0)
1737 relplt = TRUE;
1738 else if (strcmp (name, ".rela.got") == 0)
1739 relgot = TRUE;
1741 /* We use the reloc_count field as a counter if we need
1742 to copy relocs into the output file. */
1743 s->reloc_count = 0;
1746 else if (! CONST_STRNEQ (name, ".plt.")
1747 && ! CONST_STRNEQ (name, ".got.plt.")
1748 && strcmp (name, ".got") != 0
1749 && strcmp (name, ".plt") != 0
1750 && strcmp (name, ".got.plt") != 0
1751 && strcmp (name, ".xt.lit.plt") != 0
1752 && strcmp (name, ".got.loc") != 0)
1754 /* It's not one of our sections, so don't allocate space. */
1755 continue;
1758 if (s->size == 0)
1760 /* If we don't need this section, strip it from the output
1761 file. We must create the ".plt*" and ".got.plt*"
1762 sections in create_dynamic_sections and/or check_relocs
1763 based on a conservative estimate of the PLT relocation
1764 count, because the sections must be created before the
1765 linker maps input sections to output sections. The
1766 linker does that before size_dynamic_sections, where we
1767 compute the exact size of the PLT, so there may be more
1768 of these sections than are actually needed. */
1769 s->flags |= SEC_EXCLUDE;
1771 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
1773 /* Allocate memory for the section contents. */
1774 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1775 if (s->contents == NULL)
1776 return FALSE;
1780 if (elf_hash_table (info)->dynamic_sections_created)
1782 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1783 known until finish_dynamic_sections, but we need to get the relocs
1784 in place before they are sorted. */
1785 for (chunk = 0; chunk < plt_chunks; chunk++)
1787 Elf_Internal_Rela irela;
1788 bfd_byte *loc;
1790 irela.r_offset = 0;
1791 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1792 irela.r_addend = 0;
1794 loc = (srelgot->contents
1795 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1796 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1797 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1798 loc + sizeof (Elf32_External_Rela));
1799 srelgot->reloc_count += 2;
1802 /* Add some entries to the .dynamic section. We fill in the
1803 values later, in elf_xtensa_finish_dynamic_sections, but we
1804 must add the entries now so that we get the correct size for
1805 the .dynamic section. The DT_DEBUG entry is filled in by the
1806 dynamic linker and used by the debugger. */
1807 #define add_dynamic_entry(TAG, VAL) \
1808 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1810 if (info->executable)
1812 if (!add_dynamic_entry (DT_DEBUG, 0))
1813 return FALSE;
1816 if (relplt)
1818 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1819 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1820 || !add_dynamic_entry (DT_JMPREL, 0))
1821 return FALSE;
1824 if (relgot)
1826 if (!add_dynamic_entry (DT_RELA, 0)
1827 || !add_dynamic_entry (DT_RELASZ, 0)
1828 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1829 return FALSE;
1832 if (!add_dynamic_entry (DT_PLTGOT, 0)
1833 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1834 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1835 return FALSE;
1837 #undef add_dynamic_entry
1839 return TRUE;
1842 static bfd_boolean
1843 elf_xtensa_always_size_sections (bfd *output_bfd,
1844 struct bfd_link_info *info)
1846 struct elf_xtensa_link_hash_table *htab;
1847 asection *tls_sec;
1849 htab = elf_xtensa_hash_table (info);
1850 if (htab == NULL)
1851 return FALSE;
1853 tls_sec = htab->elf.tls_sec;
1855 if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0)
1857 struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf;
1858 struct bfd_link_hash_entry *bh = &tlsbase->root;
1859 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
1861 tlsbase->type = STT_TLS;
1862 if (!(_bfd_generic_link_add_one_symbol
1863 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
1864 tls_sec, 0, NULL, FALSE,
1865 bed->collect, &bh)))
1866 return FALSE;
1867 tlsbase->def_regular = 1;
1868 tlsbase->other = STV_HIDDEN;
1869 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
1872 return TRUE;
1876 /* Return the base VMA address which should be subtracted from real addresses
1877 when resolving @dtpoff relocation.
1878 This is PT_TLS segment p_vaddr. */
1880 static bfd_vma
1881 dtpoff_base (struct bfd_link_info *info)
1883 /* If tls_sec is NULL, we should have signalled an error already. */
1884 if (elf_hash_table (info)->tls_sec == NULL)
1885 return 0;
1886 return elf_hash_table (info)->tls_sec->vma;
1889 /* Return the relocation value for @tpoff relocation
1890 if STT_TLS virtual address is ADDRESS. */
1892 static bfd_vma
1893 tpoff (struct bfd_link_info *info, bfd_vma address)
1895 struct elf_link_hash_table *htab = elf_hash_table (info);
1896 bfd_vma base;
1898 /* If tls_sec is NULL, we should have signalled an error already. */
1899 if (htab->tls_sec == NULL)
1900 return 0;
1901 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
1902 return address - htab->tls_sec->vma + base;
1905 /* Perform the specified relocation. The instruction at (contents + address)
1906 is modified to set one operand to represent the value in "relocation". The
1907 operand position is determined by the relocation type recorded in the
1908 howto. */
1910 #define CALL_SEGMENT_BITS (30)
1911 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1913 static bfd_reloc_status_type
1914 elf_xtensa_do_reloc (reloc_howto_type *howto,
1915 bfd *abfd,
1916 asection *input_section,
1917 bfd_vma relocation,
1918 bfd_byte *contents,
1919 bfd_vma address,
1920 bfd_boolean is_weak_undef,
1921 char **error_message)
1923 xtensa_format fmt;
1924 xtensa_opcode opcode;
1925 xtensa_isa isa = xtensa_default_isa;
1926 static xtensa_insnbuf ibuff = NULL;
1927 static xtensa_insnbuf sbuff = NULL;
1928 bfd_vma self_address;
1929 bfd_size_type input_size;
1930 int opnd, slot;
1931 uint32 newval;
1933 if (!ibuff)
1935 ibuff = xtensa_insnbuf_alloc (isa);
1936 sbuff = xtensa_insnbuf_alloc (isa);
1939 input_size = bfd_get_section_limit (abfd, input_section);
1941 /* Calculate the PC address for this instruction. */
1942 self_address = (input_section->output_section->vma
1943 + input_section->output_offset
1944 + address);
1946 switch (howto->type)
1948 case R_XTENSA_NONE:
1949 case R_XTENSA_DIFF8:
1950 case R_XTENSA_DIFF16:
1951 case R_XTENSA_DIFF32:
1952 case R_XTENSA_TLS_FUNC:
1953 case R_XTENSA_TLS_ARG:
1954 case R_XTENSA_TLS_CALL:
1955 return bfd_reloc_ok;
1957 case R_XTENSA_ASM_EXPAND:
1958 if (!is_weak_undef)
1960 /* Check for windowed CALL across a 1GB boundary. */
1961 opcode = get_expanded_call_opcode (contents + address,
1962 input_size - address, 0);
1963 if (is_windowed_call_opcode (opcode))
1965 if ((self_address >> CALL_SEGMENT_BITS)
1966 != (relocation >> CALL_SEGMENT_BITS))
1968 *error_message = "windowed longcall crosses 1GB boundary; "
1969 "return may fail";
1970 return bfd_reloc_dangerous;
1974 return bfd_reloc_ok;
1976 case R_XTENSA_ASM_SIMPLIFY:
1978 /* Convert the L32R/CALLX to CALL. */
1979 bfd_reloc_status_type retval =
1980 elf_xtensa_do_asm_simplify (contents, address, input_size,
1981 error_message);
1982 if (retval != bfd_reloc_ok)
1983 return bfd_reloc_dangerous;
1985 /* The CALL needs to be relocated. Continue below for that part. */
1986 address += 3;
1987 self_address += 3;
1988 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
1990 break;
1992 case R_XTENSA_32:
1994 bfd_vma x;
1995 x = bfd_get_32 (abfd, contents + address);
1996 x = x + relocation;
1997 bfd_put_32 (abfd, x, contents + address);
1999 return bfd_reloc_ok;
2001 case R_XTENSA_32_PCREL:
2002 bfd_put_32 (abfd, relocation - self_address, contents + address);
2003 return bfd_reloc_ok;
2005 case R_XTENSA_PLT:
2006 case R_XTENSA_TLSDESC_FN:
2007 case R_XTENSA_TLSDESC_ARG:
2008 case R_XTENSA_TLS_DTPOFF:
2009 case R_XTENSA_TLS_TPOFF:
2010 bfd_put_32 (abfd, relocation, contents + address);
2011 return bfd_reloc_ok;
2014 /* Only instruction slot-specific relocations handled below.... */
2015 slot = get_relocation_slot (howto->type);
2016 if (slot == XTENSA_UNDEFINED)
2018 *error_message = "unexpected relocation";
2019 return bfd_reloc_dangerous;
2022 /* Read the instruction into a buffer and decode the opcode. */
2023 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
2024 input_size - address);
2025 fmt = xtensa_format_decode (isa, ibuff);
2026 if (fmt == XTENSA_UNDEFINED)
2028 *error_message = "cannot decode instruction format";
2029 return bfd_reloc_dangerous;
2032 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
2034 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
2035 if (opcode == XTENSA_UNDEFINED)
2037 *error_message = "cannot decode instruction opcode";
2038 return bfd_reloc_dangerous;
2041 /* Check for opcode-specific "alternate" relocations. */
2042 if (is_alt_relocation (howto->type))
2044 if (opcode == get_l32r_opcode ())
2046 /* Handle the special-case of non-PC-relative L32R instructions. */
2047 bfd *output_bfd = input_section->output_section->owner;
2048 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
2049 if (!lit4_sec)
2051 *error_message = "relocation references missing .lit4 section";
2052 return bfd_reloc_dangerous;
2054 self_address = ((lit4_sec->vma & ~0xfff)
2055 + 0x40000 - 3); /* -3 to compensate for do_reloc */
2056 newval = relocation;
2057 opnd = 1;
2059 else if (opcode == get_const16_opcode ())
2061 /* ALT used for high 16 bits. */
2062 newval = relocation >> 16;
2063 opnd = 1;
2065 else
2067 /* No other "alternate" relocations currently defined. */
2068 *error_message = "unexpected relocation";
2069 return bfd_reloc_dangerous;
2072 else /* Not an "alternate" relocation.... */
2074 if (opcode == get_const16_opcode ())
2076 newval = relocation & 0xffff;
2077 opnd = 1;
2079 else
2081 /* ...normal PC-relative relocation.... */
2083 /* Determine which operand is being relocated. */
2084 opnd = get_relocation_opnd (opcode, howto->type);
2085 if (opnd == XTENSA_UNDEFINED)
2087 *error_message = "unexpected relocation";
2088 return bfd_reloc_dangerous;
2091 if (!howto->pc_relative)
2093 *error_message = "expected PC-relative relocation";
2094 return bfd_reloc_dangerous;
2097 newval = relocation;
2101 /* Apply the relocation. */
2102 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
2103 || xtensa_operand_encode (isa, opcode, opnd, &newval)
2104 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
2105 sbuff, newval))
2107 const char *opname = xtensa_opcode_name (isa, opcode);
2108 const char *msg;
2110 msg = "cannot encode";
2111 if (is_direct_call_opcode (opcode))
2113 if ((relocation & 0x3) != 0)
2114 msg = "misaligned call target";
2115 else
2116 msg = "call target out of range";
2118 else if (opcode == get_l32r_opcode ())
2120 if ((relocation & 0x3) != 0)
2121 msg = "misaligned literal target";
2122 else if (is_alt_relocation (howto->type))
2123 msg = "literal target out of range (too many literals)";
2124 else if (self_address > relocation)
2125 msg = "literal target out of range (try using text-section-literals)";
2126 else
2127 msg = "literal placed after use";
2130 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
2131 return bfd_reloc_dangerous;
2134 /* Check for calls across 1GB boundaries. */
2135 if (is_direct_call_opcode (opcode)
2136 && is_windowed_call_opcode (opcode))
2138 if ((self_address >> CALL_SEGMENT_BITS)
2139 != (relocation >> CALL_SEGMENT_BITS))
2141 *error_message =
2142 "windowed call crosses 1GB boundary; return may fail";
2143 return bfd_reloc_dangerous;
2147 /* Write the modified instruction back out of the buffer. */
2148 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
2149 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
2150 input_size - address);
2151 return bfd_reloc_ok;
2155 static char *
2156 vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
2158 /* To reduce the size of the memory leak,
2159 we only use a single message buffer. */
2160 static bfd_size_type alloc_size = 0;
2161 static char *message = NULL;
2162 bfd_size_type orig_len, len = 0;
2163 bfd_boolean is_append;
2165 VA_OPEN (ap, arglen);
2166 VA_FIXEDARG (ap, const char *, origmsg);
2168 is_append = (origmsg == message);
2170 orig_len = strlen (origmsg);
2171 len = orig_len + strlen (fmt) + arglen + 20;
2172 if (len > alloc_size)
2174 message = (char *) bfd_realloc_or_free (message, len);
2175 alloc_size = len;
2177 if (message != NULL)
2179 if (!is_append)
2180 memcpy (message, origmsg, orig_len);
2181 vsprintf (message + orig_len, fmt, ap);
2183 VA_CLOSE (ap);
2184 return message;
2188 /* This function is registered as the "special_function" in the
2189 Xtensa howto for handling simplify operations.
2190 bfd_perform_relocation / bfd_install_relocation use it to
2191 perform (install) the specified relocation. Since this replaces the code
2192 in bfd_perform_relocation, it is basically an Xtensa-specific,
2193 stripped-down version of bfd_perform_relocation. */
2195 static bfd_reloc_status_type
2196 bfd_elf_xtensa_reloc (bfd *abfd,
2197 arelent *reloc_entry,
2198 asymbol *symbol,
2199 void *data,
2200 asection *input_section,
2201 bfd *output_bfd,
2202 char **error_message)
2204 bfd_vma relocation;
2205 bfd_reloc_status_type flag;
2206 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2207 bfd_vma output_base = 0;
2208 reloc_howto_type *howto = reloc_entry->howto;
2209 asection *reloc_target_output_section;
2210 bfd_boolean is_weak_undef;
2212 if (!xtensa_default_isa)
2213 xtensa_default_isa = xtensa_isa_init (0, 0);
2215 /* ELF relocs are against symbols. If we are producing relocatable
2216 output, and the reloc is against an external symbol, the resulting
2217 reloc will also be against the same symbol. In such a case, we
2218 don't want to change anything about the way the reloc is handled,
2219 since it will all be done at final link time. This test is similar
2220 to what bfd_elf_generic_reloc does except that it lets relocs with
2221 howto->partial_inplace go through even if the addend is non-zero.
2222 (The real problem is that partial_inplace is set for XTENSA_32
2223 relocs to begin with, but that's a long story and there's little we
2224 can do about it now....) */
2226 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
2228 reloc_entry->address += input_section->output_offset;
2229 return bfd_reloc_ok;
2232 /* Is the address of the relocation really within the section? */
2233 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2234 return bfd_reloc_outofrange;
2236 /* Work out which section the relocation is targeted at and the
2237 initial relocation command value. */
2239 /* Get symbol value. (Common symbols are special.) */
2240 if (bfd_is_com_section (symbol->section))
2241 relocation = 0;
2242 else
2243 relocation = symbol->value;
2245 reloc_target_output_section = symbol->section->output_section;
2247 /* Convert input-section-relative symbol value to absolute. */
2248 if ((output_bfd && !howto->partial_inplace)
2249 || reloc_target_output_section == NULL)
2250 output_base = 0;
2251 else
2252 output_base = reloc_target_output_section->vma;
2254 relocation += output_base + symbol->section->output_offset;
2256 /* Add in supplied addend. */
2257 relocation += reloc_entry->addend;
2259 /* Here the variable relocation holds the final address of the
2260 symbol we are relocating against, plus any addend. */
2261 if (output_bfd)
2263 if (!howto->partial_inplace)
2265 /* This is a partial relocation, and we want to apply the relocation
2266 to the reloc entry rather than the raw data. Everything except
2267 relocations against section symbols has already been handled
2268 above. */
2270 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
2271 reloc_entry->addend = relocation;
2272 reloc_entry->address += input_section->output_offset;
2273 return bfd_reloc_ok;
2275 else
2277 reloc_entry->address += input_section->output_offset;
2278 reloc_entry->addend = 0;
2282 is_weak_undef = (bfd_is_und_section (symbol->section)
2283 && (symbol->flags & BSF_WEAK) != 0);
2284 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
2285 (bfd_byte *) data, (bfd_vma) octets,
2286 is_weak_undef, error_message);
2288 if (flag == bfd_reloc_dangerous)
2290 /* Add the symbol name to the error message. */
2291 if (! *error_message)
2292 *error_message = "";
2293 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
2294 strlen (symbol->name) + 17,
2295 symbol->name,
2296 (unsigned long) reloc_entry->addend);
2299 return flag;
2303 /* Set up an entry in the procedure linkage table. */
2305 static bfd_vma
2306 elf_xtensa_create_plt_entry (struct bfd_link_info *info,
2307 bfd *output_bfd,
2308 unsigned reloc_index)
2310 asection *splt, *sgotplt;
2311 bfd_vma plt_base, got_base;
2312 bfd_vma code_offset, lit_offset;
2313 int chunk;
2315 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
2316 splt = elf_xtensa_get_plt_section (info, chunk);
2317 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
2318 BFD_ASSERT (splt != NULL && sgotplt != NULL);
2320 plt_base = splt->output_section->vma + splt->output_offset;
2321 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
2323 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
2324 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
2326 /* Fill in the literal entry. This is the offset of the dynamic
2327 relocation entry. */
2328 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
2329 sgotplt->contents + lit_offset);
2331 /* Fill in the entry in the procedure linkage table. */
2332 memcpy (splt->contents + code_offset,
2333 (bfd_big_endian (output_bfd)
2334 ? elf_xtensa_be_plt_entry
2335 : elf_xtensa_le_plt_entry),
2336 PLT_ENTRY_SIZE);
2337 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
2338 plt_base + code_offset + 3),
2339 splt->contents + code_offset + 4);
2340 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
2341 plt_base + code_offset + 6),
2342 splt->contents + code_offset + 7);
2343 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
2344 plt_base + code_offset + 9),
2345 splt->contents + code_offset + 10);
2347 return plt_base + code_offset;
2351 static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *);
2353 static bfd_boolean
2354 replace_tls_insn (Elf_Internal_Rela *rel,
2355 bfd *abfd,
2356 asection *input_section,
2357 bfd_byte *contents,
2358 bfd_boolean is_ld_model,
2359 char **error_message)
2361 static xtensa_insnbuf ibuff = NULL;
2362 static xtensa_insnbuf sbuff = NULL;
2363 xtensa_isa isa = xtensa_default_isa;
2364 xtensa_format fmt;
2365 xtensa_opcode old_op, new_op;
2366 bfd_size_type input_size;
2367 int r_type;
2368 unsigned dest_reg, src_reg;
2370 if (ibuff == NULL)
2372 ibuff = xtensa_insnbuf_alloc (isa);
2373 sbuff = xtensa_insnbuf_alloc (isa);
2376 input_size = bfd_get_section_limit (abfd, input_section);
2378 /* Read the instruction into a buffer and decode the opcode. */
2379 xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset,
2380 input_size - rel->r_offset);
2381 fmt = xtensa_format_decode (isa, ibuff);
2382 if (fmt == XTENSA_UNDEFINED)
2384 *error_message = "cannot decode instruction format";
2385 return FALSE;
2388 BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1);
2389 xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff);
2391 old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff);
2392 if (old_op == XTENSA_UNDEFINED)
2394 *error_message = "cannot decode instruction opcode";
2395 return FALSE;
2398 r_type = ELF32_R_TYPE (rel->r_info);
2399 switch (r_type)
2401 case R_XTENSA_TLS_FUNC:
2402 case R_XTENSA_TLS_ARG:
2403 if (old_op != get_l32r_opcode ()
2404 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2405 sbuff, &dest_reg) != 0)
2407 *error_message = "cannot extract L32R destination for TLS access";
2408 return FALSE;
2410 break;
2412 case R_XTENSA_TLS_CALL:
2413 if (! get_indirect_call_dest_reg (old_op, &dest_reg)
2414 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2415 sbuff, &src_reg) != 0)
2417 *error_message = "cannot extract CALLXn operands for TLS access";
2418 return FALSE;
2420 break;
2422 default:
2423 abort ();
2426 if (is_ld_model)
2428 switch (r_type)
2430 case R_XTENSA_TLS_FUNC:
2431 case R_XTENSA_TLS_ARG:
2432 /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
2433 versions of Xtensa). */
2434 new_op = xtensa_opcode_lookup (isa, "nop");
2435 if (new_op == XTENSA_UNDEFINED)
2437 new_op = xtensa_opcode_lookup (isa, "or");
2438 if (new_op == XTENSA_UNDEFINED
2439 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2440 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2441 sbuff, 1) != 0
2442 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2443 sbuff, 1) != 0
2444 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2445 sbuff, 1) != 0)
2447 *error_message = "cannot encode OR for TLS access";
2448 return FALSE;
2451 else
2453 if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0)
2455 *error_message = "cannot encode NOP for TLS access";
2456 return FALSE;
2459 break;
2461 case R_XTENSA_TLS_CALL:
2462 /* Read THREADPTR into the CALLX's return value register. */
2463 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2464 if (new_op == XTENSA_UNDEFINED
2465 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2466 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2467 sbuff, dest_reg + 2) != 0)
2469 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2470 return FALSE;
2472 break;
2475 else
2477 switch (r_type)
2479 case R_XTENSA_TLS_FUNC:
2480 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2481 if (new_op == XTENSA_UNDEFINED
2482 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2483 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2484 sbuff, dest_reg) != 0)
2486 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2487 return FALSE;
2489 break;
2491 case R_XTENSA_TLS_ARG:
2492 /* Nothing to do. Keep the original L32R instruction. */
2493 return TRUE;
2495 case R_XTENSA_TLS_CALL:
2496 /* Add the CALLX's src register (holding the THREADPTR value)
2497 to the first argument register (holding the offset) and put
2498 the result in the CALLX's return value register. */
2499 new_op = xtensa_opcode_lookup (isa, "add");
2500 if (new_op == XTENSA_UNDEFINED
2501 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2502 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2503 sbuff, dest_reg + 2) != 0
2504 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2505 sbuff, dest_reg + 2) != 0
2506 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2507 sbuff, src_reg) != 0)
2509 *error_message = "cannot encode ADD for TLS access";
2510 return FALSE;
2512 break;
2516 xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff);
2517 xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset,
2518 input_size - rel->r_offset);
2520 return TRUE;
2524 #define IS_XTENSA_TLS_RELOC(R_TYPE) \
2525 ((R_TYPE) == R_XTENSA_TLSDESC_FN \
2526 || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
2527 || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
2528 || (R_TYPE) == R_XTENSA_TLS_TPOFF \
2529 || (R_TYPE) == R_XTENSA_TLS_FUNC \
2530 || (R_TYPE) == R_XTENSA_TLS_ARG \
2531 || (R_TYPE) == R_XTENSA_TLS_CALL)
2533 /* Relocate an Xtensa ELF section. This is invoked by the linker for
2534 both relocatable and final links. */
2536 static bfd_boolean
2537 elf_xtensa_relocate_section (bfd *output_bfd,
2538 struct bfd_link_info *info,
2539 bfd *input_bfd,
2540 asection *input_section,
2541 bfd_byte *contents,
2542 Elf_Internal_Rela *relocs,
2543 Elf_Internal_Sym *local_syms,
2544 asection **local_sections)
2546 struct elf_xtensa_link_hash_table *htab;
2547 Elf_Internal_Shdr *symtab_hdr;
2548 Elf_Internal_Rela *rel;
2549 Elf_Internal_Rela *relend;
2550 struct elf_link_hash_entry **sym_hashes;
2551 property_table_entry *lit_table = 0;
2552 int ltblsize = 0;
2553 char *local_got_tls_types;
2554 char *error_message = NULL;
2555 bfd_size_type input_size;
2556 int tls_type;
2558 if (!xtensa_default_isa)
2559 xtensa_default_isa = xtensa_isa_init (0, 0);
2561 BFD_ASSERT (is_xtensa_elf (input_bfd));
2563 htab = elf_xtensa_hash_table (info);
2564 if (htab == NULL)
2565 return FALSE;
2567 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2568 sym_hashes = elf_sym_hashes (input_bfd);
2569 local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd);
2571 if (elf_hash_table (info)->dynamic_sections_created)
2573 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
2574 &lit_table, XTENSA_LIT_SEC_NAME,
2575 TRUE);
2576 if (ltblsize < 0)
2577 return FALSE;
2580 input_size = bfd_get_section_limit (input_bfd, input_section);
2582 rel = relocs;
2583 relend = relocs + input_section->reloc_count;
2584 for (; rel < relend; rel++)
2586 int r_type;
2587 reloc_howto_type *howto;
2588 unsigned long r_symndx;
2589 struct elf_link_hash_entry *h;
2590 Elf_Internal_Sym *sym;
2591 char sym_type;
2592 const char *name;
2593 asection *sec;
2594 bfd_vma relocation;
2595 bfd_reloc_status_type r;
2596 bfd_boolean is_weak_undef;
2597 bfd_boolean unresolved_reloc;
2598 bfd_boolean warned;
2599 bfd_boolean dynamic_symbol;
2601 r_type = ELF32_R_TYPE (rel->r_info);
2602 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2603 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2604 continue;
2606 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2608 bfd_set_error (bfd_error_bad_value);
2609 return FALSE;
2611 howto = &elf_howto_table[r_type];
2613 r_symndx = ELF32_R_SYM (rel->r_info);
2615 h = NULL;
2616 sym = NULL;
2617 sec = NULL;
2618 is_weak_undef = FALSE;
2619 unresolved_reloc = FALSE;
2620 warned = FALSE;
2622 if (howto->partial_inplace && !info->relocatable)
2624 /* Because R_XTENSA_32 was made partial_inplace to fix some
2625 problems with DWARF info in partial links, there may be
2626 an addend stored in the contents. Take it out of there
2627 and move it back into the addend field of the reloc. */
2628 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2629 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2632 if (r_symndx < symtab_hdr->sh_info)
2634 sym = local_syms + r_symndx;
2635 sym_type = ELF32_ST_TYPE (sym->st_info);
2636 sec = local_sections[r_symndx];
2637 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2639 else
2641 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2642 r_symndx, symtab_hdr, sym_hashes,
2643 h, sec, relocation,
2644 unresolved_reloc, warned);
2646 if (relocation == 0
2647 && !unresolved_reloc
2648 && h->root.type == bfd_link_hash_undefweak)
2649 is_weak_undef = TRUE;
2651 sym_type = h->type;
2654 if (sec != NULL && discarded_section (sec))
2655 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
2656 rel, 1, relend, howto, 0, contents);
2658 if (info->relocatable)
2660 bfd_vma dest_addr;
2661 asection * sym_sec = get_elf_r_symndx_section (input_bfd, r_symndx);
2663 /* This is a relocatable link.
2664 1) If the reloc is against a section symbol, adjust
2665 according to the output section.
2666 2) If there is a new target for this relocation,
2667 the new target will be in the same output section.
2668 We adjust the relocation by the output section
2669 difference. */
2671 if (relaxing_section)
2673 /* Check if this references a section in another input file. */
2674 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2675 contents))
2676 return FALSE;
2679 dest_addr = sym_sec->output_section->vma + sym_sec->output_offset
2680 + get_elf_r_symndx_offset (input_bfd, r_symndx) + rel->r_addend;
2682 if (r_type == R_XTENSA_ASM_SIMPLIFY)
2684 error_message = NULL;
2685 /* Convert ASM_SIMPLIFY into the simpler relocation
2686 so that they never escape a relaxing link. */
2687 r = contract_asm_expansion (contents, input_size, rel,
2688 &error_message);
2689 if (r != bfd_reloc_ok)
2691 if (!((*info->callbacks->reloc_dangerous)
2692 (info, error_message, input_bfd, input_section,
2693 rel->r_offset)))
2694 return FALSE;
2696 r_type = ELF32_R_TYPE (rel->r_info);
2699 /* This is a relocatable link, so we don't have to change
2700 anything unless the reloc is against a section symbol,
2701 in which case we have to adjust according to where the
2702 section symbol winds up in the output section. */
2703 if (r_symndx < symtab_hdr->sh_info)
2705 sym = local_syms + r_symndx;
2706 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2708 sec = local_sections[r_symndx];
2709 rel->r_addend += sec->output_offset + sym->st_value;
2713 /* If there is an addend with a partial_inplace howto,
2714 then move the addend to the contents. This is a hack
2715 to work around problems with DWARF in relocatable links
2716 with some previous version of BFD. Now we can't easily get
2717 rid of the hack without breaking backward compatibility.... */
2718 r = bfd_reloc_ok;
2719 howto = &elf_howto_table[r_type];
2720 if (howto->partial_inplace && rel->r_addend)
2722 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2723 rel->r_addend, contents,
2724 rel->r_offset, FALSE,
2725 &error_message);
2726 rel->r_addend = 0;
2728 else
2730 /* Put the correct bits in the target instruction, even
2731 though the relocation will still be present in the output
2732 file. This makes disassembly clearer, as well as
2733 allowing loadable kernel modules to work without needing
2734 relocations on anything other than calls and l32r's. */
2736 /* If it is not in the same section, there is nothing we can do. */
2737 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP &&
2738 sym_sec->output_section == input_section->output_section)
2740 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2741 dest_addr, contents,
2742 rel->r_offset, FALSE,
2743 &error_message);
2746 if (r != bfd_reloc_ok)
2748 if (!((*info->callbacks->reloc_dangerous)
2749 (info, error_message, input_bfd, input_section,
2750 rel->r_offset)))
2751 return FALSE;
2754 /* Done with work for relocatable link; continue with next reloc. */
2755 continue;
2758 /* This is a final link. */
2760 if (relaxing_section)
2762 /* Check if this references a section in another input file. */
2763 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2764 &relocation);
2767 /* Sanity check the address. */
2768 if (rel->r_offset >= input_size
2769 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2771 (*_bfd_error_handler)
2772 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2773 input_bfd, input_section, rel->r_offset, input_size);
2774 bfd_set_error (bfd_error_bad_value);
2775 return FALSE;
2778 if (h != NULL)
2779 name = h->root.root.string;
2780 else
2782 name = (bfd_elf_string_from_elf_section
2783 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2784 if (name == NULL || *name == '\0')
2785 name = bfd_section_name (input_bfd, sec);
2788 if (r_symndx != STN_UNDEF
2789 && r_type != R_XTENSA_NONE
2790 && (h == NULL
2791 || h->root.type == bfd_link_hash_defined
2792 || h->root.type == bfd_link_hash_defweak)
2793 && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS))
2795 (*_bfd_error_handler)
2796 ((sym_type == STT_TLS
2797 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
2798 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
2799 input_bfd,
2800 input_section,
2801 (long) rel->r_offset,
2802 howto->name,
2803 name);
2806 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2808 tls_type = GOT_UNKNOWN;
2809 if (h)
2810 tls_type = elf_xtensa_hash_entry (h)->tls_type;
2811 else if (local_got_tls_types)
2812 tls_type = local_got_tls_types [r_symndx];
2814 switch (r_type)
2816 case R_XTENSA_32:
2817 case R_XTENSA_PLT:
2818 if (elf_hash_table (info)->dynamic_sections_created
2819 && (input_section->flags & SEC_ALLOC) != 0
2820 && (dynamic_symbol || info->shared))
2822 Elf_Internal_Rela outrel;
2823 bfd_byte *loc;
2824 asection *srel;
2826 if (dynamic_symbol && r_type == R_XTENSA_PLT)
2827 srel = htab->srelplt;
2828 else
2829 srel = htab->srelgot;
2831 BFD_ASSERT (srel != NULL);
2833 outrel.r_offset =
2834 _bfd_elf_section_offset (output_bfd, info,
2835 input_section, rel->r_offset);
2837 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2838 memset (&outrel, 0, sizeof outrel);
2839 else
2841 outrel.r_offset += (input_section->output_section->vma
2842 + input_section->output_offset);
2844 /* Complain if the relocation is in a read-only section
2845 and not in a literal pool. */
2846 if ((input_section->flags & SEC_READONLY) != 0
2847 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
2848 outrel.r_offset))
2850 error_message =
2851 _("dynamic relocation in read-only section");
2852 if (!((*info->callbacks->reloc_dangerous)
2853 (info, error_message, input_bfd, input_section,
2854 rel->r_offset)))
2855 return FALSE;
2858 if (dynamic_symbol)
2860 outrel.r_addend = rel->r_addend;
2861 rel->r_addend = 0;
2863 if (r_type == R_XTENSA_32)
2865 outrel.r_info =
2866 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2867 relocation = 0;
2869 else /* r_type == R_XTENSA_PLT */
2871 outrel.r_info =
2872 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2874 /* Create the PLT entry and set the initial
2875 contents of the literal entry to the address of
2876 the PLT entry. */
2877 relocation =
2878 elf_xtensa_create_plt_entry (info, output_bfd,
2879 srel->reloc_count);
2881 unresolved_reloc = FALSE;
2883 else
2885 /* Generate a RELATIVE relocation. */
2886 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2887 outrel.r_addend = 0;
2891 loc = (srel->contents
2892 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2893 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2894 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2895 <= srel->size);
2897 else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
2899 /* This should only happen for non-PIC code, which is not
2900 supposed to be used on systems with dynamic linking.
