merge from gcc
[gdb/gnu.git] / bfd / elf32-arm.c
blob5af1643bf506870e741ee4da7bd645083619e16d
1 /* 32-bit ELF support for ARM
2 Copyright 1998-2013 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
21 #include "sysdep.h"
22 #include <limits.h>
24 #include "bfd.h"
25 #include "bfd_stdint.h"
26 #include "libiberty.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "elf-nacl.h"
30 #include "elf-vxworks.h"
31 #include "elf/arm.h"
33 /* Return the relocation section associated with NAME. HTAB is the
34 bfd's elf32_arm_link_hash_entry. */
35 #define RELOC_SECTION(HTAB, NAME) \
36 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
38 /* Return size of a relocation entry. HTAB is the bfd's
39 elf32_arm_link_hash_entry. */
40 #define RELOC_SIZE(HTAB) \
41 ((HTAB)->use_rel \
42 ? sizeof (Elf32_External_Rel) \
43 : sizeof (Elf32_External_Rela))
45 /* Return function to swap relocations in. HTAB is the bfd's
46 elf32_arm_link_hash_entry. */
47 #define SWAP_RELOC_IN(HTAB) \
48 ((HTAB)->use_rel \
49 ? bfd_elf32_swap_reloc_in \
50 : bfd_elf32_swap_reloca_in)
52 /* Return function to swap relocations out. HTAB is the bfd's
53 elf32_arm_link_hash_entry. */
54 #define SWAP_RELOC_OUT(HTAB) \
55 ((HTAB)->use_rel \
56 ? bfd_elf32_swap_reloc_out \
57 : bfd_elf32_swap_reloca_out)
59 #define elf_info_to_howto 0
60 #define elf_info_to_howto_rel elf32_arm_info_to_howto
62 #define ARM_ELF_ABI_VERSION 0
63 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
65 /* The Adjusted Place, as defined by AAELF. */
66 #define Pa(X) ((X) & 0xfffffffc)
68 static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
69 struct bfd_link_info *link_info,
70 asection *sec,
71 bfd_byte *contents);
73 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
74 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
75 in that slot. */
77 static reloc_howto_type elf32_arm_howto_table_1[] =
79 /* No relocation. */
80 HOWTO (R_ARM_NONE, /* type */
81 0, /* rightshift */
82 0, /* size (0 = byte, 1 = short, 2 = long) */
83 0, /* bitsize */
84 FALSE, /* pc_relative */
85 0, /* bitpos */
86 complain_overflow_dont,/* complain_on_overflow */
87 bfd_elf_generic_reloc, /* special_function */
88 "R_ARM_NONE", /* name */
89 FALSE, /* partial_inplace */
90 0, /* src_mask */
91 0, /* dst_mask */
92 FALSE), /* pcrel_offset */
94 HOWTO (R_ARM_PC24, /* type */
95 2, /* rightshift */
96 2, /* size (0 = byte, 1 = short, 2 = long) */
97 24, /* bitsize */
98 TRUE, /* pc_relative */
99 0, /* bitpos */
100 complain_overflow_signed,/* complain_on_overflow */
101 bfd_elf_generic_reloc, /* special_function */
102 "R_ARM_PC24", /* name */
103 FALSE, /* partial_inplace */
104 0x00ffffff, /* src_mask */
105 0x00ffffff, /* dst_mask */
106 TRUE), /* pcrel_offset */
108 /* 32 bit absolute */
109 HOWTO (R_ARM_ABS32, /* type */
110 0, /* rightshift */
111 2, /* size (0 = byte, 1 = short, 2 = long) */
112 32, /* bitsize */
113 FALSE, /* pc_relative */
114 0, /* bitpos */
115 complain_overflow_bitfield,/* complain_on_overflow */
116 bfd_elf_generic_reloc, /* special_function */
117 "R_ARM_ABS32", /* name */
118 FALSE, /* partial_inplace */
119 0xffffffff, /* src_mask */
120 0xffffffff, /* dst_mask */
121 FALSE), /* pcrel_offset */
123 /* standard 32bit pc-relative reloc */
124 HOWTO (R_ARM_REL32, /* type */
125 0, /* rightshift */
126 2, /* size (0 = byte, 1 = short, 2 = long) */
127 32, /* bitsize */
128 TRUE, /* pc_relative */
129 0, /* bitpos */
130 complain_overflow_bitfield,/* complain_on_overflow */
131 bfd_elf_generic_reloc, /* special_function */
132 "R_ARM_REL32", /* name */
133 FALSE, /* partial_inplace */
134 0xffffffff, /* src_mask */
135 0xffffffff, /* dst_mask */
136 TRUE), /* pcrel_offset */
138 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
139 HOWTO (R_ARM_LDR_PC_G0, /* type */
140 0, /* rightshift */
141 0, /* size (0 = byte, 1 = short, 2 = long) */
142 32, /* bitsize */
143 TRUE, /* pc_relative */
144 0, /* bitpos */
145 complain_overflow_dont,/* complain_on_overflow */
146 bfd_elf_generic_reloc, /* special_function */
147 "R_ARM_LDR_PC_G0", /* name */
148 FALSE, /* partial_inplace */
149 0xffffffff, /* src_mask */
150 0xffffffff, /* dst_mask */
151 TRUE), /* pcrel_offset */
153 /* 16 bit absolute */
154 HOWTO (R_ARM_ABS16, /* type */
155 0, /* rightshift */
156 1, /* size (0 = byte, 1 = short, 2 = long) */
157 16, /* bitsize */
158 FALSE, /* pc_relative */
159 0, /* bitpos */
160 complain_overflow_bitfield,/* complain_on_overflow */
161 bfd_elf_generic_reloc, /* special_function */
162 "R_ARM_ABS16", /* name */
163 FALSE, /* partial_inplace */
164 0x0000ffff, /* src_mask */
165 0x0000ffff, /* dst_mask */
166 FALSE), /* pcrel_offset */
168 /* 12 bit absolute */
169 HOWTO (R_ARM_ABS12, /* type */
170 0, /* rightshift */
171 2, /* size (0 = byte, 1 = short, 2 = long) */
172 12, /* bitsize */
173 FALSE, /* pc_relative */
174 0, /* bitpos */
175 complain_overflow_bitfield,/* complain_on_overflow */
176 bfd_elf_generic_reloc, /* special_function */
177 "R_ARM_ABS12", /* name */
178 FALSE, /* partial_inplace */
179 0x00000fff, /* src_mask */
180 0x00000fff, /* dst_mask */
181 FALSE), /* pcrel_offset */
183 HOWTO (R_ARM_THM_ABS5, /* type */
184 6, /* rightshift */
185 1, /* size (0 = byte, 1 = short, 2 = long) */
186 5, /* bitsize */
187 FALSE, /* pc_relative */
188 0, /* bitpos */
189 complain_overflow_bitfield,/* complain_on_overflow */
190 bfd_elf_generic_reloc, /* special_function */
191 "R_ARM_THM_ABS5", /* name */
192 FALSE, /* partial_inplace */
193 0x000007e0, /* src_mask */
194 0x000007e0, /* dst_mask */
195 FALSE), /* pcrel_offset */
197 /* 8 bit absolute */
198 HOWTO (R_ARM_ABS8, /* type */
199 0, /* rightshift */
200 0, /* size (0 = byte, 1 = short, 2 = long) */
201 8, /* bitsize */
202 FALSE, /* pc_relative */
203 0, /* bitpos */
204 complain_overflow_bitfield,/* complain_on_overflow */
205 bfd_elf_generic_reloc, /* special_function */
206 "R_ARM_ABS8", /* name */
207 FALSE, /* partial_inplace */
208 0x000000ff, /* src_mask */
209 0x000000ff, /* dst_mask */
210 FALSE), /* pcrel_offset */
212 HOWTO (R_ARM_SBREL32, /* type */
213 0, /* rightshift */
214 2, /* size (0 = byte, 1 = short, 2 = long) */
215 32, /* bitsize */
216 FALSE, /* pc_relative */
217 0, /* bitpos */
218 complain_overflow_dont,/* complain_on_overflow */
219 bfd_elf_generic_reloc, /* special_function */
220 "R_ARM_SBREL32", /* name */
221 FALSE, /* partial_inplace */
222 0xffffffff, /* src_mask */
223 0xffffffff, /* dst_mask */
224 FALSE), /* pcrel_offset */
226 HOWTO (R_ARM_THM_CALL, /* type */
227 1, /* rightshift */
228 2, /* size (0 = byte, 1 = short, 2 = long) */
229 24, /* bitsize */
230 TRUE, /* pc_relative */
231 0, /* bitpos */
232 complain_overflow_signed,/* complain_on_overflow */
233 bfd_elf_generic_reloc, /* special_function */
234 "R_ARM_THM_CALL", /* name */
235 FALSE, /* partial_inplace */
236 0x07ff2fff, /* src_mask */
237 0x07ff2fff, /* dst_mask */
238 TRUE), /* pcrel_offset */
240 HOWTO (R_ARM_THM_PC8, /* type */
241 1, /* rightshift */
242 1, /* size (0 = byte, 1 = short, 2 = long) */
243 8, /* bitsize */
244 TRUE, /* pc_relative */
245 0, /* bitpos */
246 complain_overflow_signed,/* complain_on_overflow */
247 bfd_elf_generic_reloc, /* special_function */
248 "R_ARM_THM_PC8", /* name */
249 FALSE, /* partial_inplace */
250 0x000000ff, /* src_mask */
251 0x000000ff, /* dst_mask */
252 TRUE), /* pcrel_offset */
254 HOWTO (R_ARM_BREL_ADJ, /* type */
255 1, /* rightshift */
256 1, /* size (0 = byte, 1 = short, 2 = long) */
257 32, /* bitsize */
258 FALSE, /* pc_relative */
259 0, /* bitpos */
260 complain_overflow_signed,/* complain_on_overflow */
261 bfd_elf_generic_reloc, /* special_function */
262 "R_ARM_BREL_ADJ", /* name */
263 FALSE, /* partial_inplace */
264 0xffffffff, /* src_mask */
265 0xffffffff, /* dst_mask */
266 FALSE), /* pcrel_offset */
268 HOWTO (R_ARM_TLS_DESC, /* type */
269 0, /* rightshift */
270 2, /* size (0 = byte, 1 = short, 2 = long) */
271 32, /* bitsize */
272 FALSE, /* pc_relative */
273 0, /* bitpos */
274 complain_overflow_bitfield,/* complain_on_overflow */
275 bfd_elf_generic_reloc, /* special_function */
276 "R_ARM_TLS_DESC", /* name */
277 FALSE, /* partial_inplace */
278 0xffffffff, /* src_mask */
279 0xffffffff, /* dst_mask */
280 FALSE), /* pcrel_offset */
282 HOWTO (R_ARM_THM_SWI8, /* type */
283 0, /* rightshift */
284 0, /* size (0 = byte, 1 = short, 2 = long) */
285 0, /* bitsize */
286 FALSE, /* pc_relative */
287 0, /* bitpos */
288 complain_overflow_signed,/* complain_on_overflow */
289 bfd_elf_generic_reloc, /* special_function */
290 "R_ARM_SWI8", /* name */
291 FALSE, /* partial_inplace */
292 0x00000000, /* src_mask */
293 0x00000000, /* dst_mask */
294 FALSE), /* pcrel_offset */
296 /* BLX instruction for the ARM. */
297 HOWTO (R_ARM_XPC25, /* type */
298 2, /* rightshift */
299 2, /* size (0 = byte, 1 = short, 2 = long) */
300 24, /* bitsize */
301 TRUE, /* pc_relative */
302 0, /* bitpos */
303 complain_overflow_signed,/* complain_on_overflow */
304 bfd_elf_generic_reloc, /* special_function */
305 "R_ARM_XPC25", /* name */
306 FALSE, /* partial_inplace */
307 0x00ffffff, /* src_mask */
308 0x00ffffff, /* dst_mask */
309 TRUE), /* pcrel_offset */
311 /* BLX instruction for the Thumb. */
312 HOWTO (R_ARM_THM_XPC22, /* type */
313 2, /* rightshift */
314 2, /* size (0 = byte, 1 = short, 2 = long) */
315 24, /* bitsize */
316 TRUE, /* pc_relative */
317 0, /* bitpos */
318 complain_overflow_signed,/* complain_on_overflow */
319 bfd_elf_generic_reloc, /* special_function */
320 "R_ARM_THM_XPC22", /* name */
321 FALSE, /* partial_inplace */
322 0x07ff2fff, /* src_mask */
323 0x07ff2fff, /* dst_mask */
324 TRUE), /* pcrel_offset */
326 /* Dynamic TLS relocations. */
328 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
329 0, /* rightshift */
330 2, /* size (0 = byte, 1 = short, 2 = long) */
331 32, /* bitsize */
332 FALSE, /* pc_relative */
333 0, /* bitpos */
334 complain_overflow_bitfield,/* complain_on_overflow */
335 bfd_elf_generic_reloc, /* special_function */
336 "R_ARM_TLS_DTPMOD32", /* name */
337 TRUE, /* partial_inplace */
338 0xffffffff, /* src_mask */
339 0xffffffff, /* dst_mask */
340 FALSE), /* pcrel_offset */
342 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
343 0, /* rightshift */
344 2, /* size (0 = byte, 1 = short, 2 = long) */
345 32, /* bitsize */
346 FALSE, /* pc_relative */
347 0, /* bitpos */
348 complain_overflow_bitfield,/* complain_on_overflow */
349 bfd_elf_generic_reloc, /* special_function */
350 "R_ARM_TLS_DTPOFF32", /* name */
351 TRUE, /* partial_inplace */
352 0xffffffff, /* src_mask */
353 0xffffffff, /* dst_mask */
354 FALSE), /* pcrel_offset */
356 HOWTO (R_ARM_TLS_TPOFF32, /* type */
357 0, /* rightshift */
358 2, /* size (0 = byte, 1 = short, 2 = long) */
359 32, /* bitsize */
360 FALSE, /* pc_relative */
361 0, /* bitpos */
362 complain_overflow_bitfield,/* complain_on_overflow */
363 bfd_elf_generic_reloc, /* special_function */
364 "R_ARM_TLS_TPOFF32", /* name */
365 TRUE, /* partial_inplace */
366 0xffffffff, /* src_mask */
367 0xffffffff, /* dst_mask */
368 FALSE), /* pcrel_offset */
370 /* Relocs used in ARM Linux */
372 HOWTO (R_ARM_COPY, /* type */
373 0, /* rightshift */
374 2, /* size (0 = byte, 1 = short, 2 = long) */
375 32, /* bitsize */
376 FALSE, /* pc_relative */
377 0, /* bitpos */
378 complain_overflow_bitfield,/* complain_on_overflow */
379 bfd_elf_generic_reloc, /* special_function */
380 "R_ARM_COPY", /* name */
381 TRUE, /* partial_inplace */
382 0xffffffff, /* src_mask */
383 0xffffffff, /* dst_mask */
384 FALSE), /* pcrel_offset */
386 HOWTO (R_ARM_GLOB_DAT, /* type */
387 0, /* rightshift */
388 2, /* size (0 = byte, 1 = short, 2 = long) */
389 32, /* bitsize */
390 FALSE, /* pc_relative */
391 0, /* bitpos */
392 complain_overflow_bitfield,/* complain_on_overflow */
393 bfd_elf_generic_reloc, /* special_function */
394 "R_ARM_GLOB_DAT", /* name */
395 TRUE, /* partial_inplace */
396 0xffffffff, /* src_mask */
397 0xffffffff, /* dst_mask */
398 FALSE), /* pcrel_offset */
400 HOWTO (R_ARM_JUMP_SLOT, /* type */
401 0, /* rightshift */
402 2, /* size (0 = byte, 1 = short, 2 = long) */
403 32, /* bitsize */
404 FALSE, /* pc_relative */
405 0, /* bitpos */
406 complain_overflow_bitfield,/* complain_on_overflow */
407 bfd_elf_generic_reloc, /* special_function */
408 "R_ARM_JUMP_SLOT", /* name */
409 TRUE, /* partial_inplace */
410 0xffffffff, /* src_mask */
411 0xffffffff, /* dst_mask */
412 FALSE), /* pcrel_offset */
414 HOWTO (R_ARM_RELATIVE, /* type */
415 0, /* rightshift */
416 2, /* size (0 = byte, 1 = short, 2 = long) */
417 32, /* bitsize */
418 FALSE, /* pc_relative */
419 0, /* bitpos */
420 complain_overflow_bitfield,/* complain_on_overflow */
421 bfd_elf_generic_reloc, /* special_function */
422 "R_ARM_RELATIVE", /* name */
423 TRUE, /* partial_inplace */
424 0xffffffff, /* src_mask */
425 0xffffffff, /* dst_mask */
426 FALSE), /* pcrel_offset */
428 HOWTO (R_ARM_GOTOFF32, /* type */
429 0, /* rightshift */
430 2, /* size (0 = byte, 1 = short, 2 = long) */
431 32, /* bitsize */
432 FALSE, /* pc_relative */
433 0, /* bitpos */
434 complain_overflow_bitfield,/* complain_on_overflow */
435 bfd_elf_generic_reloc, /* special_function */
436 "R_ARM_GOTOFF32", /* name */
437 TRUE, /* partial_inplace */
438 0xffffffff, /* src_mask */
439 0xffffffff, /* dst_mask */
440 FALSE), /* pcrel_offset */
442 HOWTO (R_ARM_GOTPC, /* type */
443 0, /* rightshift */
444 2, /* size (0 = byte, 1 = short, 2 = long) */
445 32, /* bitsize */
446 TRUE, /* pc_relative */
447 0, /* bitpos */
448 complain_overflow_bitfield,/* complain_on_overflow */
449 bfd_elf_generic_reloc, /* special_function */
450 "R_ARM_GOTPC", /* name */
451 TRUE, /* partial_inplace */
452 0xffffffff, /* src_mask */
453 0xffffffff, /* dst_mask */
454 TRUE), /* pcrel_offset */
456 HOWTO (R_ARM_GOT32, /* type */
457 0, /* rightshift */
458 2, /* size (0 = byte, 1 = short, 2 = long) */
459 32, /* bitsize */
460 FALSE, /* pc_relative */
461 0, /* bitpos */
462 complain_overflow_bitfield,/* complain_on_overflow */
463 bfd_elf_generic_reloc, /* special_function */
464 "R_ARM_GOT32", /* name */
465 TRUE, /* partial_inplace */
466 0xffffffff, /* src_mask */
467 0xffffffff, /* dst_mask */
468 FALSE), /* pcrel_offset */
470 HOWTO (R_ARM_PLT32, /* type */
471 2, /* rightshift */
472 2, /* size (0 = byte, 1 = short, 2 = long) */
473 24, /* bitsize */
474 TRUE, /* pc_relative */
475 0, /* bitpos */
476 complain_overflow_bitfield,/* complain_on_overflow */
477 bfd_elf_generic_reloc, /* special_function */
478 "R_ARM_PLT32", /* name */
479 FALSE, /* partial_inplace */
480 0x00ffffff, /* src_mask */
481 0x00ffffff, /* dst_mask */
482 TRUE), /* pcrel_offset */
484 HOWTO (R_ARM_CALL, /* type */
485 2, /* rightshift */
486 2, /* size (0 = byte, 1 = short, 2 = long) */
487 24, /* bitsize */
488 TRUE, /* pc_relative */
489 0, /* bitpos */
490 complain_overflow_signed,/* complain_on_overflow */
491 bfd_elf_generic_reloc, /* special_function */
492 "R_ARM_CALL", /* name */
493 FALSE, /* partial_inplace */
494 0x00ffffff, /* src_mask */
495 0x00ffffff, /* dst_mask */
496 TRUE), /* pcrel_offset */
498 HOWTO (R_ARM_JUMP24, /* type */
499 2, /* rightshift */
500 2, /* size (0 = byte, 1 = short, 2 = long) */
501 24, /* bitsize */
502 TRUE, /* pc_relative */
503 0, /* bitpos */
504 complain_overflow_signed,/* complain_on_overflow */
505 bfd_elf_generic_reloc, /* special_function */
506 "R_ARM_JUMP24", /* name */
507 FALSE, /* partial_inplace */
508 0x00ffffff, /* src_mask */
509 0x00ffffff, /* dst_mask */
510 TRUE), /* pcrel_offset */
512 HOWTO (R_ARM_THM_JUMP24, /* type */
513 1, /* rightshift */
514 2, /* size (0 = byte, 1 = short, 2 = long) */
515 24, /* bitsize */
516 TRUE, /* pc_relative */
517 0, /* bitpos */
518 complain_overflow_signed,/* complain_on_overflow */
519 bfd_elf_generic_reloc, /* special_function */
520 "R_ARM_THM_JUMP24", /* name */
521 FALSE, /* partial_inplace */
522 0x07ff2fff, /* src_mask */
523 0x07ff2fff, /* dst_mask */
524 TRUE), /* pcrel_offset */
526 HOWTO (R_ARM_BASE_ABS, /* type */
527 0, /* rightshift */
528 2, /* size (0 = byte, 1 = short, 2 = long) */
529 32, /* bitsize */
530 FALSE, /* pc_relative */
531 0, /* bitpos */
532 complain_overflow_dont,/* complain_on_overflow */
533 bfd_elf_generic_reloc, /* special_function */
534 "R_ARM_BASE_ABS", /* name */
535 FALSE, /* partial_inplace */
536 0xffffffff, /* src_mask */
537 0xffffffff, /* dst_mask */
538 FALSE), /* pcrel_offset */
540 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
541 0, /* rightshift */
542 2, /* size (0 = byte, 1 = short, 2 = long) */
543 12, /* bitsize */
544 TRUE, /* pc_relative */
545 0, /* bitpos */
546 complain_overflow_dont,/* complain_on_overflow */
547 bfd_elf_generic_reloc, /* special_function */
548 "R_ARM_ALU_PCREL_7_0", /* name */
549 FALSE, /* partial_inplace */
550 0x00000fff, /* src_mask */
551 0x00000fff, /* dst_mask */
552 TRUE), /* pcrel_offset */
554 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
555 0, /* rightshift */
556 2, /* size (0 = byte, 1 = short, 2 = long) */
557 12, /* bitsize */
558 TRUE, /* pc_relative */
559 8, /* bitpos */
560 complain_overflow_dont,/* complain_on_overflow */
561 bfd_elf_generic_reloc, /* special_function */
562 "R_ARM_ALU_PCREL_15_8",/* name */
563 FALSE, /* partial_inplace */
564 0x00000fff, /* src_mask */
565 0x00000fff, /* dst_mask */
566 TRUE), /* pcrel_offset */
568 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
569 0, /* rightshift */
570 2, /* size (0 = byte, 1 = short, 2 = long) */
571 12, /* bitsize */
572 TRUE, /* pc_relative */
573 16, /* bitpos */
574 complain_overflow_dont,/* complain_on_overflow */
575 bfd_elf_generic_reloc, /* special_function */
576 "R_ARM_ALU_PCREL_23_15",/* name */
577 FALSE, /* partial_inplace */
578 0x00000fff, /* src_mask */
579 0x00000fff, /* dst_mask */
580 TRUE), /* pcrel_offset */
582 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
583 0, /* rightshift */
584 2, /* size (0 = byte, 1 = short, 2 = long) */
585 12, /* bitsize */
586 FALSE, /* pc_relative */
587 0, /* bitpos */
588 complain_overflow_dont,/* complain_on_overflow */
589 bfd_elf_generic_reloc, /* special_function */
590 "R_ARM_LDR_SBREL_11_0",/* name */
591 FALSE, /* partial_inplace */
592 0x00000fff, /* src_mask */
593 0x00000fff, /* dst_mask */
594 FALSE), /* pcrel_offset */
596 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
597 0, /* rightshift */
598 2, /* size (0 = byte, 1 = short, 2 = long) */
599 8, /* bitsize */
600 FALSE, /* pc_relative */
601 12, /* bitpos */
602 complain_overflow_dont,/* complain_on_overflow */
603 bfd_elf_generic_reloc, /* special_function */
604 "R_ARM_ALU_SBREL_19_12",/* name */
605 FALSE, /* partial_inplace */
606 0x000ff000, /* src_mask */
607 0x000ff000, /* dst_mask */
608 FALSE), /* pcrel_offset */
610 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
611 0, /* rightshift */
612 2, /* size (0 = byte, 1 = short, 2 = long) */
613 8, /* bitsize */
614 FALSE, /* pc_relative */
615 20, /* bitpos */
616 complain_overflow_dont,/* complain_on_overflow */
617 bfd_elf_generic_reloc, /* special_function */
618 "R_ARM_ALU_SBREL_27_20",/* name */
619 FALSE, /* partial_inplace */
620 0x0ff00000, /* src_mask */
621 0x0ff00000, /* dst_mask */
622 FALSE), /* pcrel_offset */
624 HOWTO (R_ARM_TARGET1, /* type */
625 0, /* rightshift */
626 2, /* size (0 = byte, 1 = short, 2 = long) */
627 32, /* bitsize */
628 FALSE, /* pc_relative */
629 0, /* bitpos */
630 complain_overflow_dont,/* complain_on_overflow */
631 bfd_elf_generic_reloc, /* special_function */
632 "R_ARM_TARGET1", /* name */
633 FALSE, /* partial_inplace */
634 0xffffffff, /* src_mask */
635 0xffffffff, /* dst_mask */
636 FALSE), /* pcrel_offset */
638 HOWTO (R_ARM_ROSEGREL32, /* type */
639 0, /* rightshift */
640 2, /* size (0 = byte, 1 = short, 2 = long) */
641 32, /* bitsize */
642 FALSE, /* pc_relative */
643 0, /* bitpos */
644 complain_overflow_dont,/* complain_on_overflow */
645 bfd_elf_generic_reloc, /* special_function */
646 "R_ARM_ROSEGREL32", /* name */
647 FALSE, /* partial_inplace */
648 0xffffffff, /* src_mask */
649 0xffffffff, /* dst_mask */
650 FALSE), /* pcrel_offset */
652 HOWTO (R_ARM_V4BX, /* type */
653 0, /* rightshift */
654 2, /* size (0 = byte, 1 = short, 2 = long) */
655 32, /* bitsize */
656 FALSE, /* pc_relative */
657 0, /* bitpos */
658 complain_overflow_dont,/* complain_on_overflow */
659 bfd_elf_generic_reloc, /* special_function */
660 "R_ARM_V4BX", /* name */
661 FALSE, /* partial_inplace */
662 0xffffffff, /* src_mask */
663 0xffffffff, /* dst_mask */
664 FALSE), /* pcrel_offset */
666 HOWTO (R_ARM_TARGET2, /* type */
667 0, /* rightshift */
668 2, /* size (0 = byte, 1 = short, 2 = long) */
669 32, /* bitsize */
670 FALSE, /* pc_relative */
671 0, /* bitpos */
672 complain_overflow_signed,/* complain_on_overflow */
673 bfd_elf_generic_reloc, /* special_function */
674 "R_ARM_TARGET2", /* name */
675 FALSE, /* partial_inplace */
676 0xffffffff, /* src_mask */
677 0xffffffff, /* dst_mask */
678 TRUE), /* pcrel_offset */
680 HOWTO (R_ARM_PREL31, /* type */
681 0, /* rightshift */
682 2, /* size (0 = byte, 1 = short, 2 = long) */
683 31, /* bitsize */
684 TRUE, /* pc_relative */
685 0, /* bitpos */
686 complain_overflow_signed,/* complain_on_overflow */
687 bfd_elf_generic_reloc, /* special_function */
688 "R_ARM_PREL31", /* name */
689 FALSE, /* partial_inplace */
690 0x7fffffff, /* src_mask */
691 0x7fffffff, /* dst_mask */
692 TRUE), /* pcrel_offset */
694 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
695 0, /* rightshift */
696 2, /* size (0 = byte, 1 = short, 2 = long) */
697 16, /* bitsize */
698 FALSE, /* pc_relative */
699 0, /* bitpos */
700 complain_overflow_dont,/* complain_on_overflow */
701 bfd_elf_generic_reloc, /* special_function */
702 "R_ARM_MOVW_ABS_NC", /* name */
703 FALSE, /* partial_inplace */
704 0x000f0fff, /* src_mask */
705 0x000f0fff, /* dst_mask */
706 FALSE), /* pcrel_offset */
708 HOWTO (R_ARM_MOVT_ABS, /* type */
709 0, /* rightshift */
710 2, /* size (0 = byte, 1 = short, 2 = long) */
711 16, /* bitsize */
712 FALSE, /* pc_relative */
713 0, /* bitpos */
714 complain_overflow_bitfield,/* complain_on_overflow */
715 bfd_elf_generic_reloc, /* special_function */
716 "R_ARM_MOVT_ABS", /* name */
717 FALSE, /* partial_inplace */
718 0x000f0fff, /* src_mask */
719 0x000f0fff, /* dst_mask */
720 FALSE), /* pcrel_offset */
722 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
723 0, /* rightshift */
724 2, /* size (0 = byte, 1 = short, 2 = long) */
725 16, /* bitsize */
726 TRUE, /* pc_relative */
727 0, /* bitpos */
728 complain_overflow_dont,/* complain_on_overflow */
729 bfd_elf_generic_reloc, /* special_function */
730 "R_ARM_MOVW_PREL_NC", /* name */
731 FALSE, /* partial_inplace */
732 0x000f0fff, /* src_mask */
733 0x000f0fff, /* dst_mask */
734 TRUE), /* pcrel_offset */
736 HOWTO (R_ARM_MOVT_PREL, /* type */
737 0, /* rightshift */
738 2, /* size (0 = byte, 1 = short, 2 = long) */
739 16, /* bitsize */
740 TRUE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_bitfield,/* complain_on_overflow */
743 bfd_elf_generic_reloc, /* special_function */
744 "R_ARM_MOVT_PREL", /* name */
745 FALSE, /* partial_inplace */
746 0x000f0fff, /* src_mask */
747 0x000f0fff, /* dst_mask */
748 TRUE), /* pcrel_offset */
750 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
751 0, /* rightshift */
752 2, /* size (0 = byte, 1 = short, 2 = long) */
753 16, /* bitsize */
754 FALSE, /* pc_relative */
755 0, /* bitpos */
756 complain_overflow_dont,/* complain_on_overflow */
757 bfd_elf_generic_reloc, /* special_function */
758 "R_ARM_THM_MOVW_ABS_NC",/* name */
759 FALSE, /* partial_inplace */
760 0x040f70ff, /* src_mask */
761 0x040f70ff, /* dst_mask */
762 FALSE), /* pcrel_offset */
764 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
765 0, /* rightshift */
766 2, /* size (0 = byte, 1 = short, 2 = long) */
767 16, /* bitsize */
768 FALSE, /* pc_relative */
769 0, /* bitpos */
770 complain_overflow_bitfield,/* complain_on_overflow */
771 bfd_elf_generic_reloc, /* special_function */
772 "R_ARM_THM_MOVT_ABS", /* name */
773 FALSE, /* partial_inplace */
774 0x040f70ff, /* src_mask */
775 0x040f70ff, /* dst_mask */
776 FALSE), /* pcrel_offset */
778 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
779 0, /* rightshift */
780 2, /* size (0 = byte, 1 = short, 2 = long) */
781 16, /* bitsize */
782 TRUE, /* pc_relative */
783 0, /* bitpos */
784 complain_overflow_dont,/* complain_on_overflow */
785 bfd_elf_generic_reloc, /* special_function */
786 "R_ARM_THM_MOVW_PREL_NC",/* name */
787 FALSE, /* partial_inplace */
788 0x040f70ff, /* src_mask */
789 0x040f70ff, /* dst_mask */
790 TRUE), /* pcrel_offset */
792 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
793 0, /* rightshift */
794 2, /* size (0 = byte, 1 = short, 2 = long) */
795 16, /* bitsize */
796 TRUE, /* pc_relative */
797 0, /* bitpos */
798 complain_overflow_bitfield,/* complain_on_overflow */
799 bfd_elf_generic_reloc, /* special_function */
800 "R_ARM_THM_MOVT_PREL", /* name */
801 FALSE, /* partial_inplace */
802 0x040f70ff, /* src_mask */
803 0x040f70ff, /* dst_mask */
804 TRUE), /* pcrel_offset */
806 HOWTO (R_ARM_THM_JUMP19, /* type */
807 1, /* rightshift */
808 2, /* size (0 = byte, 1 = short, 2 = long) */
809 19, /* bitsize */
810 TRUE, /* pc_relative */
811 0, /* bitpos */
812 complain_overflow_signed,/* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
814 "R_ARM_THM_JUMP19", /* name */
815 FALSE, /* partial_inplace */
816 0x043f2fff, /* src_mask */
817 0x043f2fff, /* dst_mask */
818 TRUE), /* pcrel_offset */
820 HOWTO (R_ARM_THM_JUMP6, /* type */
821 1, /* rightshift */
822 1, /* size (0 = byte, 1 = short, 2 = long) */
823 6, /* bitsize */
824 TRUE, /* pc_relative */
825 0, /* bitpos */
826 complain_overflow_unsigned,/* complain_on_overflow */
827 bfd_elf_generic_reloc, /* special_function */
828 "R_ARM_THM_JUMP6", /* name */
829 FALSE, /* partial_inplace */
830 0x02f8, /* src_mask */
831 0x02f8, /* dst_mask */
832 TRUE), /* pcrel_offset */
834 /* These are declared as 13-bit signed relocations because we can
835 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
836 versa. */
837 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
838 0, /* rightshift */
839 2, /* size (0 = byte, 1 = short, 2 = long) */
840 13, /* bitsize */
841 TRUE, /* pc_relative */
842 0, /* bitpos */
843 complain_overflow_dont,/* complain_on_overflow */
844 bfd_elf_generic_reloc, /* special_function */
845 "R_ARM_THM_ALU_PREL_11_0",/* name */
846 FALSE, /* partial_inplace */
847 0xffffffff, /* src_mask */
848 0xffffffff, /* dst_mask */
849 TRUE), /* pcrel_offset */
851 HOWTO (R_ARM_THM_PC12, /* type */
852 0, /* rightshift */
853 2, /* size (0 = byte, 1 = short, 2 = long) */
854 13, /* bitsize */
855 TRUE, /* pc_relative */
856 0, /* bitpos */
857 complain_overflow_dont,/* complain_on_overflow */
858 bfd_elf_generic_reloc, /* special_function */
859 "R_ARM_THM_PC12", /* name */
860 FALSE, /* partial_inplace */
861 0xffffffff, /* src_mask */
862 0xffffffff, /* dst_mask */
863 TRUE), /* pcrel_offset */
865 HOWTO (R_ARM_ABS32_NOI, /* type */
866 0, /* rightshift */
867 2, /* size (0 = byte, 1 = short, 2 = long) */
868 32, /* bitsize */
869 FALSE, /* pc_relative */
870 0, /* bitpos */
871 complain_overflow_dont,/* complain_on_overflow */
872 bfd_elf_generic_reloc, /* special_function */
873 "R_ARM_ABS32_NOI", /* name */
874 FALSE, /* partial_inplace */
875 0xffffffff, /* src_mask */
876 0xffffffff, /* dst_mask */
877 FALSE), /* pcrel_offset */
879 HOWTO (R_ARM_REL32_NOI, /* type */
880 0, /* rightshift */
881 2, /* size (0 = byte, 1 = short, 2 = long) */
882 32, /* bitsize */
883 TRUE, /* pc_relative */
884 0, /* bitpos */
885 complain_overflow_dont,/* complain_on_overflow */
886 bfd_elf_generic_reloc, /* special_function */
887 "R_ARM_REL32_NOI", /* name */
888 FALSE, /* partial_inplace */
889 0xffffffff, /* src_mask */
890 0xffffffff, /* dst_mask */
891 FALSE), /* pcrel_offset */
893 /* Group relocations. */
895 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
896 0, /* rightshift */
897 2, /* size (0 = byte, 1 = short, 2 = long) */
898 32, /* bitsize */
899 TRUE, /* pc_relative */
900 0, /* bitpos */
901 complain_overflow_dont,/* complain_on_overflow */
902 bfd_elf_generic_reloc, /* special_function */
903 "R_ARM_ALU_PC_G0_NC", /* name */
904 FALSE, /* partial_inplace */
905 0xffffffff, /* src_mask */
906 0xffffffff, /* dst_mask */
907 TRUE), /* pcrel_offset */
909 HOWTO (R_ARM_ALU_PC_G0, /* type */
910 0, /* rightshift */
911 2, /* size (0 = byte, 1 = short, 2 = long) */
912 32, /* bitsize */
913 TRUE, /* pc_relative */
914 0, /* bitpos */
915 complain_overflow_dont,/* complain_on_overflow */
916 bfd_elf_generic_reloc, /* special_function */
917 "R_ARM_ALU_PC_G0", /* name */
918 FALSE, /* partial_inplace */
919 0xffffffff, /* src_mask */
920 0xffffffff, /* dst_mask */
921 TRUE), /* pcrel_offset */
923 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
924 0, /* rightshift */
925 2, /* size (0 = byte, 1 = short, 2 = long) */
926 32, /* bitsize */
927 TRUE, /* pc_relative */
928 0, /* bitpos */
929 complain_overflow_dont,/* complain_on_overflow */
930 bfd_elf_generic_reloc, /* special_function */
931 "R_ARM_ALU_PC_G1_NC", /* name */
932 FALSE, /* partial_inplace */
933 0xffffffff, /* src_mask */
934 0xffffffff, /* dst_mask */
935 TRUE), /* pcrel_offset */
937 HOWTO (R_ARM_ALU_PC_G1, /* type */
938 0, /* rightshift */
939 2, /* size (0 = byte, 1 = short, 2 = long) */
940 32, /* bitsize */
941 TRUE, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_dont,/* complain_on_overflow */
944 bfd_elf_generic_reloc, /* special_function */
945 "R_ARM_ALU_PC_G1", /* name */
946 FALSE, /* partial_inplace */
947 0xffffffff, /* src_mask */
948 0xffffffff, /* dst_mask */
949 TRUE), /* pcrel_offset */
951 HOWTO (R_ARM_ALU_PC_G2, /* type */
952 0, /* rightshift */
953 2, /* size (0 = byte, 1 = short, 2 = long) */
954 32, /* bitsize */
955 TRUE, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_dont,/* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
959 "R_ARM_ALU_PC_G2", /* name */
960 FALSE, /* partial_inplace */
961 0xffffffff, /* src_mask */
962 0xffffffff, /* dst_mask */
963 TRUE), /* pcrel_offset */
965 HOWTO (R_ARM_LDR_PC_G1, /* type */
966 0, /* rightshift */
967 2, /* size (0 = byte, 1 = short, 2 = long) */
968 32, /* bitsize */
969 TRUE, /* pc_relative */
970 0, /* bitpos */
971 complain_overflow_dont,/* complain_on_overflow */
972 bfd_elf_generic_reloc, /* special_function */
973 "R_ARM_LDR_PC_G1", /* name */
974 FALSE, /* partial_inplace */
975 0xffffffff, /* src_mask */
976 0xffffffff, /* dst_mask */
977 TRUE), /* pcrel_offset */
979 HOWTO (R_ARM_LDR_PC_G2, /* type */
980 0, /* rightshift */
981 2, /* size (0 = byte, 1 = short, 2 = long) */
982 32, /* bitsize */
983 TRUE, /* pc_relative */
984 0, /* bitpos */
985 complain_overflow_dont,/* complain_on_overflow */
986 bfd_elf_generic_reloc, /* special_function */
987 "R_ARM_LDR_PC_G2", /* name */
988 FALSE, /* partial_inplace */
989 0xffffffff, /* src_mask */
990 0xffffffff, /* dst_mask */
991 TRUE), /* pcrel_offset */
993 HOWTO (R_ARM_LDRS_PC_G0, /* type */
994 0, /* rightshift */
995 2, /* size (0 = byte, 1 = short, 2 = long) */
996 32, /* bitsize */
997 TRUE, /* pc_relative */
998 0, /* bitpos */
999 complain_overflow_dont,/* complain_on_overflow */
1000 bfd_elf_generic_reloc, /* special_function */
1001 "R_ARM_LDRS_PC_G0", /* name */
1002 FALSE, /* partial_inplace */
1003 0xffffffff, /* src_mask */
1004 0xffffffff, /* dst_mask */
1005 TRUE), /* pcrel_offset */
1007 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1008 0, /* rightshift */
1009 2, /* size (0 = byte, 1 = short, 2 = long) */
1010 32, /* bitsize */
1011 TRUE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_dont,/* complain_on_overflow */
1014 bfd_elf_generic_reloc, /* special_function */
1015 "R_ARM_LDRS_PC_G1", /* name */
1016 FALSE, /* partial_inplace */
1017 0xffffffff, /* src_mask */
1018 0xffffffff, /* dst_mask */
1019 TRUE), /* pcrel_offset */
1021 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1022 0, /* rightshift */
1023 2, /* size (0 = byte, 1 = short, 2 = long) */
1024 32, /* bitsize */
1025 TRUE, /* pc_relative */
1026 0, /* bitpos */
1027 complain_overflow_dont,/* complain_on_overflow */
1028 bfd_elf_generic_reloc, /* special_function */
1029 "R_ARM_LDRS_PC_G2", /* name */
1030 FALSE, /* partial_inplace */
1031 0xffffffff, /* src_mask */
1032 0xffffffff, /* dst_mask */
1033 TRUE), /* pcrel_offset */
1035 HOWTO (R_ARM_LDC_PC_G0, /* type */
1036 0, /* rightshift */
1037 2, /* size (0 = byte, 1 = short, 2 = long) */
1038 32, /* bitsize */
1039 TRUE, /* pc_relative */
1040 0, /* bitpos */
1041 complain_overflow_dont,/* complain_on_overflow */
1042 bfd_elf_generic_reloc, /* special_function */
1043 "R_ARM_LDC_PC_G0", /* name */
1044 FALSE, /* partial_inplace */
1045 0xffffffff, /* src_mask */
1046 0xffffffff, /* dst_mask */
1047 TRUE), /* pcrel_offset */
1049 HOWTO (R_ARM_LDC_PC_G1, /* type */
1050 0, /* rightshift */
1051 2, /* size (0 = byte, 1 = short, 2 = long) */
1052 32, /* bitsize */
1053 TRUE, /* pc_relative */
1054 0, /* bitpos */
1055 complain_overflow_dont,/* complain_on_overflow */
1056 bfd_elf_generic_reloc, /* special_function */
1057 "R_ARM_LDC_PC_G1", /* name */
1058 FALSE, /* partial_inplace */
1059 0xffffffff, /* src_mask */
1060 0xffffffff, /* dst_mask */
1061 TRUE), /* pcrel_offset */
1063 HOWTO (R_ARM_LDC_PC_G2, /* type */
1064 0, /* rightshift */
1065 2, /* size (0 = byte, 1 = short, 2 = long) */
1066 32, /* bitsize */
1067 TRUE, /* pc_relative */
1068 0, /* bitpos */
1069 complain_overflow_dont,/* complain_on_overflow */
1070 bfd_elf_generic_reloc, /* special_function */
1071 "R_ARM_LDC_PC_G2", /* name */
1072 FALSE, /* partial_inplace */
1073 0xffffffff, /* src_mask */
1074 0xffffffff, /* dst_mask */
1075 TRUE), /* pcrel_offset */
1077 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1078 0, /* rightshift */
1079 2, /* size (0 = byte, 1 = short, 2 = long) */
1080 32, /* bitsize */
1081 TRUE, /* pc_relative */
1082 0, /* bitpos */
1083 complain_overflow_dont,/* complain_on_overflow */
1084 bfd_elf_generic_reloc, /* special_function */
1085 "R_ARM_ALU_SB_G0_NC", /* name */
1086 FALSE, /* partial_inplace */
1087 0xffffffff, /* src_mask */
1088 0xffffffff, /* dst_mask */
1089 TRUE), /* pcrel_offset */
1091 HOWTO (R_ARM_ALU_SB_G0, /* type */
1092 0, /* rightshift */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1094 32, /* bitsize */
1095 TRUE, /* pc_relative */
1096 0, /* bitpos */
1097 complain_overflow_dont,/* complain_on_overflow */
1098 bfd_elf_generic_reloc, /* special_function */
1099 "R_ARM_ALU_SB_G0", /* name */
1100 FALSE, /* partial_inplace */
1101 0xffffffff, /* src_mask */
1102 0xffffffff, /* dst_mask */
1103 TRUE), /* pcrel_offset */
1105 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1106 0, /* rightshift */
1107 2, /* size (0 = byte, 1 = short, 2 = long) */
1108 32, /* bitsize */
1109 TRUE, /* pc_relative */
1110 0, /* bitpos */
1111 complain_overflow_dont,/* complain_on_overflow */
1112 bfd_elf_generic_reloc, /* special_function */
1113 "R_ARM_ALU_SB_G1_NC", /* name */
1114 FALSE, /* partial_inplace */
1115 0xffffffff, /* src_mask */
1116 0xffffffff, /* dst_mask */
1117 TRUE), /* pcrel_offset */
1119 HOWTO (R_ARM_ALU_SB_G1, /* type */
1120 0, /* rightshift */
1121 2, /* size (0 = byte, 1 = short, 2 = long) */
1122 32, /* bitsize */
1123 TRUE, /* pc_relative */
1124 0, /* bitpos */
1125 complain_overflow_dont,/* complain_on_overflow */
1126 bfd_elf_generic_reloc, /* special_function */
1127 "R_ARM_ALU_SB_G1", /* name */
1128 FALSE, /* partial_inplace */
1129 0xffffffff, /* src_mask */
1130 0xffffffff, /* dst_mask */
1131 TRUE), /* pcrel_offset */
1133 HOWTO (R_ARM_ALU_SB_G2, /* type */
1134 0, /* rightshift */
1135 2, /* size (0 = byte, 1 = short, 2 = long) */
1136 32, /* bitsize */
1137 TRUE, /* pc_relative */
1138 0, /* bitpos */
1139 complain_overflow_dont,/* complain_on_overflow */
1140 bfd_elf_generic_reloc, /* special_function */
1141 "R_ARM_ALU_SB_G2", /* name */
1142 FALSE, /* partial_inplace */
1143 0xffffffff, /* src_mask */
1144 0xffffffff, /* dst_mask */
1145 TRUE), /* pcrel_offset */
1147 HOWTO (R_ARM_LDR_SB_G0, /* type */
1148 0, /* rightshift */
1149 2, /* size (0 = byte, 1 = short, 2 = long) */
1150 32, /* bitsize */
1151 TRUE, /* pc_relative */
1152 0, /* bitpos */
1153 complain_overflow_dont,/* complain_on_overflow */
1154 bfd_elf_generic_reloc, /* special_function */
1155 "R_ARM_LDR_SB_G0", /* name */
1156 FALSE, /* partial_inplace */
1157 0xffffffff, /* src_mask */
1158 0xffffffff, /* dst_mask */
1159 TRUE), /* pcrel_offset */
1161 HOWTO (R_ARM_LDR_SB_G1, /* type */
1162 0, /* rightshift */
1163 2, /* size (0 = byte, 1 = short, 2 = long) */
1164 32, /* bitsize */
1165 TRUE, /* pc_relative */
1166 0, /* bitpos */
1167 complain_overflow_dont,/* complain_on_overflow */
1168 bfd_elf_generic_reloc, /* special_function */
1169 "R_ARM_LDR_SB_G1", /* name */
1170 FALSE, /* partial_inplace */
1171 0xffffffff, /* src_mask */
1172 0xffffffff, /* dst_mask */
1173 TRUE), /* pcrel_offset */
1175 HOWTO (R_ARM_LDR_SB_G2, /* type */
1176 0, /* rightshift */
1177 2, /* size (0 = byte, 1 = short, 2 = long) */
1178 32, /* bitsize */
1179 TRUE, /* pc_relative */
1180 0, /* bitpos */
1181 complain_overflow_dont,/* complain_on_overflow */
1182 bfd_elf_generic_reloc, /* special_function */
1183 "R_ARM_LDR_SB_G2", /* name */
1184 FALSE, /* partial_inplace */
1185 0xffffffff, /* src_mask */
1186 0xffffffff, /* dst_mask */
1187 TRUE), /* pcrel_offset */
1189 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1190 0, /* rightshift */
1191 2, /* size (0 = byte, 1 = short, 2 = long) */
1192 32, /* bitsize */
1193 TRUE, /* pc_relative */
1194 0, /* bitpos */
1195 complain_overflow_dont,/* complain_on_overflow */
1196 bfd_elf_generic_reloc, /* special_function */
1197 "R_ARM_LDRS_SB_G0", /* name */
1198 FALSE, /* partial_inplace */
1199 0xffffffff, /* src_mask */
1200 0xffffffff, /* dst_mask */
1201 TRUE), /* pcrel_offset */
1203 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1204 0, /* rightshift */
1205 2, /* size (0 = byte, 1 = short, 2 = long) */
1206 32, /* bitsize */
1207 TRUE, /* pc_relative */
1208 0, /* bitpos */
1209 complain_overflow_dont,/* complain_on_overflow */
1210 bfd_elf_generic_reloc, /* special_function */
1211 "R_ARM_LDRS_SB_G1", /* name */
1212 FALSE, /* partial_inplace */
1213 0xffffffff, /* src_mask */
1214 0xffffffff, /* dst_mask */
1215 TRUE), /* pcrel_offset */
1217 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1218 0, /* rightshift */
1219 2, /* size (0 = byte, 1 = short, 2 = long) */
1220 32, /* bitsize */
1221 TRUE, /* pc_relative */
1222 0, /* bitpos */
1223 complain_overflow_dont,/* complain_on_overflow */
1224 bfd_elf_generic_reloc, /* special_function */
1225 "R_ARM_LDRS_SB_G2", /* name */
1226 FALSE, /* partial_inplace */
1227 0xffffffff, /* src_mask */
1228 0xffffffff, /* dst_mask */
1229 TRUE), /* pcrel_offset */
1231 HOWTO (R_ARM_LDC_SB_G0, /* type */
1232 0, /* rightshift */
1233 2, /* size (0 = byte, 1 = short, 2 = long) */
1234 32, /* bitsize */
1235 TRUE, /* pc_relative */
1236 0, /* bitpos */
1237 complain_overflow_dont,/* complain_on_overflow */
1238 bfd_elf_generic_reloc, /* special_function */
1239 "R_ARM_LDC_SB_G0", /* name */
1240 FALSE, /* partial_inplace */
1241 0xffffffff, /* src_mask */
1242 0xffffffff, /* dst_mask */
1243 TRUE), /* pcrel_offset */
1245 HOWTO (R_ARM_LDC_SB_G1, /* type */
1246 0, /* rightshift */
1247 2, /* size (0 = byte, 1 = short, 2 = long) */
1248 32, /* bitsize */
1249 TRUE, /* pc_relative */
1250 0, /* bitpos */
1251 complain_overflow_dont,/* complain_on_overflow */
1252 bfd_elf_generic_reloc, /* special_function */
1253 "R_ARM_LDC_SB_G1", /* name */
1254 FALSE, /* partial_inplace */
1255 0xffffffff, /* src_mask */
1256 0xffffffff, /* dst_mask */
1257 TRUE), /* pcrel_offset */
1259 HOWTO (R_ARM_LDC_SB_G2, /* type */
1260 0, /* rightshift */
1261 2, /* size (0 = byte, 1 = short, 2 = long) */
1262 32, /* bitsize */
1263 TRUE, /* pc_relative */
1264 0, /* bitpos */
1265 complain_overflow_dont,/* complain_on_overflow */
1266 bfd_elf_generic_reloc, /* special_function */
1267 "R_ARM_LDC_SB_G2", /* name */
1268 FALSE, /* partial_inplace */
1269 0xffffffff, /* src_mask */
1270 0xffffffff, /* dst_mask */
1271 TRUE), /* pcrel_offset */
1273 /* End of group relocations. */
1275 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1276 0, /* rightshift */
1277 2, /* size (0 = byte, 1 = short, 2 = long) */
1278 16, /* bitsize */
1279 FALSE, /* pc_relative */
1280 0, /* bitpos */
1281 complain_overflow_dont,/* complain_on_overflow */
1282 bfd_elf_generic_reloc, /* special_function */
1283 "R_ARM_MOVW_BREL_NC", /* name */
1284 FALSE, /* partial_inplace */
1285 0x0000ffff, /* src_mask */
1286 0x0000ffff, /* dst_mask */
1287 FALSE), /* pcrel_offset */
1289 HOWTO (R_ARM_MOVT_BREL, /* type */
1290 0, /* rightshift */
1291 2, /* size (0 = byte, 1 = short, 2 = long) */
1292 16, /* bitsize */
1293 FALSE, /* pc_relative */
1294 0, /* bitpos */
1295 complain_overflow_bitfield,/* complain_on_overflow */
1296 bfd_elf_generic_reloc, /* special_function */
1297 "R_ARM_MOVT_BREL", /* name */
1298 FALSE, /* partial_inplace */
1299 0x0000ffff, /* src_mask */
1300 0x0000ffff, /* dst_mask */
1301 FALSE), /* pcrel_offset */
1303 HOWTO (R_ARM_MOVW_BREL, /* type */
1304 0, /* rightshift */
1305 2, /* size (0 = byte, 1 = short, 2 = long) */
1306 16, /* bitsize */
1307 FALSE, /* pc_relative */
1308 0, /* bitpos */
1309 complain_overflow_dont,/* complain_on_overflow */
1310 bfd_elf_generic_reloc, /* special_function */
1311 "R_ARM_MOVW_BREL", /* name */
1312 FALSE, /* partial_inplace */
1313 0x0000ffff, /* src_mask */
1314 0x0000ffff, /* dst_mask */
1315 FALSE), /* pcrel_offset */
1317 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1318 0, /* rightshift */
1319 2, /* size (0 = byte, 1 = short, 2 = long) */
1320 16, /* bitsize */
1321 FALSE, /* pc_relative */
1322 0, /* bitpos */
1323 complain_overflow_dont,/* complain_on_overflow */
1324 bfd_elf_generic_reloc, /* special_function */
1325 "R_ARM_THM_MOVW_BREL_NC",/* name */
1326 FALSE, /* partial_inplace */
1327 0x040f70ff, /* src_mask */
1328 0x040f70ff, /* dst_mask */
1329 FALSE), /* pcrel_offset */
1331 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1332 0, /* rightshift */
1333 2, /* size (0 = byte, 1 = short, 2 = long) */
1334 16, /* bitsize */
1335 FALSE, /* pc_relative */
1336 0, /* bitpos */
1337 complain_overflow_bitfield,/* complain_on_overflow */
1338 bfd_elf_generic_reloc, /* special_function */
1339 "R_ARM_THM_MOVT_BREL", /* name */
1340 FALSE, /* partial_inplace */
1341 0x040f70ff, /* src_mask */
1342 0x040f70ff, /* dst_mask */
1343 FALSE), /* pcrel_offset */
1345 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1346 0, /* rightshift */
1347 2, /* size (0 = byte, 1 = short, 2 = long) */
1348 16, /* bitsize */
1349 FALSE, /* pc_relative */
1350 0, /* bitpos */
1351 complain_overflow_dont,/* complain_on_overflow */
1352 bfd_elf_generic_reloc, /* special_function */
1353 "R_ARM_THM_MOVW_BREL", /* name */
1354 FALSE, /* partial_inplace */
1355 0x040f70ff, /* src_mask */
1356 0x040f70ff, /* dst_mask */
1357 FALSE), /* pcrel_offset */
1359 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1360 0, /* rightshift */
1361 2, /* size (0 = byte, 1 = short, 2 = long) */
1362 32, /* bitsize */
1363 FALSE, /* pc_relative */
1364 0, /* bitpos */
1365 complain_overflow_bitfield,/* complain_on_overflow */
1366 NULL, /* special_function */
1367 "R_ARM_TLS_GOTDESC", /* name */
1368 TRUE, /* partial_inplace */
1369 0xffffffff, /* src_mask */
1370 0xffffffff, /* dst_mask */
1371 FALSE), /* pcrel_offset */
1373 HOWTO (R_ARM_TLS_CALL, /* type */
1374 0, /* rightshift */
1375 2, /* size (0 = byte, 1 = short, 2 = long) */
1376 24, /* bitsize */
1377 FALSE, /* pc_relative */
1378 0, /* bitpos */
1379 complain_overflow_dont,/* complain_on_overflow */
1380 bfd_elf_generic_reloc, /* special_function */
1381 "R_ARM_TLS_CALL", /* name */
1382 FALSE, /* partial_inplace */
1383 0x00ffffff, /* src_mask */
1384 0x00ffffff, /* dst_mask */
1385 FALSE), /* pcrel_offset */
1387 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1388 0, /* rightshift */
1389 2, /* size (0 = byte, 1 = short, 2 = long) */
1390 0, /* bitsize */