2901 Just ignore these relocations. */
2902 continue;
2904 break;
2906 case R_XTENSA_TLS_TPOFF:
2907 /* Switch to LE model for local symbols in an executable. */
2908 if (! info->shared && ! dynamic_symbol)
2910 relocation = tpoff (info, relocation);
2911 break;
2913 /* fall through */
2915 case R_XTENSA_TLSDESC_FN:
2916 case R_XTENSA_TLSDESC_ARG:
2918 if (r_type == R_XTENSA_TLSDESC_FN)
2920 if (! info->shared || (tls_type & GOT_TLS_IE) != 0)
2921 r_type = R_XTENSA_NONE;
2923 else if (r_type == R_XTENSA_TLSDESC_ARG)
2925 if (info->shared)
2927 if ((tls_type & GOT_TLS_IE) != 0)
2928 r_type = R_XTENSA_TLS_TPOFF;
2930 else
2932 r_type = R_XTENSA_TLS_TPOFF;
2933 if (! dynamic_symbol)
2935 relocation = tpoff (info, relocation);
2936 break;
2941 if (r_type == R_XTENSA_NONE)
2942 /* Nothing to do here; skip to the next reloc. */
2943 continue;
2945 if (! elf_hash_table (info)->dynamic_sections_created)
2947 error_message =
2948 _("TLS relocation invalid without dynamic sections");
2949 if (!((*info->callbacks->reloc_dangerous)
2950 (info, error_message, input_bfd, input_section,
2951 rel->r_offset)))
2952 return FALSE;
2954 else
2956 Elf_Internal_Rela outrel;
2957 bfd_byte *loc;
2958 asection *srel = htab->srelgot;
2959 int indx;
2961 outrel.r_offset = (input_section->output_section->vma
2962 + input_section->output_offset
2963 + rel->r_offset);
2965 /* Complain if the relocation is in a read-only section
2966 and not in a literal pool. */
2967 if ((input_section->flags & SEC_READONLY) != 0
2968 && ! elf_xtensa_in_literal_pool (lit_table, ltblsize,
2969 outrel.r_offset))
2971 error_message =
2972 _("dynamic relocation in read-only section");
2973 if (!((*info->callbacks->reloc_dangerous)
2974 (info, error_message, input_bfd, input_section,
2975 rel->r_offset)))
2976 return FALSE;
2979 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2980 if (indx == 0)
2981 outrel.r_addend = relocation - dtpoff_base (info);
2982 else
2983 outrel.r_addend = 0;
2984 rel->r_addend = 0;
2986 outrel.r_info = ELF32_R_INFO (indx, r_type);
2987 relocation = 0;
2988 unresolved_reloc = FALSE;
2990 BFD_ASSERT (srel);
2991 loc = (srel->contents
2992 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2993 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2994 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2995 <= srel->size);
2998 break;
3000 case R_XTENSA_TLS_DTPOFF:
3001 if (! info->shared)
3002 /* Switch from LD model to LE model. */
3003 relocation = tpoff (info, relocation);
3004 else
3005 relocation -= dtpoff_base (info);
3006 break;
3008 case R_XTENSA_TLS_FUNC:
3009 case R_XTENSA_TLS_ARG:
3010 case R_XTENSA_TLS_CALL:
3011 /* Check if optimizing to IE or LE model. */
3012 if ((tls_type & GOT_TLS_IE) != 0)
3014 bfd_boolean is_ld_model =
3015 (h && elf_xtensa_hash_entry (h) == htab->tlsbase);
3016 if (! replace_tls_insn (rel, input_bfd, input_section, contents,
3017 is_ld_model, &error_message))
3019 if (!((*info->callbacks->reloc_dangerous)
3020 (info, error_message, input_bfd, input_section,
3021 rel->r_offset)))
3022 return FALSE;
3025 if (r_type != R_XTENSA_TLS_ARG || is_ld_model)
3027 /* Skip subsequent relocations on the same instruction. */
3028 while (rel + 1 < relend && rel[1].r_offset == rel->r_offset)
3029 rel++;
3032 continue;
3034 default:
3035 if (elf_hash_table (info)->dynamic_sections_created
3036 && dynamic_symbol && (is_operand_relocation (r_type)
3037 || r_type == R_XTENSA_32_PCREL))
3039 error_message =
3040 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
3041 strlen (name) + 2, name);
3042 if (!((*info->callbacks->reloc_dangerous)
3043 (info, error_message, input_bfd, input_section,
3044 rel->r_offset)))
3045 return FALSE;
3046 continue;
3048 break;
3051 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3052 because such sections are not SEC_ALLOC and thus ld.so will
3053 not process them. */
3054 if (unresolved_reloc
3055 && !((input_section->flags & SEC_DEBUGGING) != 0
3056 && h->def_dynamic)
3057 && _bfd_elf_section_offset (output_bfd, info, input_section,
3058 rel->r_offset) != (bfd_vma) -1)
3060 (*_bfd_error_handler)
3061 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3062 input_bfd,
3063 input_section,
3064 (long) rel->r_offset,
3065 howto->name,
3066 name);
3067 return FALSE;
3070 /* TLS optimizations may have changed r_type; update "howto". */
3071 howto = &elf_howto_table[r_type];
3073 /* There's no point in calling bfd_perform_relocation here.
3074 Just go directly to our "special function". */
3075 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
3076 relocation + rel->r_addend,
3077 contents, rel->r_offset, is_weak_undef,
3078 &error_message);
3080 if (r != bfd_reloc_ok && !warned)
3082 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
3083 BFD_ASSERT (error_message != NULL);
3085 if (rel->r_addend == 0)
3086 error_message = vsprint_msg (error_message, ": %s",
3087 strlen (name) + 2, name);
3088 else
3089 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
3090 strlen (name) + 22,
3091 name, (int) rel->r_addend);
3093 if (!((*info->callbacks->reloc_dangerous)
3094 (info, error_message, input_bfd, input_section,
3095 rel->r_offset)))
3096 return FALSE;
3100 if (lit_table)
3101 free (lit_table);
3103 input_section->reloc_done = TRUE;
3105 return TRUE;
3109 /* Finish up dynamic symbol handling. There's not much to do here since
3110 the PLT and GOT entries are all set up by relocate_section. */
3112 static bfd_boolean
3113 elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3114 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3115 struct elf_link_hash_entry *h,
3116 Elf_Internal_Sym *sym)
3118 if (h->needs_plt && !h->def_regular)
3120 /* Mark the symbol as undefined, rather than as defined in
3121 the .plt section. Leave the value alone. */
3122 sym->st_shndx = SHN_UNDEF;
3123 /* If the symbol is weak, we do need to clear the value.
3124 Otherwise, the PLT entry would provide a definition for
3125 the symbol even if the symbol wasn't defined anywhere,
3126 and so the symbol would never be NULL. */
3127 if (!h->ref_regular_nonweak)
3128 sym->st_value = 0;
3131 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3132 if (h == elf_hash_table (info)->hdynamic
3133 || h == elf_hash_table (info)->hgot)
3134 sym->st_shndx = SHN_ABS;
3136 return TRUE;
3140 /* Combine adjacent literal table entries in the output. Adjacent
3141 entries within each input section may have been removed during
3142 relaxation, but we repeat the process here, even though it's too late
3143 to shrink the output section, because it's important to minimize the
3144 number of literal table entries to reduce the start-up work for the
3145 runtime linker. Returns the number of remaining table entries or -1
3146 on error. */
3148 static int
3149 elf_xtensa_combine_prop_entries (bfd *output_bfd,
3150 asection *sxtlit,
3151 asection *sgotloc)
3153 bfd_byte *contents;
3154 property_table_entry *table;
3155 bfd_size_type section_size, sgotloc_size;
3156 bfd_vma offset;
3157 int n, m, num;
3159 section_size = sxtlit->size;
3160 BFD_ASSERT (section_size % 8 == 0);
3161 num = section_size / 8;
3163 sgotloc_size = sgotloc->size;
3164 if (sgotloc_size != section_size)
3166 (*_bfd_error_handler)
3167 (_("internal inconsistency in size of .got.loc section"));
3168 return -1;
3171 table = bfd_malloc (num * sizeof (property_table_entry));
3172 if (table == 0)
3173 return -1;
3175 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
3176 propagates to the output section, where it doesn't really apply and
3177 where it breaks the following call to bfd_malloc_and_get_section. */
3178 sxtlit->flags &= ~SEC_IN_MEMORY;
3180 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
3182 if (contents != 0)
3183 free (contents);
3184 free (table);
3185 return -1;
3188 /* There should never be any relocations left at this point, so this
3189 is quite a bit easier than what is done during relaxation. */
3191 /* Copy the raw contents into a property table array and sort it. */
3192 offset = 0;
3193 for (n = 0; n < num; n++)
3195 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
3196 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
3197 offset += 8;
3199 qsort (table, num, sizeof (property_table_entry), property_table_compare);
3201 for (n = 0; n < num; n++)
3203 bfd_boolean remove_entry = FALSE;
3205 if (table[n].size == 0)
3206 remove_entry = TRUE;
3207 else if (n > 0
3208 && (table[n-1].address + table[n-1].size == table[n].address))
3210 table[n-1].size += table[n].size;
3211 remove_entry = TRUE;
3214 if (remove_entry)
3216 for (m = n; m < num - 1; m++)
3218 table[m].address = table[m+1].address;
3219 table[m].size = table[m+1].size;
3222 n--;
3223 num--;
3227 /* Copy the data back to the raw contents. */
3228 offset = 0;
3229 for (n = 0; n < num; n++)
3231 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
3232 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
3233 offset += 8;
3236 /* Clear the removed bytes. */
3237 if ((bfd_size_type) (num * 8) < section_size)
3238 memset (&contents[num * 8], 0, section_size - num * 8);
3240 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
3241 section_size))
3242 return -1;
3244 /* Copy the contents to ".got.loc". */
3245 memcpy (sgotloc->contents, contents, section_size);
3247 free (contents);
3248 free (table);
3249 return num;
3253 /* Finish up the dynamic sections. */
3255 static bfd_boolean
3256 elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
3257 struct bfd_link_info *info)
3259 struct elf_xtensa_link_hash_table *htab;
3260 bfd *dynobj;
3261 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
3262 Elf32_External_Dyn *dyncon, *dynconend;
3263 int num_xtlit_entries = 0;
3265 if (! elf_hash_table (info)->dynamic_sections_created)
3266 return TRUE;
3268 htab = elf_xtensa_hash_table (info);
3269 if (htab == NULL)
3270 return FALSE;
3272 dynobj = elf_hash_table (info)->dynobj;
3273 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3274 BFD_ASSERT (sdyn != NULL);
3276 /* Set the first entry in the global offset table to the address of
3277 the dynamic section. */
3278 sgot = htab->sgot;
3279 if (sgot)
3281 BFD_ASSERT (sgot->size == 4);
3282 if (sdyn == NULL)
3283 bfd_put_32 (output_bfd, 0, sgot->contents);
3284 else
3285 bfd_put_32 (output_bfd,
3286 sdyn->output_section->vma + sdyn->output_offset,
3287 sgot->contents);
3290 srelplt = htab->srelplt;
3291 if (srelplt && srelplt->size != 0)
3293 asection *sgotplt, *srelgot, *spltlittbl;
3294 int chunk, plt_chunks, plt_entries;
3295 Elf_Internal_Rela irela;
3296 bfd_byte *loc;
3297 unsigned rtld_reloc;
3299 srelgot = htab->srelgot;
3300 spltlittbl = htab->spltlittbl;
3301 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
3303 /* Find the first XTENSA_RTLD relocation. Presumably the rest
3304 of them follow immediately after.... */
3305 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
3307 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3308 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3309 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
3310 break;
3312 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
3314 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
3315 plt_chunks =
3316 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
3318 for (chunk = 0; chunk < plt_chunks; chunk++)
3320 int chunk_entries = 0;
3322 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
3323 BFD_ASSERT (sgotplt != NULL);
3325 /* Emit special RTLD relocations for the first two entries in
3326 each chunk of the .got.plt section. */
3328 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3329 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3330 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3331 irela.r_offset = (sgotplt->output_section->vma
3332 + sgotplt->output_offset);
3333 irela.r_addend = 1; /* tell rtld to set value to resolver function */
3334 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3335 rtld_reloc += 1;
3336 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3338 /* Next literal immediately follows the first. */
3339 loc += sizeof (Elf32_External_Rela);
3340 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3341 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3342 irela.r_offset = (sgotplt->output_section->vma
3343 + sgotplt->output_offset + 4);
3344 /* Tell rtld to set value to object's link map. */
3345 irela.r_addend = 2;
3346 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3347 rtld_reloc += 1;
3348 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3350 /* Fill in the literal table. */
3351 if (chunk < plt_chunks - 1)
3352 chunk_entries = PLT_ENTRIES_PER_CHUNK;
3353 else
3354 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
3356 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
3357 bfd_put_32 (output_bfd,
3358 sgotplt->output_section->vma + sgotplt->output_offset,
3359 spltlittbl->contents + (chunk * 8) + 0);
3360 bfd_put_32 (output_bfd,
3361 8 + (chunk_entries * 4),
3362 spltlittbl->contents + (chunk * 8) + 4);
3365 /* All the dynamic relocations have been emitted at this point.
3366 Make sure the relocation sections are the correct size. */
3367 if (srelgot->size != (sizeof (Elf32_External_Rela)
3368 * srelgot->reloc_count)
3369 || srelplt->size != (sizeof (Elf32_External_Rela)
3370 * srelplt->reloc_count))
3371 abort ();
3373 /* The .xt.lit.plt section has just been modified. This must
3374 happen before the code below which combines adjacent literal
3375 table entries, and the .xt.lit.plt contents have to be forced to
3376 the output here. */
3377 if (! bfd_set_section_contents (output_bfd,
3378 spltlittbl->output_section,
3379 spltlittbl->contents,
3380 spltlittbl->output_offset,
3381 spltlittbl->size))
3382 return FALSE;
3383 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
3384 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
3387 /* Combine adjacent literal table entries. */
3388 BFD_ASSERT (! info->relocatable);
3389 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
3390 sgotloc = htab->sgotloc;
3391 BFD_ASSERT (sgotloc);
3392 if (sxtlit)
3394 num_xtlit_entries =
3395 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
3396 if (num_xtlit_entries < 0)
3397 return FALSE;
3400 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3401 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
3402 for (; dyncon < dynconend; dyncon++)
3404 Elf_Internal_Dyn dyn;
3406 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3408 switch (dyn.d_tag)
3410 default:
3411 break;
3413 case DT_XTENSA_GOT_LOC_SZ:
3414 dyn.d_un.d_val = num_xtlit_entries;
3415 break;
3417 case DT_XTENSA_GOT_LOC_OFF:
3418 dyn.d_un.d_ptr = htab->sgotloc->output_section->vma;
3419 break;
3421 case DT_PLTGOT:
3422 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
3423 break;
3425 case DT_JMPREL:
3426 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
3427 break;
3429 case DT_PLTRELSZ:
3430 dyn.d_un.d_val = htab->srelplt->output_section->size;
3431 break;
3433 case DT_RELASZ:
3434 /* Adjust RELASZ to not include JMPREL. This matches what
3435 glibc expects and what is done for several other ELF
3436 targets (e.g., i386, alpha), but the "correct" behavior
3437 seems to be unresolved. Since the linker script arranges
3438 for .rela.plt to follow all other relocation sections, we
3439 don't have to worry about changing the DT_RELA entry. */
3440 if (htab->srelplt)
3441 dyn.d_un.d_val -= htab->srelplt->output_section->size;
3442 break;
3445 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3448 return TRUE;
3452 /* Functions for dealing with the e_flags field. */
3454 /* Merge backend specific data from an object file to the output
3455 object file when linking. */
3457 static bfd_boolean
3458 elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
3460 unsigned out_mach, in_mach;
3461 flagword out_flag, in_flag;
3463 /* Check if we have the same endianness. */
3464 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
3465 return FALSE;
3467 /* Don't even pretend to support mixed-format linking. */
3468 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3469 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3470 return FALSE;
3472 out_flag = elf_elfheader (obfd)->e_flags;
3473 in_flag = elf_elfheader (ibfd)->e_flags;
3475 out_mach = out_flag & EF_XTENSA_MACH;
3476 in_mach = in_flag & EF_XTENSA_MACH;
3477 if (out_mach != in_mach)
3479 (*_bfd_error_handler)
3480 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
3481 ibfd, out_mach, in_mach);
3482 bfd_set_error (bfd_error_wrong_format);
3483 return FALSE;
3486 if (! elf_flags_init (obfd))
3488 elf_flags_init (obfd) = TRUE;
3489 elf_elfheader (obfd)->e_flags = in_flag;
3491 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
3492 && bfd_get_arch_info (obfd)->the_default)
3493 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
3494 bfd_get_mach (ibfd));
3496 return TRUE;
3499 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
3500 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
3502 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
3503 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
3505 return TRUE;
3509 static bfd_boolean
3510 elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
3512 BFD_ASSERT (!elf_flags_init (abfd)
3513 || elf_elfheader (abfd)->e_flags == flags);
3515 elf_elfheader (abfd)->e_flags |= flags;
3516 elf_flags_init (abfd) = TRUE;
3518 return TRUE;
3522 static bfd_boolean
3523 elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
3525 FILE *f = (FILE *) farg;
3526 flagword e_flags = elf_elfheader (abfd)->e_flags;
3528 fprintf (f, "\nXtensa header:\n");
3529 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
3530 fprintf (f, "\nMachine = Base\n");
3531 else
3532 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
3534 fprintf (f, "Insn tables = %s\n",
3535 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
3537 fprintf (f, "Literal tables = %s\n",
3538 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
3540 return _bfd_elf_print_private_bfd_data (abfd, farg);
3544 /* Set the right machine number for an Xtensa ELF file. */
3546 static bfd_boolean
3547 elf_xtensa_object_p (bfd *abfd)
3549 int mach;
3550 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3552 switch (arch)
3554 case E_XTENSA_MACH:
3555 mach = bfd_mach_xtensa;
3556 break;
3557 default:
3558 return FALSE;
3561 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
3562 return TRUE;
3566 /* The final processing done just before writing out an Xtensa ELF object
3567 file. This gets the Xtensa architecture right based on the machine
3568 number. */
3570 static void
3571 elf_xtensa_final_write_processing (bfd *abfd,
3572 bfd_boolean linker ATTRIBUTE_UNUSED)
3574 int mach;
3575 unsigned long val;
3577 switch (mach = bfd_get_mach (abfd))
3579 case bfd_mach_xtensa:
3580 val = E_XTENSA_MACH;
3581 break;
3582 default:
3583 return;
3586 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
3587 elf_elfheader (abfd)->e_flags |= val;
3591 static enum elf_reloc_type_class
3592 elf_xtensa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
3593 const asection *rel_sec ATTRIBUTE_UNUSED,
3594 const Elf_Internal_Rela *rela)
3596 switch ((int) ELF32_R_TYPE (rela->r_info))
3598 case R_XTENSA_RELATIVE:
3599 return reloc_class_relative;
3600 case R_XTENSA_JMP_SLOT:
3601 return reloc_class_plt;
3602 default:
3603 return reloc_class_normal;
3608 static bfd_boolean
3609 elf_xtensa_discard_info_for_section (bfd *abfd,
3610 struct elf_reloc_cookie *cookie,
3611 struct bfd_link_info *info,
3612 asection *sec)
3614 bfd_byte *contents;
3615 bfd_vma offset, actual_offset;
3616 bfd_size_type removed_bytes = 0;
3617 bfd_size_type entry_size;
3619 if (sec->output_section
3620 && bfd_is_abs_section (sec->output_section))
3621 return FALSE;
3623 if (xtensa_is_proptable_section (sec))
3624 entry_size = 12;
3625 else
3626 entry_size = 8;
3628 if (sec->size == 0 || sec->size % entry_size != 0)
3629 return FALSE;
3631 contents = retrieve_contents (abfd, sec, info->keep_memory);
3632 if (!contents)
3633 return FALSE;
3635 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
3636 if (!cookie->rels)
3638 release_contents (sec, contents);
3639 return FALSE;
3642 /* Sort the relocations. They should already be in order when
3643 relaxation is enabled, but it might not be. */
3644 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
3645 internal_reloc_compare);
3647 cookie->rel = cookie->rels;
3648 cookie->relend = cookie->rels + sec->reloc_count;
3650 for (offset = 0; offset < sec->size; offset += entry_size)
3652 actual_offset = offset - removed_bytes;
3654 /* The ...symbol_deleted_p function will skip over relocs but it
3655 won't adjust their offsets, so do that here. */
3656 while (cookie->rel < cookie->relend
3657 && cookie->rel->r_offset < offset)
3659 cookie->rel->r_offset -= removed_bytes;
3660 cookie->rel++;
3663 while (cookie->rel < cookie->relend
3664 && cookie->rel->r_offset == offset)
3666 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
3668 /* Remove the table entry. (If the reloc type is NONE, then
3669 the entry has already been merged with another and deleted
3670 during relaxation.) */
3671 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
3673 /* Shift the contents up. */
3674 if (offset + entry_size < sec->size)
3675 memmove (&contents[actual_offset],
3676 &contents[actual_offset + entry_size],
3677 sec->size - offset - entry_size);
3678 removed_bytes += entry_size;
3681 /* Remove this relocation. */
3682 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3685 /* Adjust the relocation offset for previous removals. This
3686 should not be done before calling ...symbol_deleted_p
3687 because it might mess up the offset comparisons there.
3688 Make sure the offset doesn't underflow in the case where
3689 the first entry is removed. */
3690 if (cookie->rel->r_offset >= removed_bytes)
3691 cookie->rel->r_offset -= removed_bytes;
3692 else
3693 cookie->rel->r_offset = 0;
3695 cookie->rel++;
3699 if (removed_bytes != 0)
3701 /* Adjust any remaining relocs (shouldn't be any). */
3702 for (; cookie->rel < cookie->relend; cookie->rel++)
3704 if (cookie->rel->r_offset >= removed_bytes)
3705 cookie->rel->r_offset -= removed_bytes;
3706 else
3707 cookie->rel->r_offset = 0;
3710 /* Clear the removed bytes. */
3711 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
3713 pin_contents (sec, contents);
3714 pin_internal_relocs (sec, cookie->rels);
3716 /* Shrink size. */
3717 if (sec->rawsize == 0)
3718 sec->rawsize = sec->size;
3719 sec->size -= removed_bytes;
3721 if (xtensa_is_littable_section (sec))
3723 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
3724 if (sgotloc)
3725 sgotloc->size -= removed_bytes;
3728 else
3730 release_contents (sec, contents);
3731 release_internal_relocs (sec, cookie->rels);
3734 return (removed_bytes != 0);
3738 static bfd_boolean
3739 elf_xtensa_discard_info (bfd *abfd,
3740 struct elf_reloc_cookie *cookie,
3741 struct bfd_link_info *info)
3743 asection *sec;
3744 bfd_boolean changed = FALSE;
3746 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3748 if (xtensa_is_property_section (sec))
3750 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
3751 changed = TRUE;
3755 return changed;
3759 static bfd_boolean
3760 elf_xtensa_ignore_discarded_relocs (asection *sec)
3762 return xtensa_is_property_section (sec);
3766 static unsigned int
3767 elf_xtensa_action_discarded (asection *sec)
3769 if (strcmp (".xt_except_table", sec->name) == 0)
3770 return 0;
3772 if (strcmp (".xt_except_desc", sec->name) == 0)
3773 return 0;
3775 return _bfd_elf_default_action_discarded (sec);
3779 /* Support for core dump NOTE sections. */
3781 static bfd_boolean
3782 elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3784 int offset;
3785 unsigned int size;
3787 /* The size for Xtensa is variable, so don't try to recognize the format
3788 based on the size. Just assume this is GNU/Linux. */
3790 /* pr_cursig */
3791 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
3793 /* pr_pid */
3794 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
3796 /* pr_reg */
3797 offset = 72;
3798 size = note->descsz - offset - 4;
3800 /* Make a ".reg/999" section. */
3801 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
3802 size, note->descpos + offset);
3806 static bfd_boolean
3807 elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3809 switch (note->descsz)
3811 default:
3812 return FALSE;
3814 case 128: /* GNU/Linux elf_prpsinfo */
3815 elf_tdata (abfd)->core->program
3816 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3817 elf_tdata (abfd)->core->command
3818 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3821 /* Note that for some reason, a spurious space is tacked
3822 onto the end of the args in some (at least one anyway)
3823 implementations, so strip it off if it exists. */
3826 char *command = elf_tdata (abfd)->core->command;
3827 int n = strlen (command);
3829 if (0 < n && command[n - 1] == ' ')
3830 command[n - 1] = '\0';
3833 return TRUE;
3837 /* Generic Xtensa configurability stuff. */
3839 static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3840 static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3841 static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3842 static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3843 static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3844 static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3845 static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3846 static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3848 static void
3849 init_call_opcodes (void)
3851 if (callx0_op == XTENSA_UNDEFINED)
3853 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3854 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3855 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3856 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3857 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3858 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3859 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3860 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3865 static bfd_boolean
3866 is_indirect_call_opcode (xtensa_opcode opcode)
3868 init_call_opcodes ();
3869 return (opcode == callx0_op
3870 || opcode == callx4_op
3871 || opcode == callx8_op
3872 || opcode == callx12_op);
3876 static bfd_boolean
3877 is_direct_call_opcode (xtensa_opcode opcode)
3879 init_call_opcodes ();
3880 return (opcode == call0_op
3881 || opcode == call4_op
3882 || opcode == call8_op
3883 || opcode == call12_op);
3887 static bfd_boolean
3888 is_windowed_call_opcode (xtensa_opcode opcode)
3890 init_call_opcodes ();
3891 return (opcode == call4_op
3892 || opcode == call8_op
3893 || opcode == call12_op
3894 || opcode == callx4_op
3895 || opcode == callx8_op
3896 || opcode == callx12_op);
3900 static bfd_boolean
3901 get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst)
3903 unsigned dst = (unsigned) -1;
3905 init_call_opcodes ();
3906 if (opcode == callx0_op)
3907 dst = 0;
3908 else if (opcode == callx4_op)
3909 dst = 4;
3910 else if (opcode == callx8_op)
3911 dst = 8;
3912 else if (opcode == callx12_op)
3913 dst = 12;
3915 if (dst == (unsigned) -1)
3916 return FALSE;
3918 *pdst = dst;
3919 return TRUE;
3923 static xtensa_opcode
3924 get_const16_opcode (void)
3926 static bfd_boolean done_lookup = FALSE;
3927 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3928 if (!done_lookup)
3930 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3931 done_lookup = TRUE;
3933 return const16_opcode;
3937 static xtensa_opcode
3938 get_l32r_opcode (void)
3940 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
3941 static bfd_boolean done_lookup = FALSE;
3943 if (!done_lookup)
3945 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
3946 done_lookup = TRUE;
3948 return l32r_opcode;
3952 static bfd_vma
3953 l32r_offset (bfd_vma addr, bfd_vma pc)
3955 bfd_vma offset;
3957 offset = addr - ((pc+3) & -4);
3958 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3959 offset = (signed int) offset >> 2;
3960 BFD_ASSERT ((signed int) offset >> 16 == -1);
3961 return offset;
3965 static int
3966 get_relocation_opnd (xtensa_opcode opcode, int r_type)
3968 xtensa_isa isa = xtensa_default_isa;
3969 int last_immed, last_opnd, opi;
3971 if (opcode == XTENSA_UNDEFINED)
3972 return XTENSA_UNDEFINED;
3974 /* Find the last visible PC-relative immediate operand for the opcode.
3975 If there are no PC-relative immediates, then choose the last visible
3976 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3977 last_immed = XTENSA_UNDEFINED;
3978 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3979 for (opi = last_opnd - 1; opi >= 0; opi--)
3981 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3982 continue;
3983 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3985 last_immed = opi;
3986 break;
3988 if (last_immed == XTENSA_UNDEFINED
3989 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3990 last_immed = opi;
3992 if (last_immed < 0)
3993 return XTENSA_UNDEFINED;
3995 /* If the operand number was specified in an old-style relocation,
3996 check for consistency with the operand computed above. */
3997 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3999 int reloc_opnd = r_type - R_XTENSA_OP0;
4000 if (reloc_opnd != last_immed)
4001 return XTENSA_UNDEFINED;
4004 return last_immed;
4009 get_relocation_slot (int r_type)
4011 switch (r_type)
4013 case R_XTENSA_OP0:
4014 case R_XTENSA_OP1:
4015 case R_XTENSA_OP2:
4016 return 0;
4018 default:
4019 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4020 return r_type - R_XTENSA_SLOT0_OP;
4021 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4022 return r_type - R_XTENSA_SLOT0_ALT;
4023 break;
4026 return XTENSA_UNDEFINED;
4030 /* Get the opcode for a relocation. */
4032 static xtensa_opcode
4033 get_relocation_opcode (bfd *abfd,
4034 asection *sec,
4035 bfd_byte *contents,
4036 Elf_Internal_Rela *irel)
4038 static xtensa_insnbuf ibuff = NULL;
4039 static xtensa_insnbuf sbuff = NULL;
4040 xtensa_isa isa = xtensa_default_isa;
4041 xtensa_format fmt;
4042 int slot;
4044 if (contents == NULL)
4045 return XTENSA_UNDEFINED;
4047 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
4048 return XTENSA_UNDEFINED;
4050 if (ibuff == NULL)
4052 ibuff = xtensa_insnbuf_alloc (isa);
4053 sbuff = xtensa_insnbuf_alloc (isa);
4056 /* Decode the instruction. */
4057 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
4058 sec->size - irel->r_offset);
4059 fmt = xtensa_format_decode (isa, ibuff);
4060 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
4061 if (slot == XTENSA_UNDEFINED)
4062 return XTENSA_UNDEFINED;
4063 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
4064 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
4068 bfd_boolean
4069 is_l32r_relocation (bfd *abfd,
4070 asection *sec,
4071 bfd_byte *contents,
4072 Elf_Internal_Rela *irel)
4074 xtensa_opcode opcode;
4075 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
4076 return FALSE;
4077 opcode = get_relocation_opcode (abfd, sec, contents, irel);
4078 return (opcode == get_l32r_opcode ());
4082 static bfd_size_type
4083 get_asm_simplify_size (bfd_byte *contents,
4084 bfd_size_type content_len,
4085 bfd_size_type offset)
4087 bfd_size_type insnlen, size = 0;
4089 /* Decode the size of the next two instructions. */
4090 insnlen = insn_decode_len (contents, content_len, offset);
4091 if (insnlen == 0)
4092 return 0;
4094 size += insnlen;
4096 insnlen = insn_decode_len (contents, content_len, offset + size);
4097 if (insnlen == 0)
4098 return 0;
4100 size += insnlen;
4101 return size;
4105 bfd_boolean
4106 is_alt_relocation (int r_type)
4108 return (r_type >= R_XTENSA_SLOT0_ALT
4109 && r_type <= R_XTENSA_SLOT14_ALT);
4113 bfd_boolean
4114 is_operand_relocation (int r_type)
4116 switch (r_type)
4118 case R_XTENSA_OP0:
4119 case R_XTENSA_OP1:
4120 case R_XTENSA_OP2:
4121 return TRUE;
4123 default:
4124 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4125 return TRUE;
4126 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4127 return TRUE;
4128 break;
4131 return FALSE;
4135 #define MIN_INSN_LENGTH 2
4137 /* Return 0 if it fails to decode. */
4139 bfd_size_type
4140 insn_decode_len (bfd_byte *contents,
4141 bfd_size_type content_len,
4142 bfd_size_type offset)
4144 int insn_len;
4145 xtensa_isa isa = xtensa_default_isa;
4146 xtensa_format fmt;
4147 static xtensa_insnbuf ibuff = NULL;
4149 if (offset + MIN_INSN_LENGTH > content_len)
4150 return 0;
4152 if (ibuff == NULL)
4153 ibuff = xtensa_insnbuf_alloc (isa);
4154 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4155 content_len - offset);
4156 fmt = xtensa_format_decode (isa, ibuff);
4157 if (fmt == XTENSA_UNDEFINED)
4158 return 0;
4159 insn_len = xtensa_format_length (isa, fmt);
4160 if (insn_len == XTENSA_UNDEFINED)
4161 return 0;
4162 return insn_len;
4166 /* Decode the opcode for a single slot instruction.
4167 Return 0 if it fails to decode or the instruction is multi-slot. */
4169 xtensa_opcode
4170 insn_decode_opcode (bfd_byte *contents,
4171 bfd_size_type content_len,
4172 bfd_size_type offset,
4173 int slot)
4175 xtensa_isa isa = xtensa_default_isa;
4176 xtensa_format fmt;
4177 static xtensa_insnbuf insnbuf = NULL;
4178 static xtensa_insnbuf slotbuf = NULL;
4180 if (offset + MIN_INSN_LENGTH > content_len)
4181 return XTENSA_UNDEFINED;
4183 if (insnbuf == NULL)
4185 insnbuf = xtensa_insnbuf_alloc (isa);
4186 slotbuf = xtensa_insnbuf_alloc (isa);
4189 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4190 content_len - offset);
4191 fmt = xtensa_format_decode (isa, insnbuf);
4192 if (fmt == XTENSA_UNDEFINED)
4193 return XTENSA_UNDEFINED;
4195 if (slot >= xtensa_format_num_slots (isa, fmt))
4196 return XTENSA_UNDEFINED;
4198 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4199 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4203 /* The offset is the offset in the contents.
4204 The address is the address of that offset. */
4206 static bfd_boolean
4207 check_branch_target_aligned (bfd_byte *contents,
4208 bfd_size_type content_length,
4209 bfd_vma offset,
4210 bfd_vma address)
4212 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
4213 if (insn_len == 0)
4214 return FALSE;
4215 return check_branch_target_aligned_address (address, insn_len);
4219 static bfd_boolean
4220 check_loop_aligned (bfd_byte *contents,
4221 bfd_size_type content_length,
4222 bfd_vma offset,
4223 bfd_vma address)
4225 bfd_size_type loop_len, insn_len;
4226 xtensa_opcode opcode;
4228 opcode = insn_decode_opcode (contents, content_length, offset, 0);
4229 if (opcode == XTENSA_UNDEFINED
4230 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
4232 BFD_ASSERT (FALSE);
4233 return FALSE;
4236 loop_len = insn_decode_len (contents, content_length, offset);
4237 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
4238 if (loop_len == 0 || insn_len == 0)
4240 BFD_ASSERT (FALSE);
4241 return FALSE;
4244 return check_branch_target_aligned_address (address + loop_len, insn_len);
4248 static bfd_boolean
4249 check_branch_target_aligned_address (bfd_vma addr, int len)
4251 if (len == 8)
4252 return (addr % 8 == 0);
4253 return ((addr >> 2) == ((addr + len - 1) >> 2));
4257 /* Instruction widening and narrowing. */
4259 /* When FLIX is available we need to access certain instructions only
4260 when they are 16-bit or 24-bit instructions. This table caches
4261 information about such instructions by walking through all the
4262 opcodes and finding the smallest single-slot format into which each
4263 can be encoded. */
4265 static xtensa_format *op_single_fmt_table = NULL;
4268 static void
4269 init_op_single_format_table (void)
4271 xtensa_isa isa = xtensa_default_isa;
4272 xtensa_insnbuf ibuf;
4273 xtensa_opcode opcode;
4274 xtensa_format fmt;
4275 int num_opcodes;
4277 if (op_single_fmt_table)
4278 return;
4280 ibuf = xtensa_insnbuf_alloc (isa);
4281 num_opcodes = xtensa_isa_num_opcodes (isa);
4283 op_single_fmt_table = (xtensa_format *)
4284 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
4285 for (opcode = 0; opcode < num_opcodes; opcode++)
4287 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
4288 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
4290 if (xtensa_format_num_slots (isa, fmt) == 1
4291 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
4293 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
4294 int fmt_length = xtensa_format_length (isa, fmt);
4295 if (old_fmt == XTENSA_UNDEFINED
4296 || fmt_length < xtensa_format_length (isa, old_fmt))
4297 op_single_fmt_table[opcode] = fmt;
4301 xtensa_insnbuf_free (isa, ibuf);
4305 static xtensa_format
4306 get_single_format (xtensa_opcode opcode)
4308 init_op_single_format_table ();
4309 return op_single_fmt_table[opcode];
4313 /* For the set of narrowable instructions we do NOT include the
4314 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
4315 involved during linker relaxation that may require these to
4316 re-expand in some conditions. Also, the narrowing "or" -> mov.n
4317 requires special case code to ensure it only works when op1 == op2. */
4319 struct string_pair
4321 const char *wide;
4322 const char *narrow;
4325 struct string_pair narrowable[] =
4327 { "add", "add.n" },
4328 { "addi", "addi.n" },
4329 { "addmi", "addi.n" },
4330 { "l32i", "l32i.n" },
4331 { "movi", "movi.n" },
4332 { "ret", "ret.n" },
4333 { "retw", "retw.n" },
4334 { "s32i", "s32i.n" },
4335 { "or", "mov.n" } /* special case only when op1 == op2 */
4338 struct string_pair widenable[] =
4340 { "add", "add.n" },
4341 { "addi", "addi.n" },
4342 { "addmi", "addi.n" },
4343 { "beqz", "beqz.n" },
4344 { "bnez", "bnez.n" },
4345 { "l32i", "l32i.n" },
4346 { "movi", "movi.n" },
4347 { "ret", "ret.n" },
4348 { "retw", "retw.n" },
4349 { "s32i", "s32i.n" },
4350 { "or", "mov.n" } /* special case only when op1 == op2 */
4354 /* Check if an instruction can be "narrowed", i.e., changed from a standard
4355 3-byte instruction to a 2-byte "density" instruction. If it is valid,
4356 return the instruction buffer holding the narrow instruction. Otherwise,
4357 return 0. The set of valid narrowing are specified by a string table
4358 but require some special case operand checks in some cases. */
4360 static xtensa_insnbuf
4361 can_narrow_instruction (xtensa_insnbuf slotbuf,
4362 xtensa_format fmt,
4363 xtensa_opcode opcode)
4365 xtensa_isa isa = xtensa_default_isa;
4366 xtensa_format o_fmt;
4367 unsigned opi;
4369 static xtensa_insnbuf o_insnbuf = NULL;
4370 static xtensa_insnbuf o_slotbuf = NULL;
4372 if (o_insnbuf == NULL)
4374 o_insnbuf = xtensa_insnbuf_alloc (isa);
4375 o_slotbuf = xtensa_insnbuf_alloc (isa);
4378 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
4380 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
4382 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
4384 uint32 value, newval;
4385 int i, operand_count, o_operand_count;
4386 xtensa_opcode o_opcode;
4388 /* Address does not matter in this case. We might need to
4389 fix it to handle branches/jumps. */
4390 bfd_vma self_address = 0;
4392 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
4393 if (o_opcode == XTENSA_UNDEFINED)
4394 return 0;
4395 o_fmt = get_single_format (o_opcode);
4396 if (o_fmt == XTENSA_UNDEFINED)
4397 return 0;
4399 if (xtensa_format_length (isa, fmt) != 3
4400 || xtensa_format_length (isa, o_fmt) != 2)
4401 return 0;
4403 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4404 operand_count = xtensa_opcode_num_operands (isa, opcode);
4405 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4407 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4408 return 0;
4410 if (!is_or)
4412 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4413 return 0;
4415 else
4417 uint32 rawval0, rawval1, rawval2;
4419 if (o_operand_count + 1 != operand_count
4420 || xtensa_operand_get_field (isa, opcode, 0,
4421 fmt, 0, slotbuf, &rawval0) != 0
4422 || xtensa_operand_get_field (isa, opcode, 1,
4423 fmt, 0, slotbuf, &rawval1) != 0
4424 || xtensa_operand_get_field (isa, opcode, 2,
4425 fmt, 0, slotbuf, &rawval2) != 0
4426 || rawval1 != rawval2
4427 || rawval0 == rawval1 /* it is a nop */)
4428 return 0;
4431 for (i = 0; i < o_operand_count; ++i)
4433 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
4434 slotbuf, &value)
4435 || xtensa_operand_decode (isa, opcode, i, &value))
4436 return 0;
4438 /* PC-relative branches need adjustment, but
4439 the PC-rel operand will always have a relocation. */
4440 newval = value;
4441 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4442 self_address)
4443 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4444 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4445 o_slotbuf, newval))
4446 return 0;
4449 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4450 return 0;
4452 return o_insnbuf;
4455 return 0;
4459 /* Attempt to narrow an instruction. If the narrowing is valid, perform
4460 the action in-place directly into the contents and return TRUE. Otherwise,
4461 the return value is FALSE and the contents are not modified. */
4463 static bfd_boolean
4464 narrow_instruction (bfd_byte *contents,
4465 bfd_size_type content_length,
4466 bfd_size_type offset)
4468 xtensa_opcode opcode;
4469 bfd_size_type insn_len;
4470 xtensa_isa isa = xtensa_default_isa;
4471 xtensa_format fmt;
4472 xtensa_insnbuf o_insnbuf;
4474 static xtensa_insnbuf insnbuf = NULL;
4475 static xtensa_insnbuf slotbuf = NULL;
4477 if (insnbuf == NULL)
4479 insnbuf = xtensa_insnbuf_alloc (isa);
4480 slotbuf = xtensa_insnbuf_alloc (isa);
4483 BFD_ASSERT (offset < content_length);
4485 if (content_length < 2)
4486 return FALSE;
4488 /* We will hand-code a few of these for a little while.
4489 These have all been specified in the assembler aleady. */
4490 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4491 content_length - offset);
4492 fmt = xtensa_format_decode (isa, insnbuf);
4493 if (xtensa_format_num_slots (isa, fmt) != 1)
4494 return FALSE;
4496 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4497 return FALSE;
4499 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4500 if (opcode == XTENSA_UNDEFINED)
4501 return FALSE;
4502 insn_len = xtensa_format_length (isa, fmt);
4503 if (insn_len > content_length)
4504 return FALSE;
4506 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
4507 if (o_insnbuf)
4509 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4510 content_length - offset);
4511 return TRUE;
4514 return FALSE;
4518 /* Check if an instruction can be "widened", i.e., changed from a 2-byte
4519 "density" instruction to a standard 3-byte instruction. If it is valid,
4520 return the instruction buffer holding the wide instruction. Otherwise,
4521 return 0. The set of valid widenings are specified by a string table
4522 but require some special case operand checks in some cases. */
4524 static xtensa_insnbuf
4525 can_widen_instruction (xtensa_insnbuf slotbuf,
4526 xtensa_format fmt,
4527 xtensa_opcode opcode)
4529 xtensa_isa isa = xtensa_default_isa;
4530 xtensa_format o_fmt;
4531 unsigned opi;
4533 static xtensa_insnbuf o_insnbuf = NULL;
4534 static xtensa_insnbuf o_slotbuf = NULL;
4536 if (o_insnbuf == NULL)
4538 o_insnbuf = xtensa_insnbuf_alloc (isa);
4539 o_slotbuf = xtensa_insnbuf_alloc (isa);
4542 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
4544 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
4545 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
4546 || strcmp ("bnez", widenable[opi].wide) == 0);
4548 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
4550 uint32 value, newval;
4551 int i, operand_count, o_operand_count, check_operand_count;
4552 xtensa_opcode o_opcode;
4554 /* Address does not matter in this case. We might need to fix it
4555 to handle branches/jumps. */
4556 bfd_vma self_address = 0;
4558 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
4559 if (o_opcode == XTENSA_UNDEFINED)
4560 return 0;
4561 o_fmt = get_single_format (o_opcode);
4562 if (o_fmt == XTENSA_UNDEFINED)
4563 return 0;
4565 if (xtensa_format_length (isa, fmt) != 2
4566 || xtensa_format_length (isa, o_fmt) != 3)
4567 return 0;
4569 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4570 operand_count = xtensa_opcode_num_operands (isa, opcode);
4571 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4572 check_operand_count = o_operand_count;
4574 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4575 return 0;
4577 if (!is_or)
4579 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4580 return 0;
4582 else
4584 uint32 rawval0, rawval1;
4586 if (o_operand_count != operand_count + 1
4587 || xtensa_operand_get_field (isa, opcode, 0,
4588 fmt, 0, slotbuf, &rawval0) != 0
4589 || xtensa_operand_get_field (isa, opcode, 1,
4590 fmt, 0, slotbuf, &rawval1) != 0
4591 || rawval0 == rawval1 /* it is a nop */)
4592 return 0;
4594 if (is_branch)
4595 check_operand_count--;
4597 for (i = 0; i < check_operand_count; i++)
4599 int new_i = i;
4600 if (is_or && i == o_operand_count - 1)
4601 new_i = i - 1;
4602 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
4603 slotbuf, &value)
4604 || xtensa_operand_decode (isa, opcode, new_i, &value))
4605 return 0;
4607 /* PC-relative branches need adjustment, but
4608 the PC-rel operand will always have a relocation. */
4609 newval = value;
4610 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4611 self_address)
4612 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4613 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4614 o_slotbuf, newval))
4615 return 0;
4618 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4619 return 0;
4621 return o_insnbuf;
4624 return 0;
4628 /* Attempt to widen an instruction. If the widening is valid, perform
4629 the action in-place directly into the contents and return TRUE. Otherwise,
4630 the return value is FALSE and the contents are not modified. */
4632 static bfd_boolean
4633 widen_instruction (bfd_byte *contents,
4634 bfd_size_type content_length,
4635 bfd_size_type offset)
4637 xtensa_opcode opcode;
4638 bfd_size_type insn_len;
4639 xtensa_isa isa = xtensa_default_isa;
4640 xtensa_format fmt;
4641 xtensa_insnbuf o_insnbuf;
4643 static xtensa_insnbuf insnbuf = NULL;
4644 static xtensa_insnbuf slotbuf = NULL;
4646 if (insnbuf == NULL)
4648 insnbuf = xtensa_insnbuf_alloc (isa);
4649 slotbuf = xtensa_insnbuf_alloc (isa);
4652 BFD_ASSERT (offset < content_length);
4654 if (content_length < 2)
4655 return FALSE;
4657 /* We will hand-code a few of these for a little while.
4658 These have all been specified in the assembler aleady. */
4659 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4660 content_length - offset);
4661 fmt = xtensa_format_decode (isa, insnbuf);
4662 if (xtensa_format_num_slots (isa, fmt) != 1)
4663 return FALSE;
4665 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4666 return FALSE;
4668 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4669 if (opcode == XTENSA_UNDEFINED)
4670 return FALSE;
4671 insn_len = xtensa_format_length (isa, fmt);
4672 if (insn_len > content_length)
4673 return FALSE;
4675 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
4676 if (o_insnbuf)
4678 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4679 content_length - offset);
4680 return TRUE;
4682 return FALSE;
4686 /* Code for transforming CALLs at link-time. */
4688 static bfd_reloc_status_type
4689 elf_xtensa_do_asm_simplify (bfd_byte *contents,
4690 bfd_vma address,
4691 bfd_vma content_length,
4692 char **error_message)
4694 static xtensa_insnbuf insnbuf = NULL;
4695 static xtensa_insnbuf slotbuf = NULL;
4696 xtensa_format core_format = XTENSA_UNDEFINED;
4697 xtensa_opcode opcode;
4698 xtensa_opcode direct_call_opcode;
4699 xtensa_isa isa = xtensa_default_isa;
4700 bfd_byte *chbuf = contents + address;
4701 int opn;
4703 if (insnbuf == NULL)
4705 insnbuf = xtensa_insnbuf_alloc (isa);
4706 slotbuf = xtensa_insnbuf_alloc (isa);
4709 if (content_length < address)
4711 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4712 return bfd_reloc_other;
4715 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
4716 direct_call_opcode = swap_callx_for_call_opcode (opcode);
4717 if (direct_call_opcode == XTENSA_UNDEFINED)
4719 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4720 return bfd_reloc_other;
4723 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
4724 core_format = xtensa_format_lookup (isa, "x24");
4725 opcode = xtensa_opcode_lookup (isa, "or");
4726 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
4727 for (opn = 0; opn < 3; opn++)
4729 uint32 regno = 1;
4730 xtensa_operand_encode (isa, opcode, opn, &regno);
4731 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
4732 slotbuf, regno);
4734 xtensa_format_encode (isa, core_format, insnbuf);
4735 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4736 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
4738 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
4739 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
4740 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
4742 xtensa_format_encode (isa, core_format, insnbuf);
4743 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4744 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
4745 content_length - address - 3);
4747 return bfd_reloc_ok;
4751 static bfd_reloc_status_type
4752 contract_asm_expansion (bfd_byte *contents,
4753 bfd_vma content_length,
4754 Elf_Internal_Rela *irel,
4755 char **error_message)
4757 bfd_reloc_status_type retval =
4758 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
4759 error_message);
4761 if (retval != bfd_reloc_ok)
4762 return bfd_reloc_dangerous;
4764 /* Update the irel->r_offset field so that the right immediate and
4765 the right instruction are modified during the relocation. */
4766 irel->r_offset += 3;
4767 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
4768 return bfd_reloc_ok;
4772 static xtensa_opcode
4773 swap_callx_for_call_opcode (xtensa_opcode opcode)
4775 init_call_opcodes ();
4777 if (opcode == callx0_op) return call0_op;
4778 if (opcode == callx4_op) return call4_op;
4779 if (opcode == callx8_op) return call8_op;
4780 if (opcode == callx12_op) return call12_op;
4782 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
4783 return XTENSA_UNDEFINED;
4787 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
4788 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4789 If not, return XTENSA_UNDEFINED. */
4791 #define L32R_TARGET_REG_OPERAND 0
4792 #define CONST16_TARGET_REG_OPERAND 0
4793 #define CALLN_SOURCE_OPERAND 0
4795 static xtensa_opcode
4796 get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
4798 static xtensa_insnbuf insnbuf = NULL;
4799 static xtensa_insnbuf slotbuf = NULL;
4800 xtensa_format fmt;
4801 xtensa_opcode opcode;
4802 xtensa_isa isa = xtensa_default_isa;
4803 uint32 regno, const16_regno, call_regno;
4804 int offset = 0;
4806 if (insnbuf == NULL)
4808 insnbuf = xtensa_insnbuf_alloc (isa);
4809 slotbuf = xtensa_insnbuf_alloc (isa);
4812 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4813 fmt = xtensa_format_decode (isa, insnbuf);
4814 if (fmt == XTENSA_UNDEFINED
4815 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4816 return XTENSA_UNDEFINED;
4818 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4819 if (opcode == XTENSA_UNDEFINED)
4820 return XTENSA_UNDEFINED;
4822 if (opcode == get_l32r_opcode ())
4824 if (p_uses_l32r)
4825 *p_uses_l32r = TRUE;
4826 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4827 fmt, 0, slotbuf, &regno)
4828 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4829 &regno))
4830 return XTENSA_UNDEFINED;
4832 else if (opcode == get_const16_opcode ())
4834 if (p_uses_l32r)
4835 *p_uses_l32r = FALSE;
4836 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4837 fmt, 0, slotbuf, &regno)
4838 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4839 &regno))
4840 return XTENSA_UNDEFINED;
4842 /* Check that the next instruction is also CONST16. */
4843 offset += xtensa_format_length (isa, fmt);
4844 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4845 fmt = xtensa_format_decode (isa, insnbuf);
4846 if (fmt == XTENSA_UNDEFINED
4847 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4848 return XTENSA_UNDEFINED;
4849 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4850 if (opcode != get_const16_opcode ())
4851 return XTENSA_UNDEFINED;
4853 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4854 fmt, 0, slotbuf, &const16_regno)
4855 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4856 &const16_regno)
4857 || const16_regno != regno)
4858 return XTENSA_UNDEFINED;
4860 else
4861 return XTENSA_UNDEFINED;
4863 /* Next instruction should be an CALLXn with operand 0 == regno. */
4864 offset += xtensa_format_length (isa, fmt);
4865 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4866 fmt = xtensa_format_decode (isa, insnbuf);
4867 if (fmt == XTENSA_UNDEFINED
4868 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4869 return XTENSA_UNDEFINED;
4870 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4871 if (opcode == XTENSA_UNDEFINED
4872 || !is_indirect_call_opcode (opcode))
4873 return XTENSA_UNDEFINED;
4875 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4876 fmt, 0, slotbuf, &call_regno)
4877 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4878 &call_regno))
4879 return XTENSA_UNDEFINED;
4881 if (call_regno != regno)
4882 return XTENSA_UNDEFINED;
4884 return opcode;
4888 /* Data structures used during relaxation. */
4890 /* r_reloc: relocation values. */
4892 /* Through the relaxation process, we need to keep track of the values
4893 that will result from evaluating relocations. The standard ELF
4894 relocation structure is not sufficient for this purpose because we're
4895 operating on multiple input files at once, so we need to know which
4896 input file a relocation refers to. The r_reloc structure thus
4897 records both the input file (bfd) and ELF relocation.
4899 For efficiency, an r_reloc also contains a "target_offset" field to
4900 cache the target-section-relative offset value that is represented by
4901 the relocation.
4903 The r_reloc also contains a virtual offset that allows multiple
4904 inserted literals to be placed at the same "address" with
4905 different offsets. */
4907 typedef struct r_reloc_struct r_reloc;
4909 struct r_reloc_struct
4911 bfd *abfd;
4912 Elf_Internal_Rela rela;
4913 bfd_vma target_offset;
4914 bfd_vma virtual_offset;
4918 /* The r_reloc structure is included by value in literal_value, but not
4919 every literal_value has an associated relocation -- some are simple
4920 constants. In such cases, we set all the fields in the r_reloc
4921 struct to zero. The r_reloc_is_const function should be used to
4922 detect this case. */
4924 static bfd_boolean
4925 r_reloc_is_const (const r_reloc *r_rel)
4927 return (r_rel->abfd == NULL);
4931 static bfd_vma
4932 r_reloc_get_target_offset (const r_reloc *r_rel)
4934 bfd_vma target_offset;
4935 unsigned long r_symndx;
4937 BFD_ASSERT (!r_reloc_is_const (r_rel));
4938 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4939 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4940 return (target_offset + r_rel->rela.r_addend);
4944 static struct elf_link_hash_entry *
4945 r_reloc_get_hash_entry (const r_reloc *r_rel)
4947 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4948 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4952 static asection *
4953 r_reloc_get_section (const r_reloc *r_rel)
4955 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4956 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4960 static bfd_boolean
4961 r_reloc_is_defined (const r_reloc *r_rel)
4963 asection *sec;
4964 if (r_rel == NULL)
4965 return FALSE;
4967 sec = r_reloc_get_section (r_rel);
4968 if (sec == bfd_abs_section_ptr
4969 || sec == bfd_com_section_ptr
4970 || sec == bfd_und_section_ptr)
4971 return FALSE;
4972 return TRUE;
4976 static void
4977 r_reloc_init (r_reloc *r_rel,
4978 bfd *abfd,
4979 Elf_Internal_Rela *irel,
4980 bfd_byte *contents,
4981 bfd_size_type content_length)
4983 int r_type;
4984 reloc_howto_type *howto;
4986 if (irel)
4988 r_rel->rela = *irel;
4989 r_rel->abfd = abfd;
4990 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4991 r_rel->virtual_offset = 0;
4992 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4993 howto = &elf_howto_table[r_type];
4994 if (howto->partial_inplace)
4996 bfd_vma inplace_val;
4997 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4999 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
5000 r_rel->target_offset += inplace_val;
5003 else
5004 memset (r_rel, 0, sizeof (r_reloc));
5008 #if DEBUG
5010 static void
5011 print_r_reloc (FILE *fp, const r_reloc *r_rel)
5013 if (r_reloc_is_defined (r_rel))
5015 asection *sec = r_reloc_get_section (r_rel);
5016 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
5018 else if (r_reloc_get_hash_entry (r_rel))
5019 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
5020 else
5021 fprintf (fp, " ?? + ");
5023 fprintf_vma (fp, r_rel->target_offset);
5024 if (r_rel->virtual_offset)
5026 fprintf (fp, " + ");
5027 fprintf_vma (fp, r_rel->virtual_offset);
5030 fprintf (fp, ")");
5033 #endif /* DEBUG */
5036 /* source_reloc: relocations that reference literals. */
5038 /* To determine whether literals can be coalesced, we need to first
5039 record all the relocations that reference the literals. The
5040 source_reloc structure below is used for this purpose. The
5041 source_reloc entries are kept in a per-literal-section array, sorted
5042 by offset within the literal section (i.e., target offset).
5044 The source_sec and r_rel.rela.r_offset fields identify the source of
5045 the relocation. The r_rel field records the relocation value, i.e.,
5046 the offset of the literal being referenced. The opnd field is needed
5047 to determine the range of the immediate field to which the relocation
5048 applies, so we can determine whether another literal with the same
5049 value is within range. The is_null field is true when the relocation
5050 is being removed (e.g., when an L32R is being removed due to a CALLX
5051 that is converted to a direct CALL). */
5053 typedef struct source_reloc_struct source_reloc;
5055 struct source_reloc_struct
5057 asection *source_sec;
5058 r_reloc r_rel;
5059 xtensa_opcode opcode;
5060 int opnd;
5061 bfd_boolean is_null;
5062 bfd_boolean is_abs_literal;
5066 static void
5067 init_source_reloc (source_reloc *reloc,
5068 asection *source_sec,
5069 const r_reloc *r_rel,
5070 xtensa_opcode opcode,
5071 int opnd,
5072 bfd_boolean is_abs_literal)
5074 reloc->source_sec = source_sec;
5075 reloc->r_rel = *r_rel;
5076 reloc->opcode = opcode;
5077 reloc->opnd = opnd;
5078 reloc->is_null = FALSE;
5079 reloc->is_abs_literal = is_abs_literal;
5083 /* Find the source_reloc for a particular source offset and relocation
5084 type. Note that the array is sorted by _target_ offset, so this is
5085 just a linear search. */
5087 static source_reloc *
5088 find_source_reloc (source_reloc *src_relocs,
5089 int src_count,
5090 asection *sec,
5091 Elf_Internal_Rela *irel)
5093 int i;
5095 for (i = 0; i < src_count; i++)
5097 if (src_relocs[i].source_sec == sec
5098 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
5099 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
5100 == ELF32_R_TYPE (irel->r_info)))
5101 return &src_relocs[i];
5104 return NULL;
5108 static int
5109 source_reloc_compare (const void *ap, const void *bp)
5111 const source_reloc *a = (const source_reloc *) ap;
5112 const source_reloc *b = (const source_reloc *) bp;
5114 if (a->r_rel.target_offset != b->r_rel.target_offset)
5115 return (a->r_rel.target_offset - b->r_rel.target_offset);
5117 /* We don't need to sort on these criteria for correctness,
5118 but enforcing a more strict ordering prevents unstable qsort
5119 from behaving differently with different implementations.
5120 Without the code below we get correct but different results
5121 on Solaris 2.7 and 2.8. We would like to always produce the
5122 same results no matter the host. */
5124 if ((!a->is_null) - (!b->is_null))
5125 return ((!a->is_null) - (!b->is_null));
5126 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
5130 /* Literal values and value hash tables. */
5132 /* Literals with the same value can be coalesced. The literal_value
5133 structure records the value of a literal: the "r_rel" field holds the
5134 information from the relocation on the literal (if there is one) and
5135 the "value" field holds the contents of the literal word itself.