1391 FALSE, /* pc_relative */
1392 0, /* bitpos */
1393 complain_overflow_bitfield,/* complain_on_overflow */
1394 bfd_elf_generic_reloc, /* special_function */
1395 "R_ARM_TLS_DESCSEQ", /* name */
1396 FALSE, /* partial_inplace */
1397 0x00000000, /* src_mask */
1398 0x00000000, /* dst_mask */
1399 FALSE), /* pcrel_offset */
1401 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1402 0, /* rightshift */
1403 2, /* size (0 = byte, 1 = short, 2 = long) */
1404 24, /* bitsize */
1405 FALSE, /* pc_relative */
1406 0, /* bitpos */
1407 complain_overflow_dont,/* complain_on_overflow */
1408 bfd_elf_generic_reloc, /* special_function */
1409 "R_ARM_THM_TLS_CALL", /* name */
1410 FALSE, /* partial_inplace */
1411 0x07ff07ff, /* src_mask */
1412 0x07ff07ff, /* dst_mask */
1413 FALSE), /* pcrel_offset */
1415 HOWTO (R_ARM_PLT32_ABS, /* type */
1416 0, /* rightshift */
1417 2, /* size (0 = byte, 1 = short, 2 = long) */
1418 32, /* bitsize */
1419 FALSE, /* pc_relative */
1420 0, /* bitpos */
1421 complain_overflow_dont,/* complain_on_overflow */
1422 bfd_elf_generic_reloc, /* special_function */
1423 "R_ARM_PLT32_ABS", /* name */
1424 FALSE, /* partial_inplace */
1425 0xffffffff, /* src_mask */
1426 0xffffffff, /* dst_mask */
1427 FALSE), /* pcrel_offset */
1429 HOWTO (R_ARM_GOT_ABS, /* type */
1430 0, /* rightshift */
1431 2, /* size (0 = byte, 1 = short, 2 = long) */
1432 32, /* bitsize */
1433 FALSE, /* pc_relative */
1434 0, /* bitpos */
1435 complain_overflow_dont,/* complain_on_overflow */
1436 bfd_elf_generic_reloc, /* special_function */
1437 "R_ARM_GOT_ABS", /* name */
1438 FALSE, /* partial_inplace */
1439 0xffffffff, /* src_mask */
1440 0xffffffff, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1443 HOWTO (R_ARM_GOT_PREL, /* type */
1444 0, /* rightshift */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 32, /* bitsize */
1447 TRUE, /* pc_relative */
1448 0, /* bitpos */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 bfd_elf_generic_reloc, /* special_function */
1451 "R_ARM_GOT_PREL", /* name */
1452 FALSE, /* partial_inplace */
1453 0xffffffff, /* src_mask */
1454 0xffffffff, /* dst_mask */
1455 TRUE), /* pcrel_offset */
1457 HOWTO (R_ARM_GOT_BREL12, /* type */
1458 0, /* rightshift */
1459 2, /* size (0 = byte, 1 = short, 2 = long) */
1460 12, /* bitsize */
1461 FALSE, /* pc_relative */
1462 0, /* bitpos */
1463 complain_overflow_bitfield,/* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 "R_ARM_GOT_BREL12", /* name */
1466 FALSE, /* partial_inplace */
1467 0x00000fff, /* src_mask */
1468 0x00000fff, /* dst_mask */
1469 FALSE), /* pcrel_offset */
1471 HOWTO (R_ARM_GOTOFF12, /* type */
1472 0, /* rightshift */
1473 2, /* size (0 = byte, 1 = short, 2 = long) */
1474 12, /* bitsize */
1475 FALSE, /* pc_relative */
1476 0, /* bitpos */
1477 complain_overflow_bitfield,/* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 "R_ARM_GOTOFF12", /* name */
1480 FALSE, /* partial_inplace */
1481 0x00000fff, /* src_mask */
1482 0x00000fff, /* dst_mask */
1483 FALSE), /* pcrel_offset */
1485 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1487 /* GNU extension to record C++ vtable member usage */
1488 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1489 0, /* rightshift */
1490 2, /* size (0 = byte, 1 = short, 2 = long) */
1491 0, /* bitsize */
1492 FALSE, /* pc_relative */
1493 0, /* bitpos */
1494 complain_overflow_dont, /* complain_on_overflow */
1495 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1496 "R_ARM_GNU_VTENTRY", /* name */
1497 FALSE, /* partial_inplace */
1498 0, /* src_mask */
1499 0, /* dst_mask */
1500 FALSE), /* pcrel_offset */
1502 /* GNU extension to record C++ vtable hierarchy */
1503 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1504 0, /* rightshift */
1505 2, /* size (0 = byte, 1 = short, 2 = long) */
1506 0, /* bitsize */
1507 FALSE, /* pc_relative */
1508 0, /* bitpos */
1509 complain_overflow_dont, /* complain_on_overflow */
1510 NULL, /* special_function */
1511 "R_ARM_GNU_VTINHERIT", /* name */
1512 FALSE, /* partial_inplace */
1513 0, /* src_mask */
1514 0, /* dst_mask */
1515 FALSE), /* pcrel_offset */
1517 HOWTO (R_ARM_THM_JUMP11, /* type */
1518 1, /* rightshift */
1519 1, /* size (0 = byte, 1 = short, 2 = long) */
1520 11, /* bitsize */
1521 TRUE, /* pc_relative */
1522 0, /* bitpos */
1523 complain_overflow_signed, /* complain_on_overflow */
1524 bfd_elf_generic_reloc, /* special_function */
1525 "R_ARM_THM_JUMP11", /* name */
1526 FALSE, /* partial_inplace */
1527 0x000007ff, /* src_mask */
1528 0x000007ff, /* dst_mask */
1529 TRUE), /* pcrel_offset */
1531 HOWTO (R_ARM_THM_JUMP8, /* type */
1532 1, /* rightshift */
1533 1, /* size (0 = byte, 1 = short, 2 = long) */
1534 8, /* bitsize */
1535 TRUE, /* pc_relative */
1536 0, /* bitpos */
1537 complain_overflow_signed, /* complain_on_overflow */
1538 bfd_elf_generic_reloc, /* special_function */
1539 "R_ARM_THM_JUMP8", /* name */
1540 FALSE, /* partial_inplace */
1541 0x000000ff, /* src_mask */
1542 0x000000ff, /* dst_mask */
1543 TRUE), /* pcrel_offset */
1545 /* TLS relocations */
1546 HOWTO (R_ARM_TLS_GD32, /* type */
1547 0, /* rightshift */
1548 2, /* size (0 = byte, 1 = short, 2 = long) */
1549 32, /* bitsize */
1550 FALSE, /* pc_relative */
1551 0, /* bitpos */
1552 complain_overflow_bitfield,/* complain_on_overflow */
1553 NULL, /* special_function */
1554 "R_ARM_TLS_GD32", /* name */
1555 TRUE, /* partial_inplace */
1556 0xffffffff, /* src_mask */
1557 0xffffffff, /* dst_mask */
1558 FALSE), /* pcrel_offset */
1560 HOWTO (R_ARM_TLS_LDM32, /* type */
1561 0, /* rightshift */
1562 2, /* size (0 = byte, 1 = short, 2 = long) */
1563 32, /* bitsize */
1564 FALSE, /* pc_relative */
1565 0, /* bitpos */
1566 complain_overflow_bitfield,/* complain_on_overflow */
1567 bfd_elf_generic_reloc, /* special_function */
1568 "R_ARM_TLS_LDM32", /* name */
1569 TRUE, /* partial_inplace */
1570 0xffffffff, /* src_mask */
1571 0xffffffff, /* dst_mask */
1572 FALSE), /* pcrel_offset */
1574 HOWTO (R_ARM_TLS_LDO32, /* type */
1575 0, /* rightshift */
1576 2, /* size (0 = byte, 1 = short, 2 = long) */
1577 32, /* bitsize */
1578 FALSE, /* pc_relative */
1579 0, /* bitpos */
1580 complain_overflow_bitfield,/* complain_on_overflow */
1581 bfd_elf_generic_reloc, /* special_function */
1582 "R_ARM_TLS_LDO32", /* name */
1583 TRUE, /* partial_inplace */
1584 0xffffffff, /* src_mask */
1585 0xffffffff, /* dst_mask */
1586 FALSE), /* pcrel_offset */
1588 HOWTO (R_ARM_TLS_IE32, /* type */
1589 0, /* rightshift */
1590 2, /* size (0 = byte, 1 = short, 2 = long) */
1591 32, /* bitsize */
1592 FALSE, /* pc_relative */
1593 0, /* bitpos */
1594 complain_overflow_bitfield,/* complain_on_overflow */
1595 NULL, /* special_function */
1596 "R_ARM_TLS_IE32", /* name */
1597 TRUE, /* partial_inplace */
1598 0xffffffff, /* src_mask */
1599 0xffffffff, /* dst_mask */
1600 FALSE), /* pcrel_offset */
1602 HOWTO (R_ARM_TLS_LE32, /* type */
1603 0, /* rightshift */
1604 2, /* size (0 = byte, 1 = short, 2 = long) */
1605 32, /* bitsize */
1606 FALSE, /* pc_relative */
1607 0, /* bitpos */
1608 complain_overflow_bitfield,/* complain_on_overflow */
1609 bfd_elf_generic_reloc, /* special_function */
1610 "R_ARM_TLS_LE32", /* name */
1611 TRUE, /* partial_inplace */
1612 0xffffffff, /* src_mask */
1613 0xffffffff, /* dst_mask */
1614 FALSE), /* pcrel_offset */
1616 HOWTO (R_ARM_TLS_LDO12, /* type */
1617 0, /* rightshift */
1618 2, /* size (0 = byte, 1 = short, 2 = long) */
1619 12, /* bitsize */
1620 FALSE, /* pc_relative */
1621 0, /* bitpos */
1622 complain_overflow_bitfield,/* complain_on_overflow */
1623 bfd_elf_generic_reloc, /* special_function */
1624 "R_ARM_TLS_LDO12", /* name */
1625 FALSE, /* partial_inplace */
1626 0x00000fff, /* src_mask */
1627 0x00000fff, /* dst_mask */
1628 FALSE), /* pcrel_offset */
1630 HOWTO (R_ARM_TLS_LE12, /* type */
1631 0, /* rightshift */
1632 2, /* size (0 = byte, 1 = short, 2 = long) */
1633 12, /* bitsize */
1634 FALSE, /* pc_relative */
1635 0, /* bitpos */
1636 complain_overflow_bitfield,/* complain_on_overflow */
1637 bfd_elf_generic_reloc, /* special_function */
1638 "R_ARM_TLS_LE12", /* name */
1639 FALSE, /* partial_inplace */
1640 0x00000fff, /* src_mask */
1641 0x00000fff, /* dst_mask */
1642 FALSE), /* pcrel_offset */
1644 HOWTO (R_ARM_TLS_IE12GP, /* type */
1645 0, /* rightshift */
1646 2, /* size (0 = byte, 1 = short, 2 = long) */
1647 12, /* bitsize */
1648 FALSE, /* pc_relative */
1649 0, /* bitpos */
1650 complain_overflow_bitfield,/* complain_on_overflow */
1651 bfd_elf_generic_reloc, /* special_function */
1652 "R_ARM_TLS_IE12GP", /* name */
1653 FALSE, /* partial_inplace */
1654 0x00000fff, /* src_mask */
1655 0x00000fff, /* dst_mask */
1656 FALSE), /* pcrel_offset */
1658 /* 112-127 private relocations. */
1659 EMPTY_HOWTO (112),
1660 EMPTY_HOWTO (113),
1661 EMPTY_HOWTO (114),
1662 EMPTY_HOWTO (115),
1663 EMPTY_HOWTO (116),
1664 EMPTY_HOWTO (117),
1665 EMPTY_HOWTO (118),
1666 EMPTY_HOWTO (119),
1667 EMPTY_HOWTO (120),
1668 EMPTY_HOWTO (121),
1669 EMPTY_HOWTO (122),
1670 EMPTY_HOWTO (123),
1671 EMPTY_HOWTO (124),
1672 EMPTY_HOWTO (125),
1673 EMPTY_HOWTO (126),
1674 EMPTY_HOWTO (127),
1676 /* R_ARM_ME_TOO, obsolete. */
1677 EMPTY_HOWTO (128),
1679 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1680 0, /* rightshift */
1681 1, /* size (0 = byte, 1 = short, 2 = long) */
1682 0, /* bitsize */
1683 FALSE, /* pc_relative */
1684 0, /* bitpos */
1685 complain_overflow_bitfield,/* complain_on_overflow */
1686 bfd_elf_generic_reloc, /* special_function */
1687 "R_ARM_THM_TLS_DESCSEQ",/* name */
1688 FALSE, /* partial_inplace */
1689 0x00000000, /* src_mask */
1690 0x00000000, /* dst_mask */
1691 FALSE), /* pcrel_offset */
1694 /* 160 onwards: */
1695 static reloc_howto_type elf32_arm_howto_table_2[1] =
1697 HOWTO (R_ARM_IRELATIVE, /* type */
1698 0, /* rightshift */
1699 2, /* size (0 = byte, 1 = short, 2 = long) */
1700 32, /* bitsize */
1701 FALSE, /* pc_relative */
1702 0, /* bitpos */
1703 complain_overflow_bitfield,/* complain_on_overflow */
1704 bfd_elf_generic_reloc, /* special_function */
1705 "R_ARM_IRELATIVE", /* name */
1706 TRUE, /* partial_inplace */
1707 0xffffffff, /* src_mask */
1708 0xffffffff, /* dst_mask */
1709 FALSE) /* pcrel_offset */
1712 /* 249-255 extended, currently unused, relocations: */
1713 static reloc_howto_type elf32_arm_howto_table_3[4] =
1715 HOWTO (R_ARM_RREL32, /* type */
1716 0, /* rightshift */
1717 0, /* size (0 = byte, 1 = short, 2 = long) */
1718 0, /* bitsize */
1719 FALSE, /* pc_relative */
1720 0, /* bitpos */
1721 complain_overflow_dont,/* complain_on_overflow */
1722 bfd_elf_generic_reloc, /* special_function */
1723 "R_ARM_RREL32", /* name */
1724 FALSE, /* partial_inplace */
1725 0, /* src_mask */
1726 0, /* dst_mask */
1727 FALSE), /* pcrel_offset */
1729 HOWTO (R_ARM_RABS32, /* type */
1730 0, /* rightshift */
1731 0, /* size (0 = byte, 1 = short, 2 = long) */
1732 0, /* bitsize */
1733 FALSE, /* pc_relative */
1734 0, /* bitpos */
1735 complain_overflow_dont,/* complain_on_overflow */
1736 bfd_elf_generic_reloc, /* special_function */
1737 "R_ARM_RABS32", /* name */
1738 FALSE, /* partial_inplace */
1739 0, /* src_mask */
1740 0, /* dst_mask */
1741 FALSE), /* pcrel_offset */
1743 HOWTO (R_ARM_RPC24, /* type */
1744 0, /* rightshift */
1745 0, /* size (0 = byte, 1 = short, 2 = long) */
1746 0, /* bitsize */
1747 FALSE, /* pc_relative */
1748 0, /* bitpos */
1749 complain_overflow_dont,/* complain_on_overflow */
1750 bfd_elf_generic_reloc, /* special_function */
1751 "R_ARM_RPC24", /* name */
1752 FALSE, /* partial_inplace */
1753 0, /* src_mask */
1754 0, /* dst_mask */
1755 FALSE), /* pcrel_offset */
1757 HOWTO (R_ARM_RBASE, /* type */
1758 0, /* rightshift */
1759 0, /* size (0 = byte, 1 = short, 2 = long) */
1760 0, /* bitsize */
1761 FALSE, /* pc_relative */
1762 0, /* bitpos */
1763 complain_overflow_dont,/* complain_on_overflow */
1764 bfd_elf_generic_reloc, /* special_function */
1765 "R_ARM_RBASE", /* name */
1766 FALSE, /* partial_inplace */
1767 0, /* src_mask */
1768 0, /* dst_mask */
1769 FALSE) /* pcrel_offset */
1772 static reloc_howto_type *
1773 elf32_arm_howto_from_type (unsigned int r_type)
1775 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1776 return &elf32_arm_howto_table_1[r_type];
1778 if (r_type == R_ARM_IRELATIVE)
1779 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1781 if (r_type >= R_ARM_RREL32
1782 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1783 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
1785 return NULL;
1788 static void
1789 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1790 Elf_Internal_Rela * elf_reloc)
1792 unsigned int r_type;
1794 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1795 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1798 struct elf32_arm_reloc_map
1800 bfd_reloc_code_real_type bfd_reloc_val;
1801 unsigned char elf_reloc_val;
1804 /* All entries in this list must also be present in elf32_arm_howto_table. */
1805 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1807 {BFD_RELOC_NONE, R_ARM_NONE},
1808 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1809 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1810 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1811 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1812 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1813 {BFD_RELOC_32, R_ARM_ABS32},
1814 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1815 {BFD_RELOC_8, R_ARM_ABS8},
1816 {BFD_RELOC_16, R_ARM_ABS16},
1817 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1818 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1819 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1820 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1821 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1822 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1823 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1824 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1825 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1826 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1827 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1828 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1829 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1830 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
1831 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1832 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1833 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1834 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1835 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1836 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1837 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1838 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1839 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
1840 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
1841 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
1842 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
1843 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
1844 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
1845 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1846 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1847 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1848 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1849 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1850 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1851 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1852 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1853 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
1854 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1855 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1856 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1857 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1858 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1859 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1860 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1861 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1862 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1863 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1864 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1865 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1866 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1867 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1868 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1869 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1870 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1871 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1872 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1873 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1874 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1875 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1876 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1877 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1878 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1879 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1880 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1881 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1882 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1883 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1884 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1885 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1886 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1887 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1888 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1889 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1890 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1891 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1892 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
1895 static reloc_howto_type *
1896 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1897 bfd_reloc_code_real_type code)
1899 unsigned int i;
1901 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1902 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1903 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1905 return NULL;
1908 static reloc_howto_type *
1909 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1910 const char *r_name)
1912 unsigned int i;
1914 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1915 if (elf32_arm_howto_table_1[i].name != NULL
1916 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1917 return &elf32_arm_howto_table_1[i];
1919 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1920 if (elf32_arm_howto_table_2[i].name != NULL
1921 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1922 return &elf32_arm_howto_table_2[i];
1924 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
1925 if (elf32_arm_howto_table_3[i].name != NULL
1926 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
1927 return &elf32_arm_howto_table_3[i];
1929 return NULL;
1932 /* Support for core dump NOTE sections. */
1934 static bfd_boolean
1935 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1937 int offset;
1938 size_t size;
1940 switch (note->descsz)
1942 default:
1943 return FALSE;
1945 case 148: /* Linux/ARM 32-bit. */
1946 /* pr_cursig */
1947 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1949 /* pr_pid */
1950 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
1952 /* pr_reg */
1953 offset = 72;
1954 size = 72;
1956 break;
1959 /* Make a ".reg/999" section. */
1960 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1961 size, note->descpos + offset);
1964 static bfd_boolean
1965 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1967 switch (note->descsz)
1969 default:
1970 return FALSE;
1972 case 124: /* Linux/ARM elf_prpsinfo. */
1973 elf_tdata (abfd)->core->pid
1974 = bfd_get_32 (abfd, note->descdata + 12);
1975 elf_tdata (abfd)->core->program
1976 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1977 elf_tdata (abfd)->core->command
1978 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1981 /* Note that for some reason, a spurious space is tacked
1982 onto the end of the args in some (at least one anyway)
1983 implementations, so strip it off if it exists. */
1985 char *command = elf_tdata (abfd)->core->command;
1986 int n = strlen (command);
1988 if (0 < n && command[n - 1] == ' ')
1989 command[n - 1] = '\0';
1992 return TRUE;
1995 static char *
1996 elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
1997 int note_type, ...)
1999 switch (note_type)
2001 default:
2002 return NULL;
2004 case NT_PRPSINFO:
2006 char data[124];
2007 va_list ap;
2009 va_start (ap, note_type);
2010 memset (data, 0, sizeof (data));
2011 strncpy (data + 28, va_arg (ap, const char *), 16);
2012 strncpy (data + 44, va_arg (ap, const char *), 80);
2013 va_end (ap);
2015 return elfcore_write_note (abfd, buf, bufsiz,
2016 "CORE", note_type, data, sizeof (data));
2019 case NT_PRSTATUS:
2021 char data[148];
2022 va_list ap;
2023 long pid;
2024 int cursig;
2025 const void *greg;
2027 va_start (ap, note_type);
2028 memset (data, 0, sizeof (data));
2029 pid = va_arg (ap, long);
2030 bfd_put_32 (abfd, pid, data + 24);
2031 cursig = va_arg (ap, int);
2032 bfd_put_16 (abfd, cursig, data + 12);
2033 greg = va_arg (ap, const void *);
2034 memcpy (data + 72, greg, 72);
2035 va_end (ap);
2037 return elfcore_write_note (abfd, buf, bufsiz,
2038 "CORE", note_type, data, sizeof (data));
2043 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
2044 #define TARGET_LITTLE_NAME "elf32-littlearm"
2045 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
2046 #define TARGET_BIG_NAME "elf32-bigarm"
2048 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2049 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
2050 #define elf_backend_write_core_note elf32_arm_nabi_write_core_note
2052 typedef unsigned long int insn32;
2053 typedef unsigned short int insn16;
2055 /* In lieu of proper flags, assume all EABIv4 or later objects are
2056 interworkable. */
2057 #define INTERWORK_FLAG(abfd) \
2058 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
2059 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2060 || ((abfd)->flags & BFD_LINKER_CREATED))
2062 /* The linker script knows the section names for placement.
2063 The entry_names are used to do simple name mangling on the stubs.
2064 Given a function name, and its type, the stub can be found. The
2065 name can be changed. The only requirement is the %s be present. */
2066 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2067 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2069 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2070 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2072 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2073 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2075 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2076 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2078 #define STUB_ENTRY_NAME "__%s_veneer"
2080 /* The name of the dynamic interpreter. This is put in the .interp
2081 section. */
2082 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2084 static const unsigned long tls_trampoline [] =
2086 0xe08e0000, /* add r0, lr, r0 */
2087 0xe5901004, /* ldr r1, [r0,#4] */
2088 0xe12fff11, /* bx r1 */
2091 static const unsigned long dl_tlsdesc_lazy_trampoline [] =
2093 0xe52d2004, /* push {r2} */
2094 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2095 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2096 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2097 0xe081100f, /* 2: add r1, pc */
2098 0xe12fff12, /* bx r2 */
2099 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
2100 + dl_tlsdesc_lazy_resolver(GOT) */
2101 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2104 #ifdef FOUR_WORD_PLT
2106 /* The first entry in a procedure linkage table looks like
2107 this. It is set up so that any shared library function that is
2108 called before the relocation has been set up calls the dynamic
2109 linker first. */
2110 static const bfd_vma elf32_arm_plt0_entry [] =
2112 0xe52de004, /* str lr, [sp, #-4]! */
2113 0xe59fe010, /* ldr lr, [pc, #16] */
2114 0xe08fe00e, /* add lr, pc, lr */
2115 0xe5bef008, /* ldr pc, [lr, #8]! */
2118 /* Subsequent entries in a procedure linkage table look like
2119 this. */
2120 static const bfd_vma elf32_arm_plt_entry [] =
2122 0xe28fc600, /* add ip, pc, #NN */
2123 0xe28cca00, /* add ip, ip, #NN */
2124 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2125 0x00000000, /* unused */
2128 #else
2130 /* The first entry in a procedure linkage table looks like
2131 this. It is set up so that any shared library function that is
2132 called before the relocation has been set up calls the dynamic
2133 linker first. */
2134 static const bfd_vma elf32_arm_plt0_entry [] =
2136 0xe52de004, /* str lr, [sp, #-4]! */
2137 0xe59fe004, /* ldr lr, [pc, #4] */
2138 0xe08fe00e, /* add lr, pc, lr */
2139 0xe5bef008, /* ldr pc, [lr, #8]! */
2140 0x00000000, /* &GOT[0] - . */
2143 /* Subsequent entries in a procedure linkage table look like
2144 this. */
2145 static const bfd_vma elf32_arm_plt_entry [] =
2147 0xe28fc600, /* add ip, pc, #0xNN00000 */
2148 0xe28cca00, /* add ip, ip, #0xNN000 */
2149 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2152 #endif
2154 /* The format of the first entry in the procedure linkage table
2155 for a VxWorks executable. */
2156 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
2158 0xe52dc008, /* str ip,[sp,#-8]! */
2159 0xe59fc000, /* ldr ip,[pc] */
2160 0xe59cf008, /* ldr pc,[ip,#8] */
2161 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2164 /* The format of subsequent entries in a VxWorks executable. */
2165 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
2167 0xe59fc000, /* ldr ip,[pc] */
2168 0xe59cf000, /* ldr pc,[ip] */
2169 0x00000000, /* .long @got */
2170 0xe59fc000, /* ldr ip,[pc] */
2171 0xea000000, /* b _PLT */
2172 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2175 /* The format of entries in a VxWorks shared library. */
2176 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
2178 0xe59fc000, /* ldr ip,[pc] */
2179 0xe79cf009, /* ldr pc,[ip,r9] */
2180 0x00000000, /* .long @got */
2181 0xe59fc000, /* ldr ip,[pc] */
2182 0xe599f008, /* ldr pc,[r9,#8] */
2183 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2186 /* An initial stub used if the PLT entry is referenced from Thumb code. */
2187 #define PLT_THUMB_STUB_SIZE 4
2188 static const bfd_vma elf32_arm_plt_thumb_stub [] =
2190 0x4778, /* bx pc */
2191 0x46c0 /* nop */
2194 /* The entries in a PLT when using a DLL-based target with multiple
2195 address spaces. */
2196 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2198 0xe51ff004, /* ldr pc, [pc, #-4] */
2199 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2202 /* The first entry in a procedure linkage table looks like
2203 this. It is set up so that any shared library function that is
2204 called before the relocation has been set up calls the dynamic
2205 linker first. */
2206 static const bfd_vma elf32_arm_nacl_plt0_entry [] =
2208 /* First bundle: */
2209 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2210 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2211 0xe08cc00f, /* add ip, ip, pc */
2212 0xe52dc008, /* str ip, [sp, #-8]! */
2213 /* Second bundle: */
2214 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2215 0xe59cc000, /* ldr ip, [ip] */
2216 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2217 0xe12fff1c, /* bx ip */
2218 /* Third bundle: */
2219 0xe320f000, /* nop */
2220 0xe320f000, /* nop */
2221 0xe320f000, /* nop */
2222 /* .Lplt_tail: */
2223 0xe50dc004, /* str ip, [sp, #-4] */
2224 /* Fourth bundle: */
2225 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2226 0xe59cc000, /* ldr ip, [ip] */
2227 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2228 0xe12fff1c, /* bx ip */
2230 #define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2232 /* Subsequent entries in a procedure linkage table look like this. */
2233 static const bfd_vma elf32_arm_nacl_plt_entry [] =
2235 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2236 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2237 0xe08cc00f, /* add ip, ip, pc */
2238 0xea000000, /* b .Lplt_tail */
2241 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2242 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2243 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2244 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2245 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2246 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2248 enum stub_insn_type
2250 THUMB16_TYPE = 1,
2251 THUMB32_TYPE,
2252 ARM_TYPE,
2253 DATA_TYPE
2256 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2257 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2258 is inserted in arm_build_one_stub(). */
2259 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2260 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2261 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2262 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2263 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2264 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2266 typedef struct
2268 bfd_vma data;
2269 enum stub_insn_type type;
2270 unsigned int r_type;
2271 int reloc_addend;
2272 } insn_sequence;
2274 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2275 to reach the stub if necessary. */
2276 static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2278 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2279 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2282 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2283 available. */
2284 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2286 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2287 ARM_INSN (0xe12fff1c), /* bx ip */
2288 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2291 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2292 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2294 THUMB16_INSN (0xb401), /* push {r0} */
2295 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2296 THUMB16_INSN (0x4684), /* mov ip, r0 */
2297 THUMB16_INSN (0xbc01), /* pop {r0} */
2298 THUMB16_INSN (0x4760), /* bx ip */
2299 THUMB16_INSN (0xbf00), /* nop */
2300 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2303 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2304 allowed. */
2305 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2307 THUMB16_INSN (0x4778), /* bx pc */
2308 THUMB16_INSN (0x46c0), /* nop */
2309 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2310 ARM_INSN (0xe12fff1c), /* bx ip */
2311 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2314 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2315 available. */
2316 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2318 THUMB16_INSN (0x4778), /* bx pc */
2319 THUMB16_INSN (0x46c0), /* nop */
2320 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2321 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2324 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2325 one, when the destination is close enough. */
2326 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2328 THUMB16_INSN (0x4778), /* bx pc */
2329 THUMB16_INSN (0x46c0), /* nop */
2330 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2333 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2334 blx to reach the stub if necessary. */
2335 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2337 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2338 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
2339 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2342 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2343 blx to reach the stub if necessary. We can not add into pc;
2344 it is not guaranteed to mode switch (different in ARMv6 and
2345 ARMv7). */
2346 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2348 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2349 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2350 ARM_INSN (0xe12fff1c), /* bx ip */
2351 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2354 /* V4T ARM -> ARM long branch stub, PIC. */
2355 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2357 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2358 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2359 ARM_INSN (0xe12fff1c), /* bx ip */
2360 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2363 /* V4T Thumb -> ARM long branch stub, PIC. */
2364 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2366 THUMB16_INSN (0x4778), /* bx pc */
2367 THUMB16_INSN (0x46c0), /* nop */
2368 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2369 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
2370 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2373 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2374 architectures. */
2375 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2377 THUMB16_INSN (0xb401), /* push {r0} */
2378 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2379 THUMB16_INSN (0x46fc), /* mov ip, pc */
2380 THUMB16_INSN (0x4484), /* add ip, r0 */
2381 THUMB16_INSN (0xbc01), /* pop {r0} */
2382 THUMB16_INSN (0x4760), /* bx ip */
2383 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2386 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2387 allowed. */
2388 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2390 THUMB16_INSN (0x4778), /* bx pc */
2391 THUMB16_INSN (0x46c0), /* nop */
2392 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2393 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2394 ARM_INSN (0xe12fff1c), /* bx ip */
2395 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2398 /* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2399 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2400 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2402 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2403 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
2404 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2407 /* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2408 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2409 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2411 THUMB16_INSN (0x4778), /* bx pc */
2412 THUMB16_INSN (0x46c0), /* nop */
2413 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2414 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
2415 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2418 /* NaCl ARM -> ARM long branch stub. */
2419 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] =
2421 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2422 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2423 ARM_INSN (0xe12fff1c), /* bx ip */
2424 ARM_INSN (0xe320f000), /* nop */
2425 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2426 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2427 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2428 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2431 /* NaCl ARM -> ARM long branch stub, PIC. */
2432 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] =
2434 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2435 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */
2436 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2437 ARM_INSN (0xe12fff1c), /* bx ip */
2438 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2439 DATA_WORD (0, R_ARM_REL32, 8), /* dcd R_ARM_REL32(X+8) */
2440 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2441 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2445 /* Cortex-A8 erratum-workaround stubs. */
2447 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2448 can't use a conditional branch to reach this stub). */
2450 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2452 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
2453 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2454 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2457 /* Stub used for b.w and bl.w instructions. */
2459 static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2461 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2464 static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2466 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2469 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2470 instruction (which switches to ARM mode) to point to this stub. Jump to the
2471 real destination using an ARM-mode branch. */
2473 static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2475 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2478 /* For each section group there can be a specially created linker section
2479 to hold the stubs for that group. The name of the stub section is based
2480 upon the name of another section within that group with the suffix below
2481 applied.
2483 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2484 create what appeared to be a linker stub section when it actually
2485 contained user code/data. For example, consider this fragment:
2487 const char * stubborn_problems[] = { "np" };
2489 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2490 section called:
2492 .data.rel.local.stubborn_problems
2494 This then causes problems in arm32_arm_build_stubs() as it triggers:
2496 // Ignore non-stub sections.
2497 if (!strstr (stub_sec->name, STUB_SUFFIX))
2498 continue;
2500 And so the section would be ignored instead of being processed. Hence
2501 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2502 C identifier. */
2503 #define STUB_SUFFIX ".__stub"
2505 /* One entry per long/short branch stub defined above. */
2506 #define DEF_STUBS \
2507 DEF_STUB(long_branch_any_any) \
2508 DEF_STUB(long_branch_v4t_arm_thumb) \
2509 DEF_STUB(long_branch_thumb_only) \
2510 DEF_STUB(long_branch_v4t_thumb_thumb) \
2511 DEF_STUB(long_branch_v4t_thumb_arm) \
2512 DEF_STUB(short_branch_v4t_thumb_arm) \
2513 DEF_STUB(long_branch_any_arm_pic) \
2514 DEF_STUB(long_branch_any_thumb_pic) \
2515 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2516 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2517 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2518 DEF_STUB(long_branch_thumb_only_pic) \
2519 DEF_STUB(long_branch_any_tls_pic) \
2520 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
2521 DEF_STUB(long_branch_arm_nacl) \
2522 DEF_STUB(long_branch_arm_nacl_pic) \
2523 DEF_STUB(a8_veneer_b_cond) \
2524 DEF_STUB(a8_veneer_b) \
2525 DEF_STUB(a8_veneer_bl) \
2526 DEF_STUB(a8_veneer_blx)
2528 #define DEF_STUB(x) arm_stub_##x,
2529 enum elf32_arm_stub_type
2531 arm_stub_none,
2532 DEF_STUBS
2533 /* Note the first a8_veneer type */
2534 arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond
2536 #undef DEF_STUB
2538 typedef struct
2540 const insn_sequence* template_sequence;
2541 int template_size;
2542 } stub_def;
2544 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2545 static const stub_def stub_definitions[] =
2547 {NULL, 0},
2548 DEF_STUBS
2551 struct elf32_arm_stub_hash_entry
2553 /* Base hash table entry structure. */
2554 struct bfd_hash_entry root;
2556 /* The stub section. */
2557 asection *stub_sec;
2559 /* Offset within stub_sec of the beginning of this stub. */
2560 bfd_vma stub_offset;
2562 /* Given the symbol's value and its section we can determine its final
2563 value when building the stubs (so the stub knows where to jump). */
2564 bfd_vma target_value;
2565 asection *target_section;
2567 /* Offset to apply to relocation referencing target_value. */
2568 bfd_vma target_addend;
2570 /* The instruction which caused this stub to be generated (only valid for
2571 Cortex-A8 erratum workaround stubs at present). */
2572 unsigned long orig_insn;
2574 /* The stub type. */
2575 enum elf32_arm_stub_type stub_type;
2576 /* Its encoding size in bytes. */
2577 int stub_size;
2578 /* Its template. */
2579 const insn_sequence *stub_template;
2580 /* The size of the template (number of entries). */
2581 int stub_template_size;
2583 /* The symbol table entry, if any, that this was derived from. */
2584 struct elf32_arm_link_hash_entry *h;
2586 /* Type of branch. */
2587 enum arm_st_branch_type branch_type;
2589 /* Where this stub is being called from, or, in the case of combined
2590 stub sections, the first input section in the group. */
2591 asection *id_sec;
2593 /* The name for the local symbol at the start of this stub. The
2594 stub name in the hash table has to be unique; this does not, so
2595 it can be friendlier. */
2596 char *output_name;
2599 /* Used to build a map of a section. This is required for mixed-endian
2600 code/data. */
2602 typedef struct elf32_elf_section_map
2604 bfd_vma vma;
2605 char type;
2607 elf32_arm_section_map;
2609 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2611 typedef enum
2613 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2614 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2615 VFP11_ERRATUM_ARM_VENEER,
2616 VFP11_ERRATUM_THUMB_VENEER
2618 elf32_vfp11_erratum_type;
2620 typedef struct elf32_vfp11_erratum_list
2622 struct elf32_vfp11_erratum_list *next;
2623 bfd_vma vma;
2624 union
2626 struct
2628 struct elf32_vfp11_erratum_list *veneer;
2629 unsigned int vfp_insn;
2630 } b;
2631 struct
2633 struct elf32_vfp11_erratum_list *branch;
2634 unsigned int id;
2635 } v;
2636 } u;
2637 elf32_vfp11_erratum_type type;
2639 elf32_vfp11_erratum_list;
2641 typedef enum
2643 DELETE_EXIDX_ENTRY,
2644 INSERT_EXIDX_CANTUNWIND_AT_END
2646 arm_unwind_edit_type;
2648 /* A (sorted) list of edits to apply to an unwind table. */
2649 typedef struct arm_unwind_table_edit
2651 arm_unwind_edit_type type;
2652 /* Note: we sometimes want to insert an unwind entry corresponding to a
2653 section different from the one we're currently writing out, so record the
2654 (text) section this edit relates to here. */
2655 asection *linked_section;
2656 unsigned int index;
2657 struct arm_unwind_table_edit *next;
2659 arm_unwind_table_edit;
2661 typedef struct _arm_elf_section_data
2663 /* Information about mapping symbols. */
2664 struct bfd_elf_section_data elf;
2665 unsigned int mapcount;
2666 unsigned int mapsize;
2667 elf32_arm_section_map *map;
2668 /* Information about CPU errata. */
2669 unsigned int erratumcount;
2670 elf32_vfp11_erratum_list *erratumlist;
2671 /* Information about unwind tables. */
2672 union
2674 /* Unwind info attached to a text section. */
2675 struct
2677 asection *arm_exidx_sec;
2678 } text;
2680 /* Unwind info attached to an .ARM.exidx section. */
2681 struct
2683 arm_unwind_table_edit *unwind_edit_list;
2684 arm_unwind_table_edit *unwind_edit_tail;
2685 } exidx;
2686 } u;
2688 _arm_elf_section_data;
2690 #define elf32_arm_section_data(sec) \
2691 ((_arm_elf_section_data *) elf_section_data (sec))
2693 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2694 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2695 so may be created multiple times: we use an array of these entries whilst
2696 relaxing which we can refresh easily, then create stubs for each potentially
2697 erratum-triggering instruction once we've settled on a solution. */
2699 struct a8_erratum_fix
2701 bfd *input_bfd;
2702 asection *section;
2703 bfd_vma offset;
2704 bfd_vma addend;
2705 unsigned long orig_insn;
2706 char *stub_name;
2707 enum elf32_arm_stub_type stub_type;
2708 enum arm_st_branch_type branch_type;
2711 /* A table of relocs applied to branches which might trigger Cortex-A8
2712 erratum. */
2714 struct a8_erratum_reloc
2716 bfd_vma from;
2717 bfd_vma destination;
2718 struct elf32_arm_link_hash_entry *hash;
2719 const char *sym_name;
2720 unsigned int r_type;
2721 enum arm_st_branch_type branch_type;
2722 bfd_boolean non_a8_stub;
2725 /* The size of the thread control block. */
2726 #define TCB_SIZE 8
2728 /* ARM-specific information about a PLT entry, over and above the usual
2729 gotplt_union. */
2730 struct arm_plt_info
2732 /* We reference count Thumb references to a PLT entry separately,
2733 so that we can emit the Thumb trampoline only if needed. */
2734 bfd_signed_vma thumb_refcount;
2736 /* Some references from Thumb code may be eliminated by BL->BLX
2737 conversion, so record them separately. */
2738 bfd_signed_vma maybe_thumb_refcount;
2740 /* How many of the recorded PLT accesses were from non-call relocations.