5137 The value_map structure records a literal value along with the
5138 location of a literal holding that value. The value_map hash table
5139 is indexed by the literal value, so that we can quickly check if a
5140 particular literal value has been seen before and is thus a candidate
5141 for coalescing. */
5143 typedef struct literal_value_struct literal_value;
5144 typedef struct value_map_struct value_map;
5145 typedef struct value_map_hash_table_struct value_map_hash_table;
5147 struct literal_value_struct
5149 r_reloc r_rel;
5150 unsigned long value;
5151 bfd_boolean is_abs_literal;
5154 struct value_map_struct
5156 literal_value val; /* The literal value. */
5157 r_reloc loc; /* Location of the literal. */
5158 value_map *next;
5161 struct value_map_hash_table_struct
5163 unsigned bucket_count;
5164 value_map **buckets;
5165 unsigned count;
5166 bfd_boolean has_last_loc;
5167 r_reloc last_loc;
5171 static void
5172 init_literal_value (literal_value *lit,
5173 const r_reloc *r_rel,
5174 unsigned long value,
5175 bfd_boolean is_abs_literal)
5177 lit->r_rel = *r_rel;
5178 lit->value = value;
5179 lit->is_abs_literal = is_abs_literal;
5183 static bfd_boolean
5184 literal_value_equal (const literal_value *src1,
5185 const literal_value *src2,
5186 bfd_boolean final_static_link)
5188 struct elf_link_hash_entry *h1, *h2;
5190 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
5191 return FALSE;
5193 if (r_reloc_is_const (&src1->r_rel))
5194 return (src1->value == src2->value);
5196 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
5197 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
5198 return FALSE;
5200 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
5201 return FALSE;
5203 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
5204 return FALSE;
5206 if (src1->value != src2->value)
5207 return FALSE;
5209 /* Now check for the same section (if defined) or the same elf_hash
5210 (if undefined or weak). */
5211 h1 = r_reloc_get_hash_entry (&src1->r_rel);
5212 h2 = r_reloc_get_hash_entry (&src2->r_rel);
5213 if (r_reloc_is_defined (&src1->r_rel)
5214 && (final_static_link
5215 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
5216 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
5218 if (r_reloc_get_section (&src1->r_rel)
5219 != r_reloc_get_section (&src2->r_rel))
5220 return FALSE;
5222 else
5224 /* Require that the hash entries (i.e., symbols) be identical. */
5225 if (h1 != h2 || h1 == 0)
5226 return FALSE;
5229 if (src1->is_abs_literal != src2->is_abs_literal)
5230 return FALSE;
5232 return TRUE;
5236 /* Must be power of 2. */
5237 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
5239 static value_map_hash_table *
5240 value_map_hash_table_init (void)
5242 value_map_hash_table *values;
5244 values = (value_map_hash_table *)
5245 bfd_zmalloc (sizeof (value_map_hash_table));
5246 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
5247 values->count = 0;
5248 values->buckets = (value_map **)
5249 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
5250 if (values->buckets == NULL)
5252 free (values);
5253 return NULL;
5255 values->has_last_loc = FALSE;
5257 return values;
5261 static void
5262 value_map_hash_table_delete (value_map_hash_table *table)
5264 free (table->buckets);
5265 free (table);
5269 static unsigned
5270 hash_bfd_vma (bfd_vma val)
5272 return (val >> 2) + (val >> 10);
5276 static unsigned
5277 literal_value_hash (const literal_value *src)
5279 unsigned hash_val;
5281 hash_val = hash_bfd_vma (src->value);
5282 if (!r_reloc_is_const (&src->r_rel))
5284 void *sec_or_hash;
5286 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
5287 hash_val += hash_bfd_vma (src->r_rel.target_offset);
5288 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
5290 /* Now check for the same section and the same elf_hash. */
5291 if (r_reloc_is_defined (&src->r_rel))
5292 sec_or_hash = r_reloc_get_section (&src->r_rel);
5293 else
5294 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
5295 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
5297 return hash_val;
5301 /* Check if the specified literal_value has been seen before. */
5303 static value_map *
5304 value_map_get_cached_value (value_map_hash_table *map,
5305 const literal_value *val,
5306 bfd_boolean final_static_link)
5308 value_map *map_e;
5309 value_map *bucket;
5310 unsigned idx;
5312 idx = literal_value_hash (val);
5313 idx = idx & (map->bucket_count - 1);
5314 bucket = map->buckets[idx];
5315 for (map_e = bucket; map_e; map_e = map_e->next)
5317 if (literal_value_equal (&map_e->val, val, final_static_link))
5318 return map_e;
5320 return NULL;
5324 /* Record a new literal value. It is illegal to call this if VALUE
5325 already has an entry here. */
5327 static value_map *
5328 add_value_map (value_map_hash_table *map,
5329 const literal_value *val,
5330 const r_reloc *loc,
5331 bfd_boolean final_static_link)
5333 value_map **bucket_p;
5334 unsigned idx;
5336 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
5337 if (val_e == NULL)
5339 bfd_set_error (bfd_error_no_memory);
5340 return NULL;
5343 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
5344 val_e->val = *val;
5345 val_e->loc = *loc;
5347 idx = literal_value_hash (val);
5348 idx = idx & (map->bucket_count - 1);
5349 bucket_p = &map->buckets[idx];
5351 val_e->next = *bucket_p;
5352 *bucket_p = val_e;
5353 map->count++;
5354 /* FIXME: Consider resizing the hash table if we get too many entries. */
5356 return val_e;
5360 /* Lists of text actions (ta_) for narrowing, widening, longcall
5361 conversion, space fill, code & literal removal, etc. */
5363 /* The following text actions are generated:
5365 "ta_remove_insn" remove an instruction or instructions
5366 "ta_remove_longcall" convert longcall to call
5367 "ta_convert_longcall" convert longcall to nop/call
5368 "ta_narrow_insn" narrow a wide instruction
5369 "ta_widen" widen a narrow instruction
5370 "ta_fill" add fill or remove fill
5371 removed < 0 is a fill; branches to the fill address will be
5372 changed to address + fill size (e.g., address - removed)
5373 removed >= 0 branches to the fill address will stay unchanged
5374 "ta_remove_literal" remove a literal; this action is
5375 indicated when a literal is removed
5376 or replaced.
5377 "ta_add_literal" insert a new literal; this action is
5378 indicated when a literal has been moved.
5379 It may use a virtual_offset because
5380 multiple literals can be placed at the
5381 same location.
5383 For each of these text actions, we also record the number of bytes
5384 removed by performing the text action. In the case of a "ta_widen"
5385 or a "ta_fill" that adds space, the removed_bytes will be negative. */
5387 typedef struct text_action_struct text_action;
5388 typedef struct text_action_list_struct text_action_list;
5389 typedef enum text_action_enum_t text_action_t;
5391 enum text_action_enum_t
5393 ta_none,
5394 ta_remove_insn, /* removed = -size */
5395 ta_remove_longcall, /* removed = -size */
5396 ta_convert_longcall, /* removed = 0 */
5397 ta_narrow_insn, /* removed = -1 */
5398 ta_widen_insn, /* removed = +1 */
5399 ta_fill, /* removed = +size */
5400 ta_remove_literal,
5401 ta_add_literal
5405 /* Structure for a text action record. */
5406 struct text_action_struct
5408 text_action_t action;
5409 asection *sec; /* Optional */
5410 bfd_vma offset;
5411 bfd_vma virtual_offset; /* Zero except for adding literals. */
5412 int removed_bytes;
5413 literal_value value; /* Only valid when adding literals. */
5415 text_action *next;
5419 /* List of all of the actions taken on a text section. */
5420 struct text_action_list_struct
5422 text_action *head;
5426 static text_action *
5427 find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
5429 text_action **m_p;
5431 /* It is not necessary to fill at the end of a section. */
5432 if (sec->size == offset)
5433 return NULL;
5435 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
5437 text_action *t = *m_p;
5438 /* When the action is another fill at the same address,
5439 just increase the size. */
5440 if (t->offset == offset && t->action == ta_fill)
5441 return t;
5443 return NULL;
5447 static int
5448 compute_removed_action_diff (const text_action *ta,
5449 asection *sec,
5450 bfd_vma offset,
5451 int removed,
5452 int removable_space)
5454 int new_removed;
5455 int current_removed = 0;
5457 if (ta)
5458 current_removed = ta->removed_bytes;
5460 BFD_ASSERT (ta == NULL || ta->offset == offset);
5461 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
5463 /* It is not necessary to fill at the end of a section. Clean this up. */
5464 if (sec->size == offset)
5465 new_removed = removable_space - 0;
5466 else
5468 int space;
5469 int added = -removed - current_removed;
5470 /* Ignore multiples of the section alignment. */
5471 added = ((1 << sec->alignment_power) - 1) & added;
5472 new_removed = (-added);
5474 /* Modify for removable. */
5475 space = removable_space - new_removed;
5476 new_removed = (removable_space
5477 - (((1 << sec->alignment_power) - 1) & space));
5479 return (new_removed - current_removed);
5483 static void
5484 adjust_fill_action (text_action *ta, int fill_diff)
5486 ta->removed_bytes += fill_diff;
5490 /* Add a modification action to the text. For the case of adding or
5491 removing space, modify any current fill and assume that
5492 "unreachable_space" bytes can be freely contracted. Note that a
5493 negative removed value is a fill. */
5495 static void
5496 text_action_add (text_action_list *l,
5497 text_action_t action,
5498 asection *sec,
5499 bfd_vma offset,
5500 int removed)
5502 text_action **m_p;
5503 text_action *ta;
5505 /* It is not necessary to fill at the end of a section. */
5506 if (action == ta_fill && sec->size == offset)
5507 return;
5509 /* It is not necessary to fill 0 bytes. */
5510 if (action == ta_fill && removed == 0)
5511 return;
5513 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
5515 text_action *t = *m_p;
5517 if (action == ta_fill)
5519 /* When the action is another fill at the same address,
5520 just increase the size. */
5521 if (t->offset == offset && t->action == ta_fill)
5523 t->removed_bytes += removed;
5524 return;
5526 /* Fills need to happen before widens so that we don't
5527 insert fill bytes into the instruction stream. */
5528 if (t->offset == offset && t->action == ta_widen_insn)
5529 break;
5533 /* Create a new record and fill it up. */
5534 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5535 ta->action = action;
5536 ta->sec = sec;
5537 ta->offset = offset;
5538 ta->removed_bytes = removed;
5539 ta->next = (*m_p);
5540 *m_p = ta;
5544 static void
5545 text_action_add_literal (text_action_list *l,
5546 text_action_t action,
5547 const r_reloc *loc,
5548 const literal_value *value,
5549 int removed)
5551 text_action **m_p;
5552 text_action *ta;
5553 asection *sec = r_reloc_get_section (loc);
5554 bfd_vma offset = loc->target_offset;
5555 bfd_vma virtual_offset = loc->virtual_offset;
5557 BFD_ASSERT (action == ta_add_literal);
5559 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
5561 if ((*m_p)->offset > offset
5562 && ((*m_p)->offset != offset
5563 || (*m_p)->virtual_offset > virtual_offset))
5564 break;
5567 /* Create a new record and fill it up. */
5568 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5569 ta->action = action;
5570 ta->sec = sec;
5571 ta->offset = offset;
5572 ta->virtual_offset = virtual_offset;
5573 ta->value = *value;
5574 ta->removed_bytes = removed;
5575 ta->next = (*m_p);
5576 *m_p = ta;
5580 /* Find the total offset adjustment for the relaxations specified by
5581 text_actions, beginning from a particular starting action. This is
5582 typically used from offset_with_removed_text to search an entire list of
5583 actions, but it may also be called directly when adjusting adjacent offsets
5584 so that each search may begin where the previous one left off. */
5586 static int
5587 removed_by_actions (text_action **p_start_action,
5588 bfd_vma offset,
5589 bfd_boolean before_fill)
5591 text_action *r;
5592 int removed = 0;
5594 r = *p_start_action;
5595 while (r)
5597 if (r->offset > offset)
5598 break;
5600 if (r->offset == offset
5601 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
5602 break;
5604 removed += r->removed_bytes;
5606 r = r->next;
5609 *p_start_action = r;
5610 return removed;
5614 static bfd_vma
5615 offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
5617 text_action *r = action_list->head;
5618 return offset - removed_by_actions (&r, offset, FALSE);
5622 static unsigned
5623 action_list_count (text_action_list *action_list)
5625 text_action *r = action_list->head;
5626 unsigned count = 0;
5627 for (r = action_list->head; r != NULL; r = r->next)
5629 count++;
5631 return count;
5635 /* The find_insn_action routine will only find non-fill actions. */
5637 static text_action *
5638 find_insn_action (text_action_list *action_list, bfd_vma offset)
5640 text_action *t;
5641 for (t = action_list->head; t; t = t->next)
5643 if (t->offset == offset)
5645 switch (t->action)
5647 case ta_none:
5648 case ta_fill:
5649 break;
5650 case ta_remove_insn:
5651 case ta_remove_longcall:
5652 case ta_convert_longcall:
5653 case ta_narrow_insn:
5654 case ta_widen_insn:
5655 return t;
5656 case ta_remove_literal:
5657 case ta_add_literal:
5658 BFD_ASSERT (0);
5659 break;
5663 return NULL;
5667 #if DEBUG
5669 static void
5670 print_action_list (FILE *fp, text_action_list *action_list)
5672 text_action *r;
5674 fprintf (fp, "Text Action\n");
5675 for (r = action_list->head; r != NULL; r = r->next)
5677 const char *t = "unknown";
5678 switch (r->action)
5680 case ta_remove_insn:
5681 t = "remove_insn"; break;
5682 case ta_remove_longcall:
5683 t = "remove_longcall"; break;
5684 case ta_convert_longcall:
5685 t = "convert_longcall"; break;
5686 case ta_narrow_insn:
5687 t = "narrow_insn"; break;
5688 case ta_widen_insn:
5689 t = "widen_insn"; break;
5690 case ta_fill:
5691 t = "fill"; break;
5692 case ta_none:
5693 t = "none"; break;
5694 case ta_remove_literal:
5695 t = "remove_literal"; break;
5696 case ta_add_literal:
5697 t = "add_literal"; break;
5700 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
5701 r->sec->owner->filename,
5702 r->sec->name, (unsigned long) r->offset, t, r->removed_bytes);
5706 #endif /* DEBUG */
5709 /* Lists of literals being coalesced or removed. */
5711 /* In the usual case, the literal identified by "from" is being
5712 coalesced with another literal identified by "to". If the literal is
5713 unused and is being removed altogether, "to.abfd" will be NULL.
5714 The removed_literal entries are kept on a per-section list, sorted
5715 by the "from" offset field. */
5717 typedef struct removed_literal_struct removed_literal;
5718 typedef struct removed_literal_list_struct removed_literal_list;
5720 struct removed_literal_struct
5722 r_reloc from;
5723 r_reloc to;
5724 removed_literal *next;
5727 struct removed_literal_list_struct
5729 removed_literal *head;
5730 removed_literal *tail;
5734 /* Record that the literal at "from" is being removed. If "to" is not
5735 NULL, the "from" literal is being coalesced with the "to" literal. */
5737 static void
5738 add_removed_literal (removed_literal_list *removed_list,
5739 const r_reloc *from,
5740 const r_reloc *to)
5742 removed_literal *r, *new_r, *next_r;
5744 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
5746 new_r->from = *from;
5747 if (to)
5748 new_r->to = *to;
5749 else
5750 new_r->to.abfd = NULL;
5751 new_r->next = NULL;
5753 r = removed_list->head;
5754 if (r == NULL)
5756 removed_list->head = new_r;
5757 removed_list->tail = new_r;
5759 /* Special check for common case of append. */
5760 else if (removed_list->tail->from.target_offset < from->target_offset)
5762 removed_list->tail->next = new_r;
5763 removed_list->tail = new_r;
5765 else
5767 while (r->from.target_offset < from->target_offset && r->next)
5769 r = r->next;
5771 next_r = r->next;
5772 r->next = new_r;
5773 new_r->next = next_r;
5774 if (next_r == NULL)
5775 removed_list->tail = new_r;
5780 /* Check if the list of removed literals contains an entry for the
5781 given address. Return the entry if found. */
5783 static removed_literal *
5784 find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
5786 removed_literal *r = removed_list->head;
5787 while (r && r->from.target_offset < addr)
5788 r = r->next;
5789 if (r && r->from.target_offset == addr)
5790 return r;
5791 return NULL;
5795 #if DEBUG
5797 static void
5798 print_removed_literals (FILE *fp, removed_literal_list *removed_list)
5800 removed_literal *r;
5801 r = removed_list->head;
5802 if (r)
5803 fprintf (fp, "Removed Literals\n");
5804 for (; r != NULL; r = r->next)
5806 print_r_reloc (fp, &r->from);
5807 fprintf (fp, " => ");
5808 if (r->to.abfd == NULL)
5809 fprintf (fp, "REMOVED");
5810 else
5811 print_r_reloc (fp, &r->to);
5812 fprintf (fp, "\n");
5816 #endif /* DEBUG */
5819 /* Per-section data for relaxation. */
5821 typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
5823 struct xtensa_relax_info_struct
5825 bfd_boolean is_relaxable_literal_section;
5826 bfd_boolean is_relaxable_asm_section;
5827 int visited; /* Number of times visited. */
5829 source_reloc *src_relocs; /* Array[src_count]. */
5830 int src_count;
5831 int src_next; /* Next src_relocs entry to assign. */
5833 removed_literal_list removed_list;
5834 text_action_list action_list;
5836 reloc_bfd_fix *fix_list;
5837 reloc_bfd_fix *fix_array;
5838 unsigned fix_array_count;
5840 /* Support for expanding the reloc array that is stored
5841 in the section structure. If the relocations have been
5842 reallocated, the newly allocated relocations will be referenced
5843 here along with the actual size allocated. The relocation
5844 count will always be found in the section structure. */
5845 Elf_Internal_Rela *allocated_relocs;
5846 unsigned relocs_count;
5847 unsigned allocated_relocs_count;
5850 struct elf_xtensa_section_data
5852 struct bfd_elf_section_data elf;
5853 xtensa_relax_info relax_info;
5857 static bfd_boolean
5858 elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
5860 if (!sec->used_by_bfd)
5862 struct elf_xtensa_section_data *sdata;
5863 bfd_size_type amt = sizeof (*sdata);
5865 sdata = bfd_zalloc (abfd, amt);
5866 if (sdata == NULL)
5867 return FALSE;
5868 sec->used_by_bfd = sdata;
5871 return _bfd_elf_new_section_hook (abfd, sec);
5875 static xtensa_relax_info *
5876 get_xtensa_relax_info (asection *sec)
5878 struct elf_xtensa_section_data *section_data;
5880 /* No info available if no section or if it is an output section. */
5881 if (!sec || sec == sec->output_section)
5882 return NULL;
5884 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5885 return &section_data->relax_info;
5889 static void
5890 init_xtensa_relax_info (asection *sec)
5892 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5894 relax_info->is_relaxable_literal_section = FALSE;
5895 relax_info->is_relaxable_asm_section = FALSE;
5896 relax_info->visited = 0;
5898 relax_info->src_relocs = NULL;
5899 relax_info->src_count = 0;
5900 relax_info->src_next = 0;
5902 relax_info->removed_list.head = NULL;
5903 relax_info->removed_list.tail = NULL;
5905 relax_info->action_list.head = NULL;
5907 relax_info->fix_list = NULL;
5908 relax_info->fix_array = NULL;
5909 relax_info->fix_array_count = 0;
5911 relax_info->allocated_relocs = NULL;
5912 relax_info->relocs_count = 0;
5913 relax_info->allocated_relocs_count = 0;
5917 /* Coalescing literals may require a relocation to refer to a section in
5918 a different input file, but the standard relocation information
5919 cannot express that. Instead, the reloc_bfd_fix structures are used
5920 to "fix" the relocations that refer to sections in other input files.
5921 These structures are kept on per-section lists. The "src_type" field
5922 records the relocation type in case there are multiple relocations on
5923 the same location. FIXME: This is ugly; an alternative might be to
5924 add new symbols with the "owner" field to some other input file. */
5926 struct reloc_bfd_fix_struct
5928 asection *src_sec;
5929 bfd_vma src_offset;
5930 unsigned src_type; /* Relocation type. */
5932 asection *target_sec;
5933 bfd_vma target_offset;
5934 bfd_boolean translated;
5936 reloc_bfd_fix *next;
5940 static reloc_bfd_fix *
5941 reloc_bfd_fix_init (asection *src_sec,
5942 bfd_vma src_offset,
5943 unsigned src_type,
5944 asection *target_sec,
5945 bfd_vma target_offset,
5946 bfd_boolean translated)
5948 reloc_bfd_fix *fix;
5950 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
5951 fix->src_sec = src_sec;
5952 fix->src_offset = src_offset;
5953 fix->src_type = src_type;
5954 fix->target_sec = target_sec;
5955 fix->target_offset = target_offset;
5956 fix->translated = translated;
5958 return fix;
5962 static void
5963 add_fix (asection *src_sec, reloc_bfd_fix *fix)
5965 xtensa_relax_info *relax_info;
5967 relax_info = get_xtensa_relax_info (src_sec);
5968 fix->next = relax_info->fix_list;
5969 relax_info->fix_list = fix;
5973 static int
5974 fix_compare (const void *ap, const void *bp)
5976 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
5977 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
5979 if (a->src_offset != b->src_offset)
5980 return (a->src_offset - b->src_offset);
5981 return (a->src_type - b->src_type);
5985 static void
5986 cache_fix_array (asection *sec)
5988 unsigned i, count = 0;
5989 reloc_bfd_fix *r;
5990 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5992 if (relax_info == NULL)
5993 return;
5994 if (relax_info->fix_list == NULL)
5995 return;
5997 for (r = relax_info->fix_list; r != NULL; r = r->next)
5998 count++;
6000 relax_info->fix_array =
6001 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
6002 relax_info->fix_array_count = count;
6004 r = relax_info->fix_list;
6005 for (i = 0; i < count; i++, r = r->next)
6007 relax_info->fix_array[count - 1 - i] = *r;
6008 relax_info->fix_array[count - 1 - i].next = NULL;
6011 qsort (relax_info->fix_array, relax_info->fix_array_count,
6012 sizeof (reloc_bfd_fix), fix_compare);
6016 static reloc_bfd_fix *
6017 get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
6019 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6020 reloc_bfd_fix *rv;
6021 reloc_bfd_fix key;
6023 if (relax_info == NULL)
6024 return NULL;
6025 if (relax_info->fix_list == NULL)
6026 return NULL;
6028 if (relax_info->fix_array == NULL)
6029 cache_fix_array (sec);
6031 key.src_offset = offset;
6032 key.src_type = type;
6033 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
6034 sizeof (reloc_bfd_fix), fix_compare);
6035 return rv;
6039 /* Section caching. */
6041 typedef struct section_cache_struct section_cache_t;
6043 struct section_cache_struct
6045 asection *sec;
6047 bfd_byte *contents; /* Cache of the section contents. */
6048 bfd_size_type content_length;
6050 property_table_entry *ptbl; /* Cache of the section property table. */
6051 unsigned pte_count;
6053 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6054 unsigned reloc_count;
6058 static void
6059 init_section_cache (section_cache_t *sec_cache)
6061 memset (sec_cache, 0, sizeof (*sec_cache));
6065 static void
6066 free_section_cache (section_cache_t *sec_cache)
6068 if (sec_cache->sec)
6070 release_contents (sec_cache->sec, sec_cache->contents);
6071 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
6072 if (sec_cache->ptbl)
6073 free (sec_cache->ptbl);
6078 static bfd_boolean
6079 section_cache_section (section_cache_t *sec_cache,
6080 asection *sec,
6081 struct bfd_link_info *link_info)
6083 bfd *abfd;
6084 property_table_entry *prop_table = NULL;
6085 int ptblsize = 0;
6086 bfd_byte *contents = NULL;
6087 Elf_Internal_Rela *internal_relocs = NULL;
6088 bfd_size_type sec_size;
6090 if (sec == NULL)
6091 return FALSE;
6092 if (sec == sec_cache->sec)
6093 return TRUE;
6095 abfd = sec->owner;
6096 sec_size = bfd_get_section_limit (abfd, sec);
6098 /* Get the contents. */
6099 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6100 if (contents == NULL && sec_size != 0)
6101 goto err;
6103 /* Get the relocations. */
6104 internal_relocs = retrieve_internal_relocs (abfd, sec,
6105 link_info->keep_memory);
6107 /* Get the entry table. */
6108 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6109 XTENSA_PROP_SEC_NAME, FALSE);
6110 if (ptblsize < 0)
6111 goto err;
6113 /* Fill in the new section cache. */
6114 free_section_cache (sec_cache);
6115 init_section_cache (sec_cache);
6117 sec_cache->sec = sec;
6118 sec_cache->contents = contents;
6119 sec_cache->content_length = sec_size;
6120 sec_cache->relocs = internal_relocs;
6121 sec_cache->reloc_count = sec->reloc_count;
6122 sec_cache->pte_count = ptblsize;
6123 sec_cache->ptbl = prop_table;
6125 return TRUE;
6127 err:
6128 release_contents (sec, contents);
6129 release_internal_relocs (sec, internal_relocs);
6130 if (prop_table)
6131 free (prop_table);
6132 return FALSE;
6136 /* Extended basic blocks. */
6138 /* An ebb_struct represents an Extended Basic Block. Within this
6139 range, we guarantee that all instructions are decodable, the
6140 property table entries are contiguous, and no property table
6141 specifies a segment that cannot have instructions moved. This
6142 structure contains caches of the contents, property table and
6143 relocations for the specified section for easy use. The range is
6144 specified by ranges of indices for the byte offset, property table
6145 offsets and relocation offsets. These must be consistent. */
6147 typedef struct ebb_struct ebb_t;
6149 struct ebb_struct
6151 asection *sec;
6153 bfd_byte *contents; /* Cache of the section contents. */
6154 bfd_size_type content_length;
6156 property_table_entry *ptbl; /* Cache of the section property table. */
6157 unsigned pte_count;
6159 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6160 unsigned reloc_count;
6162 bfd_vma start_offset; /* Offset in section. */
6163 unsigned start_ptbl_idx; /* Offset in the property table. */
6164 unsigned start_reloc_idx; /* Offset in the relocations. */
6166 bfd_vma end_offset;
6167 unsigned end_ptbl_idx;
6168 unsigned end_reloc_idx;
6170 bfd_boolean ends_section; /* Is this the last ebb in a section? */
6172 /* The unreachable property table at the end of this set of blocks;
6173 NULL if the end is not an unreachable block. */
6174 property_table_entry *ends_unreachable;
6178 enum ebb_target_enum
6180 EBB_NO_ALIGN = 0,
6181 EBB_DESIRE_TGT_ALIGN,
6182 EBB_REQUIRE_TGT_ALIGN,
6183 EBB_REQUIRE_LOOP_ALIGN,
6184 EBB_REQUIRE_ALIGN
6188 /* proposed_action_struct is similar to the text_action_struct except
6189 that is represents a potential transformation, not one that will
6190 occur. We build a list of these for an extended basic block
6191 and use them to compute the actual actions desired. We must be
6192 careful that the entire set of actual actions we perform do not
6193 break any relocations that would fit if the actions were not
6194 performed. */
6196 typedef struct proposed_action_struct proposed_action;
6198 struct proposed_action_struct
6200 enum ebb_target_enum align_type; /* for the target alignment */
6201 bfd_vma alignment_pow;
6202 text_action_t action;
6203 bfd_vma offset;
6204 int removed_bytes;
6205 bfd_boolean do_action; /* If false, then we will not perform the action. */
6209 /* The ebb_constraint_struct keeps a set of proposed actions for an
6210 extended basic block. */
6212 typedef struct ebb_constraint_struct ebb_constraint;
6214 struct ebb_constraint_struct
6216 ebb_t ebb;
6217 bfd_boolean start_movable;
6219 /* Bytes of extra space at the beginning if movable. */
6220 int start_extra_space;
6222 enum ebb_target_enum start_align;
6224 bfd_boolean end_movable;
6226 /* Bytes of extra space at the end if movable. */
6227 int end_extra_space;
6229 unsigned action_count;
6230 unsigned action_allocated;
6232 /* Array of proposed actions. */
6233 proposed_action *actions;
6235 /* Action alignments -- one for each proposed action. */
6236 enum ebb_target_enum *action_aligns;
6240 static void
6241 init_ebb_constraint (ebb_constraint *c)
6243 memset (c, 0, sizeof (ebb_constraint));
6247 static void
6248 free_ebb_constraint (ebb_constraint *c)
6250 if (c->actions)
6251 free (c->actions);
6255 static void
6256 init_ebb (ebb_t *ebb,
6257 asection *sec,
6258 bfd_byte *contents,
6259 bfd_size_type content_length,
6260 property_table_entry *prop_table,
6261 unsigned ptblsize,
6262 Elf_Internal_Rela *internal_relocs,
6263 unsigned reloc_count)
6265 memset (ebb, 0, sizeof (ebb_t));
6266 ebb->sec = sec;
6267 ebb->contents = contents;
6268 ebb->content_length = content_length;
6269 ebb->ptbl = prop_table;
6270 ebb->pte_count = ptblsize;
6271 ebb->relocs = internal_relocs;
6272 ebb->reloc_count = reloc_count;
6273 ebb->start_offset = 0;
6274 ebb->end_offset = ebb->content_length - 1;
6275 ebb->start_ptbl_idx = 0;
6276 ebb->end_ptbl_idx = ptblsize;
6277 ebb->start_reloc_idx = 0;
6278 ebb->end_reloc_idx = reloc_count;
6282 /* Extend the ebb to all decodable contiguous sections. The algorithm
6283 for building a basic block around an instruction is to push it
6284 forward until we hit the end of a section, an unreachable block or
6285 a block that cannot be transformed. Then we push it backwards
6286 searching for similar conditions. */
6288 static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
6289 static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
6290 static bfd_size_type insn_block_decodable_len
6291 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
6293 static bfd_boolean
6294 extend_ebb_bounds (ebb_t *ebb)
6296 if (!extend_ebb_bounds_forward (ebb))
6297 return FALSE;
6298 if (!extend_ebb_bounds_backward (ebb))
6299 return FALSE;
6300 return TRUE;
6304 static bfd_boolean
6305 extend_ebb_bounds_forward (ebb_t *ebb)
6307 property_table_entry *the_entry, *new_entry;
6309 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6311 /* Stop when (1) we cannot decode an instruction, (2) we are at
6312 the end of the property tables, (3) we hit a non-contiguous property
6313 table entry, (4) we hit a NO_TRANSFORM region. */
6315 while (1)
6317 bfd_vma entry_end;
6318 bfd_size_type insn_block_len;
6320 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
6321 insn_block_len =
6322 insn_block_decodable_len (ebb->contents, ebb->content_length,
6323 ebb->end_offset,
6324 entry_end - ebb->end_offset);
6325 if (insn_block_len != (entry_end - ebb->end_offset))
6327 (*_bfd_error_handler)
6328 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6329 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6330 return FALSE;
6332 ebb->end_offset += insn_block_len;
6334 if (ebb->end_offset == ebb->sec->size)
6335 ebb->ends_section = TRUE;
6337 /* Update the reloc counter. */
6338 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
6339 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
6340 < ebb->end_offset))
6342 ebb->end_reloc_idx++;
6345 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6346 return TRUE;
6348 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6349 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
6350 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6351 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
6352 break;
6354 if (the_entry->address + the_entry->size != new_entry->address)
6355 break;
6357 the_entry = new_entry;
6358 ebb->end_ptbl_idx++;
6361 /* Quick check for an unreachable or end of file just at the end. */
6362 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6364 if (ebb->end_offset == ebb->content_length)
6365 ebb->ends_section = TRUE;
6367 else
6369 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6370 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
6371 && the_entry->address + the_entry->size == new_entry->address)
6372 ebb->ends_unreachable = new_entry;
6375 /* Any other ending requires exact alignment. */
6376 return TRUE;
6380 static bfd_boolean
6381 extend_ebb_bounds_backward (ebb_t *ebb)
6383 property_table_entry *the_entry, *new_entry;
6385 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6387 /* Stop when (1) we cannot decode the instructions in the current entry.