2741 This information is useful when deciding whether anything takes the
2742 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
2743 non-call references to the function should resolve directly to the
2744 real runtime target. */
2745 unsigned int noncall_refcount;
2747 /* Since PLT entries have variable size if the Thumb prologue is
2748 used, we need to record the index into .got.plt instead of
2749 recomputing it from the PLT offset. */
2750 bfd_signed_vma got_offset;
2753 /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
2754 struct arm_local_iplt_info
2756 /* The information that is usually found in the generic ELF part of
2757 the hash table entry. */
2758 union gotplt_union root;
2760 /* The information that is usually found in the ARM-specific part of
2761 the hash table entry. */
2762 struct arm_plt_info arm;
2764 /* A list of all potential dynamic relocations against this symbol. */
2765 struct elf_dyn_relocs *dyn_relocs;
2768 struct elf_arm_obj_tdata
2770 struct elf_obj_tdata root;
2772 /* tls_type for each local got entry. */
2773 char *local_got_tls_type;
2775 /* GOTPLT entries for TLS descriptors. */
2776 bfd_vma *local_tlsdesc_gotent;
2778 /* Information for local symbols that need entries in .iplt. */
2779 struct arm_local_iplt_info **local_iplt;
2781 /* Zero to warn when linking objects with incompatible enum sizes. */
2782 int no_enum_size_warning;
2784 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2785 int no_wchar_size_warning;
2788 #define elf_arm_tdata(bfd) \
2789 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2791 #define elf32_arm_local_got_tls_type(bfd) \
2792 (elf_arm_tdata (bfd)->local_got_tls_type)
2794 #define elf32_arm_local_tlsdesc_gotent(bfd) \
2795 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
2797 #define elf32_arm_local_iplt(bfd) \
2798 (elf_arm_tdata (bfd)->local_iplt)
2800 #define is_arm_elf(bfd) \
2801 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2802 && elf_tdata (bfd) != NULL \
2803 && elf_object_id (bfd) == ARM_ELF_DATA)
2805 static bfd_boolean
2806 elf32_arm_mkobject (bfd *abfd)
2808 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2809 ARM_ELF_DATA);
2812 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2814 /* Arm ELF linker hash entry. */
2815 struct elf32_arm_link_hash_entry
2817 struct elf_link_hash_entry root;
2819 /* Track dynamic relocs copied for this symbol. */
2820 struct elf_dyn_relocs *dyn_relocs;
2822 /* ARM-specific PLT information. */
2823 struct arm_plt_info plt;
2825 #define GOT_UNKNOWN 0
2826 #define GOT_NORMAL 1
2827 #define GOT_TLS_GD 2
2828 #define GOT_TLS_IE 4
2829 #define GOT_TLS_GDESC 8
2830 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
2831 unsigned int tls_type : 8;
2833 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
2834 unsigned int is_iplt : 1;
2836 unsigned int unused : 23;
2838 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
2839 starting at the end of the jump table. */
2840 bfd_vma tlsdesc_got;
2842 /* The symbol marking the real symbol location for exported thumb
2843 symbols with Arm stubs. */
2844 struct elf_link_hash_entry *export_glue;
2846 /* A pointer to the most recently used stub hash entry against this
2847 symbol. */
2848 struct elf32_arm_stub_hash_entry *stub_cache;
2851 /* Traverse an arm ELF linker hash table. */
2852 #define elf32_arm_link_hash_traverse(table, func, info) \
2853 (elf_link_hash_traverse \
2854 (&(table)->root, \
2855 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2856 (info)))
2858 /* Get the ARM elf linker hash table from a link_info structure. */
2859 #define elf32_arm_hash_table(info) \
2860 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
2861 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
2863 #define arm_stub_hash_lookup(table, string, create, copy) \
2864 ((struct elf32_arm_stub_hash_entry *) \
2865 bfd_hash_lookup ((table), (string), (create), (copy)))
2867 /* Array to keep track of which stub sections have been created, and
2868 information on stub grouping. */
2869 struct map_stub
2871 /* This is the section to which stubs in the group will be
2872 attached. */
2873 asection *link_sec;
2874 /* The stub section. */
2875 asection *stub_sec;
2878 #define elf32_arm_compute_jump_table_size(htab) \
2879 ((htab)->next_tls_desc_index * 4)
2881 /* ARM ELF linker hash table. */
2882 struct elf32_arm_link_hash_table
2884 /* The main hash table. */
2885 struct elf_link_hash_table root;
2887 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2888 bfd_size_type thumb_glue_size;
2890 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2891 bfd_size_type arm_glue_size;
2893 /* The size in bytes of section containing the ARMv4 BX veneers. */
2894 bfd_size_type bx_glue_size;
2896 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2897 veneer has been populated. */
2898 bfd_vma bx_glue_offset[15];
2900 /* The size in bytes of the section containing glue for VFP11 erratum
2901 veneers. */
2902 bfd_size_type vfp11_erratum_glue_size;
2904 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
2905 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
2906 elf32_arm_write_section(). */
2907 struct a8_erratum_fix *a8_erratum_fixes;
2908 unsigned int num_a8_erratum_fixes;
2910 /* An arbitrary input BFD chosen to hold the glue sections. */
2911 bfd * bfd_of_glue_owner;
2913 /* Nonzero to output a BE8 image. */
2914 int byteswap_code;
2916 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2917 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2918 int target1_is_rel;
2920 /* The relocation to use for R_ARM_TARGET2 relocations. */
2921 int target2_reloc;
2923 /* 0 = Ignore R_ARM_V4BX.
2924 1 = Convert BX to MOV PC.
2925 2 = Generate v4 interworing stubs. */
2926 int fix_v4bx;
2928 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
2929 int fix_cortex_a8;
2931 /* Whether we should fix the ARM1176 BLX immediate issue. */
2932 int fix_arm1176;
2934 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2935 int use_blx;
2937 /* What sort of code sequences we should look for which may trigger the
2938 VFP11 denorm erratum. */
2939 bfd_arm_vfp11_fix vfp11_fix;
2941 /* Global counter for the number of fixes we have emitted. */
2942 int num_vfp11_fixes;
2944 /* Nonzero to force PIC branch veneers. */
2945 int pic_veneer;
2947 /* The number of bytes in the initial entry in the PLT. */
2948 bfd_size_type plt_header_size;
2950 /* The number of bytes in the subsequent PLT etries. */
2951 bfd_size_type plt_entry_size;
2953 /* True if the target system is VxWorks. */
2954 int vxworks_p;
2956 /* True if the target system is Symbian OS. */
2957 int symbian_p;
2959 /* True if the target system is Native Client. */
2960 int nacl_p;
2962 /* True if the target uses REL relocations. */
2963 int use_rel;
2965 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
2966 bfd_vma next_tls_desc_index;
2968 /* How many R_ARM_TLS_DESC relocations were generated so far. */
2969 bfd_vma num_tls_desc;
2971 /* Short-cuts to get to dynamic linker sections. */
2972 asection *sdynbss;
2973 asection *srelbss;
2975 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2976 asection *srelplt2;
2978 /* The offset into splt of the PLT entry for the TLS descriptor
2979 resolver. Special values are 0, if not necessary (or not found
2980 to be necessary yet), and -1 if needed but not determined
2981 yet. */
2982 bfd_vma dt_tlsdesc_plt;
2984 /* The offset into sgot of the GOT entry used by the PLT entry
2985 above. */
2986 bfd_vma dt_tlsdesc_got;
2988 /* Offset in .plt section of tls_arm_trampoline. */
2989 bfd_vma tls_trampoline;
2991 /* Data for R_ARM_TLS_LDM32 relocations. */
2992 union
2994 bfd_signed_vma refcount;
2995 bfd_vma offset;
2996 } tls_ldm_got;
2998 /* Small local sym cache. */
2999 struct sym_cache sym_cache;
3001 /* For convenience in allocate_dynrelocs. */
3002 bfd * obfd;
3004 /* The amount of space used by the reserved portion of the sgotplt
3005 section, plus whatever space is used by the jump slots. */
3006 bfd_vma sgotplt_jump_table_size;
3008 /* The stub hash table. */
3009 struct bfd_hash_table stub_hash_table;
3011 /* Linker stub bfd. */
3012 bfd *stub_bfd;
3014 /* Linker call-backs. */
3015 asection * (*add_stub_section) (const char *, asection *, unsigned int);
3016 void (*layout_sections_again) (void);
3018 /* Array to keep track of which stub sections have been created, and
3019 information on stub grouping. */
3020 struct map_stub *stub_group;
3022 /* Number of elements in stub_group. */
3023 int top_id;
3025 /* Assorted information used by elf32_arm_size_stubs. */
3026 unsigned int bfd_count;
3027 int top_index;
3028 asection **input_list;
3031 /* Create an entry in an ARM ELF linker hash table. */
3033 static struct bfd_hash_entry *
3034 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
3035 struct bfd_hash_table * table,
3036 const char * string)
3038 struct elf32_arm_link_hash_entry * ret =
3039 (struct elf32_arm_link_hash_entry *) entry;
3041 /* Allocate the structure if it has not already been allocated by a
3042 subclass. */
3043 if (ret == NULL)
3044 ret = (struct elf32_arm_link_hash_entry *)
3045 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
3046 if (ret == NULL)
3047 return (struct bfd_hash_entry *) ret;
3049 /* Call the allocation method of the superclass. */
3050 ret = ((struct elf32_arm_link_hash_entry *)
3051 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3052 table, string));
3053 if (ret != NULL)
3055 ret->dyn_relocs = NULL;
3056 ret->tls_type = GOT_UNKNOWN;
3057 ret->tlsdesc_got = (bfd_vma) -1;
3058 ret->plt.thumb_refcount = 0;
3059 ret->plt.maybe_thumb_refcount = 0;
3060 ret->plt.noncall_refcount = 0;
3061 ret->plt.got_offset = -1;
3062 ret->is_iplt = FALSE;
3063 ret->export_glue = NULL;
3065 ret->stub_cache = NULL;
3068 return (struct bfd_hash_entry *) ret;
3071 /* Ensure that we have allocated bookkeeping structures for ABFD's local
3072 symbols. */
3074 static bfd_boolean
3075 elf32_arm_allocate_local_sym_info (bfd *abfd)
3077 if (elf_local_got_refcounts (abfd) == NULL)
3079 bfd_size_type num_syms;
3080 bfd_size_type size;
3081 char *data;
3083 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
3084 size = num_syms * (sizeof (bfd_signed_vma)
3085 + sizeof (struct arm_local_iplt_info *)
3086 + sizeof (bfd_vma)
3087 + sizeof (char));
3088 data = bfd_zalloc (abfd, size);
3089 if (data == NULL)
3090 return FALSE;
3092 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
3093 data += num_syms * sizeof (bfd_signed_vma);
3095 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
3096 data += num_syms * sizeof (struct arm_local_iplt_info *);
3098 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
3099 data += num_syms * sizeof (bfd_vma);
3101 elf32_arm_local_got_tls_type (abfd) = data;
3103 return TRUE;
3106 /* Return the .iplt information for local symbol R_SYMNDX, which belongs
3107 to input bfd ABFD. Create the information if it doesn't already exist.
3108 Return null if an allocation fails. */
3110 static struct arm_local_iplt_info *
3111 elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
3113 struct arm_local_iplt_info **ptr;
3115 if (!elf32_arm_allocate_local_sym_info (abfd))
3116 return NULL;
3118 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
3119 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
3120 if (*ptr == NULL)
3121 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
3122 return *ptr;
3125 /* Try to obtain PLT information for the symbol with index R_SYMNDX
3126 in ABFD's symbol table. If the symbol is global, H points to its
3127 hash table entry, otherwise H is null.
3129 Return true if the symbol does have PLT information. When returning
3130 true, point *ROOT_PLT at the target-independent reference count/offset
3131 union and *ARM_PLT at the ARM-specific information. */
3133 static bfd_boolean
3134 elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_entry *h,
3135 unsigned long r_symndx, union gotplt_union **root_plt,
3136 struct arm_plt_info **arm_plt)
3138 struct arm_local_iplt_info *local_iplt;
3140 if (h != NULL)
3142 *root_plt = &h->root.plt;
3143 *arm_plt = &h->plt;
3144 return TRUE;
3147 if (elf32_arm_local_iplt (abfd) == NULL)
3148 return FALSE;
3150 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3151 if (local_iplt == NULL)
3152 return FALSE;
3154 *root_plt = &local_iplt->root;
3155 *arm_plt = &local_iplt->arm;
3156 return TRUE;
3159 /* Return true if the PLT described by ARM_PLT requires a Thumb stub
3160 before it. */
3162 static bfd_boolean
3163 elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3164 struct arm_plt_info *arm_plt)
3166 struct elf32_arm_link_hash_table *htab;
3168 htab = elf32_arm_hash_table (info);
3169 return (arm_plt->thumb_refcount != 0
3170 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0));
3173 /* Return a pointer to the head of the dynamic reloc list that should
3174 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3175 ABFD's symbol table. Return null if an error occurs. */
3177 static struct elf_dyn_relocs **
3178 elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3179 Elf_Internal_Sym *isym)
3181 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3183 struct arm_local_iplt_info *local_iplt;
3185 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3186 if (local_iplt == NULL)
3187 return NULL;
3188 return &local_iplt->dyn_relocs;
3190 else
3192 /* Track dynamic relocs needed for local syms too.
3193 We really need local syms available to do this
3194 easily. Oh well. */
3195 asection *s;
3196 void *vpp;
3198 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3199 if (s == NULL)
3200 abort ();
3202 vpp = &elf_section_data (s)->local_dynrel;
3203 return (struct elf_dyn_relocs **) vpp;
3207 /* Initialize an entry in the stub hash table. */
3209 static struct bfd_hash_entry *
3210 stub_hash_newfunc (struct bfd_hash_entry *entry,
3211 struct bfd_hash_table *table,
3212 const char *string)
3214 /* Allocate the structure if it has not already been allocated by a
3215 subclass. */
3216 if (entry == NULL)
3218 entry = (struct bfd_hash_entry *)
3219 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
3220 if (entry == NULL)
3221 return entry;
3224 /* Call the allocation method of the superclass. */
3225 entry = bfd_hash_newfunc (entry, table, string);
3226 if (entry != NULL)
3228 struct elf32_arm_stub_hash_entry *eh;
3230 /* Initialize the local fields. */
3231 eh = (struct elf32_arm_stub_hash_entry *) entry;
3232 eh->stub_sec = NULL;
3233 eh->stub_offset = 0;
3234 eh->target_value = 0;
3235 eh->target_section = NULL;
3236 eh->target_addend = 0;
3237 eh->orig_insn = 0;
3238 eh->stub_type = arm_stub_none;
3239 eh->stub_size = 0;
3240 eh->stub_template = NULL;
3241 eh->stub_template_size = 0;
3242 eh->h = NULL;
3243 eh->id_sec = NULL;
3244 eh->output_name = NULL;
3247 return entry;
3250 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
3251 shortcuts to them in our hash table. */
3253 static bfd_boolean
3254 create_got_section (bfd *dynobj, struct bfd_link_info *info)
3256 struct elf32_arm_link_hash_table *htab;
3258 htab = elf32_arm_hash_table (info);
3259 if (htab == NULL)
3260 return FALSE;
3262 /* BPABI objects never have a GOT, or associated sections. */
3263 if (htab->symbian_p)
3264 return TRUE;
3266 if (! _bfd_elf_create_got_section (dynobj, info))
3267 return FALSE;
3269 return TRUE;
3272 /* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3274 static bfd_boolean
3275 create_ifunc_sections (struct bfd_link_info *info)
3277 struct elf32_arm_link_hash_table *htab;
3278 const struct elf_backend_data *bed;
3279 bfd *dynobj;
3280 asection *s;
3281 flagword flags;
3283 htab = elf32_arm_hash_table (info);
3284 dynobj = htab->root.dynobj;
3285 bed = get_elf_backend_data (dynobj);
3286 flags = bed->dynamic_sec_flags;
3288 if (htab->root.iplt == NULL)
3290 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt",
3291 flags | SEC_READONLY | SEC_CODE);
3292 if (s == NULL
3293 || !bfd_set_section_alignment (dynobj, s, bed->plt_alignment))
3294 return FALSE;
3295 htab->root.iplt = s;
3298 if (htab->root.irelplt == NULL)
3300 s = bfd_make_section_anyway_with_flags (dynobj,
3301 RELOC_SECTION (htab, ".iplt"),
3302 flags | SEC_READONLY);
3303 if (s == NULL
3304 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3305 return FALSE;
3306 htab->root.irelplt = s;
3309 if (htab->root.igotplt == NULL)
3311 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags);
3312 if (s == NULL
3313 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3314 return FALSE;
3315 htab->root.igotplt = s;
3317 return TRUE;
3320 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3321 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
3322 hash table. */
3324 static bfd_boolean
3325 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3327 struct elf32_arm_link_hash_table *htab;
3329 htab = elf32_arm_hash_table (info);
3330 if (htab == NULL)
3331 return FALSE;
3333 if (!htab->root.sgot && !create_got_section (dynobj, info))
3334 return FALSE;
3336 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3337 return FALSE;
3339 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
3340 if (!info->shared)
3341 htab->srelbss = bfd_get_linker_section (dynobj,
3342 RELOC_SECTION (htab, ".bss"));
3344 if (htab->vxworks_p)
3346 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3347 return FALSE;
3349 if (info->shared)
3351 htab->plt_header_size = 0;
3352 htab->plt_entry_size
3353 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3355 else
3357 htab->plt_header_size
3358 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3359 htab->plt_entry_size
3360 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3364 if (!htab->root.splt
3365 || !htab->root.srelplt
3366 || !htab->sdynbss
3367 || (!info->shared && !htab->srelbss))
3368 abort ();
3370 return TRUE;
3373 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3375 static void
3376 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
3377 struct elf_link_hash_entry *dir,
3378 struct elf_link_hash_entry *ind)
3380 struct elf32_arm_link_hash_entry *edir, *eind;
3382 edir = (struct elf32_arm_link_hash_entry *) dir;
3383 eind = (struct elf32_arm_link_hash_entry *) ind;
3385 if (eind->dyn_relocs != NULL)
3387 if (edir->dyn_relocs != NULL)
3389 struct elf_dyn_relocs **pp;
3390 struct elf_dyn_relocs *p;
3392 /* Add reloc counts against the indirect sym to the direct sym
3393 list. Merge any entries against the same section. */
3394 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3396 struct elf_dyn_relocs *q;
3398 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3399 if (q->sec == p->sec)
3401 q->pc_count += p->pc_count;
3402 q->count += p->count;
3403 *pp = p->next;
3404 break;
3406 if (q == NULL)
3407 pp = &p->next;
3409 *pp = edir->dyn_relocs;
3412 edir->dyn_relocs = eind->dyn_relocs;
3413 eind->dyn_relocs = NULL;
3416 if (ind->root.type == bfd_link_hash_indirect)
3418 /* Copy over PLT info. */
3419 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
3420 eind->plt.thumb_refcount = 0;
3421 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
3422 eind->plt.maybe_thumb_refcount = 0;
3423 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
3424 eind->plt.noncall_refcount = 0;
3426 /* We should only allocate a function to .iplt once the final
3427 symbol information is known. */
3428 BFD_ASSERT (!eind->is_iplt);
3430 if (dir->got.refcount <= 0)
3432 edir->tls_type = eind->tls_type;
3433 eind->tls_type = GOT_UNKNOWN;
3437 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
3440 /* Create an ARM elf linker hash table. */
3442 static struct bfd_link_hash_table *
3443 elf32_arm_link_hash_table_create (bfd *abfd)
3445 struct elf32_arm_link_hash_table *ret;
3446 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
3448 ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt);
3449 if (ret == NULL)
3450 return NULL;
3452 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
3453 elf32_arm_link_hash_newfunc,
3454 sizeof (struct elf32_arm_link_hash_entry),
3455 ARM_ELF_DATA))
3457 free (ret);
3458 return NULL;
3461 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
3462 #ifdef FOUR_WORD_PLT
3463 ret->plt_header_size = 16;
3464 ret->plt_entry_size = 16;
3465 #else
3466 ret->plt_header_size = 20;
3467 ret->plt_entry_size = 12;
3468 #endif
3469 ret->use_rel = 1;
3470 ret->obfd = abfd;
3472 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
3473 sizeof (struct elf32_arm_stub_hash_entry)))
3475 free (ret);
3476 return NULL;
3479 return &ret->root.root;
3482 /* Free the derived linker hash table. */
3484 static void
3485 elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
3487 struct elf32_arm_link_hash_table *ret
3488 = (struct elf32_arm_link_hash_table *) hash;
3490 bfd_hash_table_free (&ret->stub_hash_table);
3491 _bfd_elf_link_hash_table_free (hash);
3494 /* Determine if we're dealing with a Thumb only architecture. */
3496 static bfd_boolean
3497 using_thumb_only (struct elf32_arm_link_hash_table *globals)
3499 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3500 Tag_CPU_arch);
3501 int profile;
3503 if (arch == TAG_CPU_ARCH_V6_M || arch == TAG_CPU_ARCH_V6S_M)
3504 return TRUE;
3506 if (arch != TAG_CPU_ARCH_V7 && arch != TAG_CPU_ARCH_V7E_M)
3507 return FALSE;
3509 profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3510 Tag_CPU_arch_profile);
3512 return profile == 'M';
3515 /* Determine if we're dealing with a Thumb-2 object. */
3517 static bfd_boolean
3518 using_thumb2 (struct elf32_arm_link_hash_table *globals)
3520 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3521 Tag_CPU_arch);
3522 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
3525 /* Determine what kind of NOPs are available. */
3527 static bfd_boolean
3528 arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
3530 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3531 Tag_CPU_arch);
3532 return arch == TAG_CPU_ARCH_V6T2
3533 || arch == TAG_CPU_ARCH_V6K
3534 || arch == TAG_CPU_ARCH_V7
3535 || arch == TAG_CPU_ARCH_V7E_M;
3538 static bfd_boolean
3539 arch_has_thumb2_nop (struct elf32_arm_link_hash_table *globals)
3541 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3542 Tag_CPU_arch);
3543 return (arch == TAG_CPU_ARCH_V6T2 || arch == TAG_CPU_ARCH_V7
3544 || arch == TAG_CPU_ARCH_V7E_M);
3547 static bfd_boolean
3548 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
3550 switch (stub_type)
3552 case arm_stub_long_branch_thumb_only:
3553 case arm_stub_long_branch_v4t_thumb_arm:
3554 case arm_stub_short_branch_v4t_thumb_arm:
3555 case arm_stub_long_branch_v4t_thumb_arm_pic:
3556 case arm_stub_long_branch_v4t_thumb_tls_pic:
3557 case arm_stub_long_branch_thumb_only_pic:
3558 return TRUE;
3559 case arm_stub_none:
3560 BFD_FAIL ();
3561 return FALSE;
3562 break;
3563 default:
3564 return FALSE;
3568 /* Determine the type of stub needed, if any, for a call. */
3570 static enum elf32_arm_stub_type
3571 arm_type_of_stub (struct bfd_link_info *info,
3572 asection *input_sec,
3573 const Elf_Internal_Rela *rel,
3574 unsigned char st_type,
3575 enum arm_st_branch_type *actual_branch_type,
3576 struct elf32_arm_link_hash_entry *hash,
3577 bfd_vma destination,
3578 asection *sym_sec,
3579 bfd *input_bfd,
3580 const char *name)
3582 bfd_vma location;
3583 bfd_signed_vma branch_offset;
3584 unsigned int r_type;
3585 struct elf32_arm_link_hash_table * globals;
3586 int thumb2;
3587 int thumb_only;
3588 enum elf32_arm_stub_type stub_type = arm_stub_none;
3589 int use_plt = 0;
3590 enum arm_st_branch_type branch_type = *actual_branch_type;
3591 union gotplt_union *root_plt;
3592 struct arm_plt_info *arm_plt;
3594 if (branch_type == ST_BRANCH_LONG)
3595 return stub_type;
3597 globals = elf32_arm_hash_table (info);
3598 if (globals == NULL)
3599 return stub_type;
3601 thumb_only = using_thumb_only (globals);
3603 thumb2 = using_thumb2 (globals);
3605 /* Determine where the call point is. */
3606 location = (input_sec->output_offset
3607 + input_sec->output_section->vma
3608 + rel->r_offset);
3610 r_type = ELF32_R_TYPE (rel->r_info);
3612 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
3613 are considering a function call relocation. */
3614 if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
3615 && branch_type == ST_BRANCH_TO_ARM)
3616 branch_type = ST_BRANCH_TO_THUMB;
3618 /* For TLS call relocs, it is the caller's responsibility to provide
3619 the address of the appropriate trampoline. */
3620 if (r_type != R_ARM_TLS_CALL
3621 && r_type != R_ARM_THM_TLS_CALL
3622 && elf32_arm_get_plt_info (input_bfd, hash, ELF32_R_SYM (rel->r_info),
3623 &root_plt, &arm_plt)
3624 && root_plt->offset != (bfd_vma) -1)
3626 asection *splt;
3628 if (hash == NULL || hash->is_iplt)
3629 splt = globals->root.iplt;
3630 else
3631 splt = globals->root.splt;
3632 if (splt != NULL)
3634 use_plt = 1;
3636 /* Note when dealing with PLT entries: the main PLT stub is in
3637 ARM mode, so if the branch is in Thumb mode, another
3638 Thumb->ARM stub will be inserted later just before the ARM
3639 PLT stub. We don't take this extra distance into account
3640 here, because if a long branch stub is needed, we'll add a
3641 Thumb->Arm one and branch directly to the ARM PLT entry
3642 because it avoids spreading offset corrections in several
3643 places. */
3645 destination = (splt->output_section->vma
3646 + splt->output_offset
3647 + root_plt->offset);
3648 st_type = STT_FUNC;
3649 branch_type = ST_BRANCH_TO_ARM;
3652 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
3653 BFD_ASSERT (st_type != STT_GNU_IFUNC);
3655 branch_offset = (bfd_signed_vma)(destination - location);
3657 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3658 || r_type == R_ARM_THM_TLS_CALL)
3660 /* Handle cases where:
3661 - this call goes too far (different Thumb/Thumb2 max
3662 distance)
3663 - it's a Thumb->Arm call and blx is not available, or it's a
3664 Thumb->Arm branch (not bl). A stub is needed in this case,
3665 but only if this call is not through a PLT entry. Indeed,
3666 PLT stubs handle mode switching already.
3668 if ((!thumb2
3669 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
3670 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
3671 || (thumb2
3672 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
3673 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
3674 || (branch_type == ST_BRANCH_TO_ARM
3675 && (((r_type == R_ARM_THM_CALL
3676 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
3677 || (r_type == R_ARM_THM_JUMP24))
3678 && !use_plt))
3680 if (branch_type == ST_BRANCH_TO_THUMB)
3682 /* Thumb to thumb. */
3683 if (!thumb_only)
3685 stub_type = (info->shared | globals->pic_veneer)
3686 /* PIC stubs. */
3687 ? ((globals->use_blx
3688 && (r_type == R_ARM_THM_CALL))
3689 /* V5T and above. Stub starts with ARM code, so
3690 we must be able to switch mode before
3691 reaching it, which is only possible for 'bl'
3692 (ie R_ARM_THM_CALL relocation). */
3693 ? arm_stub_long_branch_any_thumb_pic
3694 /* On V4T, use Thumb code only. */
3695 : arm_stub_long_branch_v4t_thumb_thumb_pic)
3697 /* non-PIC stubs. */
3698 : ((globals->use_blx
3699 && (r_type == R_ARM_THM_CALL))
3700 /* V5T and above. */
3701 ? arm_stub_long_branch_any_any
3702 /* V4T. */
3703 : arm_stub_long_branch_v4t_thumb_thumb);
3705 else
3707 stub_type = (info->shared | globals->pic_veneer)
3708 /* PIC stub. */
3709 ? arm_stub_long_branch_thumb_only_pic
3710 /* non-PIC stub. */
3711 : arm_stub_long_branch_thumb_only;
3714 else
3716 /* Thumb to arm. */
3717 if (sym_sec != NULL
3718 && sym_sec->owner != NULL
3719 && !INTERWORK_FLAG (sym_sec->owner))
3721 (*_bfd_error_handler)
3722 (_("%B(%s): warning: interworking not enabled.\n"
3723 " first occurrence: %B: Thumb call to ARM"),
3724 sym_sec->owner, input_bfd, name);
3727 stub_type =
3728 (info->shared | globals->pic_veneer)
3729 /* PIC stubs. */
3730 ? (r_type == R_ARM_THM_TLS_CALL
3731 /* TLS PIC stubs */
3732 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
3733 : arm_stub_long_branch_v4t_thumb_tls_pic)
3734 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
3735 /* V5T PIC and above. */
3736 ? arm_stub_long_branch_any_arm_pic
3737 /* V4T PIC stub. */
3738 : arm_stub_long_branch_v4t_thumb_arm_pic))
3740 /* non-PIC stubs. */
3741 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
3742 /* V5T and above. */
3743 ? arm_stub_long_branch_any_any
3744 /* V4T. */
3745 : arm_stub_long_branch_v4t_thumb_arm);
3747 /* Handle v4t short branches. */
3748 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
3749 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
3750 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
3751 stub_type = arm_stub_short_branch_v4t_thumb_arm;
3755 else if (r_type == R_ARM_CALL
3756 || r_type == R_ARM_JUMP24
3757 || r_type == R_ARM_PLT32
3758 || r_type == R_ARM_TLS_CALL)
3760 if (branch_type == ST_BRANCH_TO_THUMB)
3762 /* Arm to thumb. */
3764 if (sym_sec != NULL
3765 && sym_sec->owner != NULL
3766 && !INTERWORK_FLAG (sym_sec->owner))
3768 (*_bfd_error_handler)
3769 (_("%B(%s): warning: interworking not enabled.\n"
3770 " first occurrence: %B: ARM call to Thumb"),
3771 sym_sec->owner, input_bfd, name);
3774 /* We have an extra 2-bytes reach because of
3775 the mode change (bit 24 (H) of BLX encoding). */
3776 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
3777 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
3778 || (r_type == R_ARM_CALL && !globals->use_blx)
3779 || (r_type == R_ARM_JUMP24)
3780 || (r_type == R_ARM_PLT32))
3782 stub_type = (info->shared | globals->pic_veneer)
3783 /* PIC stubs. */
3784 ? ((globals->use_blx)
3785 /* V5T and above. */
3786 ? arm_stub_long_branch_any_thumb_pic
3787 /* V4T stub. */
3788 : arm_stub_long_branch_v4t_arm_thumb_pic)
3790 /* non-PIC stubs. */
3791 : ((globals->use_blx)
3792 /* V5T and above. */
3793 ? arm_stub_long_branch_any_any
3794 /* V4T. */
3795 : arm_stub_long_branch_v4t_arm_thumb);
3798 else
3800 /* Arm to arm. */
3801 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
3802 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
3804 stub_type =
3805 (info->shared | globals->pic_veneer)
3806 /* PIC stubs. */
3807 ? (r_type == R_ARM_TLS_CALL
3808 /* TLS PIC Stub */
3809 ? arm_stub_long_branch_any_tls_pic
3810 : (globals->nacl_p
3811 ? arm_stub_long_branch_arm_nacl_pic
3812 : arm_stub_long_branch_any_arm_pic))
3813 /* non-PIC stubs. */
3814 : (globals->nacl_p
3815 ? arm_stub_long_branch_arm_nacl
3816 : arm_stub_long_branch_any_any);
3821 /* If a stub is needed, record the actual destination type. */
3822 if (stub_type != arm_stub_none)
3823 *actual_branch_type = branch_type;
3825 return stub_type;
3828 /* Build a name for an entry in the stub hash table. */
3830 static char *
3831 elf32_arm_stub_name (const asection *input_section,
3832 const asection *sym_sec,
3833 const struct elf32_arm_link_hash_entry *hash,
3834 const Elf_Internal_Rela *rel,
3835 enum elf32_arm_stub_type stub_type)
3837 char *stub_name;
3838 bfd_size_type len;
3840 if (hash)
3842 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
3843 stub_name = (char *) bfd_malloc (len);
3844 if (stub_name != NULL)
3845 sprintf (stub_name, "%08x_%s+%x_%d",
3846 input_section->id & 0xffffffff,
3847 hash->root.root.root.string,
3848 (int) rel->r_addend & 0xffffffff,
3849 (int) stub_type);
3851 else
3853 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
3854 stub_name = (char *) bfd_malloc (len);
3855 if (stub_name != NULL)
3856 sprintf (stub_name, "%08x_%x:%x+%x_%d",
3857 input_section->id & 0xffffffff,
3858 sym_sec->id & 0xffffffff,
3859 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
3860 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
3861 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
3862 (int) rel->r_addend & 0xffffffff,
3863 (int) stub_type);
3866 return stub_name;
3869 /* Look up an entry in the stub hash. Stub entries are cached because
3870 creating the stub name takes a bit of time. */
3872 static struct elf32_arm_stub_hash_entry *
3873 elf32_arm_get_stub_entry (const asection *input_section,
3874 const asection *sym_sec,
3875 struct elf_link_hash_entry *hash,
3876 const Elf_Internal_Rela *rel,
3877 struct elf32_arm_link_hash_table *htab,
3878 enum elf32_arm_stub_type stub_type)
3880 struct elf32_arm_stub_hash_entry *stub_entry;
3881 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
3882 const asection *id_sec;
3884 if ((input_section->flags & SEC_CODE) == 0)
3885 return NULL;
3887 /* If this input section is part of a group of sections sharing one
3888 stub section, then use the id of the first section in the group.
3889 Stub names need to include a section id, as there may well be
3890 more than one stub used to reach say, printf, and we need to
3891 distinguish between them. */
3892 id_sec = htab->stub_group[input_section->id].link_sec;
3894 if (h != NULL && h->stub_cache != NULL
3895 && h->stub_cache->h == h
3896 && h->stub_cache->id_sec == id_sec
3897 && h->stub_cache->stub_type == stub_type)
3899 stub_entry = h->stub_cache;
3901 else
3903 char *stub_name;
3905 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
3906 if (stub_name == NULL)
3907 return NULL;
3909 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3910 stub_name, FALSE, FALSE);
3911 if (h != NULL)
3912 h->stub_cache = stub_entry;
3914 free (stub_name);
3917 return stub_entry;
3920 /* Find or create a stub section. Returns a pointer to the stub section, and
3921 the section to which the stub section will be attached (in *LINK_SEC_P).
3922 LINK_SEC_P may be NULL. */
3924 static asection *
3925 elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
3926 struct elf32_arm_link_hash_table *htab)
3928 asection *link_sec;
3929 asection *stub_sec;
3931 link_sec = htab->stub_group[section->id].link_sec;
3932 BFD_ASSERT (link_sec != NULL);
3933 stub_sec = htab->stub_group[section->id].stub_sec;
3935 if (stub_sec == NULL)
3937 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3938 if (stub_sec == NULL)
3940 size_t namelen;
3941 bfd_size_type len;
3942 char *s_name;
3944 namelen = strlen (link_sec->name);
3945 len = namelen + sizeof (STUB_SUFFIX);
3946 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
3947 if (s_name == NULL)
3948 return NULL;
3950 memcpy (s_name, link_sec->name, namelen);
3951 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3952 stub_sec = (*htab->add_stub_section) (s_name, link_sec,
3953 htab->nacl_p ? 4 : 3);
3954 if (stub_sec == NULL)
3955 return NULL;
3956 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3958 htab->stub_group[section->id].stub_sec = stub_sec;
3961 if (link_sec_p)
3962 *link_sec_p = link_sec;
3964 return stub_sec;
3967 /* Add a new stub entry to the stub hash. Not all fields of the new
3968 stub entry are initialised. */
3970 static struct elf32_arm_stub_hash_entry *
3971 elf32_arm_add_stub (const char *stub_name,
3972 asection *section,
3973 struct elf32_arm_link_hash_table *htab)
3975 asection *link_sec;
3976 asection *stub_sec;
3977 struct elf32_arm_stub_hash_entry *stub_entry;
3979 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab);
3980 if (stub_sec == NULL)
3981 return NULL;
3983 /* Enter this entry into the linker stub hash table. */
3984 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3985 TRUE, FALSE);
3986 if (stub_entry == NULL)
3988 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
3989 section->owner,
3990 stub_name);
3991 return NULL;
3994 stub_entry->stub_sec = stub_sec;
3995 stub_entry->stub_offset = 0;
3996 stub_entry->id_sec = link_sec;
3998 return stub_entry;
4001 /* Store an Arm insn into an output section not processed by
4002 elf32_arm_write_section. */
4004 static void
4005 put_arm_insn (struct elf32_arm_link_hash_table * htab,
4006 bfd * output_bfd, bfd_vma val, void * ptr)
4008 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4009 bfd_putl32 (val, ptr);
4010 else
4011 bfd_putb32 (val, ptr);
4014 /* Store a 16-bit Thumb insn into an output section not processed by
4015 elf32_arm_write_section. */
4017 static void
4018 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
4019 bfd * output_bfd, bfd_vma val, void * ptr)
4021 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4022 bfd_putl16 (val, ptr);
4023 else
4024 bfd_putb16 (val, ptr);
4027 /* If it's possible to change R_TYPE to a more efficient access
4028 model, return the new reloc type. */
4030 static unsigned
4031 elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
4032 struct elf_link_hash_entry *h)
4034 int is_local = (h == NULL);
4036 if (info->shared || (h && h->root.type == bfd_link_hash_undefweak))
4037 return r_type;
4039 /* We do not support relaxations for Old TLS models. */
4040 switch (r_type)
4042 case R_ARM_TLS_GOTDESC:
4043 case R_ARM_TLS_CALL:
4044 case R_ARM_THM_TLS_CALL:
4045 case R_ARM_TLS_DESCSEQ:
4046 case R_ARM_THM_TLS_DESCSEQ:
4047 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
4050 return r_type;
4053 static bfd_reloc_status_type elf32_arm_final_link_relocate
4054 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
4055 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
4056 const char *, unsigned char, enum arm_st_branch_type,
4057 struct elf_link_hash_entry *, bfd_boolean *, char **);
4059 static unsigned int
4060 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
4062 switch (stub_type)
4064 case arm_stub_a8_veneer_b_cond:
4065 case arm_stub_a8_veneer_b:
4066 case arm_stub_a8_veneer_bl:
4067 return 2;
4069 case arm_stub_long_branch_any_any:
4070 case arm_stub_long_branch_v4t_arm_thumb:
4071 case arm_stub_long_branch_thumb_only:
4072 case arm_stub_long_branch_v4t_thumb_thumb:
4073 case arm_stub_long_branch_v4t_thumb_arm:
4074 case arm_stub_short_branch_v4t_thumb_arm:
4075 case arm_stub_long_branch_any_arm_pic:
4076 case arm_stub_long_branch_any_thumb_pic:
4077 case arm_stub_long_branch_v4t_thumb_thumb_pic:
4078 case arm_stub_long_branch_v4t_arm_thumb_pic:
4079 case arm_stub_long_branch_v4t_thumb_arm_pic:
4080 case arm_stub_long_branch_thumb_only_pic:
4081 case arm_stub_long_branch_any_tls_pic:
4082 case arm_stub_long_branch_v4t_thumb_tls_pic:
4083 case arm_stub_a8_veneer_blx:
4084 return 4;
4086 case arm_stub_long_branch_arm_nacl:
4087 case arm_stub_long_branch_arm_nacl_pic:
4088 return 16;
4090 default:
4091 abort (); /* Should be unreachable. */
4095 static bfd_boolean
4096 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
4097 void * in_arg)
4099 #define MAXRELOCS 3
4100 struct elf32_arm_stub_hash_entry *stub_entry;
4101 struct elf32_arm_link_hash_table *globals;
4102 struct bfd_link_info *info;
4103 asection *stub_sec;
4104 bfd *stub_bfd;
4105 bfd_byte *loc;
4106 bfd_vma sym_value;
4107 int template_size;
4108 int size;
4109 const insn_sequence *template_sequence;
4110 int i;
4111 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
4112 int stub_reloc_offset[MAXRELOCS] = {0, 0};
4113 int nrelocs = 0;
4115 /* Massage our args to the form they really have. */
4116 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4117 info = (struct bfd_link_info *) in_arg;
4119 globals = elf32_arm_hash_table (info);
4120 if (globals == NULL)
4121 return FALSE;
4123 stub_sec = stub_entry->stub_sec;
4125 if ((globals->fix_cortex_a8 < 0)
4126 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
4127 /* We have to do less-strictly-aligned fixes last. */
4128 return TRUE;
4130 /* Make a note of the offset within the stubs for this entry. */
4131 stub_entry->stub_offset = stub_sec->size;
4132 loc = stub_sec->contents + stub_entry->stub_offset;
4134 stub_bfd = stub_sec->owner;
4136 /* This is the address of the stub destination. */
4137 sym_value = (stub_entry->target_value
4138 + stub_entry->target_section->output_offset
4139 + stub_entry->target_section->output_section->vma);
4141 template_sequence = stub_entry->stub_template;
4142 template_size = stub_entry->stub_template_size;
4144 size = 0;
4145 for (i = 0; i < template_size; i++)
4147 switch (template_sequence[i].type)
4149 case THUMB16_TYPE:
4151 bfd_vma data = (bfd_vma) template_sequence[i].data;
4152 if (template_sequence[i].reloc_addend != 0)
4154 /* We've borrowed the reloc_addend field to mean we should
4155 insert a condition code into this (Thumb-1 branch)
4156 instruction. See THUMB16_BCOND_INSN. */
4157 BFD_ASSERT ((data & 0xff00) == 0xd000);
4158 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
4160 bfd_put_16 (stub_bfd, data, loc + size);
4161 size += 2;
4163 break;
4165 case THUMB32_TYPE:
4166 bfd_put_16 (stub_bfd,
4167 (template_sequence[i].data >> 16) & 0xffff,
4168 loc + size);
4169 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
4170 loc + size + 2);
4171 if (template_sequence[i].r_type != R_ARM_NONE)
4173 stub_reloc_idx[nrelocs] = i;
4174 stub_reloc_offset[nrelocs++] = size;
4176 size += 4;
4177 break;
4179 case ARM_TYPE:
4180 bfd_put_32 (stub_bfd, template_sequence[i].data,
4181 loc + size);
4182 /* Handle cases where the target is encoded within the
4183 instruction. */
4184 if (template_sequence[i].r_type == R_ARM_JUMP24)
4186 stub_reloc_idx[nrelocs] = i;
4187 stub_reloc_offset[nrelocs++] = size;
4189 size += 4;
4190 break;
4192 case DATA_TYPE:
4193 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
4194 stub_reloc_idx[nrelocs] = i;
4195 stub_reloc_offset[nrelocs++] = size;
4196 size += 4;
4197 break;
4199 default:
4200 BFD_FAIL ();
4201 return FALSE;
4205 stub_sec->size += size;
4207 /* Stub size has already been computed in arm_size_one_stub. Check
4208 consistency. */
4209 BFD_ASSERT (size == stub_entry->stub_size);
4211 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
4212 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
4213 sym_value |= 1;
4215 /* Assume there is at least one and at most MAXRELOCS entries to relocate
4216 in each stub. */
4217 BFD_ASSERT (nrelocs != 0 && nrelocs <= MAXRELOCS);
4219 for (i = 0; i < nrelocs; i++)
4220 if (template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP24
4221 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP19
4222 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_CALL
4223 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_XPC22)
4225 Elf_Internal_Rela rel;
4226 bfd_boolean unresolved_reloc;
4227 char *error_message;
4228 enum arm_st_branch_type branch_type
4229 = (template_sequence[stub_reloc_idx[i]].r_type != R_ARM_THM_XPC22
4230 ? ST_BRANCH_TO_THUMB : ST_BRANCH_TO_ARM);
4231 bfd_vma points_to = sym_value + stub_entry->target_addend;
4233 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4234 rel.r_info = ELF32_R_INFO (0,
4235 template_sequence[stub_reloc_idx[i]].r_type);
4236 rel.r_addend = template_sequence[stub_reloc_idx[i]].reloc_addend;
4238 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
4239 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
4240 template should refer back to the instruction after the original
4241 branch. */
4242 points_to = sym_value;
4244 /* There may be unintended consequences if this is not true. */
4245 BFD_ASSERT (stub_entry->h == NULL);
4247 /* Note: _bfd_final_link_relocate doesn't handle these relocations
4248 properly. We should probably use this function unconditionally,
4249 rather than only for certain relocations listed in the enclosing
4250 conditional, for the sake of consistency. */
4251 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4252 (template_sequence[stub_reloc_idx[i]].r_type),
4253 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4254 points_to, info, stub_entry->target_section, "", STT_FUNC,
4255 branch_type, (struct elf_link_hash_entry *) stub_entry->h,
4256 &unresolved_reloc, &error_message);
4258 else
4260 Elf_Internal_Rela rel;
4261 bfd_boolean unresolved_reloc;
4262 char *error_message;
4263 bfd_vma points_to = sym_value + stub_entry->target_addend
4264 + template_sequence[stub_reloc_idx[i]].reloc_addend;
4266 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4267 rel.r_info = ELF32_R_INFO (0,
4268 template_sequence[stub_reloc_idx[i]].r_type);
4269 rel.r_addend = 0;
4271 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4272 (template_sequence[stub_reloc_idx[i]].r_type),
4273 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4274 points_to, info, stub_entry->target_section, "", STT_FUNC,
4275 stub_entry->branch_type,
4276 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
4277 &error_message);
4280 return TRUE;
4281 #undef MAXRELOCS
4284 /* Calculate the template, template size and instruction size for a stub.
4285 Return value is the instruction size. */
4287 static unsigned int
4288 find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
4289 const insn_sequence **stub_template,
4290 int *stub_template_size)
4292 const insn_sequence *template_sequence = NULL;
4293 int template_size = 0, i;
4294 unsigned int size;
4296 template_sequence = stub_definitions[stub_type].template_sequence;
4297 if (stub_template)
4298 *stub_template = template_sequence;
4300 template_size = stub_definitions[stub_type].template_size;
4301 if (stub_template_size)
4302 *stub_template_size = template_size;
4304 size = 0;
4305 for (i = 0; i < template_size; i++)
4307 switch (template_sequence[i].type)
4309 case THUMB16_TYPE:
4310 size += 2;
4311 break;
4313 case ARM_TYPE:
4314 case THUMB32_TYPE:
4315 case DATA_TYPE:
4316 size += 4;
4317 break;
4319 default:
4320 BFD_FAIL ();
4321 return 0;
4325 return size;
4328 /* As above, but don't actually build the stub. Just bump offset so
4329 we know stub section sizes. */
4331 static bfd_boolean
4332 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
4333 void *in_arg ATTRIBUTE_UNUSED)
4335 struct elf32_arm_stub_hash_entry *stub_entry;
4336 const insn_sequence *template_sequence;
4337 int template_size, size;
4339 /* Massage our args to the form they really have. */
4340 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4342 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
4343 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
4345 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
4346 &template_size);
4348 stub_entry->stub_size = size;
4349 stub_entry->stub_template = template_sequence;
4350 stub_entry->stub_template_size = template_size;
4352 size = (size + 7) & ~7;
4353 stub_entry->stub_sec->size += size;
4355 return TRUE;
4358 /* External entry points for sizing and building linker stubs. */
4360 /* Set up various things so that we can make a list of input sections
4361 for each output section included in the link. Returns -1 on error,
4362 0 when no stubs will be needed, and 1 on success. */
4365 elf32_arm_setup_section_lists (bfd *output_bfd,
4366 struct bfd_link_info *info)
4368 bfd *input_bfd;
4369 unsigned int bfd_count;
4370 int top_id, top_index;
4371 asection *section;
4372 asection **input_list, **list;
4373 bfd_size_type amt;
4374 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4376 if (htab == NULL)
4377 return 0;
4378 if (! is_elf_hash_table (htab))
4379 return 0;
4381 /* Count the number of input BFDs and find the top input section id. */
4382 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
4383 input_bfd != NULL;
4384 input_bfd = input_bfd->link_next)
4386 bfd_count += 1;
4387 for (section = input_bfd->sections;
4388 section != NULL;
4389 section = section->next)
4391 if (top_id < section->id)
4392 top_id = section->id;
4395 htab->bfd_count = bfd_count;
4397 amt = sizeof (struct map_stub) * (top_id + 1);
4398 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
4399 if (htab->stub_group == NULL)
4400 return -1;
4401 htab->top_id = top_id;
4403 /* We can't use output_bfd->section_count here to find the top output
4404 section index as some sections may have been removed, and
4405 _bfd_strip_section_from_output doesn't renumber the indices. */
4406 for (section = output_bfd->sections, top_index = 0;
4407 section != NULL;
4408 section = section->next)
4410 if (top_index < section->index)
4411 top_index = section->index;
4414 htab->top_index = top_index;
4415 amt = sizeof (asection *) * (top_index + 1);
4416 input_list = (asection **) bfd_malloc (amt);
4417 htab->input_list = input_list;
4418 if (input_list == NULL)
4419 return -1;
4421 /* For sections we aren't interested in, mark their entries with a
4422 value we can check later. */
4423 list = input_list + top_index;
4425 *list = bfd_abs_section_ptr;
4426 while (list-- != input_list);
4428 for (section = output_bfd->sections;
4429 section != NULL;
4430 section = section->next)
4432 if ((section->flags & SEC_CODE) != 0)
4433 input_list[section->index] = NULL;
4436 return 1;
4439 /* The linker repeatedly calls this function for each input section,
4440 in the order that input sections are linked into output sections.
4441 Build lists of input sections to determine groupings between which
4442 we may insert linker stubs. */
4444 void
4445 elf32_arm_next_input_section (struct bfd_link_info *info,
4446 asection *isec)
4448 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4450 if (htab == NULL)
4451 return;
4453 if (isec->output_section->index <= htab->top_index)
4455 asection **list = htab->input_list + isec->output_section->index;
4457 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
4459 /* Steal the link_sec pointer for our list. */
4460 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
4461 /* This happens to make the list in reverse order,
4462 which we reverse later. */
4463 PREV_SEC (isec) = *list;
4464 *list = isec;
4469 /* See whether we can group stub sections together. Grouping stub
4470 sections may result in fewer stubs. More importantly, we need to
4471 put all .init* and .fini* stubs at the end of the .init or
4472 .fini output sections respectively, because glibc splits the
4473 _init and _fini functions into multiple parts. Putting a stub in
4474 the middle of a function is not a good idea. */
4476 static void
4477 group_sections (struct elf32_arm_link_hash_table *htab,
4478 bfd_size_type stub_group_size,
4479 bfd_boolean stubs_always_after_branch)
4481 asection **list = htab->input_list;
4485 asection *tail = *list;
4486 asection *head;
4488 if (tail == bfd_abs_section_ptr)
4489 continue;
4491 /* Reverse the list: we must avoid placing stubs at the
4492 beginning of the section because the beginning of the text
4493 section may be required for an interrupt vector in bare metal
4494 code. */
4495 #define NEXT_SEC PREV_SEC
4496 head = NULL;
4497 while (tail != NULL)
4499 /* Pop from tail. */
4500 asection *item = tail;
4501 tail = PREV_SEC (item);
4503 /* Push on head. */
4504 NEXT_SEC (item) = head;
4505 head = item;
4508 while (head != NULL)
4510 asection *curr;
4511 asection *next;
4512 bfd_vma stub_group_start = head->output_offset;
4513 bfd_vma end_of_next;
4515 curr = head;
4516 while (NEXT_SEC (curr) != NULL)
4518 next = NEXT_SEC (curr);
4519 end_of_next = next->output_offset + next->size;
4520 if (end_of_next - stub_group_start >= stub_group_size)
4521 /* End of NEXT is too far from start, so stop. */
4522 break;
4523 /* Add NEXT to the group. */
4524 curr = next;
4527 /* OK, the size from the start to the start of CURR is less
4528 than stub_group_size and thus can be handled by one stub
4529 section. (Or the head section is itself larger than
4530 stub_group_size, in which case we may be toast.)
4531 We should really be keeping track of the total size of
4532 stubs added here, as stubs contribute to the final output
4533 section size. */
4536 next = NEXT_SEC (head);
4537 /* Set up this stub group. */
4538 htab->stub_group[head->id].link_sec = curr;
4540 while (head != curr && (head = next) != NULL);
4542 /* But wait, there's more! Input sections up to stub_group_size
4543 bytes after the stub section can be handled by it too. */
4544 if (!stubs_always_after_branch)
4546 stub_group_start = curr->output_offset + curr->size;
4548 while (next != NULL)
4550 end_of_next = next->output_offset + next->size;
4551 if (end_of_next - stub_group_start >= stub_group_size)
4552 /* End of NEXT is too far from stubs, so stop. */
4553 break;
4554 /* Add NEXT to the stub group. */
4555 head = next;
4556 next = NEXT_SEC (head);
4557 htab->stub_group[head->id].link_sec = curr;
4560 head = next;
4563 while (list++ != htab->input_list + htab->top_index);
4565 free (htab->input_list);
4566 #undef PREV_SEC
4567 #undef NEXT_SEC
4570 /* Comparison function for sorting/searching relocations relating to Cortex-A8
4571 erratum fix. */
4573 static int
4574 a8_reloc_compare (const void *a, const void *b)
4576 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
4577 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
4579 if (ra->from < rb->from)
4580 return -1;
4581 else if (ra->from > rb->from)
4582 return 1;
4583 else
4584 return 0;
4587 static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
4588 const char *, char **);
4590 /* Helper function to scan code for sequences which might trigger the Cortex-A8
4591 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
4592 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
4593 otherwise. */
4595 static bfd_boolean
4596 cortex_a8_erratum_scan (bfd *input_bfd,
4597 struct bfd_link_info *info,
4598 struct a8_erratum_fix **a8_fixes_p,
4599 unsigned int *num_a8_fixes_p,
4600 unsigned int *a8_fix_table_size_p,
4601 struct a8_erratum_reloc *a8_relocs,
4602 unsigned int num_a8_relocs,
4603 unsigned prev_num_a8_fixes,
4604 bfd_boolean *stub_changed_p)
4606 asection *section;
4607 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4608 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
4609 unsigned int num_a8_fixes = *num_a8_fixes_p;
4610 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
4612 if (htab == NULL)
4613 return FALSE;
4615 for (section = input_bfd->sections;
4616 section != NULL;
4617 section = section->next)
4619 bfd_byte *contents = NULL;
4620 struct _arm_elf_section_data *sec_data;
4621 unsigned int span;
4622 bfd_vma base_vma;
4624 if (elf_section_type (section) != SHT_PROGBITS
4625 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4626 || (section->flags & SEC_EXCLUDE) != 0
4627 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4628 || (section->output_section == bfd_abs_section_ptr))
4629 continue;
4631 base_vma = section->output_section->vma + section->output_offset;
4633 if (elf_section_data (section)->this_hdr.contents != NULL)
4634 contents = elf_section_data (section)->this_hdr.contents;
4635 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
4636 return TRUE;
4638 sec_data = elf32_arm_section_data (section);
4640 for (span = 0; span < sec_data->mapcount; span++)
4642 unsigned int span_start = sec_data->map[span].vma;
4643 unsigned int span_end = (span == sec_data->mapcount - 1)
4644 ? section->size : sec_data->map[span + 1].vma;
4645 unsigned int i;
4646 char span_type = sec_data->map[span].type;
4647 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
4649 if (span_type != 't')
4650 continue;
4652 /* Span is entirely within a single 4KB region: skip scanning. */
4653 if (((base_vma + span_start) & ~0xfff)
4654 == ((base_vma + span_end) & ~0xfff))
4655 continue;
4657 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
4659 * The opcode is BLX.W, BL.W, B.W, Bcc.W
4660 * The branch target is in the same 4KB region as the
4661 first half of the branch.
4662 * The instruction before the branch is a 32-bit
4663 length non-branch instruction. */
4664 for (i = span_start; i < span_end;)
4666 unsigned int insn = bfd_getl16 (&contents[i]);
4667 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
4668 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
4670 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
4671 insn_32bit = TRUE;
4673 if (insn_32bit)
4675 /* Load the rest of the insn (in manual-friendly order). */
4676 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
4678 /* Encoding T4: B<c>.W. */
4679 is_b = (insn & 0xf800d000) == 0xf0009000;
4680 /* Encoding T1: BL<c>.W. */
4681 is_bl = (insn & 0xf800d000) == 0xf000d000;
4682 /* Encoding T2: BLX<c>.W. */
4683 is_blx = (insn & 0xf800d000) == 0xf000c000;
4684 /* Encoding T3: B<c>.W (not permitted in IT block). */
4685 is_bcc = (insn & 0xf800d000) == 0xf0008000
4686 && (insn & 0x07f00000) != 0x03800000;
4689 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
4691 if (((base_vma + i) & 0xfff) == 0xffe
4692 && insn_32bit
4693 && is_32bit_branch
4694 && last_was_32bit
4695 && ! last_was_branch)
4697 bfd_signed_vma offset = 0;
4698 bfd_boolean force_target_arm = FALSE;
4699 bfd_boolean force_target_thumb = FALSE;
4700 bfd_vma target;
4701 enum elf32_arm_stub_type stub_type = arm_stub_none;
4702 struct a8_erratum_reloc key, *found;
4703 bfd_boolean use_plt = FALSE;
4705 key.from = base_vma + i;
4706 found = (struct a8_erratum_reloc *)
4707 bsearch (&key, a8_relocs, num_a8_relocs,
4708 sizeof (struct a8_erratum_reloc),
4709 &a8_reloc_compare);
4711 if (found)
4713 char *error_message = NULL;
4714 struct elf_link_hash_entry *entry;
4716 /* We don't care about the error returned from this
4717 function, only if there is glue or not. */
4718 entry = find_thumb_glue (info, found->sym_name,
4719 &error_message);
4721 if (entry)
4722 found->non_a8_stub = TRUE;
4724 /* Keep a simpler condition, for the sake of clarity. */
4725 if (htab->root.splt != NULL && found->hash != NULL
4726 && found->hash->root.plt.offset != (bfd_vma) -1)
4727 use_plt = TRUE;
4729 if (found->r_type == R_ARM_THM_CALL)
4731 if (found->branch_type == ST_BRANCH_TO_ARM
4732 || use_plt)
4733 force_target_arm = TRUE;
4734 else
4735 force_target_thumb = TRUE;
4739 /* Check if we have an offending branch instruction. */
4741 if (found && found->non_a8_stub)
4742 /* We've already made a stub for this instruction, e.g.
4743 it's a long branch or a Thumb->ARM stub. Assume that
4744 stub will suffice to work around the A8 erratum (see
4745 setting of always_after_branch above). */
4747 else if (is_bcc)
4749 offset = (insn & 0x7ff) << 1;
4750 offset |= (insn & 0x3f0000) >> 4;
4751 offset |= (insn & 0x2000) ? 0x40000 : 0;
4752 offset |= (insn & 0x800) ? 0x80000 : 0;
4753 offset |= (insn & 0x4000000) ? 0x100000 : 0;
4754 if (offset & 0x100000)
4755 offset |= ~ ((bfd_signed_vma) 0xfffff);
4756 stub_type = arm_stub_a8_veneer_b_cond;
4758 else if (is_b || is_bl || is_blx)
4760 int s = (insn & 0x4000000) != 0;
4761 int j1 = (insn & 0x2000) != 0;
4762 int j2 = (insn & 0x800) != 0;
4763 int i1 = !(j1 ^ s);
4764 int i2 = !(j2 ^ s);
4766 offset = (insn & 0x7ff) << 1;
4767 offset |= (insn & 0x3ff0000) >> 4;
4768 offset |= i2 << 22;
4769 offset |= i1 << 23;
4770 offset |= s << 24;
4771 if (offset & 0x1000000)
4772 offset |= ~ ((bfd_signed_vma) 0xffffff);
4774 if (is_blx)
4775 offset &= ~ ((bfd_signed_vma) 3);
4777 stub_type = is_blx ? arm_stub_a8_veneer_blx :
4778 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
4781 if (stub_type != arm_stub_none)
4783 bfd_vma pc_for_insn = base_vma + i + 4;
4785 /* The original instruction is a BL, but the target is
4786 an ARM instruction. If we were not making a stub,
4787 the BL would have been converted to a BLX. Use the
4788 BLX stub instead in that case. */
4789 if (htab->use_blx && force_target_arm
4790 && stub_type == arm_stub_a8_veneer_bl)
4792 stub_type = arm_stub_a8_veneer_blx;
4793 is_blx = TRUE;
4794 is_bl = FALSE;
4796 /* Conversely, if the original instruction was
4797 BLX but the target is Thumb mode, use the BL
4798 stub. */
4799 else if (force_target_thumb
4800 && stub_type == arm_stub_a8_veneer_blx)
4802 stub_type = arm_stub_a8_veneer_bl;
4803 is_blx = FALSE;
4804 is_bl = TRUE;
4807 if (is_blx)
4808 pc_for_insn &= ~ ((bfd_vma) 3);
4810 /* If we found a relocation, use the proper destination,
4811 not the offset in the (unrelocated) instruction.
4812 Note this is always done if we switched the stub type
4813 above. */
4814 if (found)
4815 offset =
4816 (bfd_signed_vma) (found->destination - pc_for_insn);
4818 /* If the stub will use a Thumb-mode branch to a
4819 PLT target, redirect it to the preceding Thumb
4820 entry point. */
4821 if (stub_type != arm_stub_a8_veneer_blx && use_plt)
4822 offset -= PLT_THUMB_STUB_SIZE;
4824 target = pc_for_insn + offset;
4826 /* The BLX stub is ARM-mode code. Adjust the offset to
4827 take the different PC value (+8 instead of +4) into
4828 account. */
4829 if (stub_type == arm_stub_a8_veneer_blx)
4830 offset += 4;
4832 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
4834 char *stub_name = NULL;
4836 if (num_a8_fixes == a8_fix_table_size)
4838 a8_fix_table_size *= 2;
4839 a8_fixes = (struct a8_erratum_fix *)
4840 bfd_realloc (a8_fixes,
4841 sizeof (struct a8_erratum_fix)
4842 * a8_fix_table_size);
4845 if (num_a8_fixes < prev_num_a8_fixes)
4847 /* If we're doing a subsequent scan,
4848 check if we've found the same fix as
4849 before, and try and reuse the stub
4850 name. */
4851 stub_name = a8_fixes[num_a8_fixes].stub_name;
4852 if ((a8_fixes[num_a8_fixes].section != section)
4853 || (a8_fixes[num_a8_fixes].offset != i))
4855 free (stub_name);
4856 stub_name = NULL;
4857 *stub_changed_p = TRUE;
4861 if (!stub_name)
4863 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
4864 if (stub_name != NULL)
4865 sprintf (stub_name, "%x:%x", section->id, i);
4868 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
4869 a8_fixes[num_a8_fixes].section = section;
4870 a8_fixes[num_a8_fixes].offset = i;
4871 a8_fixes[num_a8_fixes].addend = offset;
4872 a8_fixes[num_a8_fixes].orig_insn = insn;
4873 a8_fixes[num_a8_fixes].stub_name = stub_name;
4874 a8_fixes[num_a8_fixes].stub_type = stub_type;
4875 a8_fixes[num_a8_fixes].branch_type =
4876 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
4878 num_a8_fixes++;
4883 i += insn_32bit ? 4 : 2;
4884 last_was_32bit = insn_32bit;
4885 last_was_branch = is_32bit_branch;
4889 if (elf_section_data (section)->this_hdr.contents == NULL)
4890 free (contents);
4893 *a8_fixes_p = a8_fixes;
4894 *num_a8_fixes_p = num_a8_fixes;
4895 *a8_fix_table_size_p = a8_fix_table_size;
4897 return FALSE;
4900 /* Determine and set the size of the stub section for a final link.
4902 The basic idea here is to examine all the relocations looking for
4903 PC-relative calls to a target that is unreachable with a "bl"
4904 instruction. */
4906 bfd_boolean
4907 elf32_arm_size_stubs (bfd *output_bfd,
4908 bfd *stub_bfd,
4909 struct bfd_link_info *info,
4910 bfd_signed_vma group_size,
4911 asection * (*add_stub_section) (const char *, asection *,
4912 unsigned int),
4913 void (*layout_sections_again) (void))
4915 bfd_size_type stub_group_size;
4916 bfd_boolean stubs_always_after_branch;
4917 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4918 struct a8_erratum_fix *a8_fixes = NULL;
4919 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
4920 struct a8_erratum_reloc *a8_relocs = NULL;
4921 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
4923 if (htab == NULL)
4924 return FALSE;
4926 if (htab->fix_cortex_a8)
4928 a8_fixes = (struct a8_erratum_fix *)
4929 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
4930 a8_relocs = (struct a8_erratum_reloc *)
4931 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
4934 /* Propagate mach to stub bfd, because it may not have been
4935 finalized when we created stub_bfd. */
4936 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4937 bfd_get_mach (output_bfd));
4939 /* Stash our params away. */
4940 htab->stub_bfd = stub_bfd;
4941 htab->add_stub_section = add_stub_section;
4942 htab->layout_sections_again = layout_sections_again;
4943 stubs_always_after_branch = group_size < 0;
4945 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
4946 as the first half of a 32-bit branch straddling two 4K pages. This is a
4947 crude way of enforcing that. */
4948 if (htab->fix_cortex_a8)
4949 stubs_always_after_branch = 1;
4951 if (group_size < 0)
4952 stub_group_size = -group_size;
4953 else
4954 stub_group_size = group_size;
4956 if (stub_group_size == 1)
4958 /* Default values. */
4959 /* Thumb branch range is +-4MB has to be used as the default
4960 maximum size (a given section can contain both ARM and Thumb
4961 code, so the worst case has to be taken into account).
4963 This value is 24K less than that, which allows for 2025
4964 12-byte stubs. If we exceed that, then we will fail to link.
4965 The user will have to relink with an explicit group size
4966 option. */
4967 stub_group_size = 4170000;
4970 group_sections (htab, stub_group_size, stubs_always_after_branch);
4972 /* If we're applying the cortex A8 fix, we need to determine the
4973 program header size now, because we cannot change it later --
4974 that could alter section placements. Notice the A8 erratum fix
4975 ends up requiring the section addresses to remain unchanged
4976 modulo the page size. That's something we cannot represent
4977 inside BFD, and we don't want to force the section alignment to
4978 be the page size. */
4979 if (htab->fix_cortex_a8)
4980 (*htab->layout_sections_again) ();
4982 while (1)
4984 bfd *input_bfd;
4985 unsigned int bfd_indx;
4986 asection *stub_sec;
4987 bfd_boolean stub_changed = FALSE;
4988 unsigned prev_num_a8_fixes = num_a8_fixes;
4990 num_a8_fixes = 0;
4991 for (input_bfd = info->input_bfds, bfd_indx = 0;
4992 input_bfd != NULL;
4993 input_bfd = input_bfd->link_next, bfd_indx++)
4995 Elf_Internal_Shdr *symtab_hdr;
4996 asection *section;
4997 Elf_Internal_Sym *local_syms = NULL;
4999 if (!is_arm_elf (input_bfd))
5000 continue;
5002 num_a8_relocs = 0;
5004 /* We'll need the symbol table in a second. */
5005 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5006 if (symtab_hdr->sh_info == 0)
5007 continue;
5009 /* Walk over each section attached to the input bfd. */
5010 for (section = input_bfd->sections;
5011 section != NULL;
5012 section = section->next)
5014 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
5016 /* If there aren't any relocs, then there's nothing more
5017 to do. */
5018 if ((section->flags & SEC_RELOC) == 0
5019 || section->reloc_count == 0
5020 || (section->flags & SEC_CODE) == 0)
5021 continue;
5023 /* If this section is a link-once section that will be
5024 discarded, then don't create any stubs. */
5025 if (section->output_section == NULL
5026 || section->output_section->owner != output_bfd)
5027 continue;
5029 /* Get the relocs. */
5030 internal_relocs
5031 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
5032 NULL, info->keep_memory);
5033 if (internal_relocs == NULL)
5034 goto error_ret_free_local;
5036 /* Now examine each relocation. */
5037 irela = internal_relocs;
5038 irelaend = irela + section->reloc_count;
5039 for (; irela < irelaend; irela++)
5041 unsigned int r_type, r_indx;
5042 enum elf32_arm_stub_type stub_type;
5043 struct elf32_arm_stub_hash_entry *stub_entry;
5044 asection *sym_sec;
5045 bfd_vma sym_value;
5046 bfd_vma destination;
5047 struct elf32_arm_link_hash_entry *hash;
5048 const char *sym_name;
5049 char *stub_name;
5050 const asection *id_sec;
5051 unsigned char st_type;
5052 enum arm_st_branch_type branch_type;
5053 bfd_boolean created_stub = FALSE;
5055 r_type = ELF32_R_TYPE (irela->r_info);
5056 r_indx = ELF32_R_SYM (irela->r_info);
5058 if (r_type >= (unsigned int) R_ARM_max)
5060 bfd_set_error (bfd_error_bad_value);
5061 error_ret_free_internal:
5062 if (elf_section_data (section)->relocs == NULL)
5063 free (internal_relocs);
5064 goto error_ret_free_local;
5067 hash = NULL;
5068 if (r_indx >= symtab_hdr->sh_info)
5069 hash = elf32_arm_hash_entry
5070 (elf_sym_hashes (input_bfd)
5071 [r_indx - symtab_hdr->sh_info]);
5073 /* Only look for stubs on branch instructions, or
5074 non-relaxed TLSCALL */
5075 if ((r_type != (unsigned int) R_ARM_CALL)
5076 && (r_type != (unsigned int) R_ARM_THM_CALL)
5077 && (r_type != (unsigned int) R_ARM_JUMP24)
5078 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
5079 && (r_type != (unsigned int) R_ARM_THM_XPC22)
5080 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
5081 && (r_type != (unsigned int) R_ARM_PLT32)
5082 && !((r_type == (unsigned int) R_ARM_TLS_CALL
5083 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
5084 && r_type == elf32_arm_tls_transition
5085 (info, r_type, &hash->root)
5086 && ((hash ? hash->tls_type
5087 : (elf32_arm_local_got_tls_type
5088 (input_bfd)[r_indx]))
5089 & GOT_TLS_GDESC) != 0))
5090 continue;
5092 /* Now determine the call target, its name, value,
5093 section. */
5094 sym_sec = NULL;
5095 sym_value = 0;
5096 destination = 0;
5097 sym_name = NULL;
5099 if (r_type == (unsigned int) R_ARM_TLS_CALL
5100 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
5102 /* A non-relaxed TLS call. The target is the
5103 plt-resident trampoline and nothing to do
5104 with the symbol. */
5105 BFD_ASSERT (htab->tls_trampoline > 0);
5106 sym_sec = htab->root.splt;
5107 sym_value = htab->tls_trampoline;
5108 hash = 0;
5109 st_type = STT_FUNC;
5110 branch_type = ST_BRANCH_TO_ARM;
5112 else if (!hash)
5114 /* It's a local symbol. */
5115 Elf_Internal_Sym *sym;
5117 if (local_syms == NULL)
5119 local_syms
5120 = (Elf_Internal_Sym *) symtab_hdr->contents;
5121 if (local_syms == NULL)
5122 local_syms
5123 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
5124 symtab_hdr->sh_info, 0,
5125 NULL, NULL, NULL);
5126 if (local_syms == NULL)
5127 goto error_ret_free_internal;
5130 sym = local_syms + r_indx;
5131 if (sym->st_shndx == SHN_UNDEF)
5132 sym_sec = bfd_und_section_ptr;
5133 else if (sym->st_shndx == SHN_ABS)
5134 sym_sec = bfd_abs_section_ptr;
5135 else if (sym->st_shndx == SHN_COMMON)
5136 sym_sec = bfd_com_section_ptr;
5137 else
5138 sym_sec =
5139 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
5141 if (!sym_sec)
5142 /* This is an undefined symbol. It can never
5143 be resolved. */
5144 continue;
5146 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
5147 sym_value = sym->st_value;
5148 destination = (sym_value + irela->r_addend
5149 + sym_sec->output_offset
5150 + sym_sec->output_section->vma);
5151 st_type = ELF_ST_TYPE (sym->st_info);
5152 branch_type = ARM_SYM_BRANCH_TYPE (sym);
5153 sym_name
5154 = bfd_elf_string_from_elf_section (input_bfd,
5155 symtab_hdr->sh_link,
5156 sym->st_name);
5158 else
5160 /* It's an external symbol. */
5161 while (hash->root.root.type == bfd_link_hash_indirect
5162 || hash->root.root.type == bfd_link_hash_warning)
5163 hash = ((struct elf32_arm_link_hash_entry *)
5164 hash->root.root.u.i.link);
5166 if (hash->root.root.type == bfd_link_hash_defined
5167 || hash->root.root.type == bfd_link_hash_defweak)
5169 sym_sec = hash->root.root.u.def.section;
5170 sym_value = hash->root.root.u.def.value;
5172 struct elf32_arm_link_hash_table *globals =
5173 elf32_arm_hash_table (info);
5175 /* For a destination in a shared library,
5176 use the PLT stub as target address to
5177 decide whether a branch stub is
5178 needed. */
5179 if (globals != NULL
5180 && globals->root.splt != NULL
5181 && hash != NULL
5182 && hash->root.plt.offset != (bfd_vma) -1)
5184 sym_sec = globals->root.splt;
5185 sym_value = hash->root.plt.offset;
5186 if (sym_sec->output_section != NULL)
5187 destination = (sym_value
5188 + sym_sec->output_offset
5189 + sym_sec->output_section->vma);
5191 else if (sym_sec->output_section != NULL)
5192 destination = (sym_value + irela->r_addend
5193 + sym_sec->output_offset
5194 + sym_sec->output_section->vma);
5196 else if ((hash->root.root.type == bfd_link_hash_undefined)
5197 || (hash->root.root.type == bfd_link_hash_undefweak))
5199 /* For a shared library, use the PLT stub as
5200 target address to decide whether a long
5201 branch stub is needed.
5202 For absolute code, they cannot be handled. */
5203 struct elf32_arm_link_hash_table *globals =
5204 elf32_arm_hash_table (info);
5206 if (globals != NULL
5207 && globals->root.splt != NULL
5208 && hash != NULL
5209 && hash->root.plt.offset != (bfd_vma) -1)
5211 sym_sec = globals->root.splt;
5212 sym_value = hash->root.plt.offset;
5213 if (sym_sec->output_section != NULL)
5214 destination = (sym_value
5215 + sym_sec->output_offset
5216 + sym_sec->output_section->vma);
5218 else
5219 continue;
5221 else
5223 bfd_set_error (bfd_error_bad_value);
5224 goto error_ret_free_internal;
5226 st_type = hash->root.type;
5227 branch_type = hash->root.target_internal;
5228 sym_name = hash->root.root.root.string;
5233 /* Determine what (if any) linker stub is needed. */
5234 stub_type = arm_type_of_stub (info, section, irela,
5235 st_type, &branch_type,
5236 hash, destination, sym_sec,
5237 input_bfd, sym_name);
5238 if (stub_type == arm_stub_none)
5239 break;
5241 /* Support for grouping stub sections. */
5242 id_sec = htab->stub_group[section->id].link_sec;
5244 /* Get the name of this stub. */
5245 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash,
5246 irela, stub_type);
5247 if (!stub_name)
5248 goto error_ret_free_internal;
5250 /* We've either created a stub for this reloc already,
5251 or we are about to. */
5252 created_stub = TRUE;
5254 stub_entry = arm_stub_hash_lookup
5255 (&htab->stub_hash_table, stub_name,
5256 FALSE, FALSE);
5257 if (stub_entry != NULL)
5259 /* The proper stub has already been created. */
5260 free (stub_name);
5261 stub_entry->target_value = sym_value;
5262 break;
5265 stub_entry = elf32_arm_add_stub (stub_name, section,
5266 htab);
5267 if (stub_entry == NULL)
5269 free (stub_name);
5270 goto error_ret_free_internal;
5273 stub_entry->target_value = sym_value;
5274 stub_entry->target_section = sym_sec;
5275 stub_entry->stub_type = stub_type;
5276 stub_entry->h = hash;
5277 stub_entry->branch_type = branch_type;
5279 if (sym_name == NULL)
5280 sym_name = "unnamed";
5281 stub_entry->output_name = (char *)
5282 bfd_alloc (htab->stub_bfd,
5283 sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5284 + strlen (sym_name));
5285 if (stub_entry->output_name == NULL)
5287 free (stub_name);
5288 goto error_ret_free_internal;
5291 /* For historical reasons, use the existing names for
5292 ARM-to-Thumb and Thumb-to-ARM stubs. */
5293 if ((r_type == (unsigned int) R_ARM_THM_CALL
5294 || r_type == (unsigned int) R_ARM_THM_JUMP24)
5295 && branch_type == ST_BRANCH_TO_ARM)
5296 sprintf (stub_entry->output_name,
5297 THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5298 else if ((r_type == (unsigned int) R_ARM_CALL
5299 || r_type == (unsigned int) R_ARM_JUMP24)
5300 && branch_type == ST_BRANCH_TO_THUMB)
5301 sprintf (stub_entry->output_name,
5302 ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5303 else
5304 sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
5305 sym_name);
5307 stub_changed = TRUE;
5309 while (0);
5311 /* Look for relocations which might trigger Cortex-A8
5312 erratum. */
5313 if (htab->fix_cortex_a8
5314 && (r_type == (unsigned int) R_ARM_THM_JUMP24
5315 || r_type == (unsigned int) R_ARM_THM_JUMP19
5316 || r_type == (unsigned int) R_ARM_THM_CALL
5317 || r_type == (unsigned int) R_ARM_THM_XPC22))
5319 bfd_vma from = section->output_section->vma
5320 + section->output_offset
5321 + irela->r_offset;
5323 if ((from & 0xfff) == 0xffe)
5325 /* Found a candidate. Note we haven't checked the
5326 destination is within 4K here: if we do so (and
5327 don't create an entry in a8_relocs) we can't tell
5328 that a branch should have been relocated when
5329 scanning later. */
5330 if (num_a8_relocs == a8_reloc_table_size)
5332 a8_reloc_table_size *= 2;
5333 a8_relocs = (struct a8_erratum_reloc *)
5334 bfd_realloc (a8_relocs,
5335 sizeof (struct a8_erratum_reloc)
5336 * a8_reloc_table_size);
5339 a8_relocs[num_a8_relocs].from = from;
5340 a8_relocs[num_a8_relocs].destination = destination;
5341 a8_relocs[num_a8_relocs].r_type = r_type;
5342 a8_relocs[num_a8_relocs].branch_type = branch_type;
5343 a8_relocs[num_a8_relocs].sym_name = sym_name;
5344 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
5345 a8_relocs[num_a8_relocs].hash = hash;
5347 num_a8_relocs++;
5352 /* We're done with the internal relocs, free them. */
5353 if (elf_section_data (section)->relocs == NULL)
5354 free (internal_relocs);
5357 if (htab->fix_cortex_a8)
5359 /* Sort relocs which might apply to Cortex-A8 erratum. */
5360 qsort (a8_relocs, num_a8_relocs,
5361 sizeof (struct a8_erratum_reloc),
5362 &a8_reloc_compare);
5364 /* Scan for branches which might trigger Cortex-A8 erratum. */
5365 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
5366 &num_a8_fixes, &a8_fix_table_size,
5367 a8_relocs, num_a8_relocs,
5368 prev_num_a8_fixes, &stub_changed)
5369 != 0)
5370 goto error_ret_free_local;
5374 if (prev_num_a8_fixes != num_a8_fixes)
5375 stub_changed = TRUE;
5377 if (!stub_changed)
5378 break;
5380 /* OK, we've added some stubs. Find out the new size of the
5381 stub sections. */
5382 for (stub_sec = htab->stub_bfd->sections;
5383 stub_sec != NULL;
5384 stub_sec = stub_sec->next)
5386 /* Ignore non-stub sections. */
5387 if (!strstr (stub_sec->name, STUB_SUFFIX))
5388 continue;
5390 stub_sec->size = 0;
5393 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
5395 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
5396 if (htab->fix_cortex_a8)
5397 for (i = 0; i < num_a8_fixes; i++)
5399 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
5400 a8_fixes[i].section, htab);
5402 if (stub_sec == NULL)
5403 goto error_ret_free_local;
5405 stub_sec->size
5406 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
5407 NULL);
5411 /* Ask the linker to do its stuff. */
5412 (*htab->layout_sections_again) ();
5415 /* Add stubs for Cortex-A8 erratum fixes now. */
5416 if (htab->fix_cortex_a8)
5418 for (i = 0; i < num_a8_fixes; i++)
5420 struct elf32_arm_stub_hash_entry *stub_entry;
5421 char *stub_name = a8_fixes[i].stub_name;
5422 asection *section = a8_fixes[i].section;
5423 unsigned int section_id = a8_fixes[i].section->id;
5424 asection *link_sec = htab->stub_group[section_id].link_sec;
5425 asection *stub_sec = htab->stub_group[section_id].stub_sec;
5426 const insn_sequence *template_sequence;
5427 int template_size, size = 0;
5429 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
5430 TRUE, FALSE);
5431 if (stub_entry == NULL)
5433 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
5434 section->owner,
5435 stub_name);
5436 return FALSE;
5439 stub_entry->stub_sec = stub_sec;
5440 stub_entry->stub_offset = 0;
5441 stub_entry->id_sec = link_sec;
5442 stub_entry->stub_type = a8_fixes[i].stub_type;
5443 stub_entry->target_section = a8_fixes[i].section;
5444 stub_entry->target_value = a8_fixes[i].offset;
5445 stub_entry->target_addend = a8_fixes[i].addend;
5446 stub_entry->orig_insn = a8_fixes[i].orig_insn;
5447 stub_entry->branch_type = a8_fixes[i].branch_type;
5449 size = find_stub_size_and_template (a8_fixes[i].stub_type,
5450 &template_sequence,
5451 &template_size);
5453 stub_entry->stub_size = size;
5454 stub_entry->stub_template = template_sequence;
5455 stub_entry->stub_template_size = template_size;
5458 /* Stash the Cortex-A8 erratum fix array for use later in
5459 elf32_arm_write_section(). */
5460 htab->a8_erratum_fixes = a8_fixes;
5461 htab->num_a8_erratum_fixes = num_a8_fixes;
5463 else
5465 htab->a8_erratum_fixes = NULL;
5466 htab->num_a8_erratum_fixes = 0;
5468 return TRUE;
5470 error_ret_free_local:
5471 return FALSE;
5474 /* Build all the stubs associated with the current output file. The
5475 stubs are kept in a hash table attached to the main linker hash
5476 table. We also set up the .plt entries for statically linked PIC
5477 functions here. This function is called via arm_elf_finish in the
5478 linker. */
5480 bfd_boolean
5481 elf32_arm_build_stubs (struct bfd_link_info *info)
5483 asection *stub_sec;
5484 struct bfd_hash_table *table;
5485 struct elf32_arm_link_hash_table *htab;
5487 htab = elf32_arm_hash_table (info);
5488 if (htab == NULL)
5489 return FALSE;
5491 for (stub_sec = htab->stub_bfd->sections;
5492 stub_sec != NULL;
5493 stub_sec = stub_sec->next)
5495 bfd_size_type size;
5497 /* Ignore non-stub sections. */
5498 if (!strstr (stub_sec->name, STUB_SUFFIX))
5499 continue;
5501 /* Allocate memory to hold the linker stubs. */
5502 size = stub_sec->size;
5503 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
5504 if (stub_sec->contents == NULL && size != 0)
5505 return FALSE;
5506 stub_sec->size = 0;
5509 /* Build the stubs as directed by the stub hash table. */
5510 table = &htab->stub_hash_table;
5511 bfd_hash_traverse (table, arm_build_one_stub, info);
5512 if (htab->fix_cortex_a8)
5514 /* Place the cortex a8 stubs last. */
5515 htab->fix_cortex_a8 = -1;
5516 bfd_hash_traverse (table, arm_build_one_stub, info);
5519 return TRUE;
5522 /* Locate the Thumb encoded calling stub for NAME. */
5524 static struct elf_link_hash_entry *
5525 find_thumb_glue (struct bfd_link_info *link_info,
5526 const char *name,
5527 char **error_message)
5529 char *tmp_name;
5530 struct elf_link_hash_entry *hash;
5531 struct elf32_arm_link_hash_table *hash_table;
5533 /* We need a pointer to the armelf specific hash table. */
5534 hash_table = elf32_arm_hash_table (link_info);
5535 if (hash_table == NULL)
5536 return NULL;
5538 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5539 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
5541 BFD_ASSERT (tmp_name);
5543 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
5545 hash = elf_link_hash_lookup
5546 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
5548 if (hash == NULL
5549 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
5550 tmp_name, name) == -1)
5551 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
5553 free (tmp_name);
5555 return hash;
5558 /* Locate the ARM encoded calling stub for NAME. */
5560 static struct elf_link_hash_entry *
5561 find_arm_glue (struct bfd_link_info *link_info,
5562 const char *name,
5563 char **error_message)
5565 char *tmp_name;
5566 struct elf_link_hash_entry *myh;
5567 struct elf32_arm_link_hash_table *hash_table;
5569 /* We need a pointer to the elfarm specific hash table. */
5570 hash_table = elf32_arm_hash_table (link_info);
5571 if (hash_table == NULL)
5572 return NULL;
5574 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5575 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
5577 BFD_ASSERT (tmp_name);
5579 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5581 myh = elf_link_hash_lookup
5582 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
5584 if (myh == NULL
5585 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
5586 tmp_name, name) == -1)
5587 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
5589 free (tmp_name);
5591 return myh;
5594 /* ARM->Thumb glue (static images):
5596 .arm
5597 __func_from_arm:
5598 ldr r12, __func_addr
5599 bx r12
5600 __func_addr:
5601 .word func @ behave as if you saw a ARM_32 reloc.
5603 (v5t static images)
5604 .arm
5605 __func_from_arm:
5606 ldr pc, __func_addr
5607 __func_addr:
5608 .word func @ behave as if you saw a ARM_32 reloc.
5610 (relocatable images)
5611 .arm
5612 __func_from_arm:
5613 ldr r12, __func_offset
5614 add r12, r12, pc
5615 bx r12
5616 __func_offset:
5617 .word func - . */
5619 #define ARM2THUMB_STATIC_GLUE_SIZE 12
5620 static const insn32 a2t1_ldr_insn = 0xe59fc000;
5621 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
5622 static const insn32 a2t3_func_addr_insn = 0x00000001;
5624 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
5625 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
5626 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
5628 #define ARM2THUMB_PIC_GLUE_SIZE 16
5629 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
5630 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
5631 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
5633 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
5635 .thumb .thumb
5636 .align 2 .align 2
5637 __func_from_thumb: __func_from_thumb:
5638 bx pc push {r6, lr}
5639 nop ldr r6, __func_addr
5640 .arm mov lr, pc
5641 b func bx r6
5642 .arm
5643 ;; back_to_thumb
5644 ldmia r13! {r6, lr}
5645 bx lr
5646 __func_addr:
5647 .word func */
5649 #define THUMB2ARM_GLUE_SIZE 8
5650 static const insn16 t2a1_bx_pc_insn = 0x4778;
5651 static const insn16 t2a2_noop_insn = 0x46c0;
5652 static const insn32 t2a3_b_insn = 0xea000000;
5654 #define VFP11_ERRATUM_VENEER_SIZE 8
5656 #define ARM_BX_VENEER_SIZE 12
5657 static const insn32 armbx1_tst_insn = 0xe3100001;
5658 static const insn32 armbx2_moveq_insn = 0x01a0f000;
5659 static const insn32 armbx3_bx_insn = 0xe12fff10;
5661 #ifndef ELFARM_NABI_C_INCLUDED
5662 static void
5663 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
5665 asection * s;
5666 bfd_byte * contents;
5668 if (size == 0)
5670 /* Do not include empty glue sections in the output. */
5671 if (abfd != NULL)
5673 s = bfd_get_linker_section (abfd, name);
5674 if (s != NULL)
5675 s->flags |= SEC_EXCLUDE;
5677 return;
5680 BFD_ASSERT (abfd != NULL);
5682 s = bfd_get_linker_section (abfd, name);
5683 BFD_ASSERT (s != NULL);
5685 contents = (bfd_byte *) bfd_alloc (abfd, size);
5687 BFD_ASSERT (s->size == size);
5688 s->contents = contents;
5691 bfd_boolean
5692 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
5694 struct elf32_arm_link_hash_table * globals;
5696 globals = elf32_arm_hash_table (info);
5697 BFD_ASSERT (globals != NULL);
5699 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5700 globals->arm_glue_size,
5701 ARM2THUMB_GLUE_SECTION_NAME);
5703 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5704 globals->thumb_glue_size,
5705 THUMB2ARM_GLUE_SECTION_NAME);
5707 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5708 globals->vfp11_erratum_glue_size,
5709 VFP11_ERRATUM_VENEER_SECTION_NAME);
5711 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5712 globals->bx_glue_size,
5713 ARM_BX_GLUE_SECTION_NAME);
5715 return TRUE;
5718 /* Allocate space and symbols for calling a Thumb function from Arm mode.
5719 returns the symbol identifying the stub. */
5721 static struct elf_link_hash_entry *
5722 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
5723 struct elf_link_hash_entry * h)
5725 const char * name = h->root.root.string;
5726 asection * s;
5727 char * tmp_name;
5728 struct elf_link_hash_entry * myh;
5729 struct bfd_link_hash_entry * bh;
5730 struct elf32_arm_link_hash_table * globals;
5731 bfd_vma val;
5732 bfd_size_type size;
5734 globals = elf32_arm_hash_table (link_info);
5735 BFD_ASSERT (globals != NULL);
5736 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5738 s = bfd_get_linker_section
5739 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
5741 BFD_ASSERT (s != NULL);
5743 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5744 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
5746 BFD_ASSERT (tmp_name);
5748 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5750 myh = elf_link_hash_lookup
5751 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5753 if (myh != NULL)
5755 /* We've already seen this guy. */
5756 free (tmp_name);
5757 return myh;
5760 /* The only trick here is using hash_table->arm_glue_size as the value.
5761 Even though the section isn't allocated yet, this is where we will be
5762 putting it. The +1 on the value marks that the stub has not been
5763 output yet - not that it is a Thumb function. */
5764 bh = NULL;
5765 val = globals->arm_glue_size + 1;
5766 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5767 tmp_name, BSF_GLOBAL, s, val,
5768 NULL, TRUE, FALSE, &bh);
5770 myh = (struct elf_link_hash_entry *) bh;
5771 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5772 myh->forced_local = 1;
5774 free (tmp_name);
5776 if (link_info->shared || globals->root.is_relocatable_executable
5777 || globals->pic_veneer)
5778 size = ARM2THUMB_PIC_GLUE_SIZE;
5779 else if (globals->use_blx)
5780 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
5781 else
5782 size = ARM2THUMB_STATIC_GLUE_SIZE;
5784 s->size += size;
5785 globals->arm_glue_size += size;
5787 return myh;
5790 /* Allocate space for ARMv4 BX veneers. */
5792 static void
5793 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
5795 asection * s;
5796 struct elf32_arm_link_hash_table *globals;
5797 char *tmp_name;
5798 struct elf_link_hash_entry *myh;
5799 struct bfd_link_hash_entry *bh;
5800 bfd_vma val;
5802 /* BX PC does not need a veneer. */
5803 if (reg == 15)
5804 return;
5806 globals = elf32_arm_hash_table (link_info);
5807 BFD_ASSERT (globals != NULL);
5808 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5810 /* Check if this veneer has already been allocated. */
5811 if (globals->bx_glue_offset[reg])
5812 return;
5814 s = bfd_get_linker_section
5815 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
5817 BFD_ASSERT (s != NULL);
5819 /* Add symbol for veneer. */
5820 tmp_name = (char *)
5821 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
5823 BFD_ASSERT (tmp_name);
5825 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
5827 myh = elf_link_hash_lookup
5828 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
5830 BFD_ASSERT (myh == NULL);
5832 bh = NULL;
5833 val = globals->bx_glue_size;
5834 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5835 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5836 NULL, TRUE, FALSE, &bh);
5838 myh = (struct elf_link_hash_entry *) bh;
5839 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5840 myh->forced_local = 1;
5842 s->size += ARM_BX_VENEER_SIZE;
5843 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
5844 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
5848 /* Add an entry to the code/data map for section SEC. */
5850 static void
5851 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
5853 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5854 unsigned int newidx;
5856 if (sec_data->map == NULL)
5858 sec_data->map = (elf32_arm_section_map *)
5859 bfd_malloc (sizeof (elf32_arm_section_map));
5860 sec_data->mapcount = 0;
5861 sec_data->mapsize = 1;
5864 newidx = sec_data->mapcount++;
5866 if (sec_data->mapcount > sec_data->mapsize)
5868 sec_data->mapsize *= 2;
5869 sec_data->map = (elf32_arm_section_map *)
5870 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
5871 * sizeof (elf32_arm_section_map));
5874 if (sec_data->map)
5876 sec_data->map[newidx].vma = vma;
5877 sec_data->map[newidx].type = type;
5882 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
5883 veneers are handled for now. */
5885 static bfd_vma
5886 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
5887 elf32_vfp11_erratum_list *branch,
5888 bfd *branch_bfd,
5889 asection *branch_sec,
5890 unsigned int offset)
5892 asection *s;
5893 struct elf32_arm_link_hash_table *hash_table;
5894 char *tmp_name;
5895 struct elf_link_hash_entry *myh;
5896 struct bfd_link_hash_entry *bh;
5897 bfd_vma val;
5898 struct _arm_elf_section_data *sec_data;
5899 elf32_vfp11_erratum_list *newerr;
5901 hash_table = elf32_arm_hash_table (link_info);
5902 BFD_ASSERT (hash_table != NULL);
5903 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
5905 s = bfd_get_linker_section
5906 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
5908 sec_data = elf32_arm_section_data (s);
5910 BFD_ASSERT (s != NULL);
5912 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
5913 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
5915 BFD_ASSERT (tmp_name);
5917 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5918 hash_table->num_vfp11_fixes);
5920 myh = elf_link_hash_lookup
5921 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
5923 BFD_ASSERT (myh == NULL);
5925 bh = NULL;
5926 val = hash_table->vfp11_erratum_glue_size;
5927 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
5928 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5929 NULL, TRUE, FALSE, &bh);
5931 myh = (struct elf_link_hash_entry *) bh;
5932 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5933 myh->forced_local = 1;
5935 /* Link veneer back to calling location. */
5936 sec_data->erratumcount += 1;
5937 newerr = (elf32_vfp11_erratum_list *)
5938 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
5940 newerr->type = VFP11_ERRATUM_ARM_VENEER;
5941 newerr->vma = -1;
5942 newerr->u.v.branch = branch;
5943 newerr->u.v.id = hash_table->num_vfp11_fixes;
5944 branch->u.b.veneer = newerr;
5946 newerr->next = sec_data->erratumlist;
5947 sec_data->erratumlist = newerr;
5949 /* A symbol for the return from the veneer. */
5950 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
5951 hash_table->num_vfp11_fixes);
5953 myh = elf_link_hash_lookup
5954 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
5956 if (myh != NULL)
5957 abort ();
5959 bh = NULL;
5960 val = offset + 4;
5961 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
5962 branch_sec, val, NULL, TRUE, FALSE, &bh);
5964 myh = (struct elf_link_hash_entry *) bh;
5965 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5966 myh->forced_local = 1;
5968 free (tmp_name);
5970 /* Generate a mapping symbol for the veneer section, and explicitly add an
5971 entry for that symbol to the code/data map for the section. */
5972 if (hash_table->vfp11_erratum_glue_size == 0)
5974 bh = NULL;
5975 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
5976 ever requires this erratum fix. */
5977 _bfd_generic_link_add_one_symbol (link_info,
5978 hash_table->bfd_of_glue_owner, "$a",
5979 BSF_LOCAL, s, 0, NULL,
5980 TRUE, FALSE, &bh);
5982 myh = (struct elf_link_hash_entry *) bh;
5983 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
5984 myh->forced_local = 1;
5986 /* The elf32_arm_init_maps function only cares about symbols from input
5987 BFDs. We must make a note of this generated mapping symbol
5988 ourselves so that code byteswapping works properly in
5989 elf32_arm_write_section. */
5990 elf32_arm_section_map_add (s, 'a', 0);
5993 s->size += VFP11_ERRATUM_VENEER_SIZE;
5994 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
5995 hash_table->num_vfp11_fixes++;
5997 /* The offset of the veneer. */
5998 return val;
6001 #define ARM_GLUE_SECTION_FLAGS \
6002 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
6003 | SEC_READONLY | SEC_LINKER_CREATED)
6005 /* Create a fake section for use by the ARM backend of the linker. */
6007 static bfd_boolean
6008 arm_make_glue_section (bfd * abfd, const char * name)
6010 asection * sec;
6012 sec = bfd_get_linker_section (abfd, name);
6013 if (sec != NULL)
6014 /* Already made. */
6015 return TRUE;
6017 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
6019 if (sec == NULL
6020 || !bfd_set_section_alignment (abfd, sec, 2))
6021 return FALSE;
6023 /* Set the gc mark to prevent the section from being removed by garbage
6024 collection, despite the fact that no relocs refer to this section. */
6025 sec->gc_mark = 1;
6027 return TRUE;
6030 /* Add the glue sections to ABFD. This function is called from the
6031 linker scripts in ld/emultempl/{armelf}.em. */
6033 bfd_boolean
6034 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
6035 struct bfd_link_info *info)
6037 /* If we are only performing a partial
6038 link do not bother adding the glue. */
6039 if (info->relocatable)
6040 return TRUE;
6042 return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
6043 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
6044 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
6045 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
6048 /* Select a BFD to be used to hold the sections used by the glue code.