6388 (2) we are at the beginning of the property tables, (3) we hit a
6389 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
6391 while (1)
6393 bfd_vma block_begin;
6394 bfd_size_type insn_block_len;
6396 block_begin = the_entry->address - ebb->sec->vma;
6397 insn_block_len =
6398 insn_block_decodable_len (ebb->contents, ebb->content_length,
6399 block_begin,
6400 ebb->start_offset - block_begin);
6401 if (insn_block_len != ebb->start_offset - block_begin)
6403 (*_bfd_error_handler)
6404 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6405 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6406 return FALSE;
6408 ebb->start_offset -= insn_block_len;
6410 /* Update the reloc counter. */
6411 while (ebb->start_reloc_idx > 0
6412 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
6413 >= ebb->start_offset))
6415 ebb->start_reloc_idx--;
6418 if (ebb->start_ptbl_idx == 0)
6419 return TRUE;
6421 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
6422 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
6423 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6424 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
6425 return TRUE;
6426 if (new_entry->address + new_entry->size != the_entry->address)
6427 return TRUE;
6429 the_entry = new_entry;
6430 ebb->start_ptbl_idx--;
6432 return TRUE;
6436 static bfd_size_type
6437 insn_block_decodable_len (bfd_byte *contents,
6438 bfd_size_type content_len,
6439 bfd_vma block_offset,
6440 bfd_size_type block_len)
6442 bfd_vma offset = block_offset;
6444 while (offset < block_offset + block_len)
6446 bfd_size_type insn_len = 0;
6448 insn_len = insn_decode_len (contents, content_len, offset);
6449 if (insn_len == 0)
6450 return (offset - block_offset);
6451 offset += insn_len;
6453 return (offset - block_offset);
6457 static void
6458 ebb_propose_action (ebb_constraint *c,
6459 enum ebb_target_enum align_type,
6460 bfd_vma alignment_pow,
6461 text_action_t action,
6462 bfd_vma offset,
6463 int removed_bytes,
6464 bfd_boolean do_action)
6466 proposed_action *act;
6468 if (c->action_allocated <= c->action_count)
6470 unsigned new_allocated, i;
6471 proposed_action *new_actions;
6473 new_allocated = (c->action_count + 2) * 2;
6474 new_actions = (proposed_action *)
6475 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
6477 for (i = 0; i < c->action_count; i++)
6478 new_actions[i] = c->actions[i];
6479 if (c->actions)
6480 free (c->actions);
6481 c->actions = new_actions;
6482 c->action_allocated = new_allocated;
6485 act = &c->actions[c->action_count];
6486 act->align_type = align_type;
6487 act->alignment_pow = alignment_pow;
6488 act->action = action;
6489 act->offset = offset;
6490 act->removed_bytes = removed_bytes;
6491 act->do_action = do_action;
6493 c->action_count++;
6497 /* Access to internal relocations, section contents and symbols. */
6499 /* During relaxation, we need to modify relocations, section contents,
6500 and symbol definitions, and we need to keep the original values from
6501 being reloaded from the input files, i.e., we need to "pin" the
6502 modified values in memory. We also want to continue to observe the
6503 setting of the "keep-memory" flag. The following functions wrap the
6504 standard BFD functions to take care of this for us. */
6506 static Elf_Internal_Rela *
6507 retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6509 Elf_Internal_Rela *internal_relocs;
6511 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6512 return NULL;
6514 internal_relocs = elf_section_data (sec)->relocs;
6515 if (internal_relocs == NULL)
6516 internal_relocs = (_bfd_elf_link_read_relocs
6517 (abfd, sec, NULL, NULL, keep_memory));
6518 return internal_relocs;
6522 static void
6523 pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6525 elf_section_data (sec)->relocs = internal_relocs;
6529 static void
6530 release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6532 if (internal_relocs
6533 && elf_section_data (sec)->relocs != internal_relocs)
6534 free (internal_relocs);
6538 static bfd_byte *
6539 retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6541 bfd_byte *contents;
6542 bfd_size_type sec_size;
6544 sec_size = bfd_get_section_limit (abfd, sec);
6545 contents = elf_section_data (sec)->this_hdr.contents;
6547 if (contents == NULL && sec_size != 0)
6549 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6551 if (contents)
6552 free (contents);
6553 return NULL;
6555 if (keep_memory)
6556 elf_section_data (sec)->this_hdr.contents = contents;
6558 return contents;
6562 static void
6563 pin_contents (asection *sec, bfd_byte *contents)
6565 elf_section_data (sec)->this_hdr.contents = contents;
6569 static void
6570 release_contents (asection *sec, bfd_byte *contents)
6572 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
6573 free (contents);
6577 static Elf_Internal_Sym *
6578 retrieve_local_syms (bfd *input_bfd)
6580 Elf_Internal_Shdr *symtab_hdr;
6581 Elf_Internal_Sym *isymbuf;
6582 size_t locsymcount;
6584 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6585 locsymcount = symtab_hdr->sh_info;
6587 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6588 if (isymbuf == NULL && locsymcount != 0)
6589 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6590 NULL, NULL, NULL);
6592 /* Save the symbols for this input file so they won't be read again. */
6593 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
6594 symtab_hdr->contents = (unsigned char *) isymbuf;
6596 return isymbuf;
6600 /* Code for link-time relaxation. */
6602 /* Initialization for relaxation: */
6603 static bfd_boolean analyze_relocations (struct bfd_link_info *);
6604 static bfd_boolean find_relaxable_sections
6605 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
6606 static bfd_boolean collect_source_relocs
6607 (bfd *, asection *, struct bfd_link_info *);
6608 static bfd_boolean is_resolvable_asm_expansion
6609 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
6610 bfd_boolean *);
6611 static Elf_Internal_Rela *find_associated_l32r_irel
6612 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
6613 static bfd_boolean compute_text_actions
6614 (bfd *, asection *, struct bfd_link_info *);
6615 static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
6616 static bfd_boolean compute_ebb_actions (ebb_constraint *);
6617 static bfd_boolean check_section_ebb_pcrels_fit
6618 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *,
6619 const xtensa_opcode *);
6620 static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
6621 static void text_action_add_proposed
6622 (text_action_list *, const ebb_constraint *, asection *);
6623 static int compute_fill_extra_space (property_table_entry *);
6625 /* First pass: */
6626 static bfd_boolean compute_removed_literals
6627 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
6628 static Elf_Internal_Rela *get_irel_at_offset
6629 (asection *, Elf_Internal_Rela *, bfd_vma);
6630 static bfd_boolean is_removable_literal
6631 (const source_reloc *, int, const source_reloc *, int, asection *,
6632 property_table_entry *, int);
6633 static bfd_boolean remove_dead_literal
6634 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
6635 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
6636 static bfd_boolean identify_literal_placement
6637 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
6638 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
6639 source_reloc *, property_table_entry *, int, section_cache_t *,
6640 bfd_boolean);
6641 static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
6642 static bfd_boolean coalesce_shared_literal
6643 (asection *, source_reloc *, property_table_entry *, int, value_map *);
6644 static bfd_boolean move_shared_literal
6645 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
6646 int, const r_reloc *, const literal_value *, section_cache_t *);
6648 /* Second pass: */
6649 static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
6650 static bfd_boolean translate_section_fixes (asection *);
6651 static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
6652 static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
6653 static void shrink_dynamic_reloc_sections
6654 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
6655 static bfd_boolean move_literal
6656 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
6657 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
6658 static bfd_boolean relax_property_section
6659 (bfd *, asection *, struct bfd_link_info *);
6661 /* Third pass: */
6662 static bfd_boolean relax_section_symbols (bfd *, asection *);
6665 static bfd_boolean
6666 elf_xtensa_relax_section (bfd *abfd,
6667 asection *sec,
6668 struct bfd_link_info *link_info,
6669 bfd_boolean *again)
6671 static value_map_hash_table *values = NULL;
6672 static bfd_boolean relocations_analyzed = FALSE;
6673 xtensa_relax_info *relax_info;
6675 if (!relocations_analyzed)
6677 /* Do some overall initialization for relaxation. */
6678 values = value_map_hash_table_init ();
6679 if (values == NULL)
6680 return FALSE;
6681 relaxing_section = TRUE;
6682 if (!analyze_relocations (link_info))
6683 return FALSE;
6684 relocations_analyzed = TRUE;
6686 *again = FALSE;
6688 /* Don't mess with linker-created sections. */
6689 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6690 return TRUE;
6692 relax_info = get_xtensa_relax_info (sec);
6693 BFD_ASSERT (relax_info != NULL);
6695 switch (relax_info->visited)
6697 case 0:
6698 /* Note: It would be nice to fold this pass into
6699 analyze_relocations, but it is important for this step that the
6700 sections be examined in link order. */
6701 if (!compute_removed_literals (abfd, sec, link_info, values))
6702 return FALSE;
6703 *again = TRUE;
6704 break;
6706 case 1:
6707 if (values)
6708 value_map_hash_table_delete (values);
6709 values = NULL;
6710 if (!relax_section (abfd, sec, link_info))
6711 return FALSE;
6712 *again = TRUE;
6713 break;
6715 case 2:
6716 if (!relax_section_symbols (abfd, sec))
6717 return FALSE;
6718 break;
6721 relax_info->visited++;
6722 return TRUE;
6726 /* Initialization for relaxation. */
6728 /* This function is called once at the start of relaxation. It scans
6729 all the input sections and marks the ones that are relaxable (i.e.,
6730 literal sections with L32R relocations against them), and then
6731 collects source_reloc information for all the relocations against
6732 those relaxable sections. During this process, it also detects
6733 longcalls, i.e., calls relaxed by the assembler into indirect
6734 calls, that can be optimized back into direct calls. Within each
6735 extended basic block (ebb) containing an optimized longcall, it
6736 computes a set of "text actions" that can be performed to remove
6737 the L32R associated with the longcall while optionally preserving
6738 branch target alignments. */
6740 static bfd_boolean
6741 analyze_relocations (struct bfd_link_info *link_info)
6743 bfd *abfd;
6744 asection *sec;
6745 bfd_boolean is_relaxable = FALSE;
6747 /* Initialize the per-section relaxation info. */
6748 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6749 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6751 init_xtensa_relax_info (sec);
6754 /* Mark relaxable sections (and count relocations against each one). */
6755 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6756 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6758 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
6759 return FALSE;
6762 /* Bail out if there are no relaxable sections. */
6763 if (!is_relaxable)
6764 return TRUE;
6766 /* Allocate space for source_relocs. */
6767 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6768 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6770 xtensa_relax_info *relax_info;
6772 relax_info = get_xtensa_relax_info (sec);
6773 if (relax_info->is_relaxable_literal_section
6774 || relax_info->is_relaxable_asm_section)
6776 relax_info->src_relocs = (source_reloc *)
6777 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
6779 else
6780 relax_info->src_count = 0;
6783 /* Collect info on relocations against each relaxable section. */
6784 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6785 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6787 if (!collect_source_relocs (abfd, sec, link_info))
6788 return FALSE;
6791 /* Compute the text actions. */
6792 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6793 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6795 if (!compute_text_actions (abfd, sec, link_info))
6796 return FALSE;
6799 return TRUE;
6803 /* Find all the sections that might be relaxed. The motivation for
6804 this pass is that collect_source_relocs() needs to record _all_ the
6805 relocations that target each relaxable section. That is expensive
6806 and unnecessary unless the target section is actually going to be
6807 relaxed. This pass identifies all such sections by checking if
6808 they have L32Rs pointing to them. In the process, the total number
6809 of relocations targeting each section is also counted so that we
6810 know how much space to allocate for source_relocs against each
6811 relaxable literal section. */
6813 static bfd_boolean
6814 find_relaxable_sections (bfd *abfd,
6815 asection *sec,
6816 struct bfd_link_info *link_info,
6817 bfd_boolean *is_relaxable_p)
6819 Elf_Internal_Rela *internal_relocs;
6820 bfd_byte *contents;
6821 bfd_boolean ok = TRUE;
6822 unsigned i;
6823 xtensa_relax_info *source_relax_info;
6824 bfd_boolean is_l32r_reloc;
6826 internal_relocs = retrieve_internal_relocs (abfd, sec,
6827 link_info->keep_memory);
6828 if (internal_relocs == NULL)
6829 return ok;
6831 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6832 if (contents == NULL && sec->size != 0)
6834 ok = FALSE;
6835 goto error_return;
6838 source_relax_info = get_xtensa_relax_info (sec);
6839 for (i = 0; i < sec->reloc_count; i++)
6841 Elf_Internal_Rela *irel = &internal_relocs[i];
6842 r_reloc r_rel;
6843 asection *target_sec;
6844 xtensa_relax_info *target_relax_info;
6846 /* If this section has not already been marked as "relaxable", and
6847 if it contains any ASM_EXPAND relocations (marking expanded
6848 longcalls) that can be optimized into direct calls, then mark
6849 the section as "relaxable". */
6850 if (source_relax_info
6851 && !source_relax_info->is_relaxable_asm_section
6852 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
6854 bfd_boolean is_reachable = FALSE;
6855 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6856 link_info, &is_reachable)
6857 && is_reachable)
6859 source_relax_info->is_relaxable_asm_section = TRUE;
6860 *is_relaxable_p = TRUE;
6864 r_reloc_init (&r_rel, abfd, irel, contents,
6865 bfd_get_section_limit (abfd, sec));
6867 target_sec = r_reloc_get_section (&r_rel);
6868 target_relax_info = get_xtensa_relax_info (target_sec);
6869 if (!target_relax_info)
6870 continue;
6872 /* Count PC-relative operand relocations against the target section.
6873 Note: The conditions tested here must match the conditions under
6874 which init_source_reloc is called in collect_source_relocs(). */
6875 is_l32r_reloc = FALSE;
6876 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6878 xtensa_opcode opcode =
6879 get_relocation_opcode (abfd, sec, contents, irel);
6880 if (opcode != XTENSA_UNDEFINED)
6882 is_l32r_reloc = (opcode == get_l32r_opcode ());
6883 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6884 || is_l32r_reloc)
6885 target_relax_info->src_count++;
6889 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
6891 /* Mark the target section as relaxable. */
6892 target_relax_info->is_relaxable_literal_section = TRUE;
6893 *is_relaxable_p = TRUE;
6897 error_return:
6898 release_contents (sec, contents);
6899 release_internal_relocs (sec, internal_relocs);
6900 return ok;
6904 /* Record _all_ the relocations that point to relaxable sections, and
6905 get rid of ASM_EXPAND relocs by either converting them to
6906 ASM_SIMPLIFY or by removing them. */
6908 static bfd_boolean
6909 collect_source_relocs (bfd *abfd,
6910 asection *sec,
6911 struct bfd_link_info *link_info)
6913 Elf_Internal_Rela *internal_relocs;
6914 bfd_byte *contents;
6915 bfd_boolean ok = TRUE;
6916 unsigned i;
6917 bfd_size_type sec_size;
6919 internal_relocs = retrieve_internal_relocs (abfd, sec,
6920 link_info->keep_memory);
6921 if (internal_relocs == NULL)
6922 return ok;
6924 sec_size = bfd_get_section_limit (abfd, sec);
6925 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6926 if (contents == NULL && sec_size != 0)
6928 ok = FALSE;
6929 goto error_return;
6932 /* Record relocations against relaxable literal sections. */
6933 for (i = 0; i < sec->reloc_count; i++)
6935 Elf_Internal_Rela *irel = &internal_relocs[i];
6936 r_reloc r_rel;
6937 asection *target_sec;
6938 xtensa_relax_info *target_relax_info;
6940 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6942 target_sec = r_reloc_get_section (&r_rel);
6943 target_relax_info = get_xtensa_relax_info (target_sec);
6945 if (target_relax_info
6946 && (target_relax_info->is_relaxable_literal_section
6947 || target_relax_info->is_relaxable_asm_section))
6949 xtensa_opcode opcode = XTENSA_UNDEFINED;
6950 int opnd = -1;
6951 bfd_boolean is_abs_literal = FALSE;
6953 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6955 /* None of the current alternate relocs are PC-relative,
6956 and only PC-relative relocs matter here. However, we
6957 still need to record the opcode for literal
6958 coalescing. */
6959 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6960 if (opcode == get_l32r_opcode ())
6962 is_abs_literal = TRUE;
6963 opnd = 1;
6965 else
6966 opcode = XTENSA_UNDEFINED;
6968 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6970 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6971 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6974 if (opcode != XTENSA_UNDEFINED)
6976 int src_next = target_relax_info->src_next++;
6977 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
6979 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
6980 is_abs_literal);
6985 /* Now get rid of ASM_EXPAND relocations. At this point, the
6986 src_relocs array for the target literal section may still be
6987 incomplete, but it must at least contain the entries for the L32R
6988 relocations associated with ASM_EXPANDs because they were just
6989 added in the preceding loop over the relocations. */
6991 for (i = 0; i < sec->reloc_count; i++)
6993 Elf_Internal_Rela *irel = &internal_relocs[i];
6994 bfd_boolean is_reachable;
6996 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
6997 &is_reachable))
6998 continue;
7000 if (is_reachable)
7002 Elf_Internal_Rela *l32r_irel;
7003 r_reloc r_rel;
7004 asection *target_sec;
7005 xtensa_relax_info *target_relax_info;
7007 /* Mark the source_reloc for the L32R so that it will be
7008 removed in compute_removed_literals(), along with the
7009 associated literal. */
7010 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
7011 irel, internal_relocs);
7012 if (l32r_irel == NULL)
7013 continue;
7015 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
7017 target_sec = r_reloc_get_section (&r_rel);
7018 target_relax_info = get_xtensa_relax_info (target_sec);
7020 if (target_relax_info
7021 && (target_relax_info->is_relaxable_literal_section
7022 || target_relax_info->is_relaxable_asm_section))
7024 source_reloc *s_reloc;
7026 /* Search the source_relocs for the entry corresponding to
7027 the l32r_irel. Note: The src_relocs array is not yet
7028 sorted, but it wouldn't matter anyway because we're
7029 searching by source offset instead of target offset. */
7030 s_reloc = find_source_reloc (target_relax_info->src_relocs,
7031 target_relax_info->src_next,
7032 sec, l32r_irel);
7033 BFD_ASSERT (s_reloc);
7034 s_reloc->is_null = TRUE;
7037 /* Convert this reloc to ASM_SIMPLIFY. */
7038 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
7039 R_XTENSA_ASM_SIMPLIFY);
7040 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7042 pin_internal_relocs (sec, internal_relocs);
7044 else
7046 /* It is resolvable but doesn't reach. We resolve now
7047 by eliminating the relocation -- the call will remain
7048 expanded into L32R/CALLX. */
7049 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7050 pin_internal_relocs (sec, internal_relocs);
7054 error_return:
7055 release_contents (sec, contents);
7056 release_internal_relocs (sec, internal_relocs);
7057 return ok;
7061 /* Return TRUE if the asm expansion can be resolved. Generally it can
7062 be resolved on a final link or when a partial link locates it in the
7063 same section as the target. Set "is_reachable" flag if the target of
7064 the call is within the range of a direct call, given the current VMA
7065 for this section and the target section. */
7067 bfd_boolean
7068 is_resolvable_asm_expansion (bfd *abfd,
7069 asection *sec,
7070 bfd_byte *contents,
7071 Elf_Internal_Rela *irel,
7072 struct bfd_link_info *link_info,
7073 bfd_boolean *is_reachable_p)
7075 asection *target_sec;
7076 bfd_vma target_offset;
7077 r_reloc r_rel;
7078 xtensa_opcode opcode, direct_call_opcode;
7079 bfd_vma self_address;
7080 bfd_vma dest_address;
7081 bfd_boolean uses_l32r;
7082 bfd_size_type sec_size;
7084 *is_reachable_p = FALSE;
7086 if (contents == NULL)
7087 return FALSE;
7089 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
7090 return FALSE;
7092 sec_size = bfd_get_section_limit (abfd, sec);
7093 opcode = get_expanded_call_opcode (contents + irel->r_offset,
7094 sec_size - irel->r_offset, &uses_l32r);
7095 /* Optimization of longcalls that use CONST16 is not yet implemented. */
7096 if (!uses_l32r)
7097 return FALSE;
7099 direct_call_opcode = swap_callx_for_call_opcode (opcode);
7100 if (direct_call_opcode == XTENSA_UNDEFINED)
7101 return FALSE;
7103 /* Check and see that the target resolves. */
7104 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7105 if (!r_reloc_is_defined (&r_rel))
7106 return FALSE;
7108 target_sec = r_reloc_get_section (&r_rel);
7109 target_offset = r_rel.target_offset;
7111 /* If the target is in a shared library, then it doesn't reach. This
7112 isn't supposed to come up because the compiler should never generate
7113 non-PIC calls on systems that use shared libraries, but the linker
7114 shouldn't crash regardless. */
7115 if (!target_sec->output_section)
7116 return FALSE;
7118 /* For relocatable sections, we can only simplify when the output
7119 section of the target is the same as the output section of the
7120 source. */
7121 if (link_info->relocatable
7122 && (target_sec->output_section != sec->output_section
7123 || is_reloc_sym_weak (abfd, irel)))
7124 return FALSE;
7126 self_address = (sec->output_section->vma
7127 + sec->output_offset + irel->r_offset + 3);
7128 dest_address = (target_sec->output_section->vma
7129 + target_sec->output_offset + target_offset);
7131 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
7132 self_address, dest_address);
7134 if ((self_address >> CALL_SEGMENT_BITS) !=
7135 (dest_address >> CALL_SEGMENT_BITS))
7136 return FALSE;
7138 return TRUE;
7142 static Elf_Internal_Rela *
7143 find_associated_l32r_irel (bfd *abfd,
7144 asection *sec,
7145 bfd_byte *contents,
7146 Elf_Internal_Rela *other_irel,
7147 Elf_Internal_Rela *internal_relocs)
7149 unsigned i;
7151 for (i = 0; i < sec->reloc_count; i++)
7153 Elf_Internal_Rela *irel = &internal_relocs[i];
7155 if (irel == other_irel)
7156 continue;
7157 if (irel->r_offset != other_irel->r_offset)
7158 continue;
7159 if (is_l32r_relocation (abfd, sec, contents, irel))
7160 return irel;
7163 return NULL;
7167 static xtensa_opcode *
7168 build_reloc_opcodes (bfd *abfd,
7169 asection *sec,
7170 bfd_byte *contents,
7171 Elf_Internal_Rela *internal_relocs)
7173 unsigned i;
7174 xtensa_opcode *reloc_opcodes =
7175 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
7176 for (i = 0; i < sec->reloc_count; i++)
7178 Elf_Internal_Rela *irel = &internal_relocs[i];
7179 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
7181 return reloc_opcodes;
7185 /* The compute_text_actions function will build a list of potential
7186 transformation actions for code in the extended basic block of each
7187 longcall that is optimized to a direct call. From this list we
7188 generate a set of actions to actually perform that optimizes for
7189 space and, if not using size_opt, maintains branch target
7190 alignments.
7192 These actions to be performed are placed on a per-section list.
7193 The actual changes are performed by relax_section() in the second
7194 pass. */
7196 bfd_boolean
7197 compute_text_actions (bfd *abfd,
7198 asection *sec,
7199 struct bfd_link_info *link_info)
7201 xtensa_opcode *reloc_opcodes = NULL;
7202 xtensa_relax_info *relax_info;
7203 bfd_byte *contents;
7204 Elf_Internal_Rela *internal_relocs;
7205 bfd_boolean ok = TRUE;
7206 unsigned i;
7207 property_table_entry *prop_table = 0;
7208 int ptblsize = 0;
7209 bfd_size_type sec_size;
7211 relax_info = get_xtensa_relax_info (sec);
7212 BFD_ASSERT (relax_info);
7213 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
7215 /* Do nothing if the section contains no optimized longcalls. */
7216 if (!relax_info->is_relaxable_asm_section)
7217 return ok;
7219 internal_relocs = retrieve_internal_relocs (abfd, sec,
7220 link_info->keep_memory);
7222 if (internal_relocs)
7223 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7224 internal_reloc_compare);
7226 sec_size = bfd_get_section_limit (abfd, sec);
7227 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7228 if (contents == NULL && sec_size != 0)
7230 ok = FALSE;
7231 goto error_return;
7234 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7235 XTENSA_PROP_SEC_NAME, FALSE);
7236 if (ptblsize < 0)
7238 ok = FALSE;
7239 goto error_return;
7242 for (i = 0; i < sec->reloc_count; i++)
7244 Elf_Internal_Rela *irel = &internal_relocs[i];
7245 bfd_vma r_offset;
7246 property_table_entry *the_entry;
7247 int ptbl_idx;
7248 ebb_t *ebb;
7249 ebb_constraint ebb_table;
7250 bfd_size_type simplify_size;
7252 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
7253 continue;
7254 r_offset = irel->r_offset;
7256 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
7257 if (simplify_size == 0)
7259 (*_bfd_error_handler)
7260 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
7261 sec->owner, sec, r_offset);
7262 continue;
7265 /* If the instruction table is not around, then don't do this
7266 relaxation. */
7267 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7268 sec->vma + irel->r_offset);
7269 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
7271 text_action_add (&relax_info->action_list,
7272 ta_convert_longcall, sec, r_offset,
7274 continue;
7277 /* If the next longcall happens to be at the same address as an
7278 unreachable section of size 0, then skip forward. */
7279 ptbl_idx = the_entry - prop_table;
7280 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
7281 && the_entry->size == 0
7282 && ptbl_idx + 1 < ptblsize
7283 && (prop_table[ptbl_idx + 1].address
7284 == prop_table[ptbl_idx].address))
7286 ptbl_idx++;
7287 the_entry++;
7290 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
7291 /* NO_REORDER is OK */
7292 continue;
7294 init_ebb_constraint (&ebb_table);
7295 ebb = &ebb_table.ebb;
7296 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
7297 internal_relocs, sec->reloc_count);
7298 ebb->start_offset = r_offset + simplify_size;
7299 ebb->end_offset = r_offset + simplify_size;
7300 ebb->start_ptbl_idx = ptbl_idx;
7301 ebb->end_ptbl_idx = ptbl_idx;
7302 ebb->start_reloc_idx = i;
7303 ebb->end_reloc_idx = i;
7305 /* Precompute the opcode for each relocation. */
7306 if (reloc_opcodes == NULL)
7307 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents,
7308 internal_relocs);
7310 if (!extend_ebb_bounds (ebb)
7311 || !compute_ebb_proposed_actions (&ebb_table)
7312 || !compute_ebb_actions (&ebb_table)
7313 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
7314 internal_relocs, &ebb_table,
7315 reloc_opcodes)
7316 || !check_section_ebb_reduces (&ebb_table))
7318 /* If anything goes wrong or we get unlucky and something does
7319 not fit, with our plan because of expansion between
7320 critical branches, just convert to a NOP. */
7322 text_action_add (&relax_info->action_list,
7323 ta_convert_longcall, sec, r_offset, 0);
7324 i = ebb_table.ebb.end_reloc_idx;
7325 free_ebb_constraint (&ebb_table);
7326 continue;
7329 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
7331 /* Update the index so we do not go looking at the relocations
7332 we have already processed. */
7333 i = ebb_table.ebb.end_reloc_idx;
7334 free_ebb_constraint (&ebb_table);
7337 #if DEBUG
7338 if (relax_info->action_list.head)
7339 print_action_list (stderr, &relax_info->action_list);
7340 #endif
7342 error_return:
7343 release_contents (sec, contents);
7344 release_internal_relocs (sec, internal_relocs);
7345 if (prop_table)
7346 free (prop_table);
7347 if (reloc_opcodes)
7348 free (reloc_opcodes);
7350 return ok;
7354 /* Do not widen an instruction if it is preceeded by a
7355 loop opcode. It might cause misalignment. */
7357 static bfd_boolean
7358 prev_instr_is_a_loop (bfd_byte *contents,
7359 bfd_size_type content_length,
7360 bfd_size_type offset)
7362 xtensa_opcode prev_opcode;
7364 if (offset < 3)
7365 return FALSE;
7366 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
7367 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
7371 /* Find all of the possible actions for an extended basic block. */
7373 bfd_boolean
7374 compute_ebb_proposed_actions (ebb_constraint *ebb_table)
7376 const ebb_t *ebb = &ebb_table->ebb;
7377 unsigned rel_idx = ebb->start_reloc_idx;
7378 property_table_entry *entry, *start_entry, *end_entry;
7379 bfd_vma offset = 0;
7380 xtensa_isa isa = xtensa_default_isa;
7381 xtensa_format fmt;
7382 static xtensa_insnbuf insnbuf = NULL;
7383 static xtensa_insnbuf slotbuf = NULL;
7385 if (insnbuf == NULL)
7387 insnbuf = xtensa_insnbuf_alloc (isa);
7388 slotbuf = xtensa_insnbuf_alloc (isa);
7391 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
7392 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
7394 for (entry = start_entry; entry <= end_entry; entry++)
7396 bfd_vma start_offset, end_offset;
7397 bfd_size_type insn_len;
7399 start_offset = entry->address - ebb->sec->vma;
7400 end_offset = entry->address + entry->size - ebb->sec->vma;
7402 if (entry == start_entry)
7403 start_offset = ebb->start_offset;
7404 if (entry == end_entry)
7405 end_offset = ebb->end_offset;
7406 offset = start_offset;
7408 if (offset == entry->address - ebb->sec->vma
7409 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
7411 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
7412 BFD_ASSERT (offset != end_offset);
7413 if (offset == end_offset)
7414 return FALSE;
7416 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
7417 offset);
7418 if (insn_len == 0)
7419 goto decode_error;
7421 if (check_branch_target_aligned_address (offset, insn_len))
7422 align_type = EBB_REQUIRE_TGT_ALIGN;
7424 ebb_propose_action (ebb_table, align_type, 0,
7425 ta_none, offset, 0, TRUE);
7428 while (offset != end_offset)
7430 Elf_Internal_Rela *irel;
7431 xtensa_opcode opcode;
7433 while (rel_idx < ebb->end_reloc_idx
7434 && (ebb->relocs[rel_idx].r_offset < offset
7435 || (ebb->relocs[rel_idx].r_offset == offset
7436 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
7437 != R_XTENSA_ASM_SIMPLIFY))))
7438 rel_idx++;
7440 /* Check for longcall. */
7441 irel = &ebb->relocs[rel_idx];
7442 if (irel->r_offset == offset
7443 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
7445 bfd_size_type simplify_size;
7447 simplify_size = get_asm_simplify_size (ebb->contents,
7448 ebb->content_length,
7449 irel->r_offset);
7450 if (simplify_size == 0)
7451 goto decode_error;
7453 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7454 ta_convert_longcall, offset, 0, TRUE);
7456 offset += simplify_size;
7457 continue;
7460 if (offset + MIN_INSN_LENGTH > ebb->content_length)
7461 goto decode_error;
7462 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
7463 ebb->content_length - offset);
7464 fmt = xtensa_format_decode (isa, insnbuf);
7465 if (fmt == XTENSA_UNDEFINED)
7466 goto decode_error;
7467 insn_len = xtensa_format_length (isa, fmt);
7468 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
7469 goto decode_error;
7471 if (xtensa_format_num_slots (isa, fmt) != 1)
7473 offset += insn_len;
7474 continue;
7477 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7478 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
7479 if (opcode == XTENSA_UNDEFINED)
7480 goto decode_error;
7482 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
7483 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
7484 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
7486 /* Add an instruction narrow action. */
7487 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7488 ta_narrow_insn, offset, 0, FALSE);
7490 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
7491 && can_widen_instruction (slotbuf, fmt, opcode) != 0
7492 && ! prev_instr_is_a_loop (ebb->contents,
7493 ebb->content_length, offset))
7495 /* Add an instruction widen action. */
7496 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7497 ta_widen_insn, offset, 0, FALSE);
7499 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
7501 /* Check for branch targets. */
7502 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
7503 ta_none, offset, 0, TRUE);
7506 offset += insn_len;
7510 if (ebb->ends_unreachable)
7512 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7513 ta_fill, ebb->end_offset, 0, TRUE);
7516 return TRUE;
7518 decode_error:
7519 (*_bfd_error_handler)
7520 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
7521 ebb->sec->owner, ebb->sec, offset);
7522 return FALSE;
7526 /* After all of the information has collected about the
7527 transformations possible in an EBB, compute the appropriate actions
7528 here in compute_ebb_actions. We still must check later to make
7529 sure that the actions do not break any relocations. The algorithm
7530 used here is pretty greedy. Basically, it removes as many no-ops
7531 as possible so that the end of the EBB has the same alignment
7532 characteristics as the original. First, it uses narrowing, then
7533 fill space at the end of the EBB, and finally widenings. If that
7534 does not work, it tries again with one fewer no-op removed. The
7535 optimization will only be performed if all of the branch targets
7536 that were aligned before transformation are also aligned after the
7537 transformation.