6049 This function is called from the linker scripts in ld/emultempl/
6050 {armelf/pe}.em. */
6052 bfd_boolean
6053 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
6055 struct elf32_arm_link_hash_table *globals;
6057 /* If we are only performing a partial link
6058 do not bother getting a bfd to hold the glue. */
6059 if (info->relocatable)
6060 return TRUE;
6062 /* Make sure we don't attach the glue sections to a dynamic object. */
6063 BFD_ASSERT (!(abfd->flags & DYNAMIC));
6065 globals = elf32_arm_hash_table (info);
6066 BFD_ASSERT (globals != NULL);
6068 if (globals->bfd_of_glue_owner != NULL)
6069 return TRUE;
6071 /* Save the bfd for later use. */
6072 globals->bfd_of_glue_owner = abfd;
6074 return TRUE;
6077 static void
6078 check_use_blx (struct elf32_arm_link_hash_table *globals)
6080 int cpu_arch;
6082 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
6083 Tag_CPU_arch);
6085 if (globals->fix_arm1176)
6087 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
6088 globals->use_blx = 1;
6090 else
6092 if (cpu_arch > TAG_CPU_ARCH_V4T)
6093 globals->use_blx = 1;
6097 bfd_boolean
6098 bfd_elf32_arm_process_before_allocation (bfd *abfd,
6099 struct bfd_link_info *link_info)
6101 Elf_Internal_Shdr *symtab_hdr;
6102 Elf_Internal_Rela *internal_relocs = NULL;
6103 Elf_Internal_Rela *irel, *irelend;
6104 bfd_byte *contents = NULL;
6106 asection *sec;
6107 struct elf32_arm_link_hash_table *globals;
6109 /* If we are only performing a partial link do not bother
6110 to construct any glue. */
6111 if (link_info->relocatable)
6112 return TRUE;
6114 /* Here we have a bfd that is to be included on the link. We have a
6115 hook to do reloc rummaging, before section sizes are nailed down. */
6116 globals = elf32_arm_hash_table (link_info);
6117 BFD_ASSERT (globals != NULL);
6119 check_use_blx (globals);
6121 if (globals->byteswap_code && !bfd_big_endian (abfd))
6123 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
6124 abfd);
6125 return FALSE;
6128 /* PR 5398: If we have not decided to include any loadable sections in
6129 the output then we will not have a glue owner bfd. This is OK, it
6130 just means that there is nothing else for us to do here. */
6131 if (globals->bfd_of_glue_owner == NULL)
6132 return TRUE;
6134 /* Rummage around all the relocs and map the glue vectors. */
6135 sec = abfd->sections;
6137 if (sec == NULL)
6138 return TRUE;
6140 for (; sec != NULL; sec = sec->next)
6142 if (sec->reloc_count == 0)
6143 continue;
6145 if ((sec->flags & SEC_EXCLUDE) != 0)
6146 continue;
6148 symtab_hdr = & elf_symtab_hdr (abfd);
6150 /* Load the relocs. */
6151 internal_relocs
6152 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
6154 if (internal_relocs == NULL)
6155 goto error_return;
6157 irelend = internal_relocs + sec->reloc_count;
6158 for (irel = internal_relocs; irel < irelend; irel++)
6160 long r_type;
6161 unsigned long r_index;
6163 struct elf_link_hash_entry *h;
6165 r_type = ELF32_R_TYPE (irel->r_info);
6166 r_index = ELF32_R_SYM (irel->r_info);
6168 /* These are the only relocation types we care about. */
6169 if ( r_type != R_ARM_PC24
6170 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
6171 continue;
6173 /* Get the section contents if we haven't done so already. */
6174 if (contents == NULL)
6176 /* Get cached copy if it exists. */
6177 if (elf_section_data (sec)->this_hdr.contents != NULL)
6178 contents = elf_section_data (sec)->this_hdr.contents;
6179 else
6181 /* Go get them off disk. */
6182 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
6183 goto error_return;
6187 if (r_type == R_ARM_V4BX)
6189 int reg;
6191 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
6192 record_arm_bx_glue (link_info, reg);
6193 continue;
6196 /* If the relocation is not against a symbol it cannot concern us. */
6197 h = NULL;
6199 /* We don't care about local symbols. */
6200 if (r_index < symtab_hdr->sh_info)
6201 continue;
6203 /* This is an external symbol. */
6204 r_index -= symtab_hdr->sh_info;
6205 h = (struct elf_link_hash_entry *)
6206 elf_sym_hashes (abfd)[r_index];
6208 /* If the relocation is against a static symbol it must be within
6209 the current section and so cannot be a cross ARM/Thumb relocation. */
6210 if (h == NULL)
6211 continue;
6213 /* If the call will go through a PLT entry then we do not need
6214 glue. */
6215 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
6216 continue;
6218 switch (r_type)
6220 case R_ARM_PC24:
6221 /* This one is a call from arm code. We need to look up
6222 the target of the call. If it is a thumb target, we
6223 insert glue. */
6224 if (h->target_internal == ST_BRANCH_TO_THUMB)
6225 record_arm_to_thumb_glue (link_info, h);
6226 break;
6228 default:
6229 abort ();
6233 if (contents != NULL
6234 && elf_section_data (sec)->this_hdr.contents != contents)
6235 free (contents);
6236 contents = NULL;
6238 if (internal_relocs != NULL
6239 && elf_section_data (sec)->relocs != internal_relocs)
6240 free (internal_relocs);
6241 internal_relocs = NULL;
6244 return TRUE;
6246 error_return:
6247 if (contents != NULL
6248 && elf_section_data (sec)->this_hdr.contents != contents)
6249 free (contents);
6250 if (internal_relocs != NULL
6251 && elf_section_data (sec)->relocs != internal_relocs)
6252 free (internal_relocs);
6254 return FALSE;
6256 #endif
6259 /* Initialise maps of ARM/Thumb/data for input BFDs. */
6261 void
6262 bfd_elf32_arm_init_maps (bfd *abfd)
6264 Elf_Internal_Sym *isymbuf;
6265 Elf_Internal_Shdr *hdr;
6266 unsigned int i, localsyms;
6268 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
6269 if (! is_arm_elf (abfd))
6270 return;
6272 if ((abfd->flags & DYNAMIC) != 0)
6273 return;
6275 hdr = & elf_symtab_hdr (abfd);
6276 localsyms = hdr->sh_info;
6278 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
6279 should contain the number of local symbols, which should come before any
6280 global symbols. Mapping symbols are always local. */
6281 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
6282 NULL);
6284 /* No internal symbols read? Skip this BFD. */
6285 if (isymbuf == NULL)
6286 return;
6288 for (i = 0; i < localsyms; i++)
6290 Elf_Internal_Sym *isym = &isymbuf[i];
6291 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
6292 const char *name;
6294 if (sec != NULL
6295 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
6297 name = bfd_elf_string_from_elf_section (abfd,
6298 hdr->sh_link, isym->st_name);
6300 if (bfd_is_arm_special_symbol_name (name,
6301 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
6302 elf32_arm_section_map_add (sec, name[1], isym->st_value);
6308 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
6309 say what they wanted. */
6311 void
6312 bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
6314 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6315 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
6317 if (globals == NULL)
6318 return;
6320 if (globals->fix_cortex_a8 == -1)
6322 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
6323 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
6324 && (out_attr[Tag_CPU_arch_profile].i == 'A'
6325 || out_attr[Tag_CPU_arch_profile].i == 0))
6326 globals->fix_cortex_a8 = 1;
6327 else
6328 globals->fix_cortex_a8 = 0;
6333 void
6334 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
6336 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6337 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
6339 if (globals == NULL)
6340 return;
6341 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
6342 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
6344 switch (globals->vfp11_fix)
6346 case BFD_ARM_VFP11_FIX_DEFAULT:
6347 case BFD_ARM_VFP11_FIX_NONE:
6348 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
6349 break;
6351 default:
6352 /* Give a warning, but do as the user requests anyway. */
6353 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
6354 "workaround is not necessary for target architecture"), obfd);
6357 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
6358 /* For earlier architectures, we might need the workaround, but do not
6359 enable it by default. If users is running with broken hardware, they
6360 must enable the erratum fix explicitly. */
6361 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
6365 enum bfd_arm_vfp11_pipe
6367 VFP11_FMAC,
6368 VFP11_LS,
6369 VFP11_DS,
6370 VFP11_BAD
6373 /* Return a VFP register number. This is encoded as RX:X for single-precision
6374 registers, or X:RX for double-precision registers, where RX is the group of
6375 four bits in the instruction encoding and X is the single extension bit.
6376 RX and X fields are specified using their lowest (starting) bit. The return
6377 value is:
6379 0...31: single-precision registers s0...s31
6380 32...63: double-precision registers d0...d31.
6382 Although X should be zero for VFP11 (encoding d0...d15 only), we might
6383 encounter VFP3 instructions, so we allow the full range for DP registers. */
6385 static unsigned int
6386 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
6387 unsigned int x)
6389 if (is_double)
6390 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
6391 else
6392 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
6395 /* Set bits in *WMASK according to a register number REG as encoded by
6396 bfd_arm_vfp11_regno(). Ignore d16-d31. */
6398 static void
6399 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
6401 if (reg < 32)
6402 *wmask |= 1 << reg;
6403 else if (reg < 48)
6404 *wmask |= 3 << ((reg - 32) * 2);
6407 /* Return TRUE if WMASK overwrites anything in REGS. */
6409 static bfd_boolean
6410 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
6412 int i;
6414 for (i = 0; i < numregs; i++)
6416 unsigned int reg = regs[i];
6418 if (reg < 32 && (wmask & (1 << reg)) != 0)
6419 return TRUE;
6421 reg -= 32;
6423 if (reg >= 16)
6424 continue;
6426 if ((wmask & (3 << (reg * 2))) != 0)
6427 return TRUE;
6430 return FALSE;
6433 /* In this function, we're interested in two things: finding input registers
6434 for VFP data-processing instructions, and finding the set of registers which
6435 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
6436 hold the written set, so FLDM etc. are easy to deal with (we're only
6437 interested in 32 SP registers or 16 dp registers, due to the VFP version
6438 implemented by the chip in question). DP registers are marked by setting
6439 both SP registers in the write mask). */
6441 static enum bfd_arm_vfp11_pipe
6442 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
6443 int *numregs)
6445 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
6446 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
6448 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
6450 unsigned int pqrs;
6451 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6452 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
6454 pqrs = ((insn & 0x00800000) >> 20)
6455 | ((insn & 0x00300000) >> 19)
6456 | ((insn & 0x00000040) >> 6);
6458 switch (pqrs)
6460 case 0: /* fmac[sd]. */
6461 case 1: /* fnmac[sd]. */
6462 case 2: /* fmsc[sd]. */
6463 case 3: /* fnmsc[sd]. */
6464 vpipe = VFP11_FMAC;
6465 bfd_arm_vfp11_write_mask (destmask, fd);
6466 regs[0] = fd;
6467 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
6468 regs[2] = fm;
6469 *numregs = 3;
6470 break;
6472 case 4: /* fmul[sd]. */
6473 case 5: /* fnmul[sd]. */
6474 case 6: /* fadd[sd]. */
6475 case 7: /* fsub[sd]. */
6476 vpipe = VFP11_FMAC;
6477 goto vfp_binop;
6479 case 8: /* fdiv[sd]. */
6480 vpipe = VFP11_DS;
6481 vfp_binop:
6482 bfd_arm_vfp11_write_mask (destmask, fd);
6483 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
6484 regs[1] = fm;
6485 *numregs = 2;
6486 break;
6488 case 15: /* extended opcode. */
6490 unsigned int extn = ((insn >> 15) & 0x1e)
6491 | ((insn >> 7) & 1);
6493 switch (extn)
6495 case 0: /* fcpy[sd]. */
6496 case 1: /* fabs[sd]. */
6497 case 2: /* fneg[sd]. */
6498 case 8: /* fcmp[sd]. */
6499 case 9: /* fcmpe[sd]. */
6500 case 10: /* fcmpz[sd]. */
6501 case 11: /* fcmpez[sd]. */
6502 case 16: /* fuito[sd]. */
6503 case 17: /* fsito[sd]. */
6504 case 24: /* ftoui[sd]. */
6505 case 25: /* ftouiz[sd]. */
6506 case 26: /* ftosi[sd]. */
6507 case 27: /* ftosiz[sd]. */
6508 /* These instructions will not bounce due to underflow. */
6509 *numregs = 0;
6510 vpipe = VFP11_FMAC;
6511 break;
6513 case 3: /* fsqrt[sd]. */
6514 /* fsqrt cannot underflow, but it can (perhaps) overwrite
6515 registers to cause the erratum in previous instructions. */
6516 bfd_arm_vfp11_write_mask (destmask, fd);
6517 vpipe = VFP11_DS;
6518 break;
6520 case 15: /* fcvt{ds,sd}. */
6522 int rnum = 0;
6524 bfd_arm_vfp11_write_mask (destmask, fd);
6526 /* Only FCVTSD can underflow. */
6527 if ((insn & 0x100) != 0)
6528 regs[rnum++] = fm;
6530 *numregs = rnum;
6532 vpipe = VFP11_FMAC;
6534 break;
6536 default:
6537 return VFP11_BAD;
6540 break;
6542 default:
6543 return VFP11_BAD;
6546 /* Two-register transfer. */
6547 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
6549 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
6551 if ((insn & 0x100000) == 0)
6553 if (is_double)
6554 bfd_arm_vfp11_write_mask (destmask, fm);
6555 else
6557 bfd_arm_vfp11_write_mask (destmask, fm);
6558 bfd_arm_vfp11_write_mask (destmask, fm + 1);
6562 vpipe = VFP11_LS;
6564 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
6566 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6567 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
6569 switch (puw)
6571 case 0: /* Two-reg transfer. We should catch these above. */
6572 abort ();
6574 case 2: /* fldm[sdx]. */
6575 case 3:
6576 case 5:
6578 unsigned int i, offset = insn & 0xff;
6580 if (is_double)
6581 offset >>= 1;
6583 for (i = fd; i < fd + offset; i++)
6584 bfd_arm_vfp11_write_mask (destmask, i);
6586 break;
6588 case 4: /* fld[sd]. */
6589 case 6:
6590 bfd_arm_vfp11_write_mask (destmask, fd);
6591 break;
6593 default:
6594 return VFP11_BAD;
6597 vpipe = VFP11_LS;
6599 /* Single-register transfer. Note L==0. */
6600 else if ((insn & 0x0f100e10) == 0x0e000a10)
6602 unsigned int opcode = (insn >> 21) & 7;
6603 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
6605 switch (opcode)
6607 case 0: /* fmsr/fmdlr. */
6608 case 1: /* fmdhr. */
6609 /* Mark fmdhr and fmdlr as writing to the whole of the DP
6610 destination register. I don't know if this is exactly right,
6611 but it is the conservative choice. */
6612 bfd_arm_vfp11_write_mask (destmask, fn);
6613 break;
6615 case 7: /* fmxr. */
6616 break;
6619 vpipe = VFP11_LS;
6622 return vpipe;
6626 static int elf32_arm_compare_mapping (const void * a, const void * b);
6629 /* Look for potentially-troublesome code sequences which might trigger the
6630 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
6631 (available from ARM) for details of the erratum. A short version is
6632 described in ld.texinfo. */
6634 bfd_boolean
6635 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
6637 asection *sec;
6638 bfd_byte *contents = NULL;
6639 int state = 0;
6640 int regs[3], numregs = 0;
6641 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6642 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
6644 if (globals == NULL)
6645 return FALSE;
6647 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
6648 The states transition as follows:
6650 0 -> 1 (vector) or 0 -> 2 (scalar)
6651 A VFP FMAC-pipeline instruction has been seen. Fill
6652 regs[0]..regs[numregs-1] with its input operands. Remember this
6653 instruction in 'first_fmac'.
6655 1 -> 2
6656 Any instruction, except for a VFP instruction which overwrites
6657 regs[*].
6659 1 -> 3 [ -> 0 ] or
6660 2 -> 3 [ -> 0 ]
6661 A VFP instruction has been seen which overwrites any of regs[*].
6662 We must make a veneer! Reset state to 0 before examining next
6663 instruction.
6665 2 -> 0
6666 If we fail to match anything in state 2, reset to state 0 and reset
6667 the instruction pointer to the instruction after 'first_fmac'.
6669 If the VFP11 vector mode is in use, there must be at least two unrelated
6670 instructions between anti-dependent VFP11 instructions to properly avoid
6671 triggering the erratum, hence the use of the extra state 1. */
6673 /* If we are only performing a partial link do not bother
6674 to construct any glue. */
6675 if (link_info->relocatable)
6676 return TRUE;
6678 /* Skip if this bfd does not correspond to an ELF image. */
6679 if (! is_arm_elf (abfd))
6680 return TRUE;
6682 /* We should have chosen a fix type by the time we get here. */
6683 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
6685 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
6686 return TRUE;
6688 /* Skip this BFD if it corresponds to an executable or dynamic object. */
6689 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
6690 return TRUE;
6692 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6694 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
6695 struct _arm_elf_section_data *sec_data;
6697 /* If we don't have executable progbits, we're not interested in this
6698 section. Also skip if section is to be excluded. */
6699 if (elf_section_type (sec) != SHT_PROGBITS
6700 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
6701 || (sec->flags & SEC_EXCLUDE) != 0
6702 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
6703 || sec->output_section == bfd_abs_section_ptr
6704 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
6705 continue;
6707 sec_data = elf32_arm_section_data (sec);
6709 if (sec_data->mapcount == 0)
6710 continue;
6712 if (elf_section_data (sec)->this_hdr.contents != NULL)
6713 contents = elf_section_data (sec)->this_hdr.contents;
6714 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
6715 goto error_return;
6717 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
6718 elf32_arm_compare_mapping);
6720 for (span = 0; span < sec_data->mapcount; span++)
6722 unsigned int span_start = sec_data->map[span].vma;
6723 unsigned int span_end = (span == sec_data->mapcount - 1)
6724 ? sec->size : sec_data->map[span + 1].vma;
6725 char span_type = sec_data->map[span].type;
6727 /* FIXME: Only ARM mode is supported at present. We may need to
6728 support Thumb-2 mode also at some point. */
6729 if (span_type != 'a')
6730 continue;
6732 for (i = span_start; i < span_end;)
6734 unsigned int next_i = i + 4;
6735 unsigned int insn = bfd_big_endian (abfd)
6736 ? (contents[i] << 24)
6737 | (contents[i + 1] << 16)
6738 | (contents[i + 2] << 8)
6739 | contents[i + 3]
6740 : (contents[i + 3] << 24)
6741 | (contents[i + 2] << 16)
6742 | (contents[i + 1] << 8)
6743 | contents[i];
6744 unsigned int writemask = 0;
6745 enum bfd_arm_vfp11_pipe vpipe;
6747 switch (state)
6749 case 0:
6750 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
6751 &numregs);
6752 /* I'm assuming the VFP11 erratum can trigger with denorm
6753 operands on either the FMAC or the DS pipeline. This might
6754 lead to slightly overenthusiastic veneer insertion. */
6755 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
6757 state = use_vector ? 1 : 2;
6758 first_fmac = i;
6759 veneer_of_insn = insn;
6761 break;
6763 case 1:
6765 int other_regs[3], other_numregs;
6766 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6767 other_regs,
6768 &other_numregs);
6769 if (vpipe != VFP11_BAD
6770 && bfd_arm_vfp11_antidependency (writemask, regs,
6771 numregs))
6772 state = 3;
6773 else
6774 state = 2;
6776 break;
6778 case 2:
6780 int other_regs[3], other_numregs;
6781 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6782 other_regs,
6783 &other_numregs);
6784 if (vpipe != VFP11_BAD
6785 && bfd_arm_vfp11_antidependency (writemask, regs,
6786 numregs))
6787 state = 3;
6788 else
6790 state = 0;
6791 next_i = first_fmac + 4;
6794 break;
6796 case 3:
6797 abort (); /* Should be unreachable. */
6800 if (state == 3)
6802 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
6803 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
6805 elf32_arm_section_data (sec)->erratumcount += 1;
6807 newerr->u.b.vfp_insn = veneer_of_insn;
6809 switch (span_type)
6811 case 'a':
6812 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
6813 break;
6815 default:
6816 abort ();
6819 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
6820 first_fmac);
6822 newerr->vma = -1;
6824 newerr->next = sec_data->erratumlist;
6825 sec_data->erratumlist = newerr;
6827 state = 0;
6830 i = next_i;
6834 if (contents != NULL
6835 && elf_section_data (sec)->this_hdr.contents != contents)
6836 free (contents);
6837 contents = NULL;
6840 return TRUE;
6842 error_return:
6843 if (contents != NULL
6844 && elf_section_data (sec)->this_hdr.contents != contents)
6845 free (contents);
6847 return FALSE;
6850 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
6851 after sections have been laid out, using specially-named symbols. */
6853 void
6854 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
6855 struct bfd_link_info *link_info)
6857 asection *sec;
6858 struct elf32_arm_link_hash_table *globals;
6859 char *tmp_name;
6861 if (link_info->relocatable)
6862 return;
6864 /* Skip if this bfd does not correspond to an ELF image. */
6865 if (! is_arm_elf (abfd))
6866 return;
6868 globals = elf32_arm_hash_table (link_info);
6869 if (globals == NULL)
6870 return;
6872 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
6873 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
6875 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6877 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
6878 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
6880 for (; errnode != NULL; errnode = errnode->next)
6882 struct elf_link_hash_entry *myh;
6883 bfd_vma vma;
6885 switch (errnode->type)
6887 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
6888 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
6889 /* Find veneer symbol. */
6890 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
6891 errnode->u.b.veneer->u.v.id);
6893 myh = elf_link_hash_lookup
6894 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6896 if (myh == NULL)
6897 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6898 "`%s'"), abfd, tmp_name);
6900 vma = myh->root.u.def.section->output_section->vma
6901 + myh->root.u.def.section->output_offset
6902 + myh->root.u.def.value;
6904 errnode->u.b.veneer->vma = vma;
6905 break;
6907 case VFP11_ERRATUM_ARM_VENEER:
6908 case VFP11_ERRATUM_THUMB_VENEER:
6909 /* Find return location. */
6910 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
6911 errnode->u.v.id);
6913 myh = elf_link_hash_lookup
6914 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6916 if (myh == NULL)
6917 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6918 "`%s'"), abfd, tmp_name);
6920 vma = myh->root.u.def.section->output_section->vma
6921 + myh->root.u.def.section->output_offset
6922 + myh->root.u.def.value;
6924 errnode->u.v.branch->vma = vma;
6925 break;
6927 default:
6928 abort ();
6933 free (tmp_name);
6937 /* Set target relocation values needed during linking. */
6939 void
6940 bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
6941 struct bfd_link_info *link_info,
6942 int target1_is_rel,
6943 char * target2_type,
6944 int fix_v4bx,
6945 int use_blx,
6946 bfd_arm_vfp11_fix vfp11_fix,
6947 int no_enum_warn, int no_wchar_warn,
6948 int pic_veneer, int fix_cortex_a8,
6949 int fix_arm1176)
6951 struct elf32_arm_link_hash_table *globals;
6953 globals = elf32_arm_hash_table (link_info);
6954 if (globals == NULL)
6955 return;
6957 globals->target1_is_rel = target1_is_rel;
6958 if (strcmp (target2_type, "rel") == 0)
6959 globals->target2_reloc = R_ARM_REL32;
6960 else if (strcmp (target2_type, "abs") == 0)
6961 globals->target2_reloc = R_ARM_ABS32;
6962 else if (strcmp (target2_type, "got-rel") == 0)
6963 globals->target2_reloc = R_ARM_GOT_PREL;
6964 else
6966 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
6967 target2_type);
6969 globals->fix_v4bx = fix_v4bx;
6970 globals->use_blx |= use_blx;
6971 globals->vfp11_fix = vfp11_fix;
6972 globals->pic_veneer = pic_veneer;
6973 globals->fix_cortex_a8 = fix_cortex_a8;
6974 globals->fix_arm1176 = fix_arm1176;
6976 BFD_ASSERT (is_arm_elf (output_bfd));
6977 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
6978 elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
6981 /* Replace the target offset of a Thumb bl or b.w instruction. */
6983 static void
6984 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
6986 bfd_vma upper;
6987 bfd_vma lower;
6988 int reloc_sign;
6990 BFD_ASSERT ((offset & 1) == 0);
6992 upper = bfd_get_16 (abfd, insn);
6993 lower = bfd_get_16 (abfd, insn + 2);
6994 reloc_sign = (offset < 0) ? 1 : 0;
6995 upper = (upper & ~(bfd_vma) 0x7ff)
6996 | ((offset >> 12) & 0x3ff)
6997 | (reloc_sign << 10);
6998 lower = (lower & ~(bfd_vma) 0x2fff)
6999 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
7000 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
7001 | ((offset >> 1) & 0x7ff);
7002 bfd_put_16 (abfd, upper, insn);
7003 bfd_put_16 (abfd, lower, insn + 2);
7006 /* Thumb code calling an ARM function. */
7008 static int
7009 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
7010 const char * name,
7011 bfd * input_bfd,
7012 bfd * output_bfd,
7013 asection * input_section,
7014 bfd_byte * hit_data,
7015 asection * sym_sec,
7016 bfd_vma offset,
7017 bfd_signed_vma addend,
7018 bfd_vma val,
7019 char **error_message)
7021 asection * s = 0;
7022 bfd_vma my_offset;
7023 long int ret_offset;
7024 struct elf_link_hash_entry * myh;
7025 struct elf32_arm_link_hash_table * globals;
7027 myh = find_thumb_glue (info, name, error_message);
7028 if (myh == NULL)
7029 return FALSE;
7031 globals = elf32_arm_hash_table (info);
7032 BFD_ASSERT (globals != NULL);
7033 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7035 my_offset = myh->root.u.def.value;
7037 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7038 THUMB2ARM_GLUE_SECTION_NAME);
7040 BFD_ASSERT (s != NULL);
7041 BFD_ASSERT (s->contents != NULL);
7042 BFD_ASSERT (s->output_section != NULL);
7044 if ((my_offset & 0x01) == 0x01)
7046 if (sym_sec != NULL
7047 && sym_sec->owner != NULL
7048 && !INTERWORK_FLAG (sym_sec->owner))
7050 (*_bfd_error_handler)
7051 (_("%B(%s): warning: interworking not enabled.\n"
7052 " first occurrence: %B: Thumb call to ARM"),
7053 sym_sec->owner, input_bfd, name);
7055 return FALSE;
7058 --my_offset;
7059 myh->root.u.def.value = my_offset;
7061 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
7062 s->contents + my_offset);
7064 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
7065 s->contents + my_offset + 2);
7067 ret_offset =
7068 /* Address of destination of the stub. */
7069 ((bfd_signed_vma) val)
7070 - ((bfd_signed_vma)
7071 /* Offset from the start of the current section
7072 to the start of the stubs. */
7073 (s->output_offset
7074 /* Offset of the start of this stub from the start of the stubs. */
7075 + my_offset
7076 /* Address of the start of the current section. */
7077 + s->output_section->vma)
7078 /* The branch instruction is 4 bytes into the stub. */
7080 /* ARM branches work from the pc of the instruction + 8. */
7081 + 8);
7083 put_arm_insn (globals, output_bfd,
7084 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
7085 s->contents + my_offset + 4);
7088 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
7090 /* Now go back and fix up the original BL insn to point to here. */
7091 ret_offset =
7092 /* Address of where the stub is located. */
7093 (s->output_section->vma + s->output_offset + my_offset)
7094 /* Address of where the BL is located. */
7095 - (input_section->output_section->vma + input_section->output_offset
7096 + offset)
7097 /* Addend in the relocation. */
7098 - addend
7099 /* Biassing for PC-relative addressing. */
7100 - 8;
7102 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
7104 return TRUE;
7107 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
7109 static struct elf_link_hash_entry *
7110 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
7111 const char * name,
7112 bfd * input_bfd,
7113 bfd * output_bfd,
7114 asection * sym_sec,
7115 bfd_vma val,
7116 asection * s,
7117 char ** error_message)
7119 bfd_vma my_offset;
7120 long int ret_offset;
7121 struct elf_link_hash_entry * myh;
7122 struct elf32_arm_link_hash_table * globals;
7124 myh = find_arm_glue (info, name, error_message);
7125 if (myh == NULL)
7126 return NULL;
7128 globals = elf32_arm_hash_table (info);
7129 BFD_ASSERT (globals != NULL);
7130 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7132 my_offset = myh->root.u.def.value;
7134 if ((my_offset & 0x01) == 0x01)
7136 if (sym_sec != NULL
7137 && sym_sec->owner != NULL
7138 && !INTERWORK_FLAG (sym_sec->owner))
7140 (*_bfd_error_handler)
7141 (_("%B(%s): warning: interworking not enabled.\n"
7142 " first occurrence: %B: arm call to thumb"),
7143 sym_sec->owner, input_bfd, name);
7146 --my_offset;
7147 myh->root.u.def.value = my_offset;
7149 if (info->shared || globals->root.is_relocatable_executable
7150 || globals->pic_veneer)
7152 /* For relocatable objects we can't use absolute addresses,
7153 so construct the address from a relative offset. */
7154 /* TODO: If the offset is small it's probably worth
7155 constructing the address with adds. */
7156 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
7157 s->contents + my_offset);
7158 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
7159 s->contents + my_offset + 4);
7160 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
7161 s->contents + my_offset + 8);
7162 /* Adjust the offset by 4 for the position of the add,
7163 and 8 for the pipeline offset. */
7164 ret_offset = (val - (s->output_offset
7165 + s->output_section->vma
7166 + my_offset + 12))
7167 | 1;
7168 bfd_put_32 (output_bfd, ret_offset,
7169 s->contents + my_offset + 12);
7171 else if (globals->use_blx)
7173 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
7174 s->contents + my_offset);
7176 /* It's a thumb address. Add the low order bit. */
7177 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
7178 s->contents + my_offset + 4);
7180 else
7182 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
7183 s->contents + my_offset);
7185 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
7186 s->contents + my_offset + 4);
7188 /* It's a thumb address. Add the low order bit. */
7189 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
7190 s->contents + my_offset + 8);
7192 my_offset += 12;
7196 BFD_ASSERT (my_offset <= globals->arm_glue_size);
7198 return myh;
7201 /* Arm code calling a Thumb function. */
7203 static int
7204 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
7205 const char * name,
7206 bfd * input_bfd,
7207 bfd * output_bfd,
7208 asection * input_section,
7209 bfd_byte * hit_data,
7210 asection * sym_sec,
7211 bfd_vma offset,
7212 bfd_signed_vma addend,
7213 bfd_vma val,
7214 char **error_message)
7216 unsigned long int tmp;
7217 bfd_vma my_offset;
7218 asection * s;
7219 long int ret_offset;
7220 struct elf_link_hash_entry * myh;
7221 struct elf32_arm_link_hash_table * globals;
7223 globals = elf32_arm_hash_table (info);
7224 BFD_ASSERT (globals != NULL);
7225 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7227 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7228 ARM2THUMB_GLUE_SECTION_NAME);
7229 BFD_ASSERT (s != NULL);
7230 BFD_ASSERT (s->contents != NULL);
7231 BFD_ASSERT (s->output_section != NULL);
7233 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
7234 sym_sec, val, s, error_message);
7235 if (!myh)
7236 return FALSE;
7238 my_offset = myh->root.u.def.value;
7239 tmp = bfd_get_32 (input_bfd, hit_data);
7240 tmp = tmp & 0xFF000000;
7242 /* Somehow these are both 4 too far, so subtract 8. */
7243 ret_offset = (s->output_offset
7244 + my_offset
7245 + s->output_section->vma
7246 - (input_section->output_offset
7247 + input_section->output_section->vma
7248 + offset + addend)
7249 - 8);
7251 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
7253 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
7255 return TRUE;
7258 /* Populate Arm stub for an exported Thumb function. */
7260 static bfd_boolean
7261 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
7263 struct bfd_link_info * info = (struct bfd_link_info *) inf;
7264 asection * s;
7265 struct elf_link_hash_entry * myh;
7266 struct elf32_arm_link_hash_entry *eh;
7267 struct elf32_arm_link_hash_table * globals;
7268 asection *sec;
7269 bfd_vma val;
7270 char *error_message;
7272 eh = elf32_arm_hash_entry (h);
7273 /* Allocate stubs for exported Thumb functions on v4t. */
7274 if (eh->export_glue == NULL)
7275 return TRUE;
7277 globals = elf32_arm_hash_table (info);
7278 BFD_ASSERT (globals != NULL);
7279 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7281 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7282 ARM2THUMB_GLUE_SECTION_NAME);
7283 BFD_ASSERT (s != NULL);
7284 BFD_ASSERT (s->contents != NULL);
7285 BFD_ASSERT (s->output_section != NULL);
7287 sec = eh->export_glue->root.u.def.section;
7289 BFD_ASSERT (sec->output_section != NULL);
7291 val = eh->export_glue->root.u.def.value + sec->output_offset
7292 + sec->output_section->vma;
7294 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
7295 h->root.u.def.section->owner,
7296 globals->obfd, sec, val, s,
7297 &error_message);
7298 BFD_ASSERT (myh);
7299 return TRUE;
7302 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
7304 static bfd_vma
7305 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
7307 bfd_byte *p;
7308 bfd_vma glue_addr;
7309 asection *s;
7310 struct elf32_arm_link_hash_table *globals;
7312 globals = elf32_arm_hash_table (info);
7313 BFD_ASSERT (globals != NULL);
7314 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7316 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7317 ARM_BX_GLUE_SECTION_NAME);
7318 BFD_ASSERT (s != NULL);
7319 BFD_ASSERT (s->contents != NULL);
7320 BFD_ASSERT (s->output_section != NULL);
7322 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
7324 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
7326 if ((globals->bx_glue_offset[reg] & 1) == 0)
7328 p = s->contents + glue_addr;
7329 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
7330 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
7331 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
7332 globals->bx_glue_offset[reg] |= 1;
7335 return glue_addr + s->output_section->vma + s->output_offset;
7338 /* Generate Arm stubs for exported Thumb symbols. */
7339 static void
7340 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
7341 struct bfd_link_info *link_info)
7343 struct elf32_arm_link_hash_table * globals;
7345 if (link_info == NULL)
7346 /* Ignore this if we are not called by the ELF backend linker. */
7347 return;
7349 globals = elf32_arm_hash_table (link_info);
7350 if (globals == NULL)
7351 return;
7353 /* If blx is available then exported Thumb symbols are OK and there is
7354 nothing to do. */
7355 if (globals->use_blx)
7356 return;
7358 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
7359 link_info);
7362 /* Reserve space for COUNT dynamic relocations in relocation selection
7363 SRELOC. */
7365 static void
7366 elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
7367 bfd_size_type count)
7369 struct elf32_arm_link_hash_table *htab;
7371 htab = elf32_arm_hash_table (info);
7372 BFD_ASSERT (htab->root.dynamic_sections_created);
7373 if (sreloc == NULL)
7374 abort ();
7375 sreloc->size += RELOC_SIZE (htab) * count;
7378 /* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
7379 dynamic, the relocations should go in SRELOC, otherwise they should
7380 go in the special .rel.iplt section. */
7382 static void
7383 elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
7384 bfd_size_type count)
7386 struct elf32_arm_link_hash_table *htab;
7388 htab = elf32_arm_hash_table (info);
7389 if (!htab->root.dynamic_sections_created)
7390 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
7391 else
7393 BFD_ASSERT (sreloc != NULL);
7394 sreloc->size += RELOC_SIZE (htab) * count;
7398 /* Add relocation REL to the end of relocation section SRELOC. */
7400 static void
7401 elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
7402 asection *sreloc, Elf_Internal_Rela *rel)
7404 bfd_byte *loc;
7405 struct elf32_arm_link_hash_table *htab;
7407 htab = elf32_arm_hash_table (info);
7408 if (!htab->root.dynamic_sections_created
7409 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
7410 sreloc = htab->root.irelplt;
7411 if (sreloc == NULL)
7412 abort ();
7413 loc = sreloc->contents;
7414 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
7415 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
7416 abort ();
7417 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
7420 /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
7421 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
7422 to .plt. */
7424 static void
7425 elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
7426 bfd_boolean is_iplt_entry,
7427 union gotplt_union *root_plt,
7428 struct arm_plt_info *arm_plt)
7430 struct elf32_arm_link_hash_table *htab;
7431 asection *splt;
7432 asection *sgotplt;
7434 htab = elf32_arm_hash_table (info);
7436 if (is_iplt_entry)
7438 splt = htab->root.iplt;
7439 sgotplt = htab->root.igotplt;
7441 /* NaCl uses a special first entry in .iplt too. */
7442 if (htab->nacl_p && splt->size == 0)
7443 splt->size += htab->plt_header_size;
7445 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
7446 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
7448 else
7450 splt = htab->root.splt;
7451 sgotplt = htab->root.sgotplt;
7453 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
7454 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
7456 /* If this is the first .plt entry, make room for the special
7457 first entry. */
7458 if (splt->size == 0)
7459 splt->size += htab->plt_header_size;
7462 /* Allocate the PLT entry itself, including any leading Thumb stub. */
7463 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
7464 splt->size += PLT_THUMB_STUB_SIZE;
7465 root_plt->offset = splt->size;
7466 splt->size += htab->plt_entry_size;
7468 if (!htab->symbian_p)
7470 /* We also need to make an entry in the .got.plt section, which
7471 will be placed in the .got section by the linker script. */
7472 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
7473 sgotplt->size += 4;
7477 static bfd_vma
7478 arm_movw_immediate (bfd_vma value)
7480 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
7483 static bfd_vma
7484 arm_movt_immediate (bfd_vma value)
7486 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
7489 /* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
7490 the entry lives in .iplt and resolves to (*SYM_VALUE)().
7491 Otherwise, DYNINDX is the index of the symbol in the dynamic
7492 symbol table and SYM_VALUE is undefined.
7494 ROOT_PLT points to the offset of the PLT entry from the start of its
7495 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
7496 bookkeeping information. */
7498 static void
7499 elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
7500 union gotplt_union *root_plt,
7501 struct arm_plt_info *arm_plt,
7502 int dynindx, bfd_vma sym_value)
7504 struct elf32_arm_link_hash_table *htab;
7505 asection *sgot;
7506 asection *splt;
7507 asection *srel;
7508 bfd_byte *loc;
7509 bfd_vma plt_index;
7510 Elf_Internal_Rela rel;
7511 bfd_vma plt_header_size;
7512 bfd_vma got_header_size;
7514 htab = elf32_arm_hash_table (info);
7516 /* Pick the appropriate sections and sizes. */
7517 if (dynindx == -1)
7519 splt = htab->root.iplt;
7520 sgot = htab->root.igotplt;
7521 srel = htab->root.irelplt;
7523 /* There are no reserved entries in .igot.plt, and no special
7524 first entry in .iplt. */
7525 got_header_size = 0;
7526 plt_header_size = 0;
7528 else
7530 splt = htab->root.splt;
7531 sgot = htab->root.sgotplt;
7532 srel = htab->root.srelplt;
7534 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
7535 plt_header_size = htab->plt_header_size;
7537 BFD_ASSERT (splt != NULL && srel != NULL);
7539 /* Fill in the entry in the procedure linkage table. */
7540 if (htab->symbian_p)
7542 BFD_ASSERT (dynindx >= 0);
7543 put_arm_insn (htab, output_bfd,
7544 elf32_arm_symbian_plt_entry[0],
7545 splt->contents + root_plt->offset);
7546 bfd_put_32 (output_bfd,
7547 elf32_arm_symbian_plt_entry[1],
7548 splt->contents + root_plt->offset + 4);
7550 /* Fill in the entry in the .rel.plt section. */
7551 rel.r_offset = (splt->output_section->vma
7552 + splt->output_offset
7553 + root_plt->offset + 4);
7554 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
7556 /* Get the index in the procedure linkage table which
7557 corresponds to this symbol. This is the index of this symbol
7558 in all the symbols for which we are making plt entries. The
7559 first entry in the procedure linkage table is reserved. */
7560 plt_index = ((root_plt->offset - plt_header_size)
7561 / htab->plt_entry_size);
7563 else
7565 bfd_vma got_offset, got_address, plt_address;
7566 bfd_vma got_displacement, initial_got_entry;
7567 bfd_byte * ptr;
7569 BFD_ASSERT (sgot != NULL);
7571 /* Get the offset into the .(i)got.plt table of the entry that
7572 corresponds to this function. */
7573 got_offset = (arm_plt->got_offset & -2);
7575 /* Get the index in the procedure linkage table which
7576 corresponds to this symbol. This is the index of this symbol
7577 in all the symbols for which we are making plt entries.
7578 After the reserved .got.plt entries, all symbols appear in
7579 the same order as in .plt. */
7580 plt_index = (got_offset - got_header_size) / 4;
7582 /* Calculate the address of the GOT entry. */
7583 got_address = (sgot->output_section->vma
7584 + sgot->output_offset
7585 + got_offset);
7587 /* ...and the address of the PLT entry. */
7588 plt_address = (splt->output_section->vma
7589 + splt->output_offset
7590 + root_plt->offset);
7592 ptr = splt->contents + root_plt->offset;
7593 if (htab->vxworks_p && info->shared)
7595 unsigned int i;
7596 bfd_vma val;
7598 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
7600 val = elf32_arm_vxworks_shared_plt_entry[i];
7601 if (i == 2)
7602 val |= got_address - sgot->output_section->vma;
7603 if (i == 5)
7604 val |= plt_index * RELOC_SIZE (htab);
7605 if (i == 2 || i == 5)
7606 bfd_put_32 (output_bfd, val, ptr);
7607 else
7608 put_arm_insn (htab, output_bfd, val, ptr);
7611 else if (htab->vxworks_p)
7613 unsigned int i;
7614 bfd_vma val;
7616 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
7618 val = elf32_arm_vxworks_exec_plt_entry[i];
7619 if (i == 2)
7620 val |= got_address;
7621 if (i == 4)
7622 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
7623 if (i == 5)
7624 val |= plt_index * RELOC_SIZE (htab);
7625 if (i == 2 || i == 5)
7626 bfd_put_32 (output_bfd, val, ptr);
7627 else
7628 put_arm_insn (htab, output_bfd, val, ptr);
7631 loc = (htab->srelplt2->contents
7632 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
7634 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
7635 referencing the GOT for this PLT entry. */
7636 rel.r_offset = plt_address + 8;
7637 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
7638 rel.r_addend = got_offset;
7639 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7640 loc += RELOC_SIZE (htab);
7642 /* Create the R_ARM_ABS32 relocation referencing the
7643 beginning of the PLT for this GOT entry. */
7644 rel.r_offset = got_address;
7645 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
7646 rel.r_addend = 0;
7647 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7649 else if (htab->nacl_p)
7651 /* Calculate the displacement between the PLT slot and the
7652 common tail that's part of the special initial PLT slot. */
7653 int32_t tail_displacement
7654 = ((splt->output_section->vma + splt->output_offset
7655 + ARM_NACL_PLT_TAIL_OFFSET)
7656 - (plt_address + htab->plt_entry_size + 4));
7657 BFD_ASSERT ((tail_displacement & 3) == 0);
7658 tail_displacement >>= 2;
7660 BFD_ASSERT ((tail_displacement & 0xff000000) == 0
7661 || (-tail_displacement & 0xff000000) == 0);
7663 /* Calculate the displacement between the PLT slot and the entry
7664 in the GOT. The offset accounts for the value produced by
7665 adding to pc in the penultimate instruction of the PLT stub. */
7666 got_displacement = (got_address
7667 - (plt_address + htab->plt_entry_size));
7669 /* NaCl does not support interworking at all. */
7670 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt));
7672 put_arm_insn (htab, output_bfd,
7673 elf32_arm_nacl_plt_entry[0]
7674 | arm_movw_immediate (got_displacement),
7675 ptr + 0);
7676 put_arm_insn (htab, output_bfd,
7677 elf32_arm_nacl_plt_entry[1]
7678 | arm_movt_immediate (got_displacement),
7679 ptr + 4);
7680 put_arm_insn (htab, output_bfd,
7681 elf32_arm_nacl_plt_entry[2],
7682 ptr + 8);
7683 put_arm_insn (htab, output_bfd,
7684 elf32_arm_nacl_plt_entry[3]
7685 | (tail_displacement & 0x00ffffff),
7686 ptr + 12);
7688 else
7690 /* Calculate the displacement between the PLT slot and the
7691 entry in the GOT. The eight-byte offset accounts for the
7692 value produced by adding to pc in the first instruction
7693 of the PLT stub. */
7694 got_displacement = got_address - (plt_address + 8);
7696 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
7698 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
7700 put_thumb_insn (htab, output_bfd,
7701 elf32_arm_plt_thumb_stub[0], ptr - 4);
7702 put_thumb_insn (htab, output_bfd,
7703 elf32_arm_plt_thumb_stub[1], ptr - 2);
7706 put_arm_insn (htab, output_bfd,
7707 elf32_arm_plt_entry[0]
7708 | ((got_displacement & 0x0ff00000) >> 20),
7709 ptr + 0);
7710 put_arm_insn (htab, output_bfd,
7711 elf32_arm_plt_entry[1]
7712 | ((got_displacement & 0x000ff000) >> 12),
7713 ptr+ 4);
7714 put_arm_insn (htab, output_bfd,
7715 elf32_arm_plt_entry[2]
7716 | (got_displacement & 0x00000fff),
7717 ptr + 8);
7718 #ifdef FOUR_WORD_PLT
7719 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
7720 #endif
7723 /* Fill in the entry in the .rel(a).(i)plt section. */
7724 rel.r_offset = got_address;
7725 rel.r_addend = 0;
7726 if (dynindx == -1)
7728 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
7729 The dynamic linker or static executable then calls SYM_VALUE
7730 to determine the correct run-time value of the .igot.plt entry. */
7731 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
7732 initial_got_entry = sym_value;
7734 else
7736 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
7737 initial_got_entry = (splt->output_section->vma
7738 + splt->output_offset);
7741 /* Fill in the entry in the global offset table. */
7742 bfd_put_32 (output_bfd, initial_got_entry,
7743 sgot->contents + got_offset);
7746 if (dynindx == -1)
7747 elf32_arm_add_dynreloc (output_bfd, info, srel, &rel);
7748 else
7750 loc = srel->contents + plt_index * RELOC_SIZE (htab);
7751 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7755 /* Some relocations map to different relocations depending on the
7756 target. Return the real relocation. */
7758 static int
7759 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
7760 int r_type)
7762 switch (r_type)
7764 case R_ARM_TARGET1:
7765 if (globals->target1_is_rel)
7766 return R_ARM_REL32;
7767 else
7768 return R_ARM_ABS32;
7770 case R_ARM_TARGET2:
7771 return globals->target2_reloc;
7773 default:
7774 return r_type;
7778 /* Return the base VMA address which should be subtracted from real addresses
7779 when resolving @dtpoff relocation.