7539 When the size_opt flag is set, ignore the branch target alignments,
7540 narrow all wide instructions, and remove all no-ops unless the end
7541 of the EBB prevents it. */
7543 bfd_boolean
7544 compute_ebb_actions (ebb_constraint *ebb_table)
7546 unsigned i = 0;
7547 unsigned j;
7548 int removed_bytes = 0;
7549 ebb_t *ebb = &ebb_table->ebb;
7550 unsigned seg_idx_start = 0;
7551 unsigned seg_idx_end = 0;
7553 /* We perform this like the assembler relaxation algorithm: Start by
7554 assuming all instructions are narrow and all no-ops removed; then
7555 walk through.... */
7557 /* For each segment of this that has a solid constraint, check to
7558 see if there are any combinations that will keep the constraint.
7559 If so, use it. */
7560 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
7562 bfd_boolean requires_text_end_align = FALSE;
7563 unsigned longcall_count = 0;
7564 unsigned longcall_convert_count = 0;
7565 unsigned narrowable_count = 0;
7566 unsigned narrowable_convert_count = 0;
7567 unsigned widenable_count = 0;
7568 unsigned widenable_convert_count = 0;
7570 proposed_action *action = NULL;
7571 int align = (1 << ebb_table->ebb.sec->alignment_power);
7573 seg_idx_start = seg_idx_end;
7575 for (i = seg_idx_start; i < ebb_table->action_count; i++)
7577 action = &ebb_table->actions[i];
7578 if (action->action == ta_convert_longcall)
7579 longcall_count++;
7580 if (action->action == ta_narrow_insn)
7581 narrowable_count++;
7582 if (action->action == ta_widen_insn)
7583 widenable_count++;
7584 if (action->action == ta_fill)
7585 break;
7586 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
7587 break;
7588 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
7589 && !elf32xtensa_size_opt)
7590 break;
7592 seg_idx_end = i;
7594 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
7595 requires_text_end_align = TRUE;
7597 if (elf32xtensa_size_opt && !requires_text_end_align
7598 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
7599 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
7601 longcall_convert_count = longcall_count;
7602 narrowable_convert_count = narrowable_count;
7603 widenable_convert_count = 0;
7605 else
7607 /* There is a constraint. Convert the max number of longcalls. */
7608 narrowable_convert_count = 0;
7609 longcall_convert_count = 0;
7610 widenable_convert_count = 0;
7612 for (j = 0; j < longcall_count; j++)
7614 int removed = (longcall_count - j) * 3 & (align - 1);
7615 unsigned desire_narrow = (align - removed) & (align - 1);
7616 unsigned desire_widen = removed;
7617 if (desire_narrow <= narrowable_count)
7619 narrowable_convert_count = desire_narrow;
7620 narrowable_convert_count +=
7621 (align * ((narrowable_count - narrowable_convert_count)
7622 / align));
7623 longcall_convert_count = (longcall_count - j);
7624 widenable_convert_count = 0;
7625 break;
7627 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
7629 narrowable_convert_count = 0;
7630 longcall_convert_count = longcall_count - j;
7631 widenable_convert_count = desire_widen;
7632 break;
7637 /* Now the number of conversions are saved. Do them. */
7638 for (i = seg_idx_start; i < seg_idx_end; i++)
7640 action = &ebb_table->actions[i];
7641 switch (action->action)
7643 case ta_convert_longcall:
7644 if (longcall_convert_count != 0)
7646 action->action = ta_remove_longcall;
7647 action->do_action = TRUE;
7648 action->removed_bytes += 3;
7649 longcall_convert_count--;
7651 break;
7652 case ta_narrow_insn:
7653 if (narrowable_convert_count != 0)
7655 action->do_action = TRUE;
7656 action->removed_bytes += 1;
7657 narrowable_convert_count--;
7659 break;
7660 case ta_widen_insn:
7661 if (widenable_convert_count != 0)
7663 action->do_action = TRUE;
7664 action->removed_bytes -= 1;
7665 widenable_convert_count--;
7667 break;
7668 default:
7669 break;
7674 /* Now we move on to some local opts. Try to remove each of the
7675 remaining longcalls. */
7677 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
7679 removed_bytes = 0;
7680 for (i = 0; i < ebb_table->action_count; i++)
7682 int old_removed_bytes = removed_bytes;
7683 proposed_action *action = &ebb_table->actions[i];
7685 if (action->do_action && action->action == ta_convert_longcall)
7687 bfd_boolean bad_alignment = FALSE;
7688 removed_bytes += 3;
7689 for (j = i + 1; j < ebb_table->action_count; j++)
7691 proposed_action *new_action = &ebb_table->actions[j];
7692 bfd_vma offset = new_action->offset;
7693 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
7695 if (!check_branch_target_aligned
7696 (ebb_table->ebb.contents,
7697 ebb_table->ebb.content_length,
7698 offset, offset - removed_bytes))
7700 bad_alignment = TRUE;
7701 break;
7704 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
7706 if (!check_loop_aligned (ebb_table->ebb.contents,
7707 ebb_table->ebb.content_length,
7708 offset,
7709 offset - removed_bytes))
7711 bad_alignment = TRUE;
7712 break;
7715 if (new_action->action == ta_narrow_insn
7716 && !new_action->do_action
7717 && ebb_table->ebb.sec->alignment_power == 2)
7719 /* Narrow an instruction and we are done. */
7720 new_action->do_action = TRUE;
7721 new_action->removed_bytes += 1;
7722 bad_alignment = FALSE;
7723 break;
7725 if (new_action->action == ta_widen_insn
7726 && new_action->do_action
7727 && ebb_table->ebb.sec->alignment_power == 2)
7729 /* Narrow an instruction and we are done. */
7730 new_action->do_action = FALSE;
7731 new_action->removed_bytes += 1;
7732 bad_alignment = FALSE;
7733 break;
7735 if (new_action->do_action)
7736 removed_bytes += new_action->removed_bytes;
7738 if (!bad_alignment)
7740 action->removed_bytes += 3;
7741 action->action = ta_remove_longcall;
7742 action->do_action = TRUE;
7745 removed_bytes = old_removed_bytes;
7746 if (action->do_action)
7747 removed_bytes += action->removed_bytes;
7751 removed_bytes = 0;
7752 for (i = 0; i < ebb_table->action_count; ++i)
7754 proposed_action *action = &ebb_table->actions[i];
7755 if (action->do_action)
7756 removed_bytes += action->removed_bytes;
7759 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
7760 && ebb->ends_unreachable)
7762 proposed_action *action;
7763 int br;
7764 int extra_space;
7766 BFD_ASSERT (ebb_table->action_count != 0);
7767 action = &ebb_table->actions[ebb_table->action_count - 1];
7768 BFD_ASSERT (action->action == ta_fill);
7769 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
7771 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
7772 br = action->removed_bytes + removed_bytes + extra_space;
7773 br = br & ((1 << ebb->sec->alignment_power ) - 1);
7775 action->removed_bytes = extra_space - br;
7777 return TRUE;
7781 /* The xlate_map is a sorted array of address mappings designed to
7782 answer the offset_with_removed_text() query with a binary search instead
7783 of a linear search through the section's action_list. */
7785 typedef struct xlate_map_entry xlate_map_entry_t;
7786 typedef struct xlate_map xlate_map_t;
7788 struct xlate_map_entry
7790 unsigned orig_address;
7791 unsigned new_address;
7792 unsigned size;
7795 struct xlate_map
7797 unsigned entry_count;
7798 xlate_map_entry_t *entry;
7802 static int
7803 xlate_compare (const void *a_v, const void *b_v)
7805 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
7806 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
7807 if (a->orig_address < b->orig_address)
7808 return -1;
7809 if (a->orig_address > (b->orig_address + b->size - 1))
7810 return 1;
7811 return 0;
7815 static bfd_vma
7816 xlate_offset_with_removed_text (const xlate_map_t *map,
7817 text_action_list *action_list,
7818 bfd_vma offset)
7820 void *r;
7821 xlate_map_entry_t *e;
7823 if (map == NULL)
7824 return offset_with_removed_text (action_list, offset);
7826 if (map->entry_count == 0)
7827 return offset;
7829 r = bsearch (&offset, map->entry, map->entry_count,
7830 sizeof (xlate_map_entry_t), &xlate_compare);
7831 e = (xlate_map_entry_t *) r;
7833 BFD_ASSERT (e != NULL);
7834 if (e == NULL)
7835 return offset;
7836 return e->new_address - e->orig_address + offset;
7840 /* Build a binary searchable offset translation map from a section's
7841 action list. */
7843 static xlate_map_t *
7844 build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
7846 xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
7847 text_action_list *action_list = &relax_info->action_list;
7848 unsigned num_actions = 0;
7849 text_action *r;
7850 int removed;
7851 xlate_map_entry_t *current_entry;
7853 if (map == NULL)
7854 return NULL;
7856 num_actions = action_list_count (action_list);
7857 map->entry = (xlate_map_entry_t *)
7858 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
7859 if (map->entry == NULL)
7861 free (map);
7862 return NULL;
7864 map->entry_count = 0;
7866 removed = 0;
7867 current_entry = &map->entry[0];
7869 current_entry->orig_address = 0;
7870 current_entry->new_address = 0;
7871 current_entry->size = 0;
7873 for (r = action_list->head; r != NULL; r = r->next)
7875 unsigned orig_size = 0;
7876 switch (r->action)
7878 case ta_none:
7879 case ta_remove_insn:
7880 case ta_convert_longcall:
7881 case ta_remove_literal:
7882 case ta_add_literal:
7883 break;
7884 case ta_remove_longcall:
7885 orig_size = 6;
7886 break;
7887 case ta_narrow_insn:
7888 orig_size = 3;
7889 break;
7890 case ta_widen_insn:
7891 orig_size = 2;
7892 break;
7893 case ta_fill:
7894 break;
7896 current_entry->size =
7897 r->offset + orig_size - current_entry->orig_address;
7898 if (current_entry->size != 0)
7900 current_entry++;
7901 map->entry_count++;
7903 current_entry->orig_address = r->offset + orig_size;
7904 removed += r->removed_bytes;
7905 current_entry->new_address = r->offset + orig_size - removed;
7906 current_entry->size = 0;
7909 current_entry->size = (bfd_get_section_limit (sec->owner, sec)
7910 - current_entry->orig_address);
7911 if (current_entry->size != 0)
7912 map->entry_count++;
7914 return map;
7918 /* Free an offset translation map. */
7920 static void
7921 free_xlate_map (xlate_map_t *map)
7923 if (map && map->entry)
7924 free (map->entry);
7925 if (map)
7926 free (map);
7930 /* Use check_section_ebb_pcrels_fit to make sure that all of the
7931 relocations in a section will fit if a proposed set of actions
7932 are performed. */
7934 static bfd_boolean
7935 check_section_ebb_pcrels_fit (bfd *abfd,
7936 asection *sec,
7937 bfd_byte *contents,
7938 Elf_Internal_Rela *internal_relocs,
7939 const ebb_constraint *constraint,
7940 const xtensa_opcode *reloc_opcodes)
7942 unsigned i, j;
7943 Elf_Internal_Rela *irel;
7944 xlate_map_t *xmap = NULL;
7945 bfd_boolean ok = TRUE;
7946 xtensa_relax_info *relax_info;
7948 relax_info = get_xtensa_relax_info (sec);
7950 if (relax_info && sec->reloc_count > 100)
7952 xmap = build_xlate_map (sec, relax_info);
7953 /* NULL indicates out of memory, but the slow version
7954 can still be used. */
7957 for (i = 0; i < sec->reloc_count; i++)
7959 r_reloc r_rel;
7960 bfd_vma orig_self_offset, orig_target_offset;
7961 bfd_vma self_offset, target_offset;
7962 int r_type;
7963 reloc_howto_type *howto;
7964 int self_removed_bytes, target_removed_bytes;
7966 irel = &internal_relocs[i];
7967 r_type = ELF32_R_TYPE (irel->r_info);
7969 howto = &elf_howto_table[r_type];
7970 /* We maintain the required invariant: PC-relative relocations
7971 that fit before linking must fit after linking. Thus we only
7972 need to deal with relocations to the same section that are
7973 PC-relative. */
7974 if (r_type == R_XTENSA_ASM_SIMPLIFY
7975 || r_type == R_XTENSA_32_PCREL
7976 || !howto->pc_relative)
7977 continue;
7979 r_reloc_init (&r_rel, abfd, irel, contents,
7980 bfd_get_section_limit (abfd, sec));
7982 if (r_reloc_get_section (&r_rel) != sec)
7983 continue;
7985 orig_self_offset = irel->r_offset;
7986 orig_target_offset = r_rel.target_offset;
7988 self_offset = orig_self_offset;
7989 target_offset = orig_target_offset;
7991 if (relax_info)
7993 self_offset =
7994 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7995 orig_self_offset);
7996 target_offset =
7997 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7998 orig_target_offset);
8001 self_removed_bytes = 0;
8002 target_removed_bytes = 0;
8004 for (j = 0; j < constraint->action_count; ++j)
8006 proposed_action *action = &constraint->actions[j];
8007 bfd_vma offset = action->offset;
8008 int removed_bytes = action->removed_bytes;
8009 if (offset < orig_self_offset
8010 || (offset == orig_self_offset && action->action == ta_fill
8011 && action->removed_bytes < 0))
8012 self_removed_bytes += removed_bytes;
8013 if (offset < orig_target_offset
8014 || (offset == orig_target_offset && action->action == ta_fill
8015 && action->removed_bytes < 0))
8016 target_removed_bytes += removed_bytes;
8018 self_offset -= self_removed_bytes;
8019 target_offset -= target_removed_bytes;
8021 /* Try to encode it. Get the operand and check. */
8022 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
8024 /* None of the current alternate relocs are PC-relative,
8025 and only PC-relative relocs matter here. */
8027 else
8029 xtensa_opcode opcode;
8030 int opnum;
8032 if (reloc_opcodes)
8033 opcode = reloc_opcodes[i];
8034 else
8035 opcode = get_relocation_opcode (abfd, sec, contents, irel);
8036 if (opcode == XTENSA_UNDEFINED)
8038 ok = FALSE;
8039 break;
8042 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
8043 if (opnum == XTENSA_UNDEFINED)
8045 ok = FALSE;
8046 break;
8049 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
8051 ok = FALSE;
8052 break;
8057 if (xmap)
8058 free_xlate_map (xmap);
8060 return ok;
8064 static bfd_boolean
8065 check_section_ebb_reduces (const ebb_constraint *constraint)
8067 int removed = 0;
8068 unsigned i;
8070 for (i = 0; i < constraint->action_count; i++)
8072 const proposed_action *action = &constraint->actions[i];
8073 if (action->do_action)
8074 removed += action->removed_bytes;
8076 if (removed < 0)
8077 return FALSE;
8079 return TRUE;
8083 void
8084 text_action_add_proposed (text_action_list *l,
8085 const ebb_constraint *ebb_table,
8086 asection *sec)
8088 unsigned i;
8090 for (i = 0; i < ebb_table->action_count; i++)
8092 proposed_action *action = &ebb_table->actions[i];
8094 if (!action->do_action)
8095 continue;
8096 switch (action->action)
8098 case ta_remove_insn:
8099 case ta_remove_longcall:
8100 case ta_convert_longcall:
8101 case ta_narrow_insn:
8102 case ta_widen_insn:
8103 case ta_fill:
8104 case ta_remove_literal:
8105 text_action_add (l, action->action, sec, action->offset,
8106 action->removed_bytes);
8107 break;
8108 case ta_none:
8109 break;
8110 default:
8111 BFD_ASSERT (0);
8112 break;
8119 compute_fill_extra_space (property_table_entry *entry)
8121 int fill_extra_space;
8123 if (!entry)
8124 return 0;
8126 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
8127 return 0;
8129 fill_extra_space = entry->size;
8130 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
8132 /* Fill bytes for alignment:
8133 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
8134 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
8135 int nsm = (1 << pow) - 1;
8136 bfd_vma addr = entry->address + entry->size;
8137 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
8138 fill_extra_space += align_fill;
8140 return fill_extra_space;
8144 /* First relaxation pass. */
8146 /* If the section contains relaxable literals, check each literal to
8147 see if it has the same value as another literal that has already
8148 been seen, either in the current section or a previous one. If so,
8149 add an entry to the per-section list of removed literals. The
8150 actual changes are deferred until the next pass. */
8152 static bfd_boolean
8153 compute_removed_literals (bfd *abfd,
8154 asection *sec,
8155 struct bfd_link_info *link_info,
8156 value_map_hash_table *values)
8158 xtensa_relax_info *relax_info;
8159 bfd_byte *contents;
8160 Elf_Internal_Rela *internal_relocs;
8161 source_reloc *src_relocs, *rel;
8162 bfd_boolean ok = TRUE;
8163 property_table_entry *prop_table = NULL;
8164 int ptblsize;
8165 int i, prev_i;
8166 bfd_boolean last_loc_is_prev = FALSE;
8167 bfd_vma last_target_offset = 0;
8168 section_cache_t target_sec_cache;
8169 bfd_size_type sec_size;
8171 init_section_cache (&target_sec_cache);
8173 /* Do nothing if it is not a relaxable literal section. */
8174 relax_info = get_xtensa_relax_info (sec);
8175 BFD_ASSERT (relax_info);
8176 if (!relax_info->is_relaxable_literal_section)
8177 return ok;
8179 internal_relocs = retrieve_internal_relocs (abfd, sec,
8180 link_info->keep_memory);
8182 sec_size = bfd_get_section_limit (abfd, sec);
8183 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8184 if (contents == NULL && sec_size != 0)
8186 ok = FALSE;
8187 goto error_return;
8190 /* Sort the source_relocs by target offset. */
8191 src_relocs = relax_info->src_relocs;
8192 qsort (src_relocs, relax_info->src_count,
8193 sizeof (source_reloc), source_reloc_compare);
8194 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8195 internal_reloc_compare);
8197 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
8198 XTENSA_PROP_SEC_NAME, FALSE);
8199 if (ptblsize < 0)
8201 ok = FALSE;
8202 goto error_return;
8205 prev_i = -1;
8206 for (i = 0; i < relax_info->src_count; i++)
8208 Elf_Internal_Rela *irel = NULL;
8210 rel = &src_relocs[i];
8211 if (get_l32r_opcode () != rel->opcode)
8212 continue;
8213 irel = get_irel_at_offset (sec, internal_relocs,
8214 rel->r_rel.target_offset);
8216 /* If the relocation on this is not a simple R_XTENSA_32 or
8217 R_XTENSA_PLT then do not consider it. This may happen when
8218 the difference of two symbols is used in a literal. */
8219 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
8220 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
8221 continue;
8223 /* If the target_offset for this relocation is the same as the
8224 previous relocation, then we've already considered whether the
8225 literal can be coalesced. Skip to the next one.... */
8226 if (i != 0 && prev_i != -1
8227 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
8228 continue;
8229 prev_i = i;
8231 if (last_loc_is_prev &&
8232 last_target_offset + 4 != rel->r_rel.target_offset)
8233 last_loc_is_prev = FALSE;
8235 /* Check if the relocation was from an L32R that is being removed
8236 because a CALLX was converted to a direct CALL, and check if
8237 there are no other relocations to the literal. */
8238 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
8239 sec, prop_table, ptblsize))
8241 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
8242 irel, rel, prop_table, ptblsize))
8244 ok = FALSE;
8245 goto error_return;
8247 last_target_offset = rel->r_rel.target_offset;
8248 continue;
8251 if (!identify_literal_placement (abfd, sec, contents, link_info,
8252 values,
8253 &last_loc_is_prev, irel,
8254 relax_info->src_count - i, rel,
8255 prop_table, ptblsize,
8256 &target_sec_cache, rel->is_abs_literal))
8258 ok = FALSE;
8259 goto error_return;
8261 last_target_offset = rel->r_rel.target_offset;
8264 #if DEBUG
8265 print_removed_literals (stderr, &relax_info->removed_list);
8266 print_action_list (stderr, &relax_info->action_list);
8267 #endif /* DEBUG */
8269 error_return:
8270 if (prop_table)
8271 free (prop_table);
8272 free_section_cache (&target_sec_cache);
8274 release_contents (sec, contents);
8275 release_internal_relocs (sec, internal_relocs);
8276 return ok;
8280 static Elf_Internal_Rela *
8281 get_irel_at_offset (asection *sec,
8282 Elf_Internal_Rela *internal_relocs,
8283 bfd_vma offset)
8285 unsigned i;
8286 Elf_Internal_Rela *irel;
8287 unsigned r_type;
8288 Elf_Internal_Rela key;
8290 if (!internal_relocs)
8291 return NULL;
8293 key.r_offset = offset;
8294 irel = bsearch (&key, internal_relocs, sec->reloc_count,
8295 sizeof (Elf_Internal_Rela), internal_reloc_matches);
8296 if (!irel)
8297 return NULL;
8299 /* bsearch does not guarantee which will be returned if there are
8300 multiple matches. We need the first that is not an alignment. */
8301 i = irel - internal_relocs;
8302 while (i > 0)
8304 if (internal_relocs[i-1].r_offset != offset)
8305 break;
8306 i--;
8308 for ( ; i < sec->reloc_count; i++)
8310 irel = &internal_relocs[i];
8311 r_type = ELF32_R_TYPE (irel->r_info);
8312 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
8313 return irel;
8316 return NULL;
8320 bfd_boolean
8321 is_removable_literal (const source_reloc *rel,
8322 int i,
8323 const source_reloc *src_relocs,
8324 int src_count,
8325 asection *sec,
8326 property_table_entry *prop_table,
8327 int ptblsize)
8329 const source_reloc *curr_rel;
8330 property_table_entry *entry;
8332 if (!rel->is_null)
8333 return FALSE;
8335 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8336 sec->vma + rel->r_rel.target_offset);
8337 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8338 return FALSE;
8340 for (++i; i < src_count; ++i)
8342 curr_rel = &src_relocs[i];
8343 /* If all others have the same target offset.... */
8344 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
8345 return TRUE;
8347 if (!curr_rel->is_null
8348 && !xtensa_is_property_section (curr_rel->source_sec)
8349 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
8350 return FALSE;
8352 return TRUE;
8356 bfd_boolean
8357 remove_dead_literal (bfd *abfd,
8358 asection *sec,
8359 struct bfd_link_info *link_info,
8360 Elf_Internal_Rela *internal_relocs,
8361 Elf_Internal_Rela *irel,
8362 source_reloc *rel,
8363 property_table_entry *prop_table,
8364 int ptblsize)
8366 property_table_entry *entry;
8367 xtensa_relax_info *relax_info;
8369 relax_info = get_xtensa_relax_info (sec);
8370 if (!relax_info)
8371 return FALSE;
8373 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8374 sec->vma + rel->r_rel.target_offset);
8376 /* Mark the unused literal so that it will be removed. */
8377 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
8379 text_action_add (&relax_info->action_list,
8380 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8382 /* If the section is 4-byte aligned, do not add fill. */
8383 if (sec->alignment_power > 2)
8385 int fill_extra_space;
8386 bfd_vma entry_sec_offset;
8387 text_action *fa;
8388 property_table_entry *the_add_entry;
8389 int removed_diff;
8391 if (entry)
8392 entry_sec_offset = entry->address - sec->vma + entry->size;
8393 else
8394 entry_sec_offset = rel->r_rel.target_offset + 4;
8396 /* If the literal range is at the end of the section,
8397 do not add fill. */
8398 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8399 entry_sec_offset);
8400 fill_extra_space = compute_fill_extra_space (the_add_entry);
8402 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8403 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8404 -4, fill_extra_space);
8405 if (fa)
8406 adjust_fill_action (fa, removed_diff);
8407 else
8408 text_action_add (&relax_info->action_list,
8409 ta_fill, sec, entry_sec_offset, removed_diff);
8412 /* Zero out the relocation on this literal location. */
8413 if (irel)
8415 if (elf_hash_table (link_info)->dynamic_sections_created)
8416 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8418 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8419 pin_internal_relocs (sec, internal_relocs);
8422 /* Do not modify "last_loc_is_prev". */
8423 return TRUE;
8427 bfd_boolean
8428 identify_literal_placement (bfd *abfd,
8429 asection *sec,
8430 bfd_byte *contents,
8431 struct bfd_link_info *link_info,
8432 value_map_hash_table *values,
8433 bfd_boolean *last_loc_is_prev_p,
8434 Elf_Internal_Rela *irel,
8435 int remaining_src_rels,
8436 source_reloc *rel,
8437 property_table_entry *prop_table,
8438 int ptblsize,
8439 section_cache_t *target_sec_cache,
8440 bfd_boolean is_abs_literal)
8442 literal_value val;
8443 value_map *val_map;
8444 xtensa_relax_info *relax_info;
8445 bfd_boolean literal_placed = FALSE;
8446 r_reloc r_rel;
8447 unsigned long value;
8448 bfd_boolean final_static_link;
8449 bfd_size_type sec_size;
8451 relax_info = get_xtensa_relax_info (sec);
8452 if (!relax_info)
8453 return FALSE;
8455 sec_size = bfd_get_section_limit (abfd, sec);
8457 final_static_link =
8458 (!link_info->relocatable
8459 && !elf_hash_table (link_info)->dynamic_sections_created);
8461 /* The placement algorithm first checks to see if the literal is
8462 already in the value map. If so and the value map is reachable
8463 from all uses, then the literal is moved to that location. If
8464 not, then we identify the last location where a fresh literal was
8465 placed. If the literal can be safely moved there, then we do so.
8466 If not, then we assume that the literal is not to move and leave
8467 the literal where it is, marking it as the last literal
8468 location. */
8470 /* Find the literal value. */
8471 value = 0;
8472 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8473 if (!irel)
8475 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
8476 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
8478 init_literal_value (&val, &r_rel, value, is_abs_literal);
8480 /* Check if we've seen another literal with the same value that
8481 is in the same output section. */
8482 val_map = value_map_get_cached_value (values, &val, final_static_link);
8484 if (val_map
8485 && (r_reloc_get_section (&val_map->loc)->output_section
8486 == sec->output_section)
8487 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
8488 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
8490 /* No change to last_loc_is_prev. */
8491 literal_placed = TRUE;
8494 /* For relocatable links, do not try to move literals. To do it
8495 correctly might increase the number of relocations in an input
8496 section making the default relocatable linking fail. */
8497 if (!link_info->relocatable && !literal_placed
8498 && values->has_last_loc && !(*last_loc_is_prev_p))
8500 asection *target_sec = r_reloc_get_section (&values->last_loc);
8501 if (target_sec && target_sec->output_section == sec->output_section)
8503 /* Increment the virtual offset. */
8504 r_reloc try_loc = values->last_loc;
8505 try_loc.virtual_offset += 4;
8507 /* There is a last loc that was in the same output section. */
8508 if (relocations_reach (rel, remaining_src_rels, &try_loc)
8509 && move_shared_literal (sec, link_info, rel,
8510 prop_table, ptblsize,
8511 &try_loc, &val, target_sec_cache))
8513 values->last_loc.virtual_offset += 4;
8514 literal_placed = TRUE;
8515 if (!val_map)
8516 val_map = add_value_map (values, &val, &try_loc,
8517 final_static_link);
8518 else
8519 val_map->loc = try_loc;
8524 if (!literal_placed)
8526 /* Nothing worked, leave the literal alone but update the last loc. */
8527 values->has_last_loc = TRUE;
8528 values->last_loc = rel->r_rel;
8529 if (!val_map)
8530 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
8531 else
8532 val_map->loc = rel->r_rel;
8533 *last_loc_is_prev_p = TRUE;
8536 return TRUE;
8540 /* Check if the original relocations (presumably on L32R instructions)
8541 identified by reloc[0..N] can be changed to reference the literal
8542 identified by r_rel. If r_rel is out of range for any of the
8543 original relocations, then we don't want to coalesce the original
8544 literal with the one at r_rel. We only check reloc[0..N], where the
8545 offsets are all the same as for reloc[0] (i.e., they're all
8546 referencing the same literal) and where N is also bounded by the
8547 number of remaining entries in the "reloc" array. The "reloc" array
8548 is sorted by target offset so we know all the entries for the same
8549 literal will be contiguous. */
8551 static bfd_boolean
8552 relocations_reach (source_reloc *reloc,
8553 int remaining_relocs,
8554 const r_reloc *r_rel)
8556 bfd_vma from_offset, source_address, dest_address;
8557 asection *sec;
8558 int i;
8560 if (!r_reloc_is_defined (r_rel))
8561 return FALSE;
8563 sec = r_reloc_get_section (r_rel);
8564 from_offset = reloc[0].r_rel.target_offset;
8566 for (i = 0; i < remaining_relocs; i++)
8568 if (reloc[i].r_rel.target_offset != from_offset)
8569 break;
8571 /* Ignore relocations that have been removed. */
8572 if (reloc[i].is_null)
8573 continue;
8575 /* The original and new output section for these must be the same
8576 in order to coalesce. */
8577 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
8578 != sec->output_section)
8579 return FALSE;
8581 /* Absolute literals in the same output section can always be
8582 combined. */
8583 if (reloc[i].is_abs_literal)
8584 continue;
8586 /* A literal with no PC-relative relocations can be moved anywhere. */
8587 if (reloc[i].opnd != -1)
8589 /* Otherwise, check to see that it fits. */
8590 source_address = (reloc[i].source_sec->output_section->vma
8591 + reloc[i].source_sec->output_offset
8592 + reloc[i].r_rel.rela.r_offset);
8593 dest_address = (sec->output_section->vma
8594 + sec->output_offset
8595 + r_rel->target_offset);
8597 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
8598 source_address, dest_address))
8599 return FALSE;
8603 return TRUE;
8607 /* Move a literal to another literal location because it is
8608 the same as the other literal value. */
8610 static bfd_boolean
8611 coalesce_shared_literal (asection *sec,
8612 source_reloc *rel,
8613 property_table_entry *prop_table,
8614 int ptblsize,
8615 value_map *val_map)
8617 property_table_entry *entry;
8618 text_action *fa;
8619 property_table_entry *the_add_entry;
8620 int removed_diff;
8621 xtensa_relax_info *relax_info;
8623 relax_info = get_xtensa_relax_info (sec);
8624 if (!relax_info)
8625 return FALSE;
8627 entry = elf_xtensa_find_property_entry
8628 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
8629 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8630 return TRUE;
8632 /* Mark that the literal will be coalesced. */
8633 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
8635 text_action_add (&relax_info->action_list,
8636 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8638 /* If the section is 4-byte aligned, do not add fill. */
8639 if (sec->alignment_power > 2)
8641 int fill_extra_space;
8642 bfd_vma entry_sec_offset;
8644 if (entry)
8645 entry_sec_offset = entry->address - sec->vma + entry->size;
8646 else
8647 entry_sec_offset = rel->r_rel.target_offset + 4;
8649 /* If the literal range is at the end of the section,
8650 do not add fill. */
8651 fill_extra_space = 0;
8652 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8653 entry_sec_offset);
8654 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8655 fill_extra_space = the_add_entry->size;
8657 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8658 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8659 -4, fill_extra_space);
8660 if (fa)
8661 adjust_fill_action (fa, removed_diff);
8662 else
8663 text_action_add (&relax_info->action_list,
8664 ta_fill, sec, entry_sec_offset, removed_diff);
8667 return TRUE;
8671 /* Move a literal to another location. This may actually increase the
8672 total amount of space used because of alignments so we need to do
8673 this carefully. Also, it may make a branch go out of range. */
8675 static bfd_boolean
8676 move_shared_literal (asection *sec,
8677 struct bfd_link_info *link_info,
8678 source_reloc *rel,
8679 property_table_entry *prop_table,
8680 int ptblsize,
8681 const r_reloc *target_loc,
8682 const literal_value *lit_value,
8683 section_cache_t *target_sec_cache)
8685 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
8686 text_action *fa, *target_fa;
8687 int removed_diff;
8688 xtensa_relax_info *relax_info, *target_relax_info;
8689 asection *target_sec;
8690 ebb_t *ebb;
8691 ebb_constraint ebb_table;
8692 bfd_boolean relocs_fit;
8694 /* If this routine always returns FALSE, the literals that cannot be
8695 coalesced will not be moved. */
8696 if (elf32xtensa_no_literal_movement)
8697 return FALSE;
8699 relax_info = get_xtensa_relax_info (sec);
8700 if (!relax_info)
8701 return FALSE;
8703 target_sec = r_reloc_get_section (target_loc);
8704 target_relax_info = get_xtensa_relax_info (target_sec);
8706 /* Literals to undefined sections may not be moved because they
8707 must report an error. */
8708 if (bfd_is_und_section (target_sec))
8709 return FALSE;
8711 src_entry = elf_xtensa_find_property_entry
8712 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
8714 if (!section_cache_section (target_sec_cache, target_sec, link_info))
8715 return FALSE;
8717 target_entry = elf_xtensa_find_property_entry
8718 (target_sec_cache->ptbl, target_sec_cache->pte_count,
8719 target_sec->vma + target_loc->target_offset);
8721 if (!target_entry)
8722 return FALSE;
8724 /* Make sure that we have not broken any branches. */
8725 relocs_fit = FALSE;
8727 init_ebb_constraint (&ebb_table);
8728 ebb = &ebb_table.ebb;
8729 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
8730 target_sec_cache->content_length,
8731 target_sec_cache->ptbl, target_sec_cache->pte_count,
8732 target_sec_cache->relocs, target_sec_cache->reloc_count);
8734 /* Propose to add 4 bytes + worst-case alignment size increase to
8735 destination. */
8736 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
8737 ta_fill, target_loc->target_offset,
8738 -4 - (1 << target_sec->alignment_power), TRUE);
8740 /* Check all of the PC-relative relocations to make sure they still fit. */
8741 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
8742 target_sec_cache->contents,
8743 target_sec_cache->relocs,
8744 &ebb_table, NULL);
8746 if (!relocs_fit)
8747 return FALSE;
8749 text_action_add_literal (&target_relax_info->action_list,
8750 ta_add_literal, target_loc, lit_value, -4);
8752 if (target_sec->alignment_power > 2 && target_entry != src_entry)
8754 /* May need to add or remove some fill to maintain alignment. */
8755 int fill_extra_space;
8756 bfd_vma entry_sec_offset;
8758 entry_sec_offset =
8759 target_entry->address - target_sec->vma + target_entry->size;
8761 /* If the literal range is at the end of the section,
8762 do not add fill. */
8763 fill_extra_space = 0;
8764 the_add_entry =
8765 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
8766 target_sec_cache->pte_count,
8767 entry_sec_offset);
8768 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8769 fill_extra_space = the_add_entry->size;
8771 target_fa = find_fill_action (&target_relax_info->action_list,
8772 target_sec, entry_sec_offset);
8773 removed_diff = compute_removed_action_diff (target_fa, target_sec,
8774 entry_sec_offset, 4,
8775 fill_extra_space);
8776 if (target_fa)
8777 adjust_fill_action (target_fa, removed_diff);
8778 else
8779 text_action_add (&target_relax_info->action_list,
8780 ta_fill, target_sec, entry_sec_offset, removed_diff);
8783 /* Mark that the literal will be moved to the new location. */
8784 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
8786 /* Remove the literal. */
8787 text_action_add (&relax_info->action_list,
8788 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8790 /* If the section is 4-byte aligned, do not add fill. */
8791 if (sec->alignment_power > 2 && target_entry != src_entry)
8793 int fill_extra_space;
8794 bfd_vma entry_sec_offset;
8796 if (src_entry)
8797 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
8798 else
8799 entry_sec_offset = rel->r_rel.target_offset+4;
8801 /* If the literal range is at the end of the section,
8802 do not add fill. */
8803 fill_extra_space = 0;
8804 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8805 entry_sec_offset);
8806 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8807 fill_extra_space = the_add_entry->size;
8809 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8810 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8811 -4, fill_extra_space);
8812 if (fa)
8813 adjust_fill_action (fa, removed_diff);
8814 else
8815 text_action_add (&relax_info->action_list,
8816 ta_fill, sec, entry_sec_offset, removed_diff);
8819 return TRUE;
8823 /* Second relaxation pass. */
8825 /* Modify all of the relocations to point to the right spot, and if this
8826 is a relaxable section, delete the unwanted literals and fix the
8827 section size. */
8829 bfd_boolean
8830 relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
8832 Elf_Internal_Rela *internal_relocs;
8833 xtensa_relax_info *relax_info;
8834 bfd_byte *contents;
8835 bfd_boolean ok = TRUE;
8836 unsigned i;
8837 bfd_boolean rv = FALSE;
8838 bfd_boolean virtual_action;
8839 bfd_size_type sec_size;
8841 sec_size = bfd_get_section_limit (abfd, sec);
8842 relax_info = get_xtensa_relax_info (sec);
8843 BFD_ASSERT (relax_info);
8845 /* First translate any of the fixes that have been added already. */
8846 translate_section_fixes (sec);
8848 /* Handle property sections (e.g., literal tables) specially. */
8849 if (xtensa_is_property_section (sec))
8851 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
8852 return relax_property_section (abfd, sec, link_info);
8855 internal_relocs = retrieve_internal_relocs (abfd, sec,
8856 link_info->keep_memory);
8857 if (!internal_relocs && !relax_info->action_list.head)
8858 return TRUE;
8860 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8861 if (contents == NULL && sec_size != 0)
8863 ok = FALSE;
8864 goto error_return;
8867 if (internal_relocs)
8869 for (i = 0; i < sec->reloc_count; i++)
8871 Elf_Internal_Rela *irel;
8872 xtensa_relax_info *target_relax_info;
8873 bfd_vma source_offset, old_source_offset;
8874 r_reloc r_rel;
8875 unsigned r_type;
8876 asection *target_sec;
8878 /* Locally change the source address.
8879 Translate the target to the new target address.
8880 If it points to this section and has been removed,
8881 NULLify it.
8882 Write it back. */
8884 irel = &internal_relocs[i];
8885 source_offset = irel->r_offset;
8886 old_source_offset = source_offset;
8888 r_type = ELF32_R_TYPE (irel->r_info);
8889 r_reloc_init (&r_rel, abfd, irel, contents,
8890 bfd_get_section_limit (abfd, sec));
8892 /* If this section could have changed then we may need to
8893 change the relocation's offset. */
8895 if (relax_info->is_relaxable_literal_section
8896 || relax_info->is_relaxable_asm_section)
8898 pin_internal_relocs (sec, internal_relocs);
8900 if (r_type != R_XTENSA_NONE
8901 && find_removed_literal (&relax_info->removed_list,
8902 irel->r_offset))
8904 /* Remove this relocation. */
8905 if (elf_hash_table (link_info)->dynamic_sections_created)
8906 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8907 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8908 irel->r_offset = offset_with_removed_text
8909 (&relax_info->action_list, irel->r_offset);
8910 continue;
8913 if (r_type == R_XTENSA_ASM_SIMPLIFY)
8915 text_action *action =
8916 find_insn_action (&relax_info->action_list,
8917 irel->r_offset);
8918 if (action && (action->action == ta_convert_longcall
8919 || action->action == ta_remove_longcall))
8921 bfd_reloc_status_type retval;
8922 char *error_message = NULL;
8924 retval = contract_asm_expansion (contents, sec_size,
8925 irel, &error_message);
8926 if (retval != bfd_reloc_ok)
8928 (*link_info->callbacks->reloc_dangerous)
8929 (link_info, error_message, abfd, sec,
8930 irel->r_offset);
8931 goto error_return;
8933 /* Update the action so that the code that moves
8934 the contents will do the right thing. */
8935 if (action->action == ta_remove_longcall)
8936 action->action = ta_remove_insn;
8937 else
8938 action->action = ta_none;
8939 /* Refresh the info in the r_rel. */
8940 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8941 r_type = ELF32_R_TYPE (irel->r_info);
8945 source_offset = offset_with_removed_text
8946 (&relax_info->action_list, irel->r_offset);
8947 irel->r_offset = source_offset;
8950 /* If the target section could have changed then
8951 we may need to change the relocation's target offset. */
8953 target_sec = r_reloc_get_section (&r_rel);
8955 /* For a reference to a discarded section from a DWARF section,
8956 i.e., where action_discarded is PRETEND, the symbol will
8957 eventually be modified to refer to the kept section (at least if
8958 the kept and discarded sections are the same size). Anticipate
8959 that here and adjust things accordingly. */
8960 if (! elf_xtensa_ignore_discarded_relocs (sec)
8961 && elf_xtensa_action_discarded (sec) == PRETEND
8962 && sec->sec_info_type != SEC_INFO_TYPE_STABS
8963 && target_sec != NULL
8964 && discarded_section (target_sec))
8966 /* It would be natural to call _bfd_elf_check_kept_section
8967 here, but it's not exported from elflink.c. It's also a
8968 fairly expensive check. Adjusting the relocations to the
8969 discarded section is fairly harmless; it will only adjust
8970 some addends and difference values. If it turns out that
8971 _bfd_elf_check_kept_section fails later, it won't matter,
8972 so just compare the section names to find the right group
8973 member. */
8974 asection *kept = target_sec->kept_section;
8975 if (kept != NULL)
8977 if ((kept->flags & SEC_GROUP) != 0)
8979 asection *first = elf_next_in_group (kept);
8980 asection *s = first;
8982 kept = NULL;
8983 while (s != NULL)
8985 if (strcmp (s->name, target_sec->name) == 0)
8987 kept = s;
8988 break;
8990 s = elf_next_in_group (s);
8991 if (s == first)
8992 break;
8996 if (kept != NULL
8997 && ((target_sec->rawsize != 0
8998 ? target_sec->rawsize : target_sec->size)
8999 == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9000 target_sec = kept;
9003 target_relax_info = get_xtensa_relax_info (target_sec);
9004 if (target_relax_info
9005 && (target_relax_info->is_relaxable_literal_section
9006 || target_relax_info->is_relaxable_asm_section))
9008 r_reloc new_reloc;
9009 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
9011 if (r_type == R_XTENSA_DIFF8
9012 || r_type == R_XTENSA_DIFF16
9013 || r_type == R_XTENSA_DIFF32)
9015 bfd_vma diff_value = 0, new_end_offset, diff_mask = 0;
9017 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
9019 (*link_info->callbacks->reloc_dangerous)
9020 (link_info, _("invalid relocation address"),
9021 abfd, sec, old_source_offset);
9022 goto error_return;
9025 switch (r_type)
9027 case R_XTENSA_DIFF8:
9028 diff_value =
9029 bfd_get_8 (abfd, &contents[old_source_offset]);
9030 break;
9031 case R_XTENSA_DIFF16:
9032 diff_value =
9033 bfd_get_16 (abfd, &contents[old_source_offset]);
9034 break;
9035 case R_XTENSA_DIFF32:
9036 diff_value =
9037 bfd_get_32 (abfd, &contents[old_source_offset]);
9038 break;
9041 new_end_offset = offset_with_removed_text
9042 (&target_relax_info->action_list,
9043 r_rel.target_offset + diff_value);
9044 diff_value = new_end_offset - new_reloc.target_offset;
9046 switch (r_type)
9048 case R_XTENSA_DIFF8:
9049 diff_mask = 0xff;
9050 bfd_put_8 (abfd, diff_value,
9051 &contents[old_source_offset]);
9052 break;
9053 case R_XTENSA_DIFF16:
9054 diff_mask = 0xffff;
9055 bfd_put_16 (abfd, diff_value,
9056 &contents[old_source_offset]);
9057 break;
9058 case R_XTENSA_DIFF32:
9059 diff_mask = 0xffffffff;
9060 bfd_put_32 (abfd, diff_value,
9061 &contents[old_source_offset]);
9062 break;
9065 /* Check for overflow. */
9066 if ((diff_value & ~diff_mask) != 0)
9068 (*link_info->callbacks->reloc_dangerous)
9069 (link_info, _("overflow after relaxation"),
9070 abfd, sec, old_source_offset);
9071 goto error_return;
9074 pin_contents (sec, contents);
9077 /* If the relocation still references a section in the same
9078 input file, modify the relocation directly instead of
9079 adding a "fix" record. */
9080 if (target_sec->owner == abfd)
9082 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
9083 irel->r_info = ELF32_R_INFO (r_symndx, r_type);
9084 irel->r_addend = new_reloc.rela.r_addend;
9085 pin_internal_relocs (sec, internal_relocs);
9087 else
9089 bfd_vma addend_displacement;
9090 reloc_bfd_fix *fix;
9092 addend_displacement =
9093 new_reloc.target_offset + new_reloc.virtual_offset;
9094 fix = reloc_bfd_fix_init (sec, source_offset, r_type,
9095 target_sec,
9096 addend_displacement, TRUE);
9097 add_fix (sec, fix);
9103 if ((relax_info->is_relaxable_literal_section
9104 || relax_info->is_relaxable_asm_section)
9105 && relax_info->action_list.head)
9107 /* Walk through the planned actions and build up a table
9108 of move, copy and fill records. Use the move, copy and
9109 fill records to perform the actions once. */
9111 int removed = 0;
9112 bfd_size_type final_size, copy_size, orig_insn_size;
9113 bfd_byte *scratch = NULL;
9114 bfd_byte *dup_contents = NULL;
9115 bfd_size_type orig_size = sec->size;
9116 bfd_vma orig_dot = 0;
9117 bfd_vma orig_dot_copied = 0; /* Byte copied already from
9118 orig dot in physical memory. */
9119 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
9120 bfd_vma dup_dot = 0;
9122 text_action *action = relax_info->action_list.head;
9124 final_size = sec->size;
9125 for (action = relax_info->action_list.head; action;
9126 action = action->next)
9128 final_size -= action->removed_bytes;
9131 scratch = (bfd_byte *) bfd_zmalloc (final_size);
9132 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
9134 /* The dot is the current fill location. */
9135 #if DEBUG
9136 print_action_list (stderr, &relax_info->action_list);
9137 #endif
9139 for (action = relax_info->action_list.head; action;
9140 action = action->next)
9142 virtual_action = FALSE;
9143 if (action->offset > orig_dot)
9145 orig_dot += orig_dot_copied;
9146 orig_dot_copied = 0;
9147 orig_dot_vo = 0;
9148 /* Out of the virtual world. */
9151 if (action->offset > orig_dot)
9153 copy_size = action->offset - orig_dot;
9154 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9155 orig_dot += copy_size;
9156 dup_dot += copy_size;
9157 BFD_ASSERT (action->offset == orig_dot);
9159 else if (action->offset < orig_dot)
9161 if (action->action == ta_fill
9162 && action->offset - action->removed_bytes == orig_dot)
9164 /* This is OK because the fill only effects the dup_dot. */
9166 else if (action->action == ta_add_literal)
9168 /* TBD. Might need to handle this. */
9171 if (action->offset == orig_dot)
9173 if (action->virtual_offset > orig_dot_vo)
9175 if (orig_dot_vo == 0)
9177 /* Need to copy virtual_offset bytes. Probably four. */
9178 copy_size = action->virtual_offset - orig_dot_vo;
9179 memmove (&dup_contents[dup_dot],
9180 &contents[orig_dot], copy_size);
9181 orig_dot_copied = copy_size;
9182 dup_dot += copy_size;
9184 virtual_action = TRUE;
9186 else
9187 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
9189 switch (action->action)
9191 case ta_remove_literal:
9192 case ta_remove_insn:
9193 BFD_ASSERT (action->removed_bytes >= 0);
9194 orig_dot += action->removed_bytes;
9195 break;
9197 case ta_narrow_insn:
9198 orig_insn_size = 3;
9199 copy_size = 2;
9200 memmove (scratch, &contents[orig_dot], orig_insn_size);
9201 BFD_ASSERT (action->removed_bytes == 1);
9202 rv = narrow_instruction (scratch, final_size, 0);
9203 BFD_ASSERT (rv);
9204 memmove (&dup_contents[dup_dot], scratch, copy_size);
9205 orig_dot += orig_insn_size;
9206 dup_dot += copy_size;
9207 break;
9209 case ta_fill:
9210 if (action->removed_bytes >= 0)
9211 orig_dot += action->removed_bytes;
9212 else
9214 /* Already zeroed in dup_contents. Just bump the
9215 counters. */
9216 dup_dot += (-action->removed_bytes);
9218 break;
9220 case ta_none:
9221 BFD_ASSERT (action->removed_bytes == 0);
9222 break;
9224 case ta_convert_longcall:
9225 case ta_remove_longcall:
9226 /* These will be removed or converted before we get here. */
9227 BFD_ASSERT (0);
9228 break;
9230 case ta_widen_insn:
9231 orig_insn_size = 2;
9232 copy_size = 3;
9233 memmove (scratch, &contents[orig_dot], orig_insn_size);
9234 BFD_ASSERT (action->removed_bytes == -1);
9235 rv = widen_instruction (scratch, final_size, 0);
9236 BFD_ASSERT (rv);
9237 memmove (&dup_contents[dup_dot], scratch, copy_size);
9238 orig_dot += orig_insn_size;
9239 dup_dot += copy_size;
9240 break;
9242 case ta_add_literal:
9243 orig_insn_size = 0;
9244 copy_size = 4;
9245 BFD_ASSERT (action->removed_bytes == -4);
9246 /* TBD -- place the literal value here and insert
9247 into the table. */
9248 memset (&dup_contents[dup_dot], 0, 4);
9249 pin_internal_relocs (sec, internal_relocs);
9250 pin_contents (sec, contents);
9252 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
9253 relax_info, &internal_relocs, &action->value))
9254 goto error_return;
9256 if (virtual_action)
9257 orig_dot_vo += copy_size;
9259 orig_dot += orig_insn_size;
9260 dup_dot += copy_size;
9261 break;
9263 default:
9264 /* Not implemented yet. */
9265 BFD_ASSERT (0);
9266 break;
9269 removed += action->removed_bytes;
9270 BFD_ASSERT (dup_dot <= final_size);
9271 BFD_ASSERT (orig_dot <= orig_size);
9274 orig_dot += orig_dot_copied;
9275 orig_dot_copied = 0;
9277 if (orig_dot != orig_size)
9279 copy_size = orig_size - orig_dot;
9280 BFD_ASSERT (orig_size > orig_dot);
9281 BFD_ASSERT (dup_dot + copy_size == final_size);
9282 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9283 orig_dot += copy_size;
9284 dup_dot += copy_size;
9286 BFD_ASSERT (orig_size == orig_dot);
9287 BFD_ASSERT (final_size == dup_dot);
9289 /* Move the dup_contents back. */
9290 if (final_size > orig_size)
9292 /* Contents need to be reallocated. Swap the dup_contents into
9293 contents. */
9294 sec->contents = dup_contents;
9295 free (contents);
9296 contents = dup_contents;
9297 pin_contents (sec, contents);
9299 else
9301 BFD_ASSERT (final_size <= orig_size);
9302 memset (contents, 0, orig_size);
9303 memcpy (contents, dup_contents, final_size);
9304 free (dup_contents);
9306 free (scratch);
9307 pin_contents (sec, contents);
9309 if (sec->rawsize == 0)
9310 sec->rawsize = sec->size;
9311 sec->size = final_size;
9314 error_return:
9315 release_internal_relocs (sec, internal_relocs);
9316 release_contents (sec, contents);
9317 return ok;
9321 static bfd_boolean
9322 translate_section_fixes (asection *sec)
9324 xtensa_relax_info *relax_info;
9325 reloc_bfd_fix *r;
9327 relax_info = get_xtensa_relax_info (sec);
9328 if (!relax_info)
9329 return TRUE;
9331 for (r = relax_info->fix_list; r != NULL; r = r->next)
9332 if (!translate_reloc_bfd_fix (r))
9333 return FALSE;
9335 return TRUE;
9339 /* Translate a fix given the mapping in the relax info for the target
9340 section. If it has already been translated, no work is required. */
9342 static bfd_boolean
9343 translate_reloc_bfd_fix (reloc_bfd_fix *fix)
9345 reloc_bfd_fix new_fix;
9346 asection *sec;
9347 xtensa_relax_info *relax_info;
9348 removed_literal *removed;
9349 bfd_vma new_offset, target_offset;
9351 if (fix->translated)
9352 return TRUE;
9354 sec = fix->target_sec;
9355 target_offset = fix->target_offset;
9357 relax_info = get_xtensa_relax_info (sec);
9358 if (!relax_info)
9360 fix->translated = TRUE;
9361 return TRUE;
9364 new_fix = *fix;
9366 /* The fix does not need to be translated if the section cannot change. */
9367 if (!relax_info->is_relaxable_literal_section
9368 && !relax_info->is_relaxable_asm_section)
9370 fix->translated = TRUE;
9371 return TRUE;
9374 /* If the literal has been moved and this relocation was on an
9375 opcode, then the relocation should move to the new literal
9376 location. Otherwise, the relocation should move within the
9377 section. */
9379 removed = FALSE;
9380 if (is_operand_relocation (fix->src_type))
9382 /* Check if the original relocation is against a literal being
9383 removed. */
9384 removed = find_removed_literal (&relax_info->removed_list,
9385 target_offset);
9388 if (removed)
9390 asection *new_sec;
9392 /* The fact that there is still a relocation to this literal indicates
9393 that the literal is being coalesced, not simply removed. */
9394 BFD_ASSERT (removed->to.abfd != NULL);
9396 /* This was moved to some other address (possibly another section). */
9397 new_sec = r_reloc_get_section (&removed->to);
9398 if (new_sec != sec)
9400 sec = new_sec;
9401 relax_info = get_xtensa_relax_info (sec);
9402 if (!relax_info ||
9403 (!relax_info->is_relaxable_literal_section
9404 && !relax_info->is_relaxable_asm_section))
9406 target_offset = removed->to.target_offset;
9407 new_fix.target_sec = new_sec;
9408 new_fix.target_offset = target_offset;
9409 new_fix.translated = TRUE;
9410 *fix = new_fix;
9411 return TRUE;
9414 target_offset = removed->to.target_offset;
9415 new_fix.target_sec = new_sec;
9418 /* The target address may have been moved within its section. */
9419 new_offset = offset_with_removed_text (&relax_info->action_list,
9420 target_offset);
9422 new_fix.target_offset = new_offset;
9423 new_fix.target_offset = new_offset;
9424 new_fix.translated = TRUE;
9425 *fix = new_fix;
9426 return TRUE;
9430 /* Fix up a relocation to take account of removed literals. */
9432 static asection *
9433 translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
9435 xtensa_relax_info *relax_info;
9436 removed_literal *removed;
9437 bfd_vma target_offset, base_offset;
9438 text_action *act;
9440 *new_rel = *orig_rel;
9442 if (!r_reloc_is_defined (orig_rel))
9443 return sec ;
9445 relax_info = get_xtensa_relax_info (sec);
9446 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
9447 || relax_info->is_relaxable_asm_section));
9449 target_offset = orig_rel->target_offset;
9451 removed = FALSE;
9452 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
9454 /* Check if the original relocation is against a literal being
9455 removed. */
9456 removed = find_removed_literal (&relax_info->removed_list,
9457 target_offset);
9459 if (removed && removed->to.abfd)
9461 asection *new_sec;
9463 /* The fact that there is still a relocation to this literal indicates
9464 that the literal is being coalesced, not simply removed. */
9465 BFD_ASSERT (removed->to.abfd != NULL);
9467 /* This was moved to some other address
9468 (possibly in another section). */
9469 *new_rel = removed->to;
9470 new_sec = r_reloc_get_section (new_rel);
9471 if (new_sec != sec)
9473 sec = new_sec;
9474 relax_info = get_xtensa_relax_info (sec);
9475 if (!relax_info
9476 || (!relax_info->is_relaxable_literal_section
9477 && !relax_info->is_relaxable_asm_section))
9478 return sec;
9480 target_offset = new_rel->target_offset;
9483 /* Find the base offset of the reloc symbol, excluding any addend from the
9484 reloc or from the section contents (for a partial_inplace reloc). Then
9485 find the adjusted values of the offsets due to relaxation. The base
9486 offset is needed to determine the change to the reloc's addend; the reloc
9487 addend should not be adjusted due to relaxations located before the base
9488 offset. */
9490 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
9491 act = relax_info->action_list.head;
9492 if (base_offset <= target_offset)
9494 int base_removed = removed_by_actions (&act, base_offset, FALSE);
9495 int addend_removed = removed_by_actions (&act, target_offset, FALSE);
9496 new_rel->target_offset = target_offset - base_removed - addend_removed;
9497 new_rel->rela.r_addend -= addend_removed;
9499 else
9501 /* Handle a negative addend. The base offset comes first. */
9502 int tgt_removed = removed_by_actions (&act, target_offset, FALSE);
9503 int addend_removed = removed_by_actions (&act, base_offset, FALSE);
9504 new_rel->target_offset = target_offset - tgt_removed;
9505 new_rel->rela.r_addend += addend_removed;
9508 return sec;
9512 /* For dynamic links, there may be a dynamic relocation for each
9513 literal. The number of dynamic relocations must be computed in
9514 size_dynamic_sections, which occurs before relaxation. When a
9515 literal is removed, this function checks if there is a corresponding
9516 dynamic relocation and shrinks the size of the appropriate dynamic
9517 relocation section accordingly. At this point, the contents of the
9518 dynamic relocation sections have not yet been filled in, so there's
9519 nothing else that needs to be done. */
9521 static void
9522 shrink_dynamic_reloc_sections (struct bfd_link_info *info,
9523 bfd *abfd,
9524 asection *input_section,
9525 Elf_Internal_Rela *rel)
9527 struct elf_xtensa_link_hash_table *htab;
9528 Elf_Internal_Shdr *symtab_hdr;
9529 struct elf_link_hash_entry **sym_hashes;
9530 unsigned long r_symndx;
9531 int r_type;
9532 struct elf_link_hash_entry *h;
9533 bfd_boolean dynamic_symbol;
9535 htab = elf_xtensa_hash_table (info);
9536 if (htab == NULL)
9537 return;
9539 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9540 sym_hashes = elf_sym_hashes (abfd);
9542 r_type = ELF32_R_TYPE (rel->r_info);
9543 r_symndx = ELF32_R_SYM (rel->r_info);
9545 if (r_symndx < symtab_hdr->sh_info)
9546 h = NULL;
9547 else
9548 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
9550 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
9552 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
9553 && (input_section->flags & SEC_ALLOC) != 0
9554 && (dynamic_symbol || info->shared))
9556 asection *srel;
9557 bfd_boolean is_plt = FALSE;
9559 if (dynamic_symbol && r_type == R_XTENSA_PLT)
9561 srel = htab->srelplt;
9562 is_plt = TRUE;
9564 else
9565 srel = htab->srelgot;
9567 /* Reduce size of the .rela.* section by one reloc. */
9568 BFD_ASSERT (srel != NULL);
9569 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
9570 srel->size -= sizeof (Elf32_External_Rela);
9572 if (is_plt)
9574 asection *splt, *sgotplt, *srelgot;
9575 int reloc_index, chunk;
9577 /* Find the PLT reloc index of the entry being removed. This
9578 is computed from the size of ".rela.plt". It is needed to
9579 figure out which PLT chunk to resize. Usually "last index
9580 = size - 1" since the index starts at zero, but in this
9581 context, the size has just been decremented so there's no
9582 need to subtract one. */
9583 reloc_index = srel->size / sizeof (Elf32_External_Rela);
9585 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
9586 splt = elf_xtensa_get_plt_section (info, chunk);
9587 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
9588 BFD_ASSERT (splt != NULL && sgotplt != NULL);
9590 /* Check if an entire PLT chunk has just been eliminated. */
9591 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
9593 /* The two magic GOT entries for that chunk can go away. */
9594 srelgot = htab->srelgot;
9595 BFD_ASSERT (srelgot != NULL);
9596 srelgot->reloc_count -= 2;
9597 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
9598 sgotplt->size -= 8;
9600 /* There should be only one entry left (and it will be
9601 removed below). */
9602 BFD_ASSERT (sgotplt->size == 4);
9603 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
9606 BFD_ASSERT (sgotplt->size >= 4);
9607 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
9609 sgotplt->size -= 4;
9610 splt->size -= PLT_ENTRY_SIZE;
9616 /* Take an r_rel and move it to another section. This usually
9617 requires extending the interal_relocation array and pinning it. If
9618 the original r_rel is from the same BFD, we can complete this here.
9619 Otherwise, we add a fix record to let the final link fix the
9620 appropriate address. Contents and internal relocations for the
9621 section must be pinned after calling this routine. */
9623 static bfd_boolean
9624 move_literal (bfd *abfd,
9625 struct bfd_link_info *link_info,
9626 asection *sec,
9627 bfd_vma offset,
9628 bfd_byte *contents,
9629 xtensa_relax_info *relax_info,
9630 Elf_Internal_Rela **internal_relocs_p,
9631 const literal_value *lit)
9633 Elf_Internal_Rela *new_relocs = NULL;
9634 size_t new_relocs_count = 0;
9635 Elf_Internal_Rela this_rela;
9636 const r_reloc *r_rel;
9638 r_rel = &lit->r_rel;
9639 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
9641 if (r_reloc_is_const (r_rel))
9642 bfd_put_32 (abfd, lit->value, contents + offset);
9643 else
9645 int r_type;
9646 unsigned i;
9647 reloc_bfd_fix *fix;
9648 unsigned insert_at;
9650 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
9652 /* This is the difficult case. We have to create a fix up. */
9653 this_rela.r_offset = offset;
9654 this_rela.r_info = ELF32_R_INFO (0, r_type);
9655 this_rela.r_addend =
9656 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
9657 bfd_put_32 (abfd, lit->value, contents + offset);
9659 /* Currently, we cannot move relocations during a relocatable link. */
9660 BFD_ASSERT (!link_info->relocatable);
9661 fix = reloc_bfd_fix_init (sec, offset, r_type,
9662 r_reloc_get_section (r_rel),
9663 r_rel->target_offset + r_rel->virtual_offset,
9664 FALSE);
9665 /* We also need to mark that relocations are needed here. */
9666 sec->flags |= SEC_RELOC;
9668 translate_reloc_bfd_fix (fix);
9669 /* This fix has not yet been translated. */
9670 add_fix (sec, fix);
9672 /* Add the relocation. If we have already allocated our own
9673 space for the relocations and we have room for more, then use
9674 it. Otherwise, allocate new space and move the literals. */
9675 insert_at = sec->reloc_count;
9676 for (i = 0; i < sec->reloc_count; ++i)
9678 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
9680 insert_at = i;
9681 break;
9685 if (*internal_relocs_p != relax_info->allocated_relocs
9686 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
9688 BFD_ASSERT (relax_info->allocated_relocs == NULL
9689 || sec->reloc_count == relax_info->relocs_count);
9691 if (relax_info->allocated_relocs_count == 0)
9692 new_relocs_count = (sec->reloc_count + 2) * 2;
9693 else
9694 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
9696 new_relocs = (Elf_Internal_Rela *)
9697 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
9698 if (!new_relocs)
9699 return FALSE;
9701 /* We could handle this more quickly by finding the split point. */
9702 if (insert_at != 0)
9703 memcpy (new_relocs, *internal_relocs_p,
9704 insert_at * sizeof (Elf_Internal_Rela));
9706 new_relocs[insert_at] = this_rela;
9708 if (insert_at != sec->reloc_count)
9709 memcpy (new_relocs + insert_at + 1,
9710 (*internal_relocs_p) + insert_at,
9711 (sec->reloc_count - insert_at)
9712 * sizeof (Elf_Internal_Rela));
9714 if (*internal_relocs_p != relax_info->allocated_relocs)
9716 /* The first time we re-allocate, we can only free the
9717 old relocs if they were allocated with bfd_malloc.