7780 This is PT_TLS segment p_vaddr. */
7782 static bfd_vma
7783 dtpoff_base (struct bfd_link_info *info)
7785 /* If tls_sec is NULL, we should have signalled an error already. */
7786 if (elf_hash_table (info)->tls_sec == NULL)
7787 return 0;
7788 return elf_hash_table (info)->tls_sec->vma;
7791 /* Return the relocation value for @tpoff relocation
7792 if STT_TLS virtual address is ADDRESS. */
7794 static bfd_vma
7795 tpoff (struct bfd_link_info *info, bfd_vma address)
7797 struct elf_link_hash_table *htab = elf_hash_table (info);
7798 bfd_vma base;
7800 /* If tls_sec is NULL, we should have signalled an error already. */
7801 if (htab->tls_sec == NULL)
7802 return 0;
7803 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
7804 return address - htab->tls_sec->vma + base;
7807 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
7808 VALUE is the relocation value. */
7810 static bfd_reloc_status_type
7811 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
7813 if (value > 0xfff)
7814 return bfd_reloc_overflow;
7816 value |= bfd_get_32 (abfd, data) & 0xfffff000;
7817 bfd_put_32 (abfd, value, data);
7818 return bfd_reloc_ok;
7821 /* Handle TLS relaxations. Relaxing is possible for symbols that use
7822 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
7823 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
7825 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
7826 is to then call final_link_relocate. Return other values in the
7827 case of error.
7829 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
7830 the pre-relaxed code. It would be nice if the relocs were updated
7831 to match the optimization. */
7833 static bfd_reloc_status_type
7834 elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
7835 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
7836 Elf_Internal_Rela *rel, unsigned long is_local)
7838 unsigned long insn;
7840 switch (ELF32_R_TYPE (rel->r_info))
7842 default:
7843 return bfd_reloc_notsupported;
7845 case R_ARM_TLS_GOTDESC:
7846 if (is_local)
7847 insn = 0;
7848 else
7850 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
7851 if (insn & 1)
7852 insn -= 5; /* THUMB */
7853 else
7854 insn -= 8; /* ARM */
7856 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
7857 return bfd_reloc_continue;
7859 case R_ARM_THM_TLS_DESCSEQ:
7860 /* Thumb insn. */
7861 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
7862 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
7864 if (is_local)
7865 /* nop */
7866 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7868 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
7870 if (is_local)
7871 /* nop */
7872 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7873 else
7874 /* ldr rx,[ry] */
7875 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
7877 else if ((insn & 0xff87) == 0x4780) /* blx rx */
7879 if (is_local)
7880 /* nop */
7881 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7882 else
7883 /* mov r0, rx */
7884 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
7885 contents + rel->r_offset);
7887 else
7889 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
7890 /* It's a 32 bit instruction, fetch the rest of it for
7891 error generation. */
7892 insn = (insn << 16)
7893 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
7894 (*_bfd_error_handler)
7895 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' in TLS trampoline"),
7896 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
7897 return bfd_reloc_notsupported;
7899 break;
7901 case R_ARM_TLS_DESCSEQ:
7902 /* arm insn. */
7903 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
7904 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
7906 if (is_local)
7907 /* mov rx, ry */
7908 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
7909 contents + rel->r_offset);
7911 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
7913 if (is_local)
7914 /* nop */
7915 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
7916 else
7917 /* ldr rx,[ry] */
7918 bfd_put_32 (input_bfd, insn & 0xfffff000,
7919 contents + rel->r_offset);
7921 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
7923 if (is_local)
7924 /* nop */
7925 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
7926 else
7927 /* mov r0, rx */
7928 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
7929 contents + rel->r_offset);
7931 else
7933 (*_bfd_error_handler)
7934 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' in TLS trampoline"),
7935 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
7936 return bfd_reloc_notsupported;
7938 break;
7940 case R_ARM_TLS_CALL:
7941 /* GD->IE relaxation, turn the instruction into 'nop' or
7942 'ldr r0, [pc,r0]' */
7943 insn = is_local ? 0xe1a00000 : 0xe79f0000;
7944 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
7945 break;
7947 case R_ARM_THM_TLS_CALL:
7948 /* GD->IE relaxation */
7949 if (!is_local)
7950 /* add r0,pc; ldr r0, [r0] */
7951 insn = 0x44786800;
7952 else if (arch_has_thumb2_nop (globals))
7953 /* nop.w */
7954 insn = 0xf3af8000;
7955 else
7956 /* nop; nop */
7957 insn = 0xbf00bf00;
7959 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
7960 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
7961 break;
7963 return bfd_reloc_ok;
7966 /* For a given value of n, calculate the value of G_n as required to
7967 deal with group relocations. We return it in the form of an
7968 encoded constant-and-rotation, together with the final residual. If n is
7969 specified as less than zero, then final_residual is filled with the
7970 input value and no further action is performed. */
7972 static bfd_vma
7973 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
7975 int current_n;
7976 bfd_vma g_n;
7977 bfd_vma encoded_g_n = 0;
7978 bfd_vma residual = value; /* Also known as Y_n. */
7980 for (current_n = 0; current_n <= n; current_n++)
7982 int shift;
7984 /* Calculate which part of the value to mask. */
7985 if (residual == 0)
7986 shift = 0;
7987 else
7989 int msb;
7991 /* Determine the most significant bit in the residual and
7992 align the resulting value to a 2-bit boundary. */
7993 for (msb = 30; msb >= 0; msb -= 2)
7994 if (residual & (3 << msb))
7995 break;
7997 /* The desired shift is now (msb - 6), or zero, whichever
7998 is the greater. */
7999 shift = msb - 6;
8000 if (shift < 0)
8001 shift = 0;
8004 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
8005 g_n = residual & (0xff << shift);
8006 encoded_g_n = (g_n >> shift)
8007 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
8009 /* Calculate the residual for the next time around. */
8010 residual &= ~g_n;
8013 *final_residual = residual;
8015 return encoded_g_n;
8018 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
8019 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
8021 static int
8022 identify_add_or_sub (bfd_vma insn)
8024 int opcode = insn & 0x1e00000;
8026 if (opcode == 1 << 23) /* ADD */
8027 return 1;
8029 if (opcode == 1 << 22) /* SUB */
8030 return -1;
8032 return 0;
8035 /* Perform a relocation as part of a final link. */
8037 static bfd_reloc_status_type
8038 elf32_arm_final_link_relocate (reloc_howto_type * howto,
8039 bfd * input_bfd,
8040 bfd * output_bfd,
8041 asection * input_section,
8042 bfd_byte * contents,
8043 Elf_Internal_Rela * rel,
8044 bfd_vma value,
8045 struct bfd_link_info * info,
8046 asection * sym_sec,
8047 const char * sym_name,
8048 unsigned char st_type,
8049 enum arm_st_branch_type branch_type,
8050 struct elf_link_hash_entry * h,
8051 bfd_boolean * unresolved_reloc_p,
8052 char ** error_message)
8054 unsigned long r_type = howto->type;
8055 unsigned long r_symndx;
8056 bfd_byte * hit_data = contents + rel->r_offset;
8057 bfd_vma * local_got_offsets;
8058 bfd_vma * local_tlsdesc_gotents;
8059 asection * sgot;
8060 asection * splt;
8061 asection * sreloc = NULL;
8062 asection * srelgot;
8063 bfd_vma addend;
8064 bfd_signed_vma signed_addend;
8065 unsigned char dynreloc_st_type;
8066 bfd_vma dynreloc_value;
8067 struct elf32_arm_link_hash_table * globals;
8068 struct elf32_arm_link_hash_entry *eh;
8069 union gotplt_union *root_plt;
8070 struct arm_plt_info *arm_plt;
8071 bfd_vma plt_offset;
8072 bfd_vma gotplt_offset;
8073 bfd_boolean has_iplt_entry;
8075 globals = elf32_arm_hash_table (info);
8076 if (globals == NULL)
8077 return bfd_reloc_notsupported;
8079 BFD_ASSERT (is_arm_elf (input_bfd));
8081 /* Some relocation types map to different relocations depending on the
8082 target. We pick the right one here. */
8083 r_type = arm_real_reloc_type (globals, r_type);
8085 /* It is possible to have linker relaxations on some TLS access
8086 models. Update our information here. */
8087 r_type = elf32_arm_tls_transition (info, r_type, h);
8089 if (r_type != howto->type)
8090 howto = elf32_arm_howto_from_type (r_type);
8092 /* If the start address has been set, then set the EF_ARM_HASENTRY
8093 flag. Setting this more than once is redundant, but the cost is
8094 not too high, and it keeps the code simple.
8096 The test is done here, rather than somewhere else, because the
8097 start address is only set just before the final link commences.
8099 Note - if the user deliberately sets a start address of 0, the
8100 flag will not be set. */
8101 if (bfd_get_start_address (output_bfd) != 0)
8102 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
8104 eh = (struct elf32_arm_link_hash_entry *) h;
8105 sgot = globals->root.sgot;
8106 local_got_offsets = elf_local_got_offsets (input_bfd);
8107 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
8109 if (globals->root.dynamic_sections_created)
8110 srelgot = globals->root.srelgot;
8111 else
8112 srelgot = NULL;
8114 r_symndx = ELF32_R_SYM (rel->r_info);
8116 if (globals->use_rel)
8118 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
8120 if (addend & ((howto->src_mask + 1) >> 1))
8122 signed_addend = -1;
8123 signed_addend &= ~ howto->src_mask;
8124 signed_addend |= addend;
8126 else
8127 signed_addend = addend;
8129 else
8130 addend = signed_addend = rel->r_addend;
8132 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
8133 are resolving a function call relocation. */
8134 if (using_thumb_only (globals)
8135 && (r_type == R_ARM_THM_CALL
8136 || r_type == R_ARM_THM_JUMP24)
8137 && branch_type == ST_BRANCH_TO_ARM)
8138 branch_type = ST_BRANCH_TO_THUMB;
8140 /* Record the symbol information that should be used in dynamic
8141 relocations. */
8142 dynreloc_st_type = st_type;
8143 dynreloc_value = value;
8144 if (branch_type == ST_BRANCH_TO_THUMB)
8145 dynreloc_value |= 1;
8147 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
8148 VALUE appropriately for relocations that we resolve at link time. */
8149 has_iplt_entry = FALSE;
8150 if (elf32_arm_get_plt_info (input_bfd, eh, r_symndx, &root_plt, &arm_plt)
8151 && root_plt->offset != (bfd_vma) -1)
8153 plt_offset = root_plt->offset;
8154 gotplt_offset = arm_plt->got_offset;
8156 if (h == NULL || eh->is_iplt)
8158 has_iplt_entry = TRUE;
8159 splt = globals->root.iplt;
8161 /* Populate .iplt entries here, because not all of them will
8162 be seen by finish_dynamic_symbol. The lower bit is set if
8163 we have already populated the entry. */
8164 if (plt_offset & 1)
8165 plt_offset--;
8166 else
8168 elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
8169 -1, dynreloc_value);
8170 root_plt->offset |= 1;
8173 /* Static relocations always resolve to the .iplt entry. */
8174 st_type = STT_FUNC;
8175 value = (splt->output_section->vma
8176 + splt->output_offset
8177 + plt_offset);
8178 branch_type = ST_BRANCH_TO_ARM;
8180 /* If there are non-call relocations that resolve to the .iplt
8181 entry, then all dynamic ones must too. */
8182 if (arm_plt->noncall_refcount != 0)
8184 dynreloc_st_type = st_type;
8185 dynreloc_value = value;
8188 else
8189 /* We populate the .plt entry in finish_dynamic_symbol. */
8190 splt = globals->root.splt;
8192 else
8194 splt = NULL;
8195 plt_offset = (bfd_vma) -1;
8196 gotplt_offset = (bfd_vma) -1;
8199 switch (r_type)
8201 case R_ARM_NONE:
8202 /* We don't need to find a value for this symbol. It's just a
8203 marker. */
8204 *unresolved_reloc_p = FALSE;
8205 return bfd_reloc_ok;
8207 case R_ARM_ABS12:
8208 if (!globals->vxworks_p)
8209 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
8211 case R_ARM_PC24:
8212 case R_ARM_ABS32:
8213 case R_ARM_ABS32_NOI:
8214 case R_ARM_REL32:
8215 case R_ARM_REL32_NOI:
8216 case R_ARM_CALL:
8217 case R_ARM_JUMP24:
8218 case R_ARM_XPC25:
8219 case R_ARM_PREL31:
8220 case R_ARM_PLT32:
8221 /* Handle relocations which should use the PLT entry. ABS32/REL32
8222 will use the symbol's value, which may point to a PLT entry, but we
8223 don't need to handle that here. If we created a PLT entry, all
8224 branches in this object should go to it, except if the PLT is too
8225 far away, in which case a long branch stub should be inserted. */
8226 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
8227 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
8228 && r_type != R_ARM_CALL
8229 && r_type != R_ARM_JUMP24
8230 && r_type != R_ARM_PLT32)
8231 && plt_offset != (bfd_vma) -1)
8233 /* If we've created a .plt section, and assigned a PLT entry
8234 to this function, it must either be a STT_GNU_IFUNC reference
8235 or not be known to bind locally. In other cases, we should
8236 have cleared the PLT entry by now. */
8237 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
8239 value = (splt->output_section->vma
8240 + splt->output_offset
8241 + plt_offset);
8242 *unresolved_reloc_p = FALSE;
8243 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8244 contents, rel->r_offset, value,
8245 rel->r_addend);
8248 /* When generating a shared object or relocatable executable, these
8249 relocations are copied into the output file to be resolved at
8250 run time. */
8251 if ((info->shared || globals->root.is_relocatable_executable)
8252 && (input_section->flags & SEC_ALLOC)
8253 && !(globals->vxworks_p
8254 && strcmp (input_section->output_section->name,
8255 ".tls_vars") == 0)
8256 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
8257 || !SYMBOL_CALLS_LOCAL (info, h))
8258 && !(input_bfd == globals->stub_bfd
8259 && strstr (input_section->name, STUB_SUFFIX))
8260 && (h == NULL
8261 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8262 || h->root.type != bfd_link_hash_undefweak)
8263 && r_type != R_ARM_PC24
8264 && r_type != R_ARM_CALL
8265 && r_type != R_ARM_JUMP24
8266 && r_type != R_ARM_PREL31
8267 && r_type != R_ARM_PLT32)
8269 Elf_Internal_Rela outrel;
8270 bfd_boolean skip, relocate;
8272 *unresolved_reloc_p = FALSE;
8274 if (sreloc == NULL && globals->root.dynamic_sections_created)
8276 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
8277 ! globals->use_rel);
8279 if (sreloc == NULL)
8280 return bfd_reloc_notsupported;
8283 skip = FALSE;
8284 relocate = FALSE;
8286 outrel.r_addend = addend;
8287 outrel.r_offset =
8288 _bfd_elf_section_offset (output_bfd, info, input_section,
8289 rel->r_offset);
8290 if (outrel.r_offset == (bfd_vma) -1)
8291 skip = TRUE;
8292 else if (outrel.r_offset == (bfd_vma) -2)
8293 skip = TRUE, relocate = TRUE;
8294 outrel.r_offset += (input_section->output_section->vma
8295 + input_section->output_offset);
8297 if (skip)
8298 memset (&outrel, 0, sizeof outrel);
8299 else if (h != NULL
8300 && h->dynindx != -1
8301 && (!info->shared
8302 || !info->symbolic
8303 || !h->def_regular))
8304 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
8305 else
8307 int symbol;
8309 /* This symbol is local, or marked to become local. */
8310 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI);
8311 if (globals->symbian_p)
8313 asection *osec;
8315 /* On Symbian OS, the data segment and text segement
8316 can be relocated independently. Therefore, we
8317 must indicate the segment to which this
8318 relocation is relative. The BPABI allows us to
8319 use any symbol in the right segment; we just use
8320 the section symbol as it is convenient. (We
8321 cannot use the symbol given by "h" directly as it
8322 will not appear in the dynamic symbol table.)
8324 Note that the dynamic linker ignores the section
8325 symbol value, so we don't subtract osec->vma
8326 from the emitted reloc addend. */
8327 if (sym_sec)
8328 osec = sym_sec->output_section;
8329 else
8330 osec = input_section->output_section;
8331 symbol = elf_section_data (osec)->dynindx;
8332 if (symbol == 0)
8334 struct elf_link_hash_table *htab = elf_hash_table (info);
8336 if ((osec->flags & SEC_READONLY) == 0
8337 && htab->data_index_section != NULL)
8338 osec = htab->data_index_section;
8339 else
8340 osec = htab->text_index_section;
8341 symbol = elf_section_data (osec)->dynindx;
8343 BFD_ASSERT (symbol != 0);
8345 else
8346 /* On SVR4-ish systems, the dynamic loader cannot
8347 relocate the text and data segments independently,
8348 so the symbol does not matter. */
8349 symbol = 0;
8350 if (dynreloc_st_type == STT_GNU_IFUNC)
8351 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
8352 to the .iplt entry. Instead, every non-call reference
8353 must use an R_ARM_IRELATIVE relocation to obtain the
8354 correct run-time address. */
8355 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
8356 else
8357 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
8358 if (globals->use_rel)
8359 relocate = TRUE;
8360 else
8361 outrel.r_addend += dynreloc_value;
8364 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
8366 /* If this reloc is against an external symbol, we do not want to
8367 fiddle with the addend. Otherwise, we need to include the symbol
8368 value so that it becomes an addend for the dynamic reloc. */
8369 if (! relocate)
8370 return bfd_reloc_ok;
8372 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8373 contents, rel->r_offset,
8374 dynreloc_value, (bfd_vma) 0);
8376 else switch (r_type)
8378 case R_ARM_ABS12:
8379 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
8381 case R_ARM_XPC25: /* Arm BLX instruction. */
8382 case R_ARM_CALL:
8383 case R_ARM_JUMP24:
8384 case R_ARM_PC24: /* Arm B/BL instruction. */
8385 case R_ARM_PLT32:
8387 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
8389 if (r_type == R_ARM_XPC25)
8391 /* Check for Arm calling Arm function. */
8392 /* FIXME: Should we translate the instruction into a BL
8393 instruction instead ? */
8394 if (branch_type != ST_BRANCH_TO_THUMB)
8395 (*_bfd_error_handler)
8396 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
8397 input_bfd,
8398 h ? h->root.root.string : "(local)");
8400 else if (r_type == R_ARM_PC24)
8402 /* Check for Arm calling Thumb function. */
8403 if (branch_type == ST_BRANCH_TO_THUMB)
8405 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
8406 output_bfd, input_section,
8407 hit_data, sym_sec, rel->r_offset,
8408 signed_addend, value,
8409 error_message))
8410 return bfd_reloc_ok;
8411 else
8412 return bfd_reloc_dangerous;
8416 /* Check if a stub has to be inserted because the
8417 destination is too far or we are changing mode. */
8418 if ( r_type == R_ARM_CALL
8419 || r_type == R_ARM_JUMP24
8420 || r_type == R_ARM_PLT32)
8422 enum elf32_arm_stub_type stub_type = arm_stub_none;
8423 struct elf32_arm_link_hash_entry *hash;
8425 hash = (struct elf32_arm_link_hash_entry *) h;
8426 stub_type = arm_type_of_stub (info, input_section, rel,
8427 st_type, &branch_type,
8428 hash, value, sym_sec,
8429 input_bfd, sym_name);
8431 if (stub_type != arm_stub_none)
8433 /* The target is out of reach, so redirect the
8434 branch to the local stub for this function. */
8435 stub_entry = elf32_arm_get_stub_entry (input_section,
8436 sym_sec, h,
8437 rel, globals,
8438 stub_type);
8440 if (stub_entry != NULL)
8441 value = (stub_entry->stub_offset
8442 + stub_entry->stub_sec->output_offset
8443 + stub_entry->stub_sec->output_section->vma);
8445 if (plt_offset != (bfd_vma) -1)
8446 *unresolved_reloc_p = FALSE;
8449 else
8451 /* If the call goes through a PLT entry, make sure to
8452 check distance to the right destination address. */
8453 if (plt_offset != (bfd_vma) -1)
8455 value = (splt->output_section->vma
8456 + splt->output_offset
8457 + plt_offset);
8458 *unresolved_reloc_p = FALSE;
8459 /* The PLT entry is in ARM mode, regardless of the
8460 target function. */
8461 branch_type = ST_BRANCH_TO_ARM;
8466 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
8467 where:
8468 S is the address of the symbol in the relocation.
8469 P is address of the instruction being relocated.
8470 A is the addend (extracted from the instruction) in bytes.
8472 S is held in 'value'.
8473 P is the base address of the section containing the
8474 instruction plus the offset of the reloc into that
8475 section, ie:
8476 (input_section->output_section->vma +
8477 input_section->output_offset +
8478 rel->r_offset).
8479 A is the addend, converted into bytes, ie:
8480 (signed_addend * 4)
8482 Note: None of these operations have knowledge of the pipeline
8483 size of the processor, thus it is up to the assembler to
8484 encode this information into the addend. */
8485 value -= (input_section->output_section->vma
8486 + input_section->output_offset);
8487 value -= rel->r_offset;
8488 if (globals->use_rel)
8489 value += (signed_addend << howto->size);
8490 else
8491 /* RELA addends do not have to be adjusted by howto->size. */
8492 value += signed_addend;
8494 signed_addend = value;
8495 signed_addend >>= howto->rightshift;
8497 /* A branch to an undefined weak symbol is turned into a jump to
8498 the next instruction unless a PLT entry will be created.
8499 Do the same for local undefined symbols (but not for STN_UNDEF).
8500 The jump to the next instruction is optimized as a NOP depending
8501 on the architecture. */
8502 if (h ? (h->root.type == bfd_link_hash_undefweak
8503 && plt_offset == (bfd_vma) -1)
8504 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
8506 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
8508 if (arch_has_arm_nop (globals))
8509 value |= 0x0320f000;
8510 else
8511 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
8513 else
8515 /* Perform a signed range check. */
8516 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
8517 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
8518 return bfd_reloc_overflow;
8520 addend = (value & 2);
8522 value = (signed_addend & howto->dst_mask)
8523 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
8525 if (r_type == R_ARM_CALL)
8527 /* Set the H bit in the BLX instruction. */
8528 if (branch_type == ST_BRANCH_TO_THUMB)
8530 if (addend)
8531 value |= (1 << 24);
8532 else
8533 value &= ~(bfd_vma)(1 << 24);
8536 /* Select the correct instruction (BL or BLX). */
8537 /* Only if we are not handling a BL to a stub. In this
8538 case, mode switching is performed by the stub. */
8539 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
8540 value |= (1 << 28);
8541 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
8543 value &= ~(bfd_vma)(1 << 28);
8544 value |= (1 << 24);
8549 break;
8551 case R_ARM_ABS32:
8552 value += addend;
8553 if (branch_type == ST_BRANCH_TO_THUMB)
8554 value |= 1;
8555 break;
8557 case R_ARM_ABS32_NOI:
8558 value += addend;
8559 break;
8561 case R_ARM_REL32:
8562 value += addend;
8563 if (branch_type == ST_BRANCH_TO_THUMB)
8564 value |= 1;
8565 value -= (input_section->output_section->vma
8566 + input_section->output_offset + rel->r_offset);
8567 break;
8569 case R_ARM_REL32_NOI:
8570 value += addend;
8571 value -= (input_section->output_section->vma
8572 + input_section->output_offset + rel->r_offset);
8573 break;
8575 case R_ARM_PREL31:
8576 value -= (input_section->output_section->vma
8577 + input_section->output_offset + rel->r_offset);
8578 value += signed_addend;
8579 if (! h || h->root.type != bfd_link_hash_undefweak)
8581 /* Check for overflow. */
8582 if ((value ^ (value >> 1)) & (1 << 30))
8583 return bfd_reloc_overflow;
8585 value &= 0x7fffffff;
8586 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
8587 if (branch_type == ST_BRANCH_TO_THUMB)
8588 value |= 1;
8589 break;
8592 bfd_put_32 (input_bfd, value, hit_data);
8593 return bfd_reloc_ok;
8595 case R_ARM_ABS8:
8596 value += addend;
8598 /* There is no way to tell whether the user intended to use a signed or
8599 unsigned addend. When checking for overflow we accept either,
8600 as specified by the AAELF. */
8601 if ((long) value > 0xff || (long) value < -0x80)
8602 return bfd_reloc_overflow;
8604 bfd_put_8 (input_bfd, value, hit_data);
8605 return bfd_reloc_ok;
8607 case R_ARM_ABS16:
8608 value += addend;
8610 /* See comment for R_ARM_ABS8. */
8611 if ((long) value > 0xffff || (long) value < -0x8000)
8612 return bfd_reloc_overflow;
8614 bfd_put_16 (input_bfd, value, hit_data);
8615 return bfd_reloc_ok;
8617 case R_ARM_THM_ABS5:
8618 /* Support ldr and str instructions for the thumb. */
8619 if (globals->use_rel)
8621 /* Need to refetch addend. */
8622 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
8623 /* ??? Need to determine shift amount from operand size. */
8624 addend >>= howto->rightshift;
8626 value += addend;
8628 /* ??? Isn't value unsigned? */
8629 if ((long) value > 0x1f || (long) value < -0x10)
8630 return bfd_reloc_overflow;
8632 /* ??? Value needs to be properly shifted into place first. */
8633 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
8634 bfd_put_16 (input_bfd, value, hit_data);
8635 return bfd_reloc_ok;
8637 case R_ARM_THM_ALU_PREL_11_0:
8638 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
8640 bfd_vma insn;
8641 bfd_signed_vma relocation;
8643 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
8644 | bfd_get_16 (input_bfd, hit_data + 2);
8646 if (globals->use_rel)
8648 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
8649 | ((insn & (1 << 26)) >> 15);
8650 if (insn & 0xf00000)
8651 signed_addend = -signed_addend;
8654 relocation = value + signed_addend;
8655 relocation -= Pa (input_section->output_section->vma
8656 + input_section->output_offset
8657 + rel->r_offset);
8659 value = abs (relocation);
8661 if (value >= 0x1000)
8662 return bfd_reloc_overflow;
8664 insn = (insn & 0xfb0f8f00) | (value & 0xff)
8665 | ((value & 0x700) << 4)
8666 | ((value & 0x800) << 15);
8667 if (relocation < 0)
8668 insn |= 0xa00000;
8670 bfd_put_16 (input_bfd, insn >> 16, hit_data);
8671 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8673 return bfd_reloc_ok;
8676 case R_ARM_THM_PC8:
8677 /* PR 10073: This reloc is not generated by the GNU toolchain,
8678 but it is supported for compatibility with third party libraries
8679 generated by other compilers, specifically the ARM/IAR. */
8681 bfd_vma insn;
8682 bfd_signed_vma relocation;
8684 insn = bfd_get_16 (input_bfd, hit_data);
8686 if (globals->use_rel)
8687 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4;
8689 relocation = value + addend;
8690 relocation -= Pa (input_section->output_section->vma
8691 + input_section->output_offset
8692 + rel->r_offset);
8694 value = abs (relocation);
8696 /* We do not check for overflow of this reloc. Although strictly
8697 speaking this is incorrect, it appears to be necessary in order
8698 to work with IAR generated relocs. Since GCC and GAS do not
8699 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
8700 a problem for them. */
8701 value &= 0x3fc;
8703 insn = (insn & 0xff00) | (value >> 2);
8705 bfd_put_16 (input_bfd, insn, hit_data);
8707 return bfd_reloc_ok;
8710 case R_ARM_THM_PC12:
8711 /* Corresponds to: ldr.w reg, [pc, #offset]. */
8713 bfd_vma insn;
8714 bfd_signed_vma relocation;
8716 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
8717 | bfd_get_16 (input_bfd, hit_data + 2);
8719 if (globals->use_rel)
8721 signed_addend = insn & 0xfff;
8722 if (!(insn & (1 << 23)))
8723 signed_addend = -signed_addend;
8726 relocation = value + signed_addend;
8727 relocation -= Pa (input_section->output_section->vma
8728 + input_section->output_offset
8729 + rel->r_offset);
8731 value = abs (relocation);
8733 if (value >= 0x1000)
8734 return bfd_reloc_overflow;
8736 insn = (insn & 0xff7ff000) | value;
8737 if (relocation >= 0)
8738 insn |= (1 << 23);
8740 bfd_put_16 (input_bfd, insn >> 16, hit_data);
8741 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8743 return bfd_reloc_ok;
8746 case R_ARM_THM_XPC22:
8747 case R_ARM_THM_CALL:
8748 case R_ARM_THM_JUMP24:
8749 /* Thumb BL (branch long instruction). */
8751 bfd_vma relocation;
8752 bfd_vma reloc_sign;
8753 bfd_boolean overflow = FALSE;
8754 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
8755 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
8756 bfd_signed_vma reloc_signed_max;
8757 bfd_signed_vma reloc_signed_min;
8758 bfd_vma check;
8759 bfd_signed_vma signed_check;
8760 int bitsize;
8761 const int thumb2 = using_thumb2 (globals);
8763 /* A branch to an undefined weak symbol is turned into a jump to
8764 the next instruction unless a PLT entry will be created.
8765 The jump to the next instruction is optimized as a NOP.W for
8766 Thumb-2 enabled architectures. */
8767 if (h && h->root.type == bfd_link_hash_undefweak
8768 && plt_offset == (bfd_vma) -1)
8770 if (arch_has_thumb2_nop (globals))
8772 bfd_put_16 (input_bfd, 0xf3af, hit_data);
8773 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
8775 else
8777 bfd_put_16 (input_bfd, 0xe000, hit_data);
8778 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
8780 return bfd_reloc_ok;
8783 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
8784 with Thumb-1) involving the J1 and J2 bits. */
8785 if (globals->use_rel)
8787 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
8788 bfd_vma upper = upper_insn & 0x3ff;
8789 bfd_vma lower = lower_insn & 0x7ff;
8790 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
8791 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
8792 bfd_vma i1 = j1 ^ s ? 0 : 1;
8793 bfd_vma i2 = j2 ^ s ? 0 : 1;
8795 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
8796 /* Sign extend. */
8797 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
8799 signed_addend = addend;
8802 if (r_type == R_ARM_THM_XPC22)
8804 /* Check for Thumb to Thumb call. */
8805 /* FIXME: Should we translate the instruction into a BL
8806 instruction instead ? */
8807 if (branch_type == ST_BRANCH_TO_THUMB)
8808 (*_bfd_error_handler)
8809 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
8810 input_bfd,
8811 h ? h->root.root.string : "(local)");
8813 else
8815 /* If it is not a call to Thumb, assume call to Arm.
8816 If it is a call relative to a section name, then it is not a
8817 function call at all, but rather a long jump. Calls through
8818 the PLT do not require stubs. */
8819 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
8821 if (globals->use_blx && r_type == R_ARM_THM_CALL)
8823 /* Convert BL to BLX. */
8824 lower_insn = (lower_insn & ~0x1000) | 0x0800;
8826 else if (( r_type != R_ARM_THM_CALL)
8827 && (r_type != R_ARM_THM_JUMP24))
8829 if (elf32_thumb_to_arm_stub
8830 (info, sym_name, input_bfd, output_bfd, input_section,
8831 hit_data, sym_sec, rel->r_offset, signed_addend, value,
8832 error_message))
8833 return bfd_reloc_ok;
8834 else
8835 return bfd_reloc_dangerous;
8838 else if (branch_type == ST_BRANCH_TO_THUMB
8839 && globals->use_blx
8840 && r_type == R_ARM_THM_CALL)
8842 /* Make sure this is a BL. */
8843 lower_insn |= 0x1800;
8847 enum elf32_arm_stub_type stub_type = arm_stub_none;
8848 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
8850 /* Check if a stub has to be inserted because the destination
8851 is too far. */
8852 struct elf32_arm_stub_hash_entry *stub_entry;
8853 struct elf32_arm_link_hash_entry *hash;
8855 hash = (struct elf32_arm_link_hash_entry *) h;
8857 stub_type = arm_type_of_stub (info, input_section, rel,
8858 st_type, &branch_type,
8859 hash, value, sym_sec,
8860 input_bfd, sym_name);
8862 if (stub_type != arm_stub_none)
8864 /* The target is out of reach or we are changing modes, so
8865 redirect the branch to the local stub for this
8866 function. */
8867 stub_entry = elf32_arm_get_stub_entry (input_section,
8868 sym_sec, h,
8869 rel, globals,
8870 stub_type);
8871 if (stub_entry != NULL)
8873 value = (stub_entry->stub_offset
8874 + stub_entry->stub_sec->output_offset
8875 + stub_entry->stub_sec->output_section->vma);
8877 if (plt_offset != (bfd_vma) -1)
8878 *unresolved_reloc_p = FALSE;
8881 /* If this call becomes a call to Arm, force BLX. */
8882 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
8884 if ((stub_entry
8885 && !arm_stub_is_thumb (stub_entry->stub_type))
8886 || branch_type != ST_BRANCH_TO_THUMB)
8887 lower_insn = (lower_insn & ~0x1000) | 0x0800;
8892 /* Handle calls via the PLT. */
8893 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
8895 value = (splt->output_section->vma
8896 + splt->output_offset
8897 + plt_offset);
8899 if (globals->use_blx && r_type == R_ARM_THM_CALL)
8901 /* If the Thumb BLX instruction is available, convert
8902 the BL to a BLX instruction to call the ARM-mode
8903 PLT entry. */
8904 lower_insn = (lower_insn & ~0x1000) | 0x0800;
8905 branch_type = ST_BRANCH_TO_ARM;
8907 else
8909 /* Target the Thumb stub before the ARM PLT entry. */
8910 value -= PLT_THUMB_STUB_SIZE;
8911 branch_type = ST_BRANCH_TO_THUMB;
8913 *unresolved_reloc_p = FALSE;
8916 relocation = value + signed_addend;
8918 relocation -= (input_section->output_section->vma
8919 + input_section->output_offset
8920 + rel->r_offset);
8922 check = relocation >> howto->rightshift;
8924 /* If this is a signed value, the rightshift just dropped
8925 leading 1 bits (assuming twos complement). */
8926 if ((bfd_signed_vma) relocation >= 0)
8927 signed_check = check;
8928 else
8929 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
8931 /* Calculate the permissable maximum and minimum values for
8932 this relocation according to whether we're relocating for
8933 Thumb-2 or not. */
8934 bitsize = howto->bitsize;
8935 if (!thumb2)
8936 bitsize -= 2;
8937 reloc_signed_max = (1 << (bitsize - 1)) - 1;
8938 reloc_signed_min = ~reloc_signed_max;
8940 /* Assumes two's complement. */
8941 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
8942 overflow = TRUE;
8944 if ((lower_insn & 0x5000) == 0x4000)
8945 /* For a BLX instruction, make sure that the relocation is rounded up
8946 to a word boundary. This follows the semantics of the instruction
8947 which specifies that bit 1 of the target address will come from bit
8948 1 of the base address. */
8949 relocation = (relocation + 2) & ~ 3;
8951 /* Put RELOCATION back into the insn. Assumes two's complement.
8952 We use the Thumb-2 encoding, which is safe even if dealing with
8953 a Thumb-1 instruction by virtue of our overflow check above. */
8954 reloc_sign = (signed_check < 0) ? 1 : 0;
8955 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
8956 | ((relocation >> 12) & 0x3ff)
8957 | (reloc_sign << 10);
8958 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
8959 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
8960 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
8961 | ((relocation >> 1) & 0x7ff);
8963 /* Put the relocated value back in the object file: */
8964 bfd_put_16 (input_bfd, upper_insn, hit_data);
8965 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
8967 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
8969 break;
8971 case R_ARM_THM_JUMP19:
8972 /* Thumb32 conditional branch instruction. */
8974 bfd_vma relocation;
8975 bfd_boolean overflow = FALSE;
8976 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
8977 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
8978 bfd_signed_vma reloc_signed_max = 0xffffe;
8979 bfd_signed_vma reloc_signed_min = -0x100000;
8980 bfd_signed_vma signed_check;
8982 /* Need to refetch the addend, reconstruct the top three bits,
8983 and squish the two 11 bit pieces together. */
8984 if (globals->use_rel)
8986 bfd_vma S = (upper_insn & 0x0400) >> 10;
8987 bfd_vma upper = (upper_insn & 0x003f);
8988 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
8989 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
8990 bfd_vma lower = (lower_insn & 0x07ff);
8992 upper |= J1 << 6;
8993 upper |= J2 << 7;
8994 upper |= (!S) << 8;
8995 upper -= 0x0100; /* Sign extend. */
8997 addend = (upper << 12) | (lower << 1);
8998 signed_addend = addend;
9001 /* Handle calls via the PLT. */
9002 if (plt_offset != (bfd_vma) -1)
9004 value = (splt->output_section->vma
9005 + splt->output_offset
9006 + plt_offset);
9007 /* Target the Thumb stub before the ARM PLT entry. */
9008 value -= PLT_THUMB_STUB_SIZE;
9009 *unresolved_reloc_p = FALSE;
9012 /* ??? Should handle interworking? GCC might someday try to
9013 use this for tail calls. */
9015 relocation = value + signed_addend;
9016 relocation -= (input_section->output_section->vma
9017 + input_section->output_offset
9018 + rel->r_offset);
9019 signed_check = (bfd_signed_vma) relocation;
9021 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
9022 overflow = TRUE;
9024 /* Put RELOCATION back into the insn. */
9026 bfd_vma S = (relocation & 0x00100000) >> 20;
9027 bfd_vma J2 = (relocation & 0x00080000) >> 19;
9028 bfd_vma J1 = (relocation & 0x00040000) >> 18;
9029 bfd_vma hi = (relocation & 0x0003f000) >> 12;
9030 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
9032 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
9033 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
9036 /* Put the relocated value back in the object file: */
9037 bfd_put_16 (input_bfd, upper_insn, hit_data);
9038 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
9040 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
9043 case R_ARM_THM_JUMP11:
9044 case R_ARM_THM_JUMP8:
9045 case R_ARM_THM_JUMP6:
9046 /* Thumb B (branch) instruction). */
9048 bfd_signed_vma relocation;
9049 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
9050 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
9051 bfd_signed_vma signed_check;
9053 /* CZB cannot jump backward. */
9054 if (r_type == R_ARM_THM_JUMP6)
9055 reloc_signed_min = 0;
9057 if (globals->use_rel)
9059 /* Need to refetch addend. */
9060 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
9061 if (addend & ((howto->src_mask + 1) >> 1))
9063 signed_addend = -1;
9064 signed_addend &= ~ howto->src_mask;
9065 signed_addend |= addend;
9067 else
9068 signed_addend = addend;
9069 /* The value in the insn has been right shifted. We need to
9070 undo this, so that we can perform the address calculation
9071 in terms of bytes. */
9072 signed_addend <<= howto->rightshift;
9074 relocation = value + signed_addend;
9076 relocation -= (input_section->output_section->vma
9077 + input_section->output_offset
9078 + rel->r_offset);
9080 relocation >>= howto->rightshift;
9081 signed_check = relocation;
9083 if (r_type == R_ARM_THM_JUMP6)
9084 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
9085 else
9086 relocation &= howto->dst_mask;
9087 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
9089 bfd_put_16 (input_bfd, relocation, hit_data);
9091 /* Assumes two's complement. */
9092 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
9093 return bfd_reloc_overflow;
9095 return bfd_reloc_ok;
9098 case R_ARM_ALU_PCREL7_0:
9099 case R_ARM_ALU_PCREL15_8:
9100 case R_ARM_ALU_PCREL23_15:
9102 bfd_vma insn;
9103 bfd_vma relocation;
9105 insn = bfd_get_32 (input_bfd, hit_data);
9106 if (globals->use_rel)
9108 /* Extract the addend. */
9109 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
9110 signed_addend = addend;
9112 relocation = value + signed_addend;
9114 relocation -= (input_section->output_section->vma
9115 + input_section->output_offset
9116 + rel->r_offset);
9117 insn = (insn & ~0xfff)
9118 | ((howto->bitpos << 7) & 0xf00)
9119 | ((relocation >> howto->bitpos) & 0xff);
9120 bfd_put_32 (input_bfd, value, hit_data);
9122 return bfd_reloc_ok;
9124 case R_ARM_GNU_VTINHERIT:
9125 case R_ARM_GNU_VTENTRY:
9126 return bfd_reloc_ok;
9128 case R_ARM_GOTOFF32:
9129 /* Relocation is relative to the start of the
9130 global offset table. */
9132 BFD_ASSERT (sgot != NULL);
9133 if (sgot == NULL)
9134 return bfd_reloc_notsupported;
9136 /* If we are addressing a Thumb function, we need to adjust the
9137 address by one, so that attempts to call the function pointer will
9138 correctly interpret it as Thumb code. */
9139 if (branch_type == ST_BRANCH_TO_THUMB)
9140 value += 1;
9142 /* Note that sgot->output_offset is not involved in this
9143 calculation. We always want the start of .got. If we
9144 define _GLOBAL_OFFSET_TABLE in a different way, as is
9145 permitted by the ABI, we might have to change this
9146 calculation. */
9147 value -= sgot->output_section->vma;
9148 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9149 contents, rel->r_offset, value,
9150 rel->r_addend);
9152 case R_ARM_GOTPC:
9153 /* Use global offset table as symbol value. */
9154 BFD_ASSERT (sgot != NULL);
9156 if (sgot == NULL)
9157 return bfd_reloc_notsupported;
9159 *unresolved_reloc_p = FALSE;
9160 value = sgot->output_section->vma;
9161 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9162 contents, rel->r_offset, value,
9163 rel->r_addend);
9165 case R_ARM_GOT32:
9166 case R_ARM_GOT_PREL:
9167 /* Relocation is to the entry for this symbol in the
9168 global offset table. */
9169 if (sgot == NULL)
9170 return bfd_reloc_notsupported;
9172 if (dynreloc_st_type == STT_GNU_IFUNC
9173 && plt_offset != (bfd_vma) -1
9174 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
9176 /* We have a relocation against a locally-binding STT_GNU_IFUNC
9177 symbol, and the relocation resolves directly to the runtime
9178 target rather than to the .iplt entry. This means that any
9179 .got entry would be the same value as the .igot.plt entry,
9180 so there's no point creating both. */
9181 sgot = globals->root.igotplt;
9182 value = sgot->output_offset + gotplt_offset;
9184 else if (h != NULL)
9186 bfd_vma off;
9188 off = h->got.offset;
9189 BFD_ASSERT (off != (bfd_vma) -1);
9190 if ((off & 1) != 0)
9192 /* We have already processsed one GOT relocation against
9193 this symbol. */
9194 off &= ~1;
9195 if (globals->root.dynamic_sections_created
9196 && !SYMBOL_REFERENCES_LOCAL (info, h))
9197 *unresolved_reloc_p = FALSE;
9199 else
9201 Elf_Internal_Rela outrel;
9203 if (h->dynindx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
9205 /* If the symbol doesn't resolve locally in a static
9206 object, we have an undefined reference. If the
9207 symbol doesn't resolve locally in a dynamic object,
9208 it should be resolved by the dynamic linker. */
9209 if (globals->root.dynamic_sections_created)
9211 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
9212 *unresolved_reloc_p = FALSE;
9214 else
9215 outrel.r_info = 0;
9216 outrel.r_addend = 0;
9218 else
9220 if (dynreloc_st_type == STT_GNU_IFUNC)
9221 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9222 else if (info->shared &&
9223 (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9224 || h->root.type != bfd_link_hash_undefweak))
9225 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
9226 else
9227 outrel.r_info = 0;
9228 outrel.r_addend = dynreloc_value;
9231 /* The GOT entry is initialized to zero by default.
9232 See if we should install a different value. */
9233 if (outrel.r_addend != 0
9234 && (outrel.r_info == 0 || globals->use_rel))
9236 bfd_put_32 (output_bfd, outrel.r_addend,
9237 sgot->contents + off);
9238 outrel.r_addend = 0;
9241 if (outrel.r_info != 0)
9243 outrel.r_offset = (sgot->output_section->vma
9244 + sgot->output_offset
9245 + off);
9246 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9248 h->got.offset |= 1;
9250 value = sgot->output_offset + off;
9252 else
9254 bfd_vma off;
9256 BFD_ASSERT (local_got_offsets != NULL &&
9257 local_got_offsets[r_symndx] != (bfd_vma) -1);
9259 off = local_got_offsets[r_symndx];
9261 /* The offset must always be a multiple of 4. We use the
9262 least significant bit to record whether we have already
9263 generated the necessary reloc. */
9264 if ((off & 1) != 0)
9265 off &= ~1;
9266 else
9268 if (globals->use_rel)
9269 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
9271 if (info->shared || dynreloc_st_type == STT_GNU_IFUNC)
9273 Elf_Internal_Rela outrel;
9275 outrel.r_addend = addend + dynreloc_value;
9276 outrel.r_offset = (sgot->output_section->vma
9277 + sgot->output_offset
9278 + off);
9279 if (dynreloc_st_type == STT_GNU_IFUNC)
9280 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9281 else
9282 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
9283 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9286 local_got_offsets[r_symndx] |= 1;
9289 value = sgot->output_offset + off;
9291 if (r_type != R_ARM_GOT32)
9292 value += sgot->output_section->vma;
9294 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9295 contents, rel->r_offset, value,
9296 rel->r_addend);
9298 case R_ARM_TLS_LDO32:
9299 value = value - dtpoff_base (info);
9301 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9302 contents, rel->r_offset, value,
9303 rel->r_addend);
9305 case R_ARM_TLS_LDM32:
9307 bfd_vma off;
9309 if (sgot == NULL)
9310 abort ();
9312 off = globals->tls_ldm_got.offset;
9314 if ((off & 1) != 0)
9315 off &= ~1;
9316 else
9318 /* If we don't know the module number, create a relocation
9319 for it. */
9320 if (info->shared)
9322 Elf_Internal_Rela outrel;
9324 if (srelgot == NULL)
9325 abort ();
9327 outrel.r_addend = 0;
9328 outrel.r_offset = (sgot->output_section->vma
9329 + sgot->output_offset + off);
9330 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
9332 if (globals->use_rel)
9333 bfd_put_32 (output_bfd, outrel.r_addend,
9334 sgot->contents + off);
9336 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9338 else
9339 bfd_put_32 (output_bfd, 1, sgot->contents + off);
9341 globals->tls_ldm_got.offset |= 1;
9344 value = sgot->output_section->vma + sgot->output_offset + off
9345 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
9347 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9348 contents, rel->r_offset, value,
9349 rel->r_addend);
9352 case R_ARM_TLS_CALL:
9353 case R_ARM_THM_TLS_CALL:
9354 case R_ARM_TLS_GD32:
9355 case R_ARM_TLS_IE32:
9356 case R_ARM_TLS_GOTDESC:
9357 case R_ARM_TLS_DESCSEQ:
9358 case R_ARM_THM_TLS_DESCSEQ:
9360 bfd_vma off, offplt;
9361 int indx = 0;
9362 char tls_type;
9364 BFD_ASSERT (sgot != NULL);
9366 if (h != NULL)
9368 bfd_boolean dyn;
9369 dyn = globals->root.dynamic_sections_created;
9370 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
9371 && (!info->shared
9372 || !SYMBOL_REFERENCES_LOCAL (info, h)))
9374 *unresolved_reloc_p = FALSE;
9375 indx = h->dynindx;
9377 off = h->got.offset;
9378 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
9379 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
9381 else
9383 BFD_ASSERT (local_got_offsets != NULL);
9384 off = local_got_offsets[r_symndx];
9385 offplt = local_tlsdesc_gotents[r_symndx];
9386 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
9389 /* Linker relaxations happens from one of the
9390 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
9391 if (ELF32_R_TYPE(rel->r_info) != r_type)
9392 tls_type = GOT_TLS_IE;
9394 BFD_ASSERT (tls_type != GOT_UNKNOWN);
9396 if ((off & 1) != 0)
9397 off &= ~1;
9398 else
9400 bfd_boolean need_relocs = FALSE;
9401 Elf_Internal_Rela outrel;
9402 int cur_off = off;
9404 /* The GOT entries have not been initialized yet. Do it
9405 now, and emit any relocations. If both an IE GOT and a
9406 GD GOT are necessary, we emit the GD first. */
9408 if ((info->shared || indx != 0)
9409 && (h == NULL
9410 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9411 || h->root.type != bfd_link_hash_undefweak))
9413 need_relocs = TRUE;
9414 BFD_ASSERT (srelgot != NULL);
9417 if (tls_type & GOT_TLS_GDESC)
9419 bfd_byte *loc;
9421 /* We should have relaxed, unless this is an undefined
9422 weak symbol. */
9423 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
9424 || info->shared);
9425 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
9426 <= globals->root.sgotplt->size);
9428 outrel.r_addend = 0;
9429 outrel.r_offset = (globals->root.sgotplt->output_section->vma
9430 + globals->root.sgotplt->output_offset
9431 + offplt
9432 + globals->sgotplt_jump_table_size);
9434 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
9435 sreloc = globals->root.srelplt;
9436 loc = sreloc->contents;
9437 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
9438 BFD_ASSERT (loc + RELOC_SIZE (globals)
9439 <= sreloc->contents + sreloc->size);
9441 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
9443 /* For globals, the first word in the relocation gets
9444 the relocation index and the top bit set, or zero,
9445 if we're binding now. For locals, it gets the
9446 symbol's offset in the tls section. */
9447 bfd_put_32 (output_bfd,
9448 !h ? value - elf_hash_table (info)->tls_sec->vma
9449 : info->flags & DF_BIND_NOW ? 0
9450 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
9451 globals->root.sgotplt->contents + offplt
9452 + globals->sgotplt_jump_table_size);
9454 /* Second word in the relocation is always zero. */
9455 bfd_put_32 (output_bfd, 0,
9456 globals->root.sgotplt->contents + offplt
9457 + globals->sgotplt_jump_table_size + 4);
9459 if (tls_type & GOT_TLS_GD)
9461 if (need_relocs)
9463 outrel.r_addend = 0;
9464 outrel.r_offset = (sgot->output_section->vma
9465 + sgot->output_offset
9466 + cur_off);
9467 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
9469 if (globals->use_rel)
9470 bfd_put_32 (output_bfd, outrel.r_addend,
9471 sgot->contents + cur_off);
9473 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9475 if (indx == 0)
9476 bfd_put_32 (output_bfd, value - dtpoff_base (info),
9477 sgot->contents + cur_off + 4);
9478 else
9480 outrel.r_addend = 0;
9481 outrel.r_info = ELF32_R_INFO (indx,
9482 R_ARM_TLS_DTPOFF32);
9483 outrel.r_offset += 4;
9485 if (globals->use_rel)
9486 bfd_put_32 (output_bfd, outrel.r_addend,
9487 sgot->contents + cur_off + 4);
9489 elf32_arm_add_dynreloc (output_bfd, info,
9490 srelgot, &outrel);
9493 else
9495 /* If we are not emitting relocations for a
9496 general dynamic reference, then we must be in a
9497 static link or an executable link with the
9498 symbol binding locally. Mark it as belonging
9499 to module 1, the executable. */
9500 bfd_put_32 (output_bfd, 1,
9501 sgot->contents + cur_off);
9502 bfd_put_32 (output_bfd, value - dtpoff_base (info),
9503 sgot->contents + cur_off + 4);
9506 cur_off += 8;
9509 if (tls_type & GOT_TLS_IE)
9511 if (need_relocs)
9513 if (indx == 0)
9514 outrel.r_addend = value - dtpoff_base (info);
9515 else
9516 outrel.r_addend = 0;
9517 outrel.r_offset = (sgot->output_section->vma
9518 + sgot->output_offset
9519 + cur_off);
9520 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
9522 if (globals->use_rel)
9523 bfd_put_32 (output_bfd, outrel.r_addend,
9524 sgot->contents + cur_off);
9526 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9528 else
9529 bfd_put_32 (output_bfd, tpoff (info, value),
9530 sgot->contents + cur_off);
9531 cur_off += 4;
9534 if (h != NULL)
9535 h->got.offset |= 1;
9536 else
9537 local_got_offsets[r_symndx] |= 1;
9540 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
9541 off += 8;
9542 else if (tls_type & GOT_TLS_GDESC)
9543 off = offplt;
9545 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
9546 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
9548 bfd_signed_vma offset;
9549 /* TLS stubs are arm mode. The original symbol is a
9550 data object, so branch_type is bogus. */
9551 branch_type = ST_BRANCH_TO_ARM;
9552 enum elf32_arm_stub_type stub_type
9553 = arm_type_of_stub (info, input_section, rel,
9554 st_type, &branch_type,
9555 (struct elf32_arm_link_hash_entry *)h,
9556 globals->tls_trampoline, globals->root.splt,
9557 input_bfd, sym_name);
9559 if (stub_type != arm_stub_none)
9561 struct elf32_arm_stub_hash_entry *stub_entry
9562 = elf32_arm_get_stub_entry
9563 (input_section, globals->root.splt, 0, rel,
9564 globals, stub_type);
9565 offset = (stub_entry->stub_offset
9566 + stub_entry->stub_sec->output_offset
9567 + stub_entry->stub_sec->output_section->vma);
9569 else
9570 offset = (globals->root.splt->output_section->vma
9571 + globals->root.splt->output_offset
9572 + globals->tls_trampoline);
9574 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
9576 unsigned long inst;
9578 offset -= (input_section->output_section->vma
9579 + input_section->output_offset
9580 + rel->r_offset + 8);
9582 inst = offset >> 2;
9583 inst &= 0x00ffffff;
9584 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
9586 else
9588 /* Thumb blx encodes the offset in a complicated
9589 fashion. */
9590 unsigned upper_insn, lower_insn;
9591 unsigned neg;
9593 offset -= (input_section->output_section->vma
9594 + input_section->output_offset
9595 + rel->r_offset + 4);
9597 if (stub_type != arm_stub_none
9598 && arm_stub_is_thumb (stub_type))
9600 lower_insn = 0xd000;
9602 else
9604 lower_insn = 0xc000;
9605 /* Round up the offset to a word boundary */
9606 offset = (offset + 2) & ~2;
9609 neg = offset < 0;
9610 upper_insn = (0xf000
9611 | ((offset >> 12) & 0x3ff)
9612 | (neg << 10));
9613 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
9614 | (((!((offset >> 22) & 1)) ^ neg) << 11)
9615 | ((offset >> 1) & 0x7ff);
9616 bfd_put_16 (input_bfd, upper_insn, hit_data);
9617 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
9618 return bfd_reloc_ok;
9621 /* These relocations needs special care, as besides the fact
9622 they point somewhere in .gotplt, the addend must be
9623 adjusted accordingly depending on the type of instruction
9624 we refer to */
9625 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
9627 unsigned long data, insn;
9628 unsigned thumb;
9630 data = bfd_get_32 (input_bfd, hit_data);
9631 thumb = data & 1;
9632 data &= ~1u;
9634 if (thumb)
9636 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
9637 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
9638 insn = (insn << 16)
9639 | bfd_get_16 (input_bfd,
9640 contents + rel->r_offset - data + 2);
9641 if ((insn & 0xf800c000) == 0xf000c000)
9642 /* bl/blx */
9643 value = -6;
9644 else if ((insn & 0xffffff00) == 0x4400)
9645 /* add */
9646 value = -5;
9647 else
9649 (*_bfd_error_handler)
9650 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"),
9651 input_bfd, input_section,
9652 (unsigned long)rel->r_offset, insn);
9653 return bfd_reloc_notsupported;
9656 else
9658 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
9660 switch (insn >> 24)
9662 case 0xeb: /* bl */
9663 case 0xfa: /* blx */
9664 value = -4;
9665 break;
9667 case 0xe0: /* add */
9668 value = -8;
9669 break;
9671 default:
9672 (*_bfd_error_handler)
9673 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"),
9674 input_bfd, input_section,
9675 (unsigned long)rel->r_offset, insn);
9676 return bfd_reloc_notsupported;
9680 value += ((globals->root.sgotplt->output_section->vma
9681 + globals->root.sgotplt->output_offset + off)
9682 - (input_section->output_section->vma
9683 + input_section->output_offset
9684 + rel->r_offset)
9685 + globals->sgotplt_jump_table_size);
9687 else
9688 value = ((globals->root.sgot->output_section->vma
9689 + globals->root.sgot->output_offset + off)
9690 - (input_section->output_section->vma
9691 + input_section->output_offset + rel->r_offset));
9693 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9694 contents, rel->r_offset, value,
9695 rel->r_addend);
9698 case R_ARM_TLS_LE32:
9699 if (info->shared && !info->pie)
9701 (*_bfd_error_handler)
9702 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
9703 input_bfd, input_section,
9704 (long) rel->r_offset, howto->name);
9705 return bfd_reloc_notsupported;
9707 else
9708 value = tpoff (info, value);
9710 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9711 contents, rel->r_offset, value,
9712 rel->r_addend);
9714 case R_ARM_V4BX:
9715 if (globals->fix_v4bx)
9717 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9719 /* Ensure that we have a BX instruction. */
9720 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
9722 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
9724 /* Branch to veneer. */
9725 bfd_vma glue_addr;
9726 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
9727 glue_addr -= input_section->output_section->vma
9728 + input_section->output_offset
9729 + rel->r_offset + 8;
9730 insn = (insn & 0xf0000000) | 0x0a000000
9731 | ((glue_addr >> 2) & 0x00ffffff);
9733 else
9735 /* Preserve Rm (lowest four bits) and the condition code
9736 (highest four bits). Other bits encode MOV PC,Rm. */
9737 insn = (insn & 0xf000000f) | 0x01a0f000;
9740 bfd_put_32 (input_bfd, insn, hit_data);
9742 return bfd_reloc_ok;
9744 case R_ARM_MOVW_ABS_NC:
9745 case R_ARM_MOVT_ABS:
9746 case R_ARM_MOVW_PREL_NC:
9747 case R_ARM_MOVT_PREL:
9748 /* Until we properly support segment-base-relative addressing then
9749 we assume the segment base to be zero, as for the group relocations.
9750 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
9751 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
9752 case R_ARM_MOVW_BREL_NC:
9753 case R_ARM_MOVW_BREL:
9754 case R_ARM_MOVT_BREL:
9756 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9758 if (globals->use_rel)
9760 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
9761 signed_addend = (addend ^ 0x8000) - 0x8000;
9764 value += signed_addend;
9766 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
9767 value -= (input_section->output_section->vma
9768 + input_section->output_offset + rel->r_offset);
9770 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
9771 return bfd_reloc_overflow;
9773 if (branch_type == ST_BRANCH_TO_THUMB)
9774 value |= 1;
9776 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
9777 || r_type == R_ARM_MOVT_BREL)
9778 value >>= 16;
9780 insn &= 0xfff0f000;
9781 insn |= value & 0xfff;
9782 insn |= (value & 0xf000) << 4;
9783 bfd_put_32 (input_bfd, insn, hit_data);
9785 return bfd_reloc_ok;
9787 case R_ARM_THM_MOVW_ABS_NC:
9788 case R_ARM_THM_MOVT_ABS:
9789 case R_ARM_THM_MOVW_PREL_NC:
9790 case R_ARM_THM_MOVT_PREL:
9791 /* Until we properly support segment-base-relative addressing then
9792 we assume the segment base to be zero, as for the above relocations.
9793 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
9794 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
9795 as R_ARM_THM_MOVT_ABS. */
9796 case R_ARM_THM_MOVW_BREL_NC:
9797 case R_ARM_THM_MOVW_BREL:
9798 case R_ARM_THM_MOVT_BREL:
9800 bfd_vma insn;
9802 insn = bfd_get_16 (input_bfd, hit_data) << 16;
9803 insn |= bfd_get_16 (input_bfd, hit_data + 2);
9805 if (globals->use_rel)
9807 addend = ((insn >> 4) & 0xf000)
9808 | ((insn >> 15) & 0x0800)
9809 | ((insn >> 4) & 0x0700)
9810 | (insn & 0x00ff);
9811 signed_addend = (addend ^ 0x8000) - 0x8000;
9814 value += signed_addend;
9816 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
9817 value -= (input_section->output_section->vma
9818 + input_section->output_offset + rel->r_offset);
9820 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
9821 return bfd_reloc_overflow;
9823 if (branch_type == ST_BRANCH_TO_THUMB)
9824 value |= 1;
9826 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
9827 || r_type == R_ARM_THM_MOVT_BREL)
9828 value >>= 16;
9830 insn &= 0xfbf08f00;
9831 insn |= (value & 0xf000) << 4;
9832 insn |= (value & 0x0800) << 15;
9833 insn |= (value & 0x0700) << 4;
9834 insn |= (value & 0x00ff);
9836 bfd_put_16 (input_bfd, insn >> 16, hit_data);
9837 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
9839 return bfd_reloc_ok;
9841 case R_ARM_ALU_PC_G0_NC:
9842 case R_ARM_ALU_PC_G1_NC:
9843 case R_ARM_ALU_PC_G0:
9844 case R_ARM_ALU_PC_G1:
9845 case R_ARM_ALU_PC_G2:
9846 case R_ARM_ALU_SB_G0_NC:
9847 case R_ARM_ALU_SB_G1_NC:
9848 case R_ARM_ALU_SB_G0:
9849 case R_ARM_ALU_SB_G1:
9850 case R_ARM_ALU_SB_G2:
9852 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9853 bfd_vma pc = input_section->output_section->vma
9854 + input_section->output_offset + rel->r_offset;
9855 /* sb is the origin of the *segment* containing the symbol. */
9856 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
9857 bfd_vma residual;
9858 bfd_vma g_n;
9859 bfd_signed_vma signed_value;
9860 int group = 0;
9862 /* Determine which group of bits to select. */
9863 switch (r_type)
9865 case R_ARM_ALU_PC_G0_NC:
9866 case R_ARM_ALU_PC_G0:
9867 case R_ARM_ALU_SB_G0_NC:
9868 case R_ARM_ALU_SB_G0:
9869 group = 0;
9870 break;
9872 case R_ARM_ALU_PC_G1_NC:
9873 case R_ARM_ALU_PC_G1:
9874 case R_ARM_ALU_SB_G1_NC:
9875 case R_ARM_ALU_SB_G1:
9876 group = 1;
9877 break;
9879 case R_ARM_ALU_PC_G2:
9880 case R_ARM_ALU_SB_G2:
9881 group = 2;
9882 break;
9884 default:
9885 abort ();
9888 /* If REL, extract the addend from the insn. If RELA, it will
9889 have already been fetched for us. */
9890 if (globals->use_rel)
9892 int negative;
9893 bfd_vma constant = insn & 0xff;
9894 bfd_vma rotation = (insn & 0xf00) >> 8;
9896 if (rotation == 0)
9897 signed_addend = constant;
9898 else
9900 /* Compensate for the fact that in the instruction, the
9901 rotation is stored in multiples of 2 bits. */
9902 rotation *= 2;
9904 /* Rotate "constant" right by "rotation" bits. */
9905 signed_addend = (constant >> rotation) |
9906 (constant << (8 * sizeof (bfd_vma) - rotation));
9909 /* Determine if the instruction is an ADD or a SUB.
9910 (For REL, this determines the sign of the addend.) */
9911 negative = identify_add_or_sub (insn);
9912 if (negative == 0)
9914 (*_bfd_error_handler)
9915 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
9916 input_bfd, input_section,
9917 (long) rel->r_offset, howto->name);
9918 return bfd_reloc_overflow;
9921 signed_addend *= negative;
9924 /* Compute the value (X) to go in the place. */
9925 if (r_type == R_ARM_ALU_PC_G0_NC
9926 || r_type == R_ARM_ALU_PC_G1_NC
9927 || r_type == R_ARM_ALU_PC_G0
9928 || r_type == R_ARM_ALU_PC_G1
9929 || r_type == R_ARM_ALU_PC_G2)
9930 /* PC relative. */
9931 signed_value = value - pc + signed_addend;
9932 else
9933 /* Section base relative. */
9934 signed_value = value - sb + signed_addend;
9936 /* If the target symbol is a Thumb function, then set the
9937 Thumb bit in the address. */
9938 if (branch_type == ST_BRANCH_TO_THUMB)
9939 signed_value |= 1;
9941 /* Calculate the value of the relevant G_n, in encoded
9942 constant-with-rotation format. */
9943 g_n = calculate_group_reloc_mask (abs (signed_value), group,
9944 &residual);
9946 /* Check for overflow if required. */
9947 if ((r_type == R_ARM_ALU_PC_G0
9948 || r_type == R_ARM_ALU_PC_G1
9949 || r_type == R_ARM_ALU_PC_G2
9950 || r_type == R_ARM_ALU_SB_G0
9951 || r_type == R_ARM_ALU_SB_G1
9952 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
9954 (*_bfd_error_handler)
9955 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9956 input_bfd, input_section,
9957 (long) rel->r_offset, abs (signed_value), howto->name);
9958 return bfd_reloc_overflow;
9961 /* Mask out the value and the ADD/SUB part of the opcode; take care
9962 not to destroy the S bit. */
9963 insn &= 0xff1ff000;
9965 /* Set the opcode according to whether the value to go in the
9966 place is negative. */
9967 if (signed_value < 0)
9968 insn |= 1 << 22;
9969 else
9970 insn |= 1 << 23;
9972 /* Encode the offset. */
9973 insn |= g_n;
9975 bfd_put_32 (input_bfd, insn, hit_data);
9977 return bfd_reloc_ok;
9979 case R_ARM_LDR_PC_G0:
9980 case R_ARM_LDR_PC_G1:
9981 case R_ARM_LDR_PC_G2:
9982 case R_ARM_LDR_SB_G0:
9983 case R_ARM_LDR_SB_G1:
9984 case R_ARM_LDR_SB_G2:
9986 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9987 bfd_vma pc = input_section->output_section->vma
9988 + input_section->output_offset + rel->r_offset;
9989 /* sb is the origin of the *segment* containing the symbol. */
9990 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
9991 bfd_vma residual;
9992 bfd_signed_vma signed_value;
9993 int group = 0;
9995 /* Determine which groups of bits to calculate. */
9996 switch (r_type)
9998 case R_ARM_LDR_PC_G0:
9999 case R_ARM_LDR_SB_G0:
10000 group = 0;
10001 break;
10003 case R_ARM_LDR_PC_G1:
10004 case R_ARM_LDR_SB_G1:
10005 group = 1;
10006 break;
10008 case R_ARM_LDR_PC_G2:
10009 case R_ARM_LDR_SB_G2:
10010 group = 2;
10011 break;
10013 default:
10014 abort ();
10017 /* If REL, extract the addend from the insn. If RELA, it will
10018 have already been fetched for us. */
10019 if (globals->use_rel)
10021 int negative = (insn & (1 << 23)) ? 1 : -1;
10022 signed_addend = negative * (insn & 0xfff);
10025 /* Compute the value (X) to go in the place. */
10026 if (r_type == R_ARM_LDR_PC_G0
10027 || r_type == R_ARM_LDR_PC_G1
10028 || r_type == R_ARM_LDR_PC_G2)
10029 /* PC relative. */
10030 signed_value = value - pc + signed_addend;
10031 else
10032 /* Section base relative. */
10033 signed_value = value - sb + signed_addend;
10035 /* Calculate the value of the relevant G_{n-1} to obtain
10036 the residual at that stage. */
10037 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
10039 /* Check for overflow. */
10040 if (residual >= 0x1000)
10042 (*_bfd_error_handler)
10043 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10044 input_bfd, input_section,
10045 (long) rel->r_offset, abs (signed_value), howto->name);
10046 return bfd_reloc_overflow;
10049 /* Mask out the value and U bit. */
10050 insn &= 0xff7ff000;
10052 /* Set the U bit if the value to go in the place is non-negative. */
10053 if (signed_value >= 0)
10054 insn |= 1 << 23;
10056 /* Encode the offset. */
10057 insn |= residual;
10059 bfd_put_32 (input_bfd, insn, hit_data);
10061 return bfd_reloc_ok;
10063 case R_ARM_LDRS_PC_G0:
10064 case R_ARM_LDRS_PC_G1:
10065 case R_ARM_LDRS_PC_G2:
10066 case R_ARM_LDRS_SB_G0:
10067 case R_ARM_LDRS_SB_G1:
10068 case R_ARM_LDRS_SB_G2:
10070 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
10071 bfd_vma pc = input_section->output_section->vma
10072 + input_section->output_offset + rel->r_offset;
10073 /* sb is the origin of the *segment* containing the symbol. */
10074 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
10075 bfd_vma residual;
10076 bfd_signed_vma signed_value;
10077 int group = 0;
10079 /* Determine which groups of bits to calculate. */
10080 switch (r_type)
10082 case R_ARM_LDRS_PC_G0:
10083 case R_ARM_LDRS_SB_G0:
10084 group = 0;
10085 break;
10087 case R_ARM_LDRS_PC_G1:
10088 case R_ARM_LDRS_SB_G1:
10089 group = 1;
10090 break;
10092 case R_ARM_LDRS_PC_G2:
10093 case R_ARM_LDRS_SB_G2:
10094 group = 2;
10095 break;
10097 default:
10098 abort ();
10101 /* If REL, extract the addend from the insn. If RELA, it will
10102 have already been fetched for us. */
10103 if (globals->use_rel)
10105 int negative = (insn & (1 << 23)) ? 1 : -1;
10106 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
10109 /* Compute the value (X) to go in the place. */
10110 if (r_type == R_ARM_LDRS_PC_G0
10111 || r_type == R_ARM_LDRS_PC_G1
10112 || r_type == R_ARM_LDRS_PC_G2)
10113 /* PC relative. */
10114 signed_value = value - pc + signed_addend;
10115 else
10116 /* Section base relative. */
10117 signed_value = value - sb + signed_addend;
10119 /* Calculate the value of the relevant G_{n-1} to obtain
10120 the residual at that stage. */
10121 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
10123 /* Check for overflow. */
10124 if (residual >= 0x100)
10126 (*_bfd_error_handler)
10127 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10128 input_bfd, input_section,
10129 (long) rel->r_offset, abs (signed_value), howto->name);
10130 return bfd_reloc_overflow;
10133 /* Mask out the value and U bit. */
10134 insn &= 0xff7ff0f0;
10136 /* Set the U bit if the value to go in the place is non-negative. */
10137 if (signed_value >= 0)
10138 insn |= 1 << 23;
10140 /* Encode the offset. */
10141 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
10143 bfd_put_32 (input_bfd, insn, hit_data);
10145 return bfd_reloc_ok;
10147 case R_ARM_LDC_PC_G0:
10148 case R_ARM_LDC_PC_G1:
10149 case R_ARM_LDC_PC_G2:
10150 case R_ARM_LDC_SB_G0:
10151 case R_ARM_LDC_SB_G1:
10152 case R_ARM_LDC_SB_G2:
10154 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
10155 bfd_vma pc = input_section->output_section->vma
10156 + input_section->output_offset + rel->r_offset;
10157 /* sb is the origin of the *segment* containing the symbol. */
10158 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
10159 bfd_vma residual;
10160 bfd_signed_vma signed_value;
10161 int group = 0;
10163 /* Determine which groups of bits to calculate. */
10164 switch (r_type)
10166 case R_ARM_LDC_PC_G0:
10167 case R_ARM_LDC_SB_G0:
10168 group = 0;
10169 break;
10171 case R_ARM_LDC_PC_G1:
10172 case R_ARM_LDC_SB_G1:
10173 group = 1;
10174 break;
10176 case R_ARM_LDC_PC_G2:
10177 case R_ARM_LDC_SB_G2:
10178 group = 2;
10179 break;
10181 default:
10182 abort ();
10185 /* If REL, extract the addend from the insn. If RELA, it will
10186 have already been fetched for us. */
10187 if (globals->use_rel)
10189 int negative = (insn & (1 << 23)) ? 1 : -1;
10190 signed_addend = negative * ((insn & 0xff) << 2);
10193 /* Compute the value (X) to go in the place. */
10194 if (r_type == R_ARM_LDC_PC_G0
10195 || r_type == R_ARM_LDC_PC_G1
10196 || r_type == R_ARM_LDC_PC_G2)
10197 /* PC relative. */
10198 signed_value = value - pc + signed_addend;
10199 else
10200 /* Section base relative. */
10201 signed_value = value - sb + signed_addend;
10203 /* Calculate the value of the relevant G_{n-1} to obtain
10204 the residual at that stage. */
10205 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
10207 /* Check for overflow. (The absolute value to go in the place must be
10208 divisible by four and, after having been divided by four, must
10209 fit in eight bits.) */
10210 if ((residual & 0x3) != 0 || residual >= 0x400)
10212 (*_bfd_error_handler)
10213 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10214 input_bfd, input_section,
10215 (long) rel->r_offset, abs (signed_value), howto->name);
10216 return bfd_reloc_overflow;
10219 /* Mask out the value and U bit. */
10220 insn &= 0xff7fff00;
10222 /* Set the U bit if the value to go in the place is non-negative. */
10223 if (signed_value >= 0)
10224 insn |= 1 << 23;
10226 /* Encode the offset. */
10227 insn |= residual >> 2;
10229 bfd_put_32 (input_bfd, insn, hit_data);
10231 return bfd_reloc_ok;
10233 default:
10234 return bfd_reloc_notsupported;
10238 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
10239 static void
10240 arm_add_to_rel (bfd * abfd,
10241 bfd_byte * address,
10242 reloc_howto_type * howto,
10243 bfd_signed_vma increment)
10245 bfd_signed_vma addend;
10247 if (howto->type == R_ARM_THM_CALL
10248 || howto->type == R_ARM_THM_JUMP24)
10250 int upper_insn, lower_insn;
10251 int upper, lower;
10253 upper_insn = bfd_get_16 (abfd, address);
10254 lower_insn = bfd_get_16 (abfd, address + 2);
10255 upper = upper_insn & 0x7ff;
10256 lower = lower_insn & 0x7ff;
10258 addend = (upper << 12) | (lower << 1);
10259 addend += increment;
10260 addend >>= 1;
10262 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
10263 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
10265 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
10266 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
10268 else
10270 bfd_vma contents;
10272 contents = bfd_get_32 (abfd, address);
10274 /* Get the (signed) value from the instruction. */
10275 addend = contents & howto->src_mask;
10276 if (addend & ((howto->src_mask + 1) >> 1))
10278 bfd_signed_vma mask;
10280 mask = -1;
10281 mask &= ~ howto->src_mask;
10282 addend |= mask;
10285 /* Add in the increment, (which is a byte value). */
10286 switch (howto->type)
10288 default:
10289 addend += increment;
10290 break;
10292 case R_ARM_PC24:
10293 case R_ARM_PLT32:
10294 case R_ARM_CALL:
10295 case R_ARM_JUMP24:
10296 addend <<= howto->size;
10297 addend += increment;
10299 /* Should we check for overflow here ? */
10301 /* Drop any undesired bits. */
10302 addend >>= howto->rightshift;
10303 break;
10306 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
10308 bfd_put_32 (abfd, contents, address);
10312 #define IS_ARM_TLS_RELOC(R_TYPE) \
10313 ((R_TYPE) == R_ARM_TLS_GD32 \
10314 || (R_TYPE) == R_ARM_TLS_LDO32 \
10315 || (R_TYPE) == R_ARM_TLS_LDM32 \
10316 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
10317 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
10318 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
10319 || (R_TYPE) == R_ARM_TLS_LE32 \
10320 || (R_TYPE) == R_ARM_TLS_IE32 \
10321 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
10323 /* Specific set of relocations for the gnu tls dialect. */
10324 #define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
10325 ((R_TYPE) == R_ARM_TLS_GOTDESC \
10326 || (R_TYPE) == R_ARM_TLS_CALL \
10327 || (R_TYPE) == R_ARM_THM_TLS_CALL \
10328 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
10329 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
10331 /* Relocate an ARM ELF section. */
10333 static bfd_boolean
10334 elf32_arm_relocate_section (bfd * output_bfd,
10335 struct bfd_link_info * info,
10336 bfd * input_bfd,
10337 asection * input_section,
10338 bfd_byte * contents,
10339 Elf_Internal_Rela * relocs,
10340 Elf_Internal_Sym * local_syms,
10341 asection ** local_sections)
10343 Elf_Internal_Shdr *symtab_hdr;
10344 struct elf_link_hash_entry **sym_hashes;
10345 Elf_Internal_Rela *rel;
10346 Elf_Internal_Rela *relend;
10347 const char *name;
10348 struct elf32_arm_link_hash_table * globals;
10350 globals = elf32_arm_hash_table (info);
10351 if (globals == NULL)
10352 return FALSE;
10354 symtab_hdr = & elf_symtab_hdr (input_bfd);
10355 sym_hashes = elf_sym_hashes (input_bfd);
10357 rel = relocs;
10358 relend = relocs + input_section->reloc_count;
10359 for (; rel < relend; rel++)
10361 int r_type;
10362 reloc_howto_type * howto;
10363 unsigned long r_symndx;
10364 Elf_Internal_Sym * sym;
10365 asection * sec;
10366 struct elf_link_hash_entry * h;
10367 bfd_vma relocation;
10368 bfd_reloc_status_type r;
10369 arelent bfd_reloc;
10370 char sym_type;
10371 bfd_boolean unresolved_reloc = FALSE;
10372 char *error_message = NULL;
10374 r_symndx = ELF32_R_SYM (rel->r_info);
10375 r_type = ELF32_R_TYPE (rel->r_info);
10376 r_type = arm_real_reloc_type (globals, r_type);
10378 if ( r_type == R_ARM_GNU_VTENTRY
10379 || r_type == R_ARM_GNU_VTINHERIT)
10380 continue;
10382 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
10383 howto = bfd_reloc.howto;
10385 h = NULL;
10386 sym = NULL;
10387 sec = NULL;
10389 if (r_symndx < symtab_hdr->sh_info)
10391 sym = local_syms + r_symndx;
10392 sym_type = ELF32_ST_TYPE (sym->st_info);
10393 sec = local_sections[r_symndx];
10395 /* An object file might have a reference to a local
10396 undefined symbol. This is a daft object file, but we
10397 should at least do something about it. V4BX & NONE
10398 relocations do not use the symbol and are explicitly
10399 allowed to use the undefined symbol, so allow those.
10400 Likewise for relocations against STN_UNDEF. */
10401 if (r_type != R_ARM_V4BX
10402 && r_type != R_ARM_NONE
10403 && r_symndx != STN_UNDEF
10404 && bfd_is_und_section (sec)
10405 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
10407 if (!info->callbacks->undefined_symbol
10408 (info, bfd_elf_string_from_elf_section
10409 (input_bfd, symtab_hdr->sh_link, sym->st_name),
10410 input_bfd, input_section,
10411 rel->r_offset, TRUE))
10412 return FALSE;
10415 if (globals->use_rel)
10417 relocation = (sec->output_section->vma
10418 + sec->output_offset
10419 + sym->st_value);
10420 if (!info->relocatable
10421 && (sec->flags & SEC_MERGE)
10422 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10424 asection *msec;
10425 bfd_vma addend, value;
10427 switch (r_type)
10429 case R_ARM_MOVW_ABS_NC:
10430 case R_ARM_MOVT_ABS:
10431 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
10432 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
10433 addend = (addend ^ 0x8000) - 0x8000;
10434 break;
10436 case R_ARM_THM_MOVW_ABS_NC:
10437 case R_ARM_THM_MOVT_ABS:
10438 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
10439 << 16;
10440 value |= bfd_get_16 (input_bfd,
10441 contents + rel->r_offset + 2);
10442 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
10443 | ((value & 0x04000000) >> 15);
10444 addend = (addend ^ 0x8000) - 0x8000;
10445 break;
10447 default:
10448 if (howto->rightshift
10449 || (howto->src_mask & (howto->src_mask + 1)))
10451 (*_bfd_error_handler)
10452 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
10453 input_bfd, input_section,
10454 (long) rel->r_offset, howto->name);
10455 return FALSE;
10458 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
10460 /* Get the (signed) value from the instruction. */
10461 addend = value & howto->src_mask;
10462 if (addend & ((howto->src_mask + 1) >> 1))
10464 bfd_signed_vma mask;
10466 mask = -1;
10467 mask &= ~ howto->src_mask;
10468 addend |= mask;
10470 break;
10473 msec = sec;
10474 addend =
10475 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
10476 - relocation;
10477 addend += msec->output_section->vma + msec->output_offset;
10479 /* Cases here must match those in the preceding
10480 switch statement. */
10481 switch (r_type)
10483 case R_ARM_MOVW_ABS_NC:
10484 case R_ARM_MOVT_ABS:
10485 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
10486 | (addend & 0xfff);
10487 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
10488 break;
10490 case R_ARM_THM_MOVW_ABS_NC:
10491 case R_ARM_THM_MOVT_ABS:
10492 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
10493 | (addend & 0xff) | ((addend & 0x0800) << 15);
10494 bfd_put_16 (input_bfd, value >> 16,
10495 contents + rel->r_offset);
10496 bfd_put_16 (input_bfd, value,
10497 contents + rel->r_offset + 2);
10498 break;
10500 default:
10501 value = (value & ~ howto->dst_mask)
10502 | (addend & howto->dst_mask);
10503 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
10504 break;
10508 else
10509 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10511 else
10513 bfd_boolean warned;
10515 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
10516 r_symndx, symtab_hdr, sym_hashes,
10517 h, sec, relocation,
10518 unresolved_reloc, warned);
10520 sym_type = h->type;
10523 if (sec != NULL && discarded_section (sec))
10524 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10525 rel, 1, relend, howto, 0, contents);
10527 if (info->relocatable)
10529 /* This is a relocatable link. We don't have to change
10530 anything, unless the reloc is against a section symbol,
10531 in which case we have to adjust according to where the
10532 section symbol winds up in the output section. */
10533 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10535 if (globals->use_rel)
10536 arm_add_to_rel (input_bfd, contents + rel->r_offset,
10537 howto, (bfd_signed_vma) sec->output_offset);
10538 else
10539 rel->r_addend += sec->output_offset;
10541 continue;
10544 if (h != NULL)
10545 name = h->root.root.string;
10546 else
10548 name = (bfd_elf_string_from_elf_section
10549 (input_bfd, symtab_hdr->sh_link, sym->st_name));
10550 if (name == NULL || *name == '\0')
10551 name = bfd_section_name (input_bfd, sec);
10554 if (r_symndx != STN_UNDEF
10555 && r_type != R_ARM_NONE
10556 && (h == NULL
10557 || h->root.type == bfd_link_hash_defined
10558 || h->root.type == bfd_link_hash_defweak)
10559 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
10561 (*_bfd_error_handler)
10562 ((sym_type == STT_TLS
10563 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
10564 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
10565 input_bfd,
10566 input_section,
10567 (long) rel->r_offset,
10568 howto->name,
10569 name);
10572 /* We call elf32_arm_final_link_relocate unless we're completely
10573 done, i.e., the relaxation produced the final output we want,
10574 and we won't let anybody mess with it. Also, we have to do
10575 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
10576 both in relaxed and non-relaxed cases */
10577 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
10578 || (IS_ARM_TLS_GNU_RELOC (r_type)
10579 && !((h ? elf32_arm_hash_entry (h)->tls_type :
10580 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
10581 & GOT_TLS_GDESC)))
10583 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
10584 contents, rel, h == NULL);
10585 /* This may have been marked unresolved because it came from
10586 a shared library. But we've just dealt with that. */
10587 unresolved_reloc = 0;
10589 else
10590 r = bfd_reloc_continue;
10592 if (r == bfd_reloc_continue)
10593 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
10594 input_section, contents, rel,
10595 relocation, info, sec, name, sym_type,
10596 (h ? h->target_internal
10597 : ARM_SYM_BRANCH_TYPE (sym)), h,
10598 &unresolved_reloc, &error_message);
10600 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
10601 because such sections are not SEC_ALLOC and thus ld.so will
10602 not process them. */
10603 if (unresolved_reloc
10604 && !((input_section->flags & SEC_DEBUGGING) != 0
10605 && h->def_dynamic)
10606 && _bfd_elf_section_offset (output_bfd, info, input_section,
10607 rel->r_offset) != (bfd_vma) -1)
10609 (*_bfd_error_handler)
10610 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
10611 input_bfd,
10612 input_section,
10613 (long) rel->r_offset,
10614 howto->name,
10615 h->root.root.string);
10616 return FALSE;
10619 if (r != bfd_reloc_ok)
10621 switch (r)
10623 case bfd_reloc_overflow:
10624 /* If the overflowing reloc was to an undefined symbol,
10625 we have already printed one error message and there
10626 is no point complaining again. */
10627 if ((! h ||
10628 h->root.type != bfd_link_hash_undefined)
10629 && (!((*info->callbacks->reloc_overflow)
10630 (info, (h ? &h->root : NULL), name, howto->name,
10631 (bfd_vma) 0, input_bfd, input_section,
10632 rel->r_offset))))
10633 return FALSE;
10634 break;
10636 case bfd_reloc_undefined:
10637 if (!((*info->callbacks->undefined_symbol)
10638 (info, name, input_bfd, input_section,
10639 rel->r_offset, TRUE)))
10640 return FALSE;
10641 break;
10643 case bfd_reloc_outofrange:
10644 error_message = _("out of range");
10645 goto common_error;
10647 case bfd_reloc_notsupported:
10648 error_message = _("unsupported relocation");
10649 goto common_error;
10651 case bfd_reloc_dangerous:
10652 /* error_message should already be set. */
10653 goto common_error;
10655 default:
10656 error_message = _("unknown error");
10657 /* Fall through. */
10659 common_error:
10660 BFD_ASSERT (error_message != NULL);
10661 if (!((*info->callbacks->reloc_dangerous)
10662 (info, error_message, input_bfd, input_section,
10663 rel->r_offset)))
10664 return FALSE;
10665 break;
10670 return TRUE;
10673 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
10674 adds the edit to the start of the list. (The list must be built in order of
10675 ascending TINDEX: the function's callers are primarily responsible for
10676 maintaining that condition). */
10678 static void
10679 add_unwind_table_edit (arm_unwind_table_edit **head,
10680 arm_unwind_table_edit **tail,
10681 arm_unwind_edit_type type,
10682 asection *linked_section,
10683 unsigned int tindex)
10685 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
10686 xmalloc (sizeof (arm_unwind_table_edit));
10688 new_edit->type = type;
10689 new_edit->linked_section = linked_section;
10690 new_edit->index = tindex;
10692 if (tindex > 0)
10694 new_edit->next = NULL;
10696 if (*tail)
10697 (*tail)->next = new_edit;
10699 (*tail) = new_edit;
10701 if (!*head)
10702 (*head) = new_edit;
10704 else
10706 new_edit->next = *head;
10708 if (!*tail)
10709 *tail = new_edit;
10711 *head = new_edit;
10715 static _arm_elf_section_data *get_arm_elf_section_data (asection *);
10717 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
10718 static void
10719 adjust_exidx_size(asection *exidx_sec, int adjust)
10721 asection *out_sec;
10723 if (!exidx_sec->rawsize)
10724 exidx_sec->rawsize = exidx_sec->size;
10726 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
10727 out_sec = exidx_sec->output_section;
10728 /* Adjust size of output section. */
10729 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
10732 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
10733 static void
10734 insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
10736 struct _arm_elf_section_data *exidx_arm_data;
10738 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
10739 add_unwind_table_edit (
10740 &exidx_arm_data->u.exidx.unwind_edit_list,
10741 &exidx_arm_data->u.exidx.unwind_edit_tail,
10742 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
10744 adjust_exidx_size(exidx_sec, 8);
10747 /* Scan .ARM.exidx tables, and create a list describing edits which should be
10748 made to those tables, such that:
10750 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
10751 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
10752 codes which have been inlined into the index).