9718 This is not true when keep_memory is in effect. */
9719 if (!link_info->keep_memory)
9720 free (*internal_relocs_p);
9722 else
9723 free (*internal_relocs_p);
9724 relax_info->allocated_relocs = new_relocs;
9725 relax_info->allocated_relocs_count = new_relocs_count;
9726 elf_section_data (sec)->relocs = new_relocs;
9727 sec->reloc_count++;
9728 relax_info->relocs_count = sec->reloc_count;
9729 *internal_relocs_p = new_relocs;
9731 else
9733 if (insert_at != sec->reloc_count)
9735 unsigned idx;
9736 for (idx = sec->reloc_count; idx > insert_at; idx--)
9737 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
9739 (*internal_relocs_p)[insert_at] = this_rela;
9740 sec->reloc_count++;
9741 if (relax_info->allocated_relocs)
9742 relax_info->relocs_count = sec->reloc_count;
9745 return TRUE;
9749 /* This is similar to relax_section except that when a target is moved,
9750 we shift addresses up. We also need to modify the size. This
9751 algorithm does NOT allow for relocations into the middle of the
9752 property sections. */
9754 static bfd_boolean
9755 relax_property_section (bfd *abfd,
9756 asection *sec,
9757 struct bfd_link_info *link_info)
9759 Elf_Internal_Rela *internal_relocs;
9760 bfd_byte *contents;
9761 unsigned i;
9762 bfd_boolean ok = TRUE;
9763 bfd_boolean is_full_prop_section;
9764 size_t last_zfill_target_offset = 0;
9765 asection *last_zfill_target_sec = NULL;
9766 bfd_size_type sec_size;
9767 bfd_size_type entry_size;
9769 sec_size = bfd_get_section_limit (abfd, sec);
9770 internal_relocs = retrieve_internal_relocs (abfd, sec,
9771 link_info->keep_memory);
9772 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
9773 if (contents == NULL && sec_size != 0)
9775 ok = FALSE;
9776 goto error_return;
9779 is_full_prop_section = xtensa_is_proptable_section (sec);
9780 if (is_full_prop_section)
9781 entry_size = 12;
9782 else
9783 entry_size = 8;
9785 if (internal_relocs)
9787 for (i = 0; i < sec->reloc_count; i++)
9789 Elf_Internal_Rela *irel;
9790 xtensa_relax_info *target_relax_info;
9791 unsigned r_type;
9792 asection *target_sec;
9793 literal_value val;
9794 bfd_byte *size_p, *flags_p;
9796 /* Locally change the source address.
9797 Translate the target to the new target address.
9798 If it points to this section and has been removed, MOVE IT.
9799 Also, don't forget to modify the associated SIZE at
9800 (offset + 4). */
9802 irel = &internal_relocs[i];
9803 r_type = ELF32_R_TYPE (irel->r_info);
9804 if (r_type == R_XTENSA_NONE)
9805 continue;
9807 /* Find the literal value. */
9808 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
9809 size_p = &contents[irel->r_offset + 4];
9810 flags_p = NULL;
9811 if (is_full_prop_section)
9812 flags_p = &contents[irel->r_offset + 8];
9813 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
9815 target_sec = r_reloc_get_section (&val.r_rel);
9816 target_relax_info = get_xtensa_relax_info (target_sec);
9818 if (target_relax_info
9819 && (target_relax_info->is_relaxable_literal_section
9820 || target_relax_info->is_relaxable_asm_section ))
9822 /* Translate the relocation's destination. */
9823 bfd_vma old_offset = val.r_rel.target_offset;
9824 bfd_vma new_offset;
9825 long old_size, new_size;
9826 text_action *act = target_relax_info->action_list.head;
9827 new_offset = old_offset -
9828 removed_by_actions (&act, old_offset, FALSE);
9830 /* Assert that we are not out of bounds. */
9831 old_size = bfd_get_32 (abfd, size_p);
9832 new_size = old_size;
9834 if (old_size == 0)
9836 /* Only the first zero-sized unreachable entry is
9837 allowed to expand. In this case the new offset
9838 should be the offset before the fill and the new
9839 size is the expansion size. For other zero-sized
9840 entries the resulting size should be zero with an
9841 offset before or after the fill address depending
9842 on whether the expanding unreachable entry
9843 preceeds it. */
9844 if (last_zfill_target_sec == 0
9845 || last_zfill_target_sec != target_sec
9846 || last_zfill_target_offset != old_offset)
9848 bfd_vma new_end_offset = new_offset;
9850 /* Recompute the new_offset, but this time don't
9851 include any fill inserted by relaxation. */
9852 act = target_relax_info->action_list.head;
9853 new_offset = old_offset -
9854 removed_by_actions (&act, old_offset, TRUE);
9856 /* If it is not unreachable and we have not yet
9857 seen an unreachable at this address, place it
9858 before the fill address. */
9859 if (flags_p && (bfd_get_32 (abfd, flags_p)
9860 & XTENSA_PROP_UNREACHABLE) != 0)
9862 new_size = new_end_offset - new_offset;
9864 last_zfill_target_sec = target_sec;
9865 last_zfill_target_offset = old_offset;
9869 else
9870 new_size -=
9871 removed_by_actions (&act, old_offset + old_size, TRUE);
9873 if (new_size != old_size)
9875 bfd_put_32 (abfd, new_size, size_p);
9876 pin_contents (sec, contents);
9879 if (new_offset != old_offset)
9881 bfd_vma diff = new_offset - old_offset;
9882 irel->r_addend += diff;
9883 pin_internal_relocs (sec, internal_relocs);
9889 /* Combine adjacent property table entries. This is also done in
9890 finish_dynamic_sections() but at that point it's too late to
9891 reclaim the space in the output section, so we do this twice. */
9893 if (internal_relocs && (!link_info->relocatable
9894 || xtensa_is_littable_section (sec)))
9896 Elf_Internal_Rela *last_irel = NULL;
9897 Elf_Internal_Rela *irel, *next_rel, *rel_end;
9898 int removed_bytes = 0;
9899 bfd_vma offset;
9900 flagword predef_flags;
9902 predef_flags = xtensa_get_property_predef_flags (sec);
9904 /* Walk over memory and relocations at the same time.
9905 This REQUIRES that the internal_relocs be sorted by offset. */
9906 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
9907 internal_reloc_compare);
9909 pin_internal_relocs (sec, internal_relocs);
9910 pin_contents (sec, contents);
9912 next_rel = internal_relocs;
9913 rel_end = internal_relocs + sec->reloc_count;
9915 BFD_ASSERT (sec->size % entry_size == 0);
9917 for (offset = 0; offset < sec->size; offset += entry_size)
9919 Elf_Internal_Rela *offset_rel, *extra_rel;
9920 bfd_vma bytes_to_remove, size, actual_offset;
9921 bfd_boolean remove_this_rel;
9922 flagword flags;
9924 /* Find the first relocation for the entry at the current offset.
9925 Adjust the offsets of any extra relocations for the previous
9926 entry. */
9927 offset_rel = NULL;
9928 if (next_rel)
9930 for (irel = next_rel; irel < rel_end; irel++)
9932 if ((irel->r_offset == offset
9933 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9934 || irel->r_offset > offset)
9936 offset_rel = irel;
9937 break;
9939 irel->r_offset -= removed_bytes;
9943 /* Find the next relocation (if there are any left). */
9944 extra_rel = NULL;
9945 if (offset_rel)
9947 for (irel = offset_rel + 1; irel < rel_end; irel++)
9949 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9951 extra_rel = irel;
9952 break;
9957 /* Check if there are relocations on the current entry. There
9958 should usually be a relocation on the offset field. If there
9959 are relocations on the size or flags, then we can't optimize
9960 this entry. Also, find the next relocation to examine on the
9961 next iteration. */
9962 if (offset_rel)
9964 if (offset_rel->r_offset >= offset + entry_size)
9966 next_rel = offset_rel;
9967 /* There are no relocations on the current entry, but we
9968 might still be able to remove it if the size is zero. */
9969 offset_rel = NULL;
9971 else if (offset_rel->r_offset > offset
9972 || (extra_rel
9973 && extra_rel->r_offset < offset + entry_size))
9975 /* There is a relocation on the size or flags, so we can't
9976 do anything with this entry. Continue with the next. */
9977 next_rel = offset_rel;
9978 continue;
9980 else
9982 BFD_ASSERT (offset_rel->r_offset == offset);
9983 offset_rel->r_offset -= removed_bytes;
9984 next_rel = offset_rel + 1;
9987 else
9988 next_rel = NULL;
9990 remove_this_rel = FALSE;
9991 bytes_to_remove = 0;
9992 actual_offset = offset - removed_bytes;
9993 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
9995 if (is_full_prop_section)
9996 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
9997 else
9998 flags = predef_flags;
10000 if (size == 0
10001 && (flags & XTENSA_PROP_ALIGN) == 0
10002 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
10004 /* Always remove entries with zero size and no alignment. */
10005 bytes_to_remove = entry_size;
10006 if (offset_rel)
10007 remove_this_rel = TRUE;
10009 else if (offset_rel
10010 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
10012 if (last_irel)
10014 flagword old_flags;
10015 bfd_vma old_size =
10016 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
10017 bfd_vma old_address =
10018 (last_irel->r_addend
10019 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
10020 bfd_vma new_address =
10021 (offset_rel->r_addend
10022 + bfd_get_32 (abfd, &contents[actual_offset]));
10023 if (is_full_prop_section)
10024 old_flags = bfd_get_32
10025 (abfd, &contents[last_irel->r_offset + 8]);
10026 else
10027 old_flags = predef_flags;
10029 if ((ELF32_R_SYM (offset_rel->r_info)
10030 == ELF32_R_SYM (last_irel->r_info))
10031 && old_address + old_size == new_address
10032 && old_flags == flags
10033 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
10034 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
10036 /* Fix the old size. */
10037 bfd_put_32 (abfd, old_size + size,
10038 &contents[last_irel->r_offset + 4]);
10039 bytes_to_remove = entry_size;
10040 remove_this_rel = TRUE;
10042 else
10043 last_irel = offset_rel;
10045 else
10046 last_irel = offset_rel;
10049 if (remove_this_rel)
10051 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
10052 offset_rel->r_offset = 0;
10055 if (bytes_to_remove != 0)
10057 removed_bytes += bytes_to_remove;
10058 if (offset + bytes_to_remove < sec->size)
10059 memmove (&contents[actual_offset],
10060 &contents[actual_offset + bytes_to_remove],
10061 sec->size - offset - bytes_to_remove);
10065 if (removed_bytes)
10067 /* Fix up any extra relocations on the last entry. */
10068 for (irel = next_rel; irel < rel_end; irel++)
10069 irel->r_offset -= removed_bytes;
10071 /* Clear the removed bytes. */
10072 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
10074 if (sec->rawsize == 0)
10075 sec->rawsize = sec->size;
10076 sec->size -= removed_bytes;
10078 if (xtensa_is_littable_section (sec))
10080 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
10081 if (sgotloc)
10082 sgotloc->size -= removed_bytes;
10087 error_return:
10088 release_internal_relocs (sec, internal_relocs);
10089 release_contents (sec, contents);
10090 return ok;
10094 /* Third relaxation pass. */
10096 /* Change symbol values to account for removed literals. */
10098 bfd_boolean
10099 relax_section_symbols (bfd *abfd, asection *sec)
10101 xtensa_relax_info *relax_info;
10102 unsigned int sec_shndx;
10103 Elf_Internal_Shdr *symtab_hdr;
10104 Elf_Internal_Sym *isymbuf;
10105 unsigned i, num_syms, num_locals;
10107 relax_info = get_xtensa_relax_info (sec);
10108 BFD_ASSERT (relax_info);
10110 if (!relax_info->is_relaxable_literal_section
10111 && !relax_info->is_relaxable_asm_section)
10112 return TRUE;
10114 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
10116 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10117 isymbuf = retrieve_local_syms (abfd);
10119 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
10120 num_locals = symtab_hdr->sh_info;
10122 /* Adjust the local symbols defined in this section. */
10123 for (i = 0; i < num_locals; i++)
10125 Elf_Internal_Sym *isym = &isymbuf[i];
10127 if (isym->st_shndx == sec_shndx)
10129 text_action *act = relax_info->action_list.head;
10130 bfd_vma orig_addr = isym->st_value;
10132 isym->st_value -= removed_by_actions (&act, orig_addr, FALSE);
10134 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
10135 isym->st_size -=
10136 removed_by_actions (&act, orig_addr + isym->st_size, FALSE);
10140 /* Now adjust the global symbols defined in this section. */
10141 for (i = 0; i < (num_syms - num_locals); i++)
10143 struct elf_link_hash_entry *sym_hash;
10145 sym_hash = elf_sym_hashes (abfd)[i];
10147 if (sym_hash->root.type == bfd_link_hash_warning)
10148 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
10150 if ((sym_hash->root.type == bfd_link_hash_defined
10151 || sym_hash->root.type == bfd_link_hash_defweak)
10152 && sym_hash->root.u.def.section == sec)
10154 text_action *act = relax_info->action_list.head;
10155 bfd_vma orig_addr = sym_hash->root.u.def.value;
10157 sym_hash->root.u.def.value -=
10158 removed_by_actions (&act, orig_addr, FALSE);
10160 if (sym_hash->type == STT_FUNC)
10161 sym_hash->size -=
10162 removed_by_actions (&act, orig_addr + sym_hash->size, FALSE);
10166 return TRUE;
10170 /* "Fix" handling functions, called while performing relocations. */
10172 static bfd_boolean
10173 do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
10174 bfd *input_bfd,
10175 asection *input_section,
10176 bfd_byte *contents)
10178 r_reloc r_rel;
10179 asection *sec, *old_sec;
10180 bfd_vma old_offset;
10181 int r_type = ELF32_R_TYPE (rel->r_info);
10182 reloc_bfd_fix *fix;
10184 if (r_type == R_XTENSA_NONE)
10185 return TRUE;
10187 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10188 if (!fix)
10189 return TRUE;
10191 r_reloc_init (&r_rel, input_bfd, rel, contents,
10192 bfd_get_section_limit (input_bfd, input_section));
10193 old_sec = r_reloc_get_section (&r_rel);
10194 old_offset = r_rel.target_offset;
10196 if (!old_sec || !r_reloc_is_defined (&r_rel))
10198 if (r_type != R_XTENSA_ASM_EXPAND)
10200 (*_bfd_error_handler)
10201 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
10202 input_bfd, input_section, rel->r_offset,
10203 elf_howto_table[r_type].name);
10204 return FALSE;
10206 /* Leave it be. Resolution will happen in a later stage. */
10208 else
10210 sec = fix->target_sec;
10211 rel->r_addend += ((sec->output_offset + fix->target_offset)
10212 - (old_sec->output_offset + old_offset));
10214 return TRUE;
10218 static void
10219 do_fix_for_final_link (Elf_Internal_Rela *rel,
10220 bfd *input_bfd,
10221 asection *input_section,
10222 bfd_byte *contents,
10223 bfd_vma *relocationp)
10225 asection *sec;
10226 int r_type = ELF32_R_TYPE (rel->r_info);
10227 reloc_bfd_fix *fix;
10228 bfd_vma fixup_diff;
10230 if (r_type == R_XTENSA_NONE)
10231 return;
10233 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10234 if (!fix)
10235 return;
10237 sec = fix->target_sec;
10239 fixup_diff = rel->r_addend;
10240 if (elf_howto_table[fix->src_type].partial_inplace)
10242 bfd_vma inplace_val;
10243 BFD_ASSERT (fix->src_offset
10244 < bfd_get_section_limit (input_bfd, input_section));
10245 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
10246 fixup_diff += inplace_val;
10249 *relocationp = (sec->output_section->vma
10250 + sec->output_offset
10251 + fix->target_offset - fixup_diff);
10255 /* Miscellaneous utility functions.... */
10257 static asection *
10258 elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
10260 struct elf_xtensa_link_hash_table *htab;
10261 bfd *dynobj;
10262 char plt_name[10];
10264 if (chunk == 0)
10266 htab = elf_xtensa_hash_table (info);
10267 if (htab == NULL)
10268 return NULL;
10270 return htab->splt;
10273 dynobj = elf_hash_table (info)->dynobj;
10274 sprintf (plt_name, ".plt.%u", chunk);
10275 return bfd_get_linker_section (dynobj, plt_name);
10279 static asection *
10280 elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
10282 struct elf_xtensa_link_hash_table *htab;
10283 bfd *dynobj;
10284 char got_name[14];
10286 if (chunk == 0)
10288 htab = elf_xtensa_hash_table (info);
10289 if (htab == NULL)
10290 return NULL;
10291 return htab->sgotplt;
10294 dynobj = elf_hash_table (info)->dynobj;
10295 sprintf (got_name, ".got.plt.%u", chunk);
10296 return bfd_get_linker_section (dynobj, got_name);
10300 /* Get the input section for a given symbol index.
10301 If the symbol is:
10302 . a section symbol, return the section;
10303 . a common symbol, return the common section;
10304 . an undefined symbol, return the undefined section;
10305 . an indirect symbol, follow the links;
10306 . an absolute value, return the absolute section. */
10308 static asection *
10309 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
10311 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10312 asection *target_sec = NULL;
10313 if (r_symndx < symtab_hdr->sh_info)
10315 Elf_Internal_Sym *isymbuf;
10316 unsigned int section_index;
10318 isymbuf = retrieve_local_syms (abfd);
10319 section_index = isymbuf[r_symndx].st_shndx;
10321 if (section_index == SHN_UNDEF)
10322 target_sec = bfd_und_section_ptr;
10323 else if (section_index == SHN_ABS)
10324 target_sec = bfd_abs_section_ptr;
10325 else if (section_index == SHN_COMMON)
10326 target_sec = bfd_com_section_ptr;
10327 else
10328 target_sec = bfd_section_from_elf_index (abfd, section_index);
10330 else
10332 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10333 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
10335 while (h->root.type == bfd_link_hash_indirect
10336 || h->root.type == bfd_link_hash_warning)
10337 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10339 switch (h->root.type)
10341 case bfd_link_hash_defined:
10342 case bfd_link_hash_defweak:
10343 target_sec = h->root.u.def.section;
10344 break;
10345 case bfd_link_hash_common:
10346 target_sec = bfd_com_section_ptr;
10347 break;
10348 case bfd_link_hash_undefined:
10349 case bfd_link_hash_undefweak:
10350 target_sec = bfd_und_section_ptr;
10351 break;
10352 default: /* New indirect warning. */
10353 target_sec = bfd_und_section_ptr;
10354 break;
10357 return target_sec;
10361 static struct elf_link_hash_entry *
10362 get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
10364 unsigned long indx;
10365 struct elf_link_hash_entry *h;
10366 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10368 if (r_symndx < symtab_hdr->sh_info)
10369 return NULL;
10371 indx = r_symndx - symtab_hdr->sh_info;
10372 h = elf_sym_hashes (abfd)[indx];
10373 while (h->root.type == bfd_link_hash_indirect
10374 || h->root.type == bfd_link_hash_warning)
10375 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10376 return h;
10380 /* Get the section-relative offset for a symbol number. */
10382 static bfd_vma
10383 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
10385 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10386 bfd_vma offset = 0;
10388 if (r_symndx < symtab_hdr->sh_info)
10390 Elf_Internal_Sym *isymbuf;
10391 isymbuf = retrieve_local_syms (abfd);
10392 offset = isymbuf[r_symndx].st_value;
10394 else
10396 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10397 struct elf_link_hash_entry *h =
10398 elf_sym_hashes (abfd)[indx];
10400 while (h->root.type == bfd_link_hash_indirect
10401 || h->root.type == bfd_link_hash_warning)
10402 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10403 if (h->root.type == bfd_link_hash_defined
10404 || h->root.type == bfd_link_hash_defweak)
10405 offset = h->root.u.def.value;
10407 return offset;
10411 static bfd_boolean
10412 is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
10414 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
10415 struct elf_link_hash_entry *h;
10417 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
10418 if (h && h->root.type == bfd_link_hash_defweak)
10419 return TRUE;
10420 return FALSE;
10424 static bfd_boolean
10425 pcrel_reloc_fits (xtensa_opcode opc,
10426 int opnd,
10427 bfd_vma self_address,
10428 bfd_vma dest_address)
10430 xtensa_isa isa = xtensa_default_isa;
10431 uint32 valp = dest_address;
10432 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
10433 || xtensa_operand_encode (isa, opc, opnd, &valp))
10434 return FALSE;
10435 return TRUE;
10439 static bfd_boolean
10440 xtensa_is_property_section (asection *sec)
10442 if (xtensa_is_insntable_section (sec)
10443 || xtensa_is_littable_section (sec)
10444 || xtensa_is_proptable_section (sec))
10445 return TRUE;
10447 return FALSE;
10451 static bfd_boolean
10452 xtensa_is_insntable_section (asection *sec)
10454 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
10455 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
10456 return TRUE;
10458 return FALSE;
10462 static bfd_boolean
10463 xtensa_is_littable_section (asection *sec)
10465 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
10466 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
10467 return TRUE;
10469 return FALSE;
10473 static bfd_boolean
10474 xtensa_is_proptable_section (asection *sec)
10476 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
10477 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
10478 return TRUE;
10480 return FALSE;
10484 static int
10485 internal_reloc_compare (const void *ap, const void *bp)
10487 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
10488 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
10490 if (a->r_offset != b->r_offset)
10491 return (a->r_offset - b->r_offset);
10493 /* We don't need to sort on these criteria for correctness,
10494 but enforcing a more strict ordering prevents unstable qsort
10495 from behaving differently with different implementations.
10496 Without the code below we get correct but different results
10497 on Solaris 2.7 and 2.8. We would like to always produce the
10498 same results no matter the host. */
10500 if (a->r_info != b->r_info)
10501 return (a->r_info - b->r_info);
10503 return (a->r_addend - b->r_addend);
10507 static int
10508 internal_reloc_matches (const void *ap, const void *bp)
10510 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
10511 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
10513 /* Check if one entry overlaps with the other; this shouldn't happen
10514 except when searching for a match. */
10515 return (a->r_offset - b->r_offset);
10519 /* Predicate function used to look up a section in a particular group. */
10521 static bfd_boolean
10522 match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
10524 const char *gname = inf;
10525 const char *group_name = elf_group_name (sec);
10527 return (group_name == gname
10528 || (group_name != NULL
10529 && gname != NULL
10530 && strcmp (group_name, gname) == 0));
10534 static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
10536 static char *
10537 xtensa_property_section_name (asection *sec, const char *base_name)
10539 const char *suffix, *group_name;
10540 char *prop_sec_name;
10542 group_name = elf_group_name (sec);
10543 if (group_name)
10545 suffix = strrchr (sec->name, '.');
10546 if (suffix == sec->name)
10547 suffix = 0;
10548 prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
10549 + (suffix ? strlen (suffix) : 0));
10550 strcpy (prop_sec_name, base_name);
10551 if (suffix)
10552 strcat (prop_sec_name, suffix);
10554 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
10556 char *linkonce_kind = 0;
10558 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
10559 linkonce_kind = "x.";
10560 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
10561 linkonce_kind = "p.";
10562 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
10563 linkonce_kind = "prop.";
10564 else
10565 abort ();
10567 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
10568 + strlen (linkonce_kind) + 1);
10569 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
10570 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
10572 suffix = sec->name + linkonce_len;
10573 /* For backward compatibility, replace "t." instead of inserting
10574 the new linkonce_kind (but not for "prop" sections). */
10575 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
10576 suffix += 2;
10577 strcat (prop_sec_name + linkonce_len, suffix);
10579 else
10580 prop_sec_name = strdup (base_name);
10582 return prop_sec_name;
10586 static asection *
10587 xtensa_get_property_section (asection *sec, const char *base_name)
10589 char *prop_sec_name;
10590 asection *prop_sec;
10592 prop_sec_name = xtensa_property_section_name (sec, base_name);
10593 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
10594 match_section_group,
10595 (void *) elf_group_name (sec));
10596 free (prop_sec_name);
10597 return prop_sec;
10601 asection *
10602 xtensa_make_property_section (asection *sec, const char *base_name)
10604 char *prop_sec_name;
10605 asection *prop_sec;
10607 /* Check if the section already exists. */
10608 prop_sec_name = xtensa_property_section_name (sec, base_name);
10609 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
10610 match_section_group,
10611 (void *) elf_group_name (sec));
10612 /* If not, create it. */
10613 if (! prop_sec)
10615 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
10616 flags |= (bfd_get_section_flags (sec->owner, sec)
10617 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
10619 prop_sec = bfd_make_section_anyway_with_flags
10620 (sec->owner, strdup (prop_sec_name), flags);
10621 if (! prop_sec)
10622 return 0;
10624 elf_group_name (prop_sec) = elf_group_name (sec);
10627 free (prop_sec_name);
10628 return prop_sec;
10632 flagword
10633 xtensa_get_property_predef_flags (asection *sec)
10635 if (xtensa_is_insntable_section (sec))
10636 return (XTENSA_PROP_INSN
10637 | XTENSA_PROP_NO_TRANSFORM
10638 | XTENSA_PROP_INSN_NO_REORDER);
10640 if (xtensa_is_littable_section (sec))
10641 return (XTENSA_PROP_LITERAL
10642 | XTENSA_PROP_NO_TRANSFORM
10643 | XTENSA_PROP_INSN_NO_REORDER);
10645 return 0;
10649 /* Other functions called directly by the linker. */
10651 bfd_boolean
10652 xtensa_callback_required_dependence (bfd *abfd,
10653 asection *sec,
10654 struct bfd_link_info *link_info,
10655 deps_callback_t callback,
10656 void *closure)
10658 Elf_Internal_Rela *internal_relocs;
10659 bfd_byte *contents;
10660 unsigned i;
10661 bfd_boolean ok = TRUE;
10662 bfd_size_type sec_size;
10664 sec_size = bfd_get_section_limit (abfd, sec);
10666 /* ".plt*" sections have no explicit relocations but they contain L32R
10667 instructions that reference the corresponding ".got.plt*" sections. */
10668 if ((sec->flags & SEC_LINKER_CREATED) != 0
10669 && CONST_STRNEQ (sec->name, ".plt"))
10671 asection *sgotplt;
10673 /* Find the corresponding ".got.plt*" section. */
10674 if (sec->name[4] == '\0')
10675 sgotplt = bfd_get_linker_section (sec->owner, ".got.plt");
10676 else
10678 char got_name[14];
10679 int chunk = 0;
10681 BFD_ASSERT (sec->name[4] == '.');
10682 chunk = strtol (&sec->name[5], NULL, 10);
10684 sprintf (got_name, ".got.plt.%u", chunk);
10685 sgotplt = bfd_get_linker_section (sec->owner, got_name);
10687 BFD_ASSERT (sgotplt);
10689 /* Assume worst-case offsets: L32R at the very end of the ".plt"
10690 section referencing a literal at the very beginning of
10691 ".got.plt". This is very close to the real dependence, anyway. */
10692 (*callback) (sec, sec_size, sgotplt, 0, closure);
10695 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
10696 when building uclibc, which runs "ld -b binary /dev/null". */
10697 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
10698 return ok;
10700 internal_relocs = retrieve_internal_relocs (abfd, sec,
10701 link_info->keep_memory);
10702 if (internal_relocs == NULL
10703 || sec->reloc_count == 0)
10704 return ok;
10706 /* Cache the contents for the duration of this scan. */
10707 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
10708 if (contents == NULL && sec_size != 0)
10710 ok = FALSE;
10711 goto error_return;
10714 if (!xtensa_default_isa)
10715 xtensa_default_isa = xtensa_isa_init (0, 0);
10717 for (i = 0; i < sec->reloc_count; i++)
10719 Elf_Internal_Rela *irel = &internal_relocs[i];
10720 if (is_l32r_relocation (abfd, sec, contents, irel))
10722 r_reloc l32r_rel;
10723 asection *target_sec;
10724 bfd_vma target_offset;
10726 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
10727 target_sec = NULL;
10728 target_offset = 0;
10729 /* L32Rs must be local to the input file. */
10730 if (r_reloc_is_defined (&l32r_rel))
10732 target_sec = r_reloc_get_section (&l32r_rel);
10733 target_offset = l32r_rel.target_offset;
10735 (*callback) (sec, irel->r_offset, target_sec, target_offset,
10736 closure);
10740 error_return:
10741 release_internal_relocs (sec, internal_relocs);
10742 release_contents (sec, contents);
10743 return ok;
10746 /* The default literal sections should always be marked as "code" (i.e.,
10747 SHF_EXECINSTR). This is particularly important for the Linux kernel
10748 module loader so that the literals are not placed after the text. */
10749 static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
10751 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
10752 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
10753 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
10754 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
10755 { NULL, 0, 0, 0, 0 }
10758 #define ELF_TARGET_ID XTENSA_ELF_DATA
10759 #ifndef ELF_ARCH
10760 #define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
10761 #define TARGET_LITTLE_NAME "elf32-xtensa-le"
10762 #define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
10763 #define TARGET_BIG_NAME "elf32-xtensa-be"
10764 #define ELF_ARCH bfd_arch_xtensa
10766 #define ELF_MACHINE_CODE EM_XTENSA
10767 #define ELF_MACHINE_ALT1 EM_XTENSA_OLD
10769 #if XCHAL_HAVE_MMU
10770 #define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
10771 #else /* !XCHAL_HAVE_MMU */
10772 #define ELF_MAXPAGESIZE 1
10773 #endif /* !XCHAL_HAVE_MMU */
10774 #endif /* ELF_ARCH */
10776 #define elf_backend_can_gc_sections 1
10777 #define elf_backend_can_refcount 1
10778 #define elf_backend_plt_readonly 1
10779 #define elf_backend_got_header_size 4
10780 #define elf_backend_want_dynbss 0
10781 #define elf_backend_want_got_plt 1
10783 #define elf_info_to_howto elf_xtensa_info_to_howto_rela
10785 #define bfd_elf32_mkobject elf_xtensa_mkobject
10787 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
10788 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
10789 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
10790 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
10791 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
10792 #define bfd_elf32_bfd_reloc_name_lookup \
10793 elf_xtensa_reloc_name_lookup
10794 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
10795 #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
10797 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
10798 #define elf_backend_check_relocs elf_xtensa_check_relocs
10799 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
10800 #define elf_backend_discard_info elf_xtensa_discard_info
10801 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
10802 #define elf_backend_final_write_processing elf_xtensa_final_write_processing
10803 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
10804 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
10805 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
10806 #define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
10807 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
10808 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
10809 #define elf_backend_hide_symbol elf_xtensa_hide_symbol
10810 #define elf_backend_object_p elf_xtensa_object_p
10811 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
10812 #define elf_backend_relocate_section elf_xtensa_relocate_section
10813 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
10814 #define elf_backend_always_size_sections elf_xtensa_always_size_sections
10815 #define elf_backend_omit_section_dynsym \
10816 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
10817 #define elf_backend_special_sections elf_xtensa_special_sections
10818 #define elf_backend_action_discarded elf_xtensa_action_discarded
10819 #define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol
10821 #include "elf32-target.h"