10754 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
10756 The edits are applied when the tables are written
10757 (in elf32_arm_write_section). */
10759 bfd_boolean
10760 elf32_arm_fix_exidx_coverage (asection **text_section_order,
10761 unsigned int num_text_sections,
10762 struct bfd_link_info *info,
10763 bfd_boolean merge_exidx_entries)
10765 bfd *inp;
10766 unsigned int last_second_word = 0, i;
10767 asection *last_exidx_sec = NULL;
10768 asection *last_text_sec = NULL;
10769 int last_unwind_type = -1;
10771 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
10772 text sections. */
10773 for (inp = info->input_bfds; inp != NULL; inp = inp->link_next)
10775 asection *sec;
10777 for (sec = inp->sections; sec != NULL; sec = sec->next)
10779 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
10780 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
10782 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
10783 continue;
10785 if (elf_sec->linked_to)
10787 Elf_Internal_Shdr *linked_hdr
10788 = &elf_section_data (elf_sec->linked_to)->this_hdr;
10789 struct _arm_elf_section_data *linked_sec_arm_data
10790 = get_arm_elf_section_data (linked_hdr->bfd_section);
10792 if (linked_sec_arm_data == NULL)
10793 continue;
10795 /* Link this .ARM.exidx section back from the text section it
10796 describes. */
10797 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
10802 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
10803 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
10804 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
10806 for (i = 0; i < num_text_sections; i++)
10808 asection *sec = text_section_order[i];
10809 asection *exidx_sec;
10810 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
10811 struct _arm_elf_section_data *exidx_arm_data;
10812 bfd_byte *contents = NULL;
10813 int deleted_exidx_bytes = 0;
10814 bfd_vma j;
10815 arm_unwind_table_edit *unwind_edit_head = NULL;
10816 arm_unwind_table_edit *unwind_edit_tail = NULL;
10817 Elf_Internal_Shdr *hdr;
10818 bfd *ibfd;
10820 if (arm_data == NULL)
10821 continue;
10823 exidx_sec = arm_data->u.text.arm_exidx_sec;
10824 if (exidx_sec == NULL)
10826 /* Section has no unwind data. */
10827 if (last_unwind_type == 0 || !last_exidx_sec)
10828 continue;
10830 /* Ignore zero sized sections. */
10831 if (sec->size == 0)
10832 continue;
10834 insert_cantunwind_after(last_text_sec, last_exidx_sec);
10835 last_unwind_type = 0;
10836 continue;
10839 /* Skip /DISCARD/ sections. */
10840 if (bfd_is_abs_section (exidx_sec->output_section))
10841 continue;
10843 hdr = &elf_section_data (exidx_sec)->this_hdr;
10844 if (hdr->sh_type != SHT_ARM_EXIDX)
10845 continue;
10847 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
10848 if (exidx_arm_data == NULL)
10849 continue;
10851 ibfd = exidx_sec->owner;
10853 if (hdr->contents != NULL)
10854 contents = hdr->contents;
10855 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
10856 /* An error? */
10857 continue;
10859 for (j = 0; j < hdr->sh_size; j += 8)
10861 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
10862 int unwind_type;
10863 int elide = 0;
10865 /* An EXIDX_CANTUNWIND entry. */
10866 if (second_word == 1)
10868 if (last_unwind_type == 0)
10869 elide = 1;
10870 unwind_type = 0;
10872 /* Inlined unwinding data. Merge if equal to previous. */
10873 else if ((second_word & 0x80000000) != 0)
10875 if (merge_exidx_entries
10876 && last_second_word == second_word && last_unwind_type == 1)
10877 elide = 1;
10878 unwind_type = 1;
10879 last_second_word = second_word;
10881 /* Normal table entry. In theory we could merge these too,
10882 but duplicate entries are likely to be much less common. */
10883 else
10884 unwind_type = 2;
10886 if (elide)
10888 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
10889 DELETE_EXIDX_ENTRY, NULL, j / 8);
10891 deleted_exidx_bytes += 8;
10894 last_unwind_type = unwind_type;
10897 /* Free contents if we allocated it ourselves. */
10898 if (contents != hdr->contents)
10899 free (contents);
10901 /* Record edits to be applied later (in elf32_arm_write_section). */
10902 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
10903 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
10905 if (deleted_exidx_bytes > 0)
10906 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
10908 last_exidx_sec = exidx_sec;
10909 last_text_sec = sec;
10912 /* Add terminating CANTUNWIND entry. */
10913 if (last_exidx_sec && last_unwind_type != 0)
10914 insert_cantunwind_after(last_text_sec, last_exidx_sec);
10916 return TRUE;
10919 static bfd_boolean
10920 elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
10921 bfd *ibfd, const char *name)
10923 asection *sec, *osec;
10925 sec = bfd_get_linker_section (ibfd, name);
10926 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
10927 return TRUE;
10929 osec = sec->output_section;
10930 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
10931 return TRUE;
10933 if (! bfd_set_section_contents (obfd, osec, sec->contents,
10934 sec->output_offset, sec->size))
10935 return FALSE;
10937 return TRUE;
10940 static bfd_boolean
10941 elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
10943 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
10944 asection *sec, *osec;
10946 if (globals == NULL)
10947 return FALSE;
10949 /* Invoke the regular ELF backend linker to do all the work. */
10950 if (!bfd_elf_final_link (abfd, info))
10951 return FALSE;
10953 /* Process stub sections (eg BE8 encoding, ...). */
10954 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
10955 int i;
10956 for (i=0; i<htab->top_id; i++)
10958 sec = htab->stub_group[i].stub_sec;
10959 /* Only process it once, in its link_sec slot. */
10960 if (sec && i == htab->stub_group[i].link_sec->id)
10962 osec = sec->output_section;
10963 elf32_arm_write_section (abfd, info, sec, sec->contents);
10964 if (! bfd_set_section_contents (abfd, osec, sec->contents,
10965 sec->output_offset, sec->size))
10966 return FALSE;
10970 /* Write out any glue sections now that we have created all the
10971 stubs. */
10972 if (globals->bfd_of_glue_owner != NULL)
10974 if (! elf32_arm_output_glue_section (info, abfd,
10975 globals->bfd_of_glue_owner,
10976 ARM2THUMB_GLUE_SECTION_NAME))
10977 return FALSE;
10979 if (! elf32_arm_output_glue_section (info, abfd,
10980 globals->bfd_of_glue_owner,
10981 THUMB2ARM_GLUE_SECTION_NAME))
10982 return FALSE;
10984 if (! elf32_arm_output_glue_section (info, abfd,
10985 globals->bfd_of_glue_owner,
10986 VFP11_ERRATUM_VENEER_SECTION_NAME))
10987 return FALSE;
10989 if (! elf32_arm_output_glue_section (info, abfd,
10990 globals->bfd_of_glue_owner,
10991 ARM_BX_GLUE_SECTION_NAME))
10992 return FALSE;
10995 return TRUE;
10998 /* Return a best guess for the machine number based on the attributes. */
11000 static unsigned int
11001 bfd_arm_get_mach_from_attributes (bfd * abfd)
11003 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch);
11005 switch (arch)
11007 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4;
11008 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T;
11009 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T;
11011 case TAG_CPU_ARCH_V5TE:
11013 char * name;
11015 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES);
11016 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s;
11018 if (name)
11020 if (strcmp (name, "IWMMXT2") == 0)
11021 return bfd_mach_arm_iWMMXt2;
11023 if (strcmp (name, "IWMMXT") == 0)
11024 return bfd_mach_arm_iWMMXt;
11026 if (strcmp (name, "XSCALE") == 0)
11028 int wmmx;
11030 BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES);
11031 wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i;
11032 switch (wmmx)
11034 case 1: return bfd_mach_arm_iWMMXt;
11035 case 2: return bfd_mach_arm_iWMMXt2;
11036 default: return bfd_mach_arm_XScale;
11041 return bfd_mach_arm_5TE;
11044 default:
11045 return bfd_mach_arm_unknown;
11049 /* Set the right machine number. */
11051 static bfd_boolean
11052 elf32_arm_object_p (bfd *abfd)
11054 unsigned int mach;
11056 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
11058 if (mach == bfd_mach_arm_unknown)
11060 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
11061 mach = bfd_mach_arm_ep9312;
11062 else
11063 mach = bfd_arm_get_mach_from_attributes (abfd);
11066 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
11067 return TRUE;
11070 /* Function to keep ARM specific flags in the ELF header. */
11072 static bfd_boolean
11073 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
11075 if (elf_flags_init (abfd)
11076 && elf_elfheader (abfd)->e_flags != flags)
11078 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
11080 if (flags & EF_ARM_INTERWORK)
11081 (*_bfd_error_handler)
11082 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
11083 abfd);
11084 else
11085 _bfd_error_handler
11086 (_("Warning: Clearing the interworking flag of %B due to outside request"),
11087 abfd);
11090 else
11092 elf_elfheader (abfd)->e_flags = flags;
11093 elf_flags_init (abfd) = TRUE;
11096 return TRUE;
11099 /* Copy backend specific data from one object module to another. */
11101 static bfd_boolean
11102 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
11104 flagword in_flags;
11105 flagword out_flags;
11107 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
11108 return TRUE;
11110 in_flags = elf_elfheader (ibfd)->e_flags;
11111 out_flags = elf_elfheader (obfd)->e_flags;
11113 if (elf_flags_init (obfd)
11114 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
11115 && in_flags != out_flags)
11117 /* Cannot mix APCS26 and APCS32 code. */
11118 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
11119 return FALSE;
11121 /* Cannot mix float APCS and non-float APCS code. */
11122 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
11123 return FALSE;
11125 /* If the src and dest have different interworking flags
11126 then turn off the interworking bit. */
11127 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
11129 if (out_flags & EF_ARM_INTERWORK)
11130 _bfd_error_handler
11131 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
11132 obfd, ibfd);
11134 in_flags &= ~EF_ARM_INTERWORK;
11137 /* Likewise for PIC, though don't warn for this case. */
11138 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
11139 in_flags &= ~EF_ARM_PIC;
11142 elf_elfheader (obfd)->e_flags = in_flags;
11143 elf_flags_init (obfd) = TRUE;
11145 /* Also copy the EI_OSABI field. */
11146 elf_elfheader (obfd)->e_ident[EI_OSABI] =
11147 elf_elfheader (ibfd)->e_ident[EI_OSABI];
11149 /* Copy object attributes. */
11150 _bfd_elf_copy_obj_attributes (ibfd, obfd);
11152 return TRUE;
11155 /* Values for Tag_ABI_PCS_R9_use. */
11156 enum
11158 AEABI_R9_V6,
11159 AEABI_R9_SB,
11160 AEABI_R9_TLS,
11161 AEABI_R9_unused
11164 /* Values for Tag_ABI_PCS_RW_data. */
11165 enum
11167 AEABI_PCS_RW_data_absolute,
11168 AEABI_PCS_RW_data_PCrel,
11169 AEABI_PCS_RW_data_SBrel,
11170 AEABI_PCS_RW_data_unused
11173 /* Values for Tag_ABI_enum_size. */
11174 enum
11176 AEABI_enum_unused,
11177 AEABI_enum_short,
11178 AEABI_enum_wide,
11179 AEABI_enum_forced_wide
11182 /* Determine whether an object attribute tag takes an integer, a
11183 string or both. */
11185 static int
11186 elf32_arm_obj_attrs_arg_type (int tag)
11188 if (tag == Tag_compatibility)
11189 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
11190 else if (tag == Tag_nodefaults)
11191 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
11192 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
11193 return ATTR_TYPE_FLAG_STR_VAL;
11194 else if (tag < 32)
11195 return ATTR_TYPE_FLAG_INT_VAL;
11196 else
11197 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
11200 /* The ABI defines that Tag_conformance should be emitted first, and that
11201 Tag_nodefaults should be second (if either is defined). This sets those
11202 two positions, and bumps up the position of all the remaining tags to
11203 compensate. */
11204 static int
11205 elf32_arm_obj_attrs_order (int num)
11207 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
11208 return Tag_conformance;
11209 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
11210 return Tag_nodefaults;
11211 if ((num - 2) < Tag_nodefaults)
11212 return num - 2;
11213 if ((num - 1) < Tag_conformance)
11214 return num - 1;
11215 return num;
11218 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
11219 static bfd_boolean
11220 elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
11222 if ((tag & 127) < 64)
11224 _bfd_error_handler
11225 (_("%B: Unknown mandatory EABI object attribute %d"),
11226 abfd, tag);
11227 bfd_set_error (bfd_error_bad_value);
11228 return FALSE;
11230 else
11232 _bfd_error_handler
11233 (_("Warning: %B: Unknown EABI object attribute %d"),
11234 abfd, tag);
11235 return TRUE;
11239 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
11240 Returns -1 if no architecture could be read. */
11242 static int
11243 get_secondary_compatible_arch (bfd *abfd)
11245 obj_attribute *attr =
11246 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
11248 /* Note: the tag and its argument below are uleb128 values, though
11249 currently-defined values fit in one byte for each. */
11250 if (attr->s
11251 && attr->s[0] == Tag_CPU_arch
11252 && (attr->s[1] & 128) != 128
11253 && attr->s[2] == 0)
11254 return attr->s[1];
11256 /* This tag is "safely ignorable", so don't complain if it looks funny. */
11257 return -1;
11260 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
11261 The tag is removed if ARCH is -1. */
11263 static void
11264 set_secondary_compatible_arch (bfd *abfd, int arch)
11266 obj_attribute *attr =
11267 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
11269 if (arch == -1)
11271 attr->s = NULL;
11272 return;
11275 /* Note: the tag and its argument below are uleb128 values, though
11276 currently-defined values fit in one byte for each. */
11277 if (!attr->s)
11278 attr->s = (char *) bfd_alloc (abfd, 3);
11279 attr->s[0] = Tag_CPU_arch;
11280 attr->s[1] = arch;
11281 attr->s[2] = '\0';
11284 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
11285 into account. */
11287 static int
11288 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
11289 int newtag, int secondary_compat)
11291 #define T(X) TAG_CPU_ARCH_##X
11292 int tagl, tagh, result;
11293 const int v6t2[] =
11295 T(V6T2), /* PRE_V4. */
11296 T(V6T2), /* V4. */
11297 T(V6T2), /* V4T. */
11298 T(V6T2), /* V5T. */
11299 T(V6T2), /* V5TE. */
11300 T(V6T2), /* V5TEJ. */
11301 T(V6T2), /* V6. */
11302 T(V7), /* V6KZ. */
11303 T(V6T2) /* V6T2. */
11305 const int v6k[] =
11307 T(V6K), /* PRE_V4. */
11308 T(V6K), /* V4. */
11309 T(V6K), /* V4T. */
11310 T(V6K), /* V5T. */
11311 T(V6K), /* V5TE. */
11312 T(V6K), /* V5TEJ. */
11313 T(V6K), /* V6. */
11314 T(V6KZ), /* V6KZ. */
11315 T(V7), /* V6T2. */
11316 T(V6K) /* V6K. */
11318 const int v7[] =
11320 T(V7), /* PRE_V4. */
11321 T(V7), /* V4. */
11322 T(V7), /* V4T. */
11323 T(V7), /* V5T. */
11324 T(V7), /* V5TE. */
11325 T(V7), /* V5TEJ. */
11326 T(V7), /* V6. */
11327 T(V7), /* V6KZ. */
11328 T(V7), /* V6T2. */
11329 T(V7), /* V6K. */
11330 T(V7) /* V7. */
11332 const int v6_m[] =
11334 -1, /* PRE_V4. */
11335 -1, /* V4. */
11336 T(V6K), /* V4T. */
11337 T(V6K), /* V5T. */
11338 T(V6K), /* V5TE. */
11339 T(V6K), /* V5TEJ. */
11340 T(V6K), /* V6. */
11341 T(V6KZ), /* V6KZ. */
11342 T(V7), /* V6T2. */
11343 T(V6K), /* V6K. */
11344 T(V7), /* V7. */
11345 T(V6_M) /* V6_M. */
11347 const int v6s_m[] =
11349 -1, /* PRE_V4. */
11350 -1, /* V4. */
11351 T(V6K), /* V4T. */
11352 T(V6K), /* V5T. */
11353 T(V6K), /* V5TE. */
11354 T(V6K), /* V5TEJ. */
11355 T(V6K), /* V6. */
11356 T(V6KZ), /* V6KZ. */
11357 T(V7), /* V6T2. */
11358 T(V6K), /* V6K. */
11359 T(V7), /* V7. */
11360 T(V6S_M), /* V6_M. */
11361 T(V6S_M) /* V6S_M. */
11363 const int v7e_m[] =
11365 -1, /* PRE_V4. */
11366 -1, /* V4. */
11367 T(V7E_M), /* V4T. */
11368 T(V7E_M), /* V5T. */
11369 T(V7E_M), /* V5TE. */
11370 T(V7E_M), /* V5TEJ. */
11371 T(V7E_M), /* V6. */
11372 T(V7E_M), /* V6KZ. */
11373 T(V7E_M), /* V6T2. */
11374 T(V7E_M), /* V6K. */
11375 T(V7E_M), /* V7. */
11376 T(V7E_M), /* V6_M. */
11377 T(V7E_M), /* V6S_M. */
11378 T(V7E_M) /* V7E_M. */
11380 const int v8[] =
11382 T(V8), /* PRE_V4. */
11383 T(V8), /* V4. */
11384 T(V8), /* V4T. */
11385 T(V8), /* V5T. */
11386 T(V8), /* V5TE. */
11387 T(V8), /* V5TEJ. */
11388 T(V8), /* V6. */
11389 T(V8), /* V6KZ. */
11390 T(V8), /* V6T2. */
11391 T(V8), /* V6K. */
11392 T(V8), /* V7. */
11393 T(V8), /* V6_M. */
11394 T(V8), /* V6S_M. */
11395 T(V8), /* V7E_M. */
11396 T(V8) /* V8. */
11398 const int v4t_plus_v6_m[] =
11400 -1, /* PRE_V4. */
11401 -1, /* V4. */
11402 T(V4T), /* V4T. */
11403 T(V5T), /* V5T. */
11404 T(V5TE), /* V5TE. */
11405 T(V5TEJ), /* V5TEJ. */
11406 T(V6), /* V6. */
11407 T(V6KZ), /* V6KZ. */
11408 T(V6T2), /* V6T2. */
11409 T(V6K), /* V6K. */
11410 T(V7), /* V7. */
11411 T(V6_M), /* V6_M. */
11412 T(V6S_M), /* V6S_M. */
11413 T(V7E_M), /* V7E_M. */
11414 T(V8), /* V8. */
11415 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
11417 const int *comb[] =
11419 v6t2,
11420 v6k,
11422 v6_m,
11423 v6s_m,
11424 v7e_m,
11426 /* Pseudo-architecture. */
11427 v4t_plus_v6_m
11430 /* Check we've not got a higher architecture than we know about. */
11432 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
11434 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
11435 return -1;
11438 /* Override old tag if we have a Tag_also_compatible_with on the output. */
11440 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
11441 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
11442 oldtag = T(V4T_PLUS_V6_M);
11444 /* And override the new tag if we have a Tag_also_compatible_with on the
11445 input. */
11447 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
11448 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
11449 newtag = T(V4T_PLUS_V6_M);
11451 tagl = (oldtag < newtag) ? oldtag : newtag;
11452 result = tagh = (oldtag > newtag) ? oldtag : newtag;
11454 /* Architectures before V6KZ add features monotonically. */
11455 if (tagh <= TAG_CPU_ARCH_V6KZ)
11456 return result;
11458 result = comb[tagh - T(V6T2)][tagl];
11460 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
11461 as the canonical version. */
11462 if (result == T(V4T_PLUS_V6_M))
11464 result = T(V4T);
11465 *secondary_compat_out = T(V6_M);
11467 else
11468 *secondary_compat_out = -1;
11470 if (result == -1)
11472 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
11473 ibfd, oldtag, newtag);
11474 return -1;
11477 return result;
11478 #undef T
11481 /* Query attributes object to see if integer divide instructions may be
11482 present in an object. */
11483 static bfd_boolean
11484 elf32_arm_attributes_accept_div (const obj_attribute *attr)
11486 int arch = attr[Tag_CPU_arch].i;
11487 int profile = attr[Tag_CPU_arch_profile].i;
11489 switch (attr[Tag_DIV_use].i)
11491 case 0:
11492 /* Integer divide allowed if instruction contained in archetecture. */
11493 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
11494 return TRUE;
11495 else if (arch >= TAG_CPU_ARCH_V7E_M)
11496 return TRUE;
11497 else
11498 return FALSE;
11500 case 1:
11501 /* Integer divide explicitly prohibited. */
11502 return FALSE;
11504 default:
11505 /* Unrecognised case - treat as allowing divide everywhere. */
11506 case 2:
11507 /* Integer divide allowed in ARM state. */
11508 return TRUE;
11512 /* Query attributes object to see if integer divide instructions are
11513 forbidden to be in the object. This is not the inverse of
11514 elf32_arm_attributes_accept_div. */
11515 static bfd_boolean
11516 elf32_arm_attributes_forbid_div (const obj_attribute *attr)
11518 return attr[Tag_DIV_use].i == 1;
11521 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
11522 are conflicting attributes. */
11524 static bfd_boolean
11525 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
11527 obj_attribute *in_attr;
11528 obj_attribute *out_attr;
11529 /* Some tags have 0 = don't care, 1 = strong requirement,
11530 2 = weak requirement. */
11531 static const int order_021[3] = {0, 2, 1};
11532 int i;
11533 bfd_boolean result = TRUE;
11535 /* Skip the linker stubs file. This preserves previous behavior
11536 of accepting unknown attributes in the first input file - but
11537 is that a bug? */
11538 if (ibfd->flags & BFD_LINKER_CREATED)
11539 return TRUE;
11541 if (!elf_known_obj_attributes_proc (obfd)[0].i)
11543 /* This is the first object. Copy the attributes. */
11544 _bfd_elf_copy_obj_attributes (ibfd, obfd);
11546 out_attr = elf_known_obj_attributes_proc (obfd);
11548 /* Use the Tag_null value to indicate the attributes have been
11549 initialized. */
11550 out_attr[0].i = 1;
11552 /* We do not output objects with Tag_MPextension_use_legacy - we move
11553 the attribute's value to Tag_MPextension_use. */
11554 if (out_attr[Tag_MPextension_use_legacy].i != 0)
11556 if (out_attr[Tag_MPextension_use].i != 0
11557 && out_attr[Tag_MPextension_use_legacy].i
11558 != out_attr[Tag_MPextension_use].i)
11560 _bfd_error_handler
11561 (_("Error: %B has both the current and legacy "
11562 "Tag_MPextension_use attributes"), ibfd);
11563 result = FALSE;
11566 out_attr[Tag_MPextension_use] =
11567 out_attr[Tag_MPextension_use_legacy];
11568 out_attr[Tag_MPextension_use_legacy].type = 0;
11569 out_attr[Tag_MPextension_use_legacy].i = 0;
11572 return result;
11575 in_attr = elf_known_obj_attributes_proc (ibfd);
11576 out_attr = elf_known_obj_attributes_proc (obfd);
11577 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
11578 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
11580 /* Ignore mismatches if the object doesn't use floating point. */
11581 if (out_attr[Tag_ABI_FP_number_model].i == 0)
11582 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
11583 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
11585 _bfd_error_handler
11586 (_("error: %B uses VFP register arguments, %B does not"),
11587 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
11588 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
11589 result = FALSE;
11593 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
11595 /* Merge this attribute with existing attributes. */
11596 switch (i)
11598 case Tag_CPU_raw_name:
11599 case Tag_CPU_name:
11600 /* These are merged after Tag_CPU_arch. */
11601 break;
11603 case Tag_ABI_optimization_goals:
11604 case Tag_ABI_FP_optimization_goals:
11605 /* Use the first value seen. */
11606 break;
11608 case Tag_CPU_arch:
11610 int secondary_compat = -1, secondary_compat_out = -1;
11611 unsigned int saved_out_attr = out_attr[i].i;
11612 static const char *name_table[] = {
11613 /* These aren't real CPU names, but we can't guess
11614 that from the architecture version alone. */
11615 "Pre v4",
11616 "ARM v4",
11617 "ARM v4T",
11618 "ARM v5T",
11619 "ARM v5TE",
11620 "ARM v5TEJ",
11621 "ARM v6",
11622 "ARM v6KZ",
11623 "ARM v6T2",
11624 "ARM v6K",
11625 "ARM v7",
11626 "ARM v6-M",
11627 "ARM v6S-M",
11628 "ARM v8"
11631 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
11632 secondary_compat = get_secondary_compatible_arch (ibfd);
11633 secondary_compat_out = get_secondary_compatible_arch (obfd);
11634 out_attr[i].i = tag_cpu_arch_combine (ibfd, out_attr[i].i,
11635 &secondary_compat_out,
11636 in_attr[i].i,
11637 secondary_compat);
11638 set_secondary_compatible_arch (obfd, secondary_compat_out);
11640 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
11641 if (out_attr[i].i == saved_out_attr)
11642 ; /* Leave the names alone. */
11643 else if (out_attr[i].i == in_attr[i].i)
11645 /* The output architecture has been changed to match the
11646 input architecture. Use the input names. */
11647 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
11648 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
11649 : NULL;
11650 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
11651 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
11652 : NULL;
11654 else
11656 out_attr[Tag_CPU_name].s = NULL;
11657 out_attr[Tag_CPU_raw_name].s = NULL;
11660 /* If we still don't have a value for Tag_CPU_name,
11661 make one up now. Tag_CPU_raw_name remains blank. */
11662 if (out_attr[Tag_CPU_name].s == NULL
11663 && out_attr[i].i < ARRAY_SIZE (name_table))
11664 out_attr[Tag_CPU_name].s =
11665 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
11667 break;
11669 case Tag_ARM_ISA_use:
11670 case Tag_THUMB_ISA_use:
11671 case Tag_WMMX_arch:
11672 case Tag_Advanced_SIMD_arch:
11673 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
11674 case Tag_ABI_FP_rounding:
11675 case Tag_ABI_FP_exceptions:
11676 case Tag_ABI_FP_user_exceptions:
11677 case Tag_ABI_FP_number_model:
11678 case Tag_FP_HP_extension:
11679 case Tag_CPU_unaligned_access:
11680 case Tag_T2EE_use:
11681 case Tag_MPextension_use:
11682 /* Use the largest value specified. */
11683 if (in_attr[i].i > out_attr[i].i)
11684 out_attr[i].i = in_attr[i].i;
11685 break;
11687 case Tag_ABI_align_preserved:
11688 case Tag_ABI_PCS_RO_data:
11689 /* Use the smallest value specified. */
11690 if (in_attr[i].i < out_attr[i].i)
11691 out_attr[i].i = in_attr[i].i;
11692 break;
11694 case Tag_ABI_align_needed:
11695 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
11696 && (in_attr[Tag_ABI_align_preserved].i == 0
11697 || out_attr[Tag_ABI_align_preserved].i == 0))
11699 /* This error message should be enabled once all non-conformant
11700 binaries in the toolchain have had the attributes set
11701 properly.
11702 _bfd_error_handler
11703 (_("error: %B: 8-byte data alignment conflicts with %B"),
11704 obfd, ibfd);
11705 result = FALSE; */
11707 /* Fall through. */
11708 case Tag_ABI_FP_denormal:
11709 case Tag_ABI_PCS_GOT_use:
11710 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
11711 value if greater than 2 (for future-proofing). */
11712 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
11713 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
11714 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
11715 out_attr[i].i = in_attr[i].i;
11716 break;
11718 case Tag_Virtualization_use:
11719 /* The virtualization tag effectively stores two bits of
11720 information: the intended use of TrustZone (in bit 0), and the
11721 intended use of Virtualization (in bit 1). */
11722 if (out_attr[i].i == 0)
11723 out_attr[i].i = in_attr[i].i;
11724 else if (in_attr[i].i != 0
11725 && in_attr[i].i != out_attr[i].i)
11727 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
11728 out_attr[i].i = 3;
11729 else
11731 _bfd_error_handler
11732 (_("error: %B: unable to merge virtualization attributes "
11733 "with %B"),
11734 obfd, ibfd);
11735 result = FALSE;
11738 break;
11740 case Tag_CPU_arch_profile:
11741 if (out_attr[i].i != in_attr[i].i)
11743 /* 0 will merge with anything.
11744 'A' and 'S' merge to 'A'.
11745 'R' and 'S' merge to 'R'.
11746 'M' and 'A|R|S' is an error. */
11747 if (out_attr[i].i == 0
11748 || (out_attr[i].i == 'S'
11749 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
11750 out_attr[i].i = in_attr[i].i;
11751 else if (in_attr[i].i == 0
11752 || (in_attr[i].i == 'S'
11753 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
11754 ; /* Do nothing. */
11755 else
11757 _bfd_error_handler
11758 (_("error: %B: Conflicting architecture profiles %c/%c"),
11759 ibfd,
11760 in_attr[i].i ? in_attr[i].i : '0',
11761 out_attr[i].i ? out_attr[i].i : '0');
11762 result = FALSE;
11765 break;
11766 case Tag_FP_arch:
11768 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
11769 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
11770 when it's 0. It might mean absence of FP hardware if
11771 Tag_FP_arch is zero, otherwise it is effectively SP + DP. */
11773 #define VFP_VERSION_COUNT 8
11774 static const struct
11776 int ver;
11777 int regs;
11778 } vfp_versions[VFP_VERSION_COUNT] =
11780 {0, 0},
11781 {1, 16},
11782 {2, 16},
11783 {3, 32},
11784 {3, 16},
11785 {4, 32},
11786 {4, 16},
11787 {8, 32}
11789 int ver;
11790 int regs;
11791 int newval;
11793 /* If the output has no requirement about FP hardware,
11794 follow the requirement of the input. */
11795 if (out_attr[i].i == 0)
11797 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
11798 out_attr[i].i = in_attr[i].i;
11799 out_attr[Tag_ABI_HardFP_use].i
11800 = in_attr[Tag_ABI_HardFP_use].i;
11801 break;
11803 /* If the input has no requirement about FP hardware, do
11804 nothing. */
11805 else if (in_attr[i].i == 0)
11807 BFD_ASSERT (in_attr[Tag_ABI_HardFP_use].i == 0);
11808 break;
11811 /* Both the input and the output have nonzero Tag_FP_arch.
11812 So Tag_ABI_HardFP_use is (SP & DP) when it's zero. */
11814 /* If both the input and the output have zero Tag_ABI_HardFP_use,
11815 do nothing. */
11816 if (in_attr[Tag_ABI_HardFP_use].i == 0
11817 && out_attr[Tag_ABI_HardFP_use].i == 0)
11819 /* If the input and the output have different Tag_ABI_HardFP_use,
11820 the combination of them is 3 (SP & DP). */
11821 else if (in_attr[Tag_ABI_HardFP_use].i
11822 != out_attr[Tag_ABI_HardFP_use].i)
11823 out_attr[Tag_ABI_HardFP_use].i = 3;
11825 /* Now we can handle Tag_FP_arch. */
11827 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
11828 pick the biggest. */
11829 if (in_attr[i].i >= VFP_VERSION_COUNT
11830 && in_attr[i].i > out_attr[i].i)
11832 out_attr[i] = in_attr[i];
11833 break;
11835 /* The output uses the superset of input features
11836 (ISA version) and registers. */
11837 ver = vfp_versions[in_attr[i].i].ver;
11838 if (ver < vfp_versions[out_attr[i].i].ver)
11839 ver = vfp_versions[out_attr[i].i].ver;
11840 regs = vfp_versions[in_attr[i].i].regs;
11841 if (regs < vfp_versions[out_attr[i].i].regs)
11842 regs = vfp_versions[out_attr[i].i].regs;
11843 /* This assumes all possible supersets are also a valid
11844 options. */
11845 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--)
11847 if (regs == vfp_versions[newval].regs
11848 && ver == vfp_versions[newval].ver)
11849 break;
11851 out_attr[i].i = newval;
11853 break;
11854 case Tag_PCS_config:
11855 if (out_attr[i].i == 0)
11856 out_attr[i].i = in_attr[i].i;
11857 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
11859 /* It's sometimes ok to mix different configs, so this is only
11860 a warning. */
11861 _bfd_error_handler
11862 (_("Warning: %B: Conflicting platform configuration"), ibfd);
11864 break;
11865 case Tag_ABI_PCS_R9_use:
11866 if (in_attr[i].i != out_attr[i].i
11867 && out_attr[i].i != AEABI_R9_unused
11868 && in_attr[i].i != AEABI_R9_unused)
11870 _bfd_error_handler
11871 (_("error: %B: Conflicting use of R9"), ibfd);
11872 result = FALSE;
11874 if (out_attr[i].i == AEABI_R9_unused)
11875 out_attr[i].i = in_attr[i].i;
11876 break;
11877 case Tag_ABI_PCS_RW_data:
11878 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
11879 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
11880 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
11882 _bfd_error_handler
11883 (_("error: %B: SB relative addressing conflicts with use of R9"),
11884 ibfd);
11885 result = FALSE;
11887 /* Use the smallest value specified. */
11888 if (in_attr[i].i < out_attr[i].i)
11889 out_attr[i].i = in_attr[i].i;
11890 break;
11891 case Tag_ABI_PCS_wchar_t:
11892 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
11893 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
11895 _bfd_error_handler
11896 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
11897 ibfd, in_attr[i].i, out_attr[i].i);
11899 else if (in_attr[i].i && !out_attr[i].i)
11900 out_attr[i].i = in_attr[i].i;
11901 break;
11902 case Tag_ABI_enum_size:
11903 if (in_attr[i].i != AEABI_enum_unused)
11905 if (out_attr[i].i == AEABI_enum_unused
11906 || out_attr[i].i == AEABI_enum_forced_wide)
11908 /* The existing object is compatible with anything.
11909 Use whatever requirements the new object has. */
11910 out_attr[i].i = in_attr[i].i;
11912 else if (in_attr[i].i != AEABI_enum_forced_wide
11913 && out_attr[i].i != in_attr[i].i
11914 && !elf_arm_tdata (obfd)->no_enum_size_warning)
11916 static const char *aeabi_enum_names[] =
11917 { "", "variable-size", "32-bit", "" };
11918 const char *in_name =
11919 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
11920 ? aeabi_enum_names[in_attr[i].i]
11921 : "<unknown>";
11922 const char *out_name =
11923 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
11924 ? aeabi_enum_names[out_attr[i].i]
11925 : "<unknown>";
11926 _bfd_error_handler
11927 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
11928 ibfd, in_name, out_name);
11931 break;
11932 case Tag_ABI_VFP_args:
11933 /* Aready done. */
11934 break;
11935 case Tag_ABI_WMMX_args:
11936 if (in_attr[i].i != out_attr[i].i)
11938 _bfd_error_handler
11939 (_("error: %B uses iWMMXt register arguments, %B does not"),
11940 ibfd, obfd);
11941 result = FALSE;
11943 break;
11944 case Tag_compatibility:
11945 /* Merged in target-independent code. */
11946 break;
11947 case Tag_ABI_HardFP_use:
11948 /* This is handled along with Tag_FP_arch. */
11949 break;
11950 case Tag_ABI_FP_16bit_format:
11951 if (in_attr[i].i != 0 && out_attr[i].i != 0)
11953 if (in_attr[i].i != out_attr[i].i)
11955 _bfd_error_handler
11956 (_("error: fp16 format mismatch between %B and %B"),
11957 ibfd, obfd);
11958 result = FALSE;
11961 if (in_attr[i].i != 0)
11962 out_attr[i].i = in_attr[i].i;
11963 break;
11965 case Tag_DIV_use:
11966 /* A value of zero on input means that the divide instruction may
11967 be used if available in the base architecture as specified via
11968 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
11969 the user did not want divide instructions. A value of 2
11970 explicitly means that divide instructions were allowed in ARM
11971 and Thumb state. */
11972 if (in_attr[i].i == out_attr[i].i)
11973 /* Do nothing. */ ;
11974 else if (elf32_arm_attributes_forbid_div (in_attr)
11975 && !elf32_arm_attributes_accept_div (out_attr))
11976 out_attr[i].i = 1;
11977 else if (elf32_arm_attributes_forbid_div (out_attr)
11978 && elf32_arm_attributes_accept_div (in_attr))
11979 out_attr[i].i = in_attr[i].i;
11980 else if (in_attr[i].i == 2)
11981 out_attr[i].i = in_attr[i].i;
11982 break;
11984 case Tag_MPextension_use_legacy:
11985 /* We don't output objects with Tag_MPextension_use_legacy - we
11986 move the value to Tag_MPextension_use. */
11987 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
11989 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
11991 _bfd_error_handler
11992 (_("%B has has both the current and legacy "
11993 "Tag_MPextension_use attributes"),
11994 ibfd);
11995 result = FALSE;
11999 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
12000 out_attr[Tag_MPextension_use] = in_attr[i];
12002 break;
12004 case Tag_nodefaults:
12005 /* This tag is set if it exists, but the value is unused (and is
12006 typically zero). We don't actually need to do anything here -
12007 the merge happens automatically when the type flags are merged
12008 below. */
12009 break;
12010 case Tag_also_compatible_with:
12011 /* Already done in Tag_CPU_arch. */
12012 break;
12013 case Tag_conformance:
12014 /* Keep the attribute if it matches. Throw it away otherwise.
12015 No attribute means no claim to conform. */
12016 if (!in_attr[i].s || !out_attr[i].s
12017 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
12018 out_attr[i].s = NULL;
12019 break;
12021 default:
12022 result
12023 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
12026 /* If out_attr was copied from in_attr then it won't have a type yet. */
12027 if (in_attr[i].type && !out_attr[i].type)
12028 out_attr[i].type = in_attr[i].type;
12031 /* Merge Tag_compatibility attributes and any common GNU ones. */
12032 if (!_bfd_elf_merge_object_attributes (ibfd, obfd))
12033 return FALSE;
12035 /* Check for any attributes not known on ARM. */
12036 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
12038 return result;
12042 /* Return TRUE if the two EABI versions are incompatible. */
12044 static bfd_boolean
12045 elf32_arm_versions_compatible (unsigned iver, unsigned over)
12047 /* v4 and v5 are the same spec before and after it was released,
12048 so allow mixing them. */
12049 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
12050 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
12051 return TRUE;
12053 return (iver == over);
12056 /* Merge backend specific data from an object file to the output
12057 object file when linking. */
12059 static bfd_boolean
12060 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd);
12062 /* Display the flags field. */
12064 static bfd_boolean
12065 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
12067 FILE * file = (FILE *) ptr;
12068 unsigned long flags;
12070 BFD_ASSERT (abfd != NULL && ptr != NULL);
12072 /* Print normal ELF private data. */
12073 _bfd_elf_print_private_bfd_data (abfd, ptr);
12075 flags = elf_elfheader (abfd)->e_flags;
12076 /* Ignore init flag - it may not be set, despite the flags field
12077 containing valid data. */
12079 /* xgettext:c-format */
12080 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
12082 switch (EF_ARM_EABI_VERSION (flags))
12084 case EF_ARM_EABI_UNKNOWN:
12085 /* The following flag bits are GNU extensions and not part of the
12086 official ARM ELF extended ABI. Hence they are only decoded if
12087 the EABI version is not set. */
12088 if (flags & EF_ARM_INTERWORK)
12089 fprintf (file, _(" [interworking enabled]"));
12091 if (flags & EF_ARM_APCS_26)
12092 fprintf (file, " [APCS-26]");
12093 else
12094 fprintf (file, " [APCS-32]");
12096 if (flags & EF_ARM_VFP_FLOAT)
12097 fprintf (file, _(" [VFP float format]"));
12098 else if (flags & EF_ARM_MAVERICK_FLOAT)
12099 fprintf (file, _(" [Maverick float format]"));
12100 else
12101 fprintf (file, _(" [FPA float format]"));
12103 if (flags & EF_ARM_APCS_FLOAT)
12104 fprintf (file, _(" [floats passed in float registers]"));
12106 if (flags & EF_ARM_PIC)
12107 fprintf (file, _(" [position independent]"));
12109 if (flags & EF_ARM_NEW_ABI)
12110 fprintf (file, _(" [new ABI]"));
12112 if (flags & EF_ARM_OLD_ABI)
12113 fprintf (file, _(" [old ABI]"));
12115 if (flags & EF_ARM_SOFT_FLOAT)
12116 fprintf (file, _(" [software FP]"));
12118 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
12119 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
12120 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
12121 | EF_ARM_MAVERICK_FLOAT);
12122 break;
12124 case EF_ARM_EABI_VER1:
12125 fprintf (file, _(" [Version1 EABI]"));
12127 if (flags & EF_ARM_SYMSARESORTED)
12128 fprintf (file, _(" [sorted symbol table]"));
12129 else
12130 fprintf (file, _(" [unsorted symbol table]"));
12132 flags &= ~ EF_ARM_SYMSARESORTED;
12133 break;
12135 case EF_ARM_EABI_VER2:
12136 fprintf (file, _(" [Version2 EABI]"));
12138 if (flags & EF_ARM_SYMSARESORTED)
12139 fprintf (file, _(" [sorted symbol table]"));
12140 else
12141 fprintf (file, _(" [unsorted symbol table]"));
12143 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
12144 fprintf (file, _(" [dynamic symbols use segment index]"));
12146 if (flags & EF_ARM_MAPSYMSFIRST)
12147 fprintf (file, _(" [mapping symbols precede others]"));
12149 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
12150 | EF_ARM_MAPSYMSFIRST);
12151 break;
12153 case EF_ARM_EABI_VER3:
12154 fprintf (file, _(" [Version3 EABI]"));
12155 break;
12157 case EF_ARM_EABI_VER4:
12158 fprintf (file, _(" [Version4 EABI]"));
12159 goto eabi;
12161 case EF_ARM_EABI_VER5:
12162 fprintf (file, _(" [Version5 EABI]"));
12164 if (flags & EF_ARM_ABI_FLOAT_SOFT)
12165 fprintf (file, _(" [soft-float ABI]"));
12167 if (flags & EF_ARM_ABI_FLOAT_HARD)
12168 fprintf (file, _(" [hard-float ABI]"));
12170 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD);
12172 eabi:
12173 if (flags & EF_ARM_BE8)
12174 fprintf (file, _(" [BE8]"));
12176 if (flags & EF_ARM_LE8)
12177 fprintf (file, _(" [LE8]"));
12179 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
12180 break;
12182 default:
12183 fprintf (file, _(" <EABI version unrecognised>"));
12184 break;
12187 flags &= ~ EF_ARM_EABIMASK;
12189 if (flags & EF_ARM_RELEXEC)
12190 fprintf (file, _(" [relocatable executable]"));
12192 if (flags & EF_ARM_HASENTRY)
12193 fprintf (file, _(" [has entry point]"));
12195 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
12197 if (flags)
12198 fprintf (file, _("<Unrecognised flag bits set>"));
12200 fputc ('\n', file);
12202 return TRUE;
12205 static int
12206 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
12208 switch (ELF_ST_TYPE (elf_sym->st_info))
12210 case STT_ARM_TFUNC:
12211 return ELF_ST_TYPE (elf_sym->st_info);
12213 case STT_ARM_16BIT:
12214 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
12215 This allows us to distinguish between data used by Thumb instructions
12216 and non-data (which is probably code) inside Thumb regions of an
12217 executable. */
12218 if (type != STT_OBJECT && type != STT_TLS)
12219 return ELF_ST_TYPE (elf_sym->st_info);
12220 break;
12222 default:
12223 break;
12226 return type;
12229 static asection *
12230 elf32_arm_gc_mark_hook (asection *sec,
12231 struct bfd_link_info *info,
12232 Elf_Internal_Rela *rel,
12233 struct elf_link_hash_entry *h,
12234 Elf_Internal_Sym *sym)
12236 if (h != NULL)
12237 switch (ELF32_R_TYPE (rel->r_info))
12239 case R_ARM_GNU_VTINHERIT:
12240 case R_ARM_GNU_VTENTRY:
12241 return NULL;
12244 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12247 /* Update the got entry reference counts for the section being removed. */
12249 static bfd_boolean
12250 elf32_arm_gc_sweep_hook (bfd * abfd,
12251 struct bfd_link_info * info,
12252 asection * sec,
12253 const Elf_Internal_Rela * relocs)
12255 Elf_Internal_Shdr *symtab_hdr;
12256 struct elf_link_hash_entry **sym_hashes;
12257 bfd_signed_vma *local_got_refcounts;
12258 const Elf_Internal_Rela *rel, *relend;
12259 struct elf32_arm_link_hash_table * globals;
12261 if (info->relocatable)
12262 return TRUE;
12264 globals = elf32_arm_hash_table (info);
12265 if (globals == NULL)
12266 return FALSE;
12268 elf_section_data (sec)->local_dynrel = NULL;
12270 symtab_hdr = & elf_symtab_hdr (abfd);
12271 sym_hashes = elf_sym_hashes (abfd);
12272 local_got_refcounts = elf_local_got_refcounts (abfd);
12274 check_use_blx (globals);
12276 relend = relocs + sec->reloc_count;
12277 for (rel = relocs; rel < relend; rel++)
12279 unsigned long r_symndx;
12280 struct elf_link_hash_entry *h = NULL;
12281 struct elf32_arm_link_hash_entry *eh;
12282 int r_type;
12283 bfd_boolean call_reloc_p;
12284 bfd_boolean may_become_dynamic_p;
12285 bfd_boolean may_need_local_target_p;
12286 union gotplt_union *root_plt;
12287 struct arm_plt_info *arm_plt;
12289 r_symndx = ELF32_R_SYM (rel->r_info);
12290 if (r_symndx >= symtab_hdr->sh_info)
12292 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
12293 while (h->root.type == bfd_link_hash_indirect
12294 || h->root.type == bfd_link_hash_warning)
12295 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12297 eh = (struct elf32_arm_link_hash_entry *) h;
12299 call_reloc_p = FALSE;
12300 may_become_dynamic_p = FALSE;
12301 may_need_local_target_p = FALSE;
12303 r_type = ELF32_R_TYPE (rel->r_info);
12304 r_type = arm_real_reloc_type (globals, r_type);
12305 switch (r_type)
12307 case R_ARM_GOT32:
12308 case R_ARM_GOT_PREL:
12309 case R_ARM_TLS_GD32:
12310 case R_ARM_TLS_IE32:
12311 if (h != NULL)
12313 if (h->got.refcount > 0)
12314 h->got.refcount -= 1;
12316 else if (local_got_refcounts != NULL)
12318 if (local_got_refcounts[r_symndx] > 0)
12319 local_got_refcounts[r_symndx] -= 1;
12321 break;
12323 case R_ARM_TLS_LDM32:
12324 globals->tls_ldm_got.refcount -= 1;
12325 break;
12327 case R_ARM_PC24:
12328 case R_ARM_PLT32:
12329 case R_ARM_CALL:
12330 case R_ARM_JUMP24:
12331 case R_ARM_PREL31:
12332 case R_ARM_THM_CALL:
12333 case R_ARM_THM_JUMP24:
12334 case R_ARM_THM_JUMP19:
12335 call_reloc_p = TRUE;
12336 may_need_local_target_p = TRUE;
12337 break;
12339 case R_ARM_ABS12:
12340 if (!globals->vxworks_p)
12342 may_need_local_target_p = TRUE;
12343 break;
12345 /* Fall through. */
12346 case R_ARM_ABS32:
12347 case R_ARM_ABS32_NOI:
12348 case R_ARM_REL32:
12349 case R_ARM_REL32_NOI:
12350 case R_ARM_MOVW_ABS_NC:
12351 case R_ARM_MOVT_ABS:
12352 case R_ARM_MOVW_PREL_NC:
12353 case R_ARM_MOVT_PREL:
12354 case R_ARM_THM_MOVW_ABS_NC:
12355 case R_ARM_THM_MOVT_ABS:
12356 case R_ARM_THM_MOVW_PREL_NC:
12357 case R_ARM_THM_MOVT_PREL:
12358 /* Should the interworking branches be here also? */
12359 if ((info->shared || globals->root.is_relocatable_executable)
12360 && (sec->flags & SEC_ALLOC) != 0)
12362 if (h == NULL
12363 && (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI))
12365 call_reloc_p = TRUE;
12366 may_need_local_target_p = TRUE;
12368 else
12369 may_become_dynamic_p = TRUE;
12371 else
12372 may_need_local_target_p = TRUE;
12373 break;
12375 default:
12376 break;
12379 if (may_need_local_target_p
12380 && elf32_arm_get_plt_info (abfd, eh, r_symndx, &root_plt, &arm_plt))
12382 /* If PLT refcount book-keeping is wrong and too low, we'll
12383 see a zero value (going to -1) for the root PLT reference
12384 count. */
12385 if (root_plt->refcount >= 0)
12387 BFD_ASSERT (root_plt->refcount != 0);
12388 root_plt->refcount -= 1;
12390 else
12391 /* A value of -1 means the symbol has become local, forced
12392 or seeing a hidden definition. Any other negative value
12393 is an error. */
12394 BFD_ASSERT (root_plt->refcount == -1);
12396 if (!call_reloc_p)
12397 arm_plt->noncall_refcount--;
12399 if (r_type == R_ARM_THM_CALL)
12400 arm_plt->maybe_thumb_refcount--;
12402 if (r_type == R_ARM_THM_JUMP24
12403 || r_type == R_ARM_THM_JUMP19)
12404 arm_plt->thumb_refcount--;
12407 if (may_become_dynamic_p)
12409 struct elf_dyn_relocs **pp;
12410 struct elf_dyn_relocs *p;
12412 if (h != NULL)
12413 pp = &(eh->dyn_relocs);
12414 else
12416 Elf_Internal_Sym *isym;
12418 isym = bfd_sym_from_r_symndx (&globals->sym_cache,
12419 abfd, r_symndx);
12420 if (isym == NULL)
12421 return FALSE;
12422 pp = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
12423 if (pp == NULL)
12424 return FALSE;
12426 for (; (p = *pp) != NULL; pp = &p->next)
12427 if (p->sec == sec)
12429 /* Everything must go for SEC. */
12430 *pp = p->next;
12431 break;
12436 return TRUE;
12439 /* Look through the relocs for a section during the first phase. */
12441 static bfd_boolean
12442 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
12443 asection *sec, const Elf_Internal_Rela *relocs)
12445 Elf_Internal_Shdr *symtab_hdr;
12446 struct elf_link_hash_entry **sym_hashes;
12447 const Elf_Internal_Rela *rel;
12448 const Elf_Internal_Rela *rel_end;
12449 bfd *dynobj;
12450 asection *sreloc;
12451 struct elf32_arm_link_hash_table *htab;
12452 bfd_boolean call_reloc_p;
12453 bfd_boolean may_become_dynamic_p;
12454 bfd_boolean may_need_local_target_p;
12455 unsigned long nsyms;
12457 if (info->relocatable)
12458 return TRUE;
12460 BFD_ASSERT (is_arm_elf (abfd));
12462 htab = elf32_arm_hash_table (info);
12463 if (htab == NULL)
12464 return FALSE;
12466 sreloc = NULL;
12468 /* Create dynamic sections for relocatable executables so that we can
12469 copy relocations. */
12470 if (htab->root.is_relocatable_executable
12471 && ! htab->root.dynamic_sections_created)
12473 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
12474 return FALSE;
12477 if (htab->root.dynobj == NULL)
12478 htab->root.dynobj = abfd;
12479 if (!create_ifunc_sections (info))
12480 return FALSE;
12482 dynobj = htab->root.dynobj;
12484 symtab_hdr = & elf_symtab_hdr (abfd);
12485 sym_hashes = elf_sym_hashes (abfd);
12486 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
12488 rel_end = relocs + sec->reloc_count;
12489 for (rel = relocs; rel < rel_end; rel++)
12491 Elf_Internal_Sym *isym;
12492 struct elf_link_hash_entry *h;
12493 struct elf32_arm_link_hash_entry *eh;
12494 unsigned long r_symndx;
12495 int r_type;
12497 r_symndx = ELF32_R_SYM (rel->r_info);
12498 r_type = ELF32_R_TYPE (rel->r_info);
12499 r_type = arm_real_reloc_type (htab, r_type);
12501 if (r_symndx >= nsyms
12502 /* PR 9934: It is possible to have relocations that do not
12503 refer to symbols, thus it is also possible to have an
12504 object file containing relocations but no symbol table. */
12505 && (r_symndx > STN_UNDEF || nsyms > 0))
12507 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
12508 r_symndx);
12509 return FALSE;
12512 h = NULL;
12513 isym = NULL;
12514 if (nsyms > 0)
12516 if (r_symndx < symtab_hdr->sh_info)
12518 /* A local symbol. */
12519 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
12520 abfd, r_symndx);
12521 if (isym == NULL)
12522 return FALSE;
12524 else
12526 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
12527 while (h->root.type == bfd_link_hash_indirect
12528 || h->root.type == bfd_link_hash_warning)
12529 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12531 /* PR15323, ref flags aren't set for references in the
12532 same object. */
12533 h->root.non_ir_ref = 1;
12537 eh = (struct elf32_arm_link_hash_entry *) h;
12539 call_reloc_p = FALSE;
12540 may_become_dynamic_p = FALSE;
12541 may_need_local_target_p = FALSE;
12543 /* Could be done earlier, if h were already available. */
12544 r_type = elf32_arm_tls_transition (info, r_type, h);
12545 switch (r_type)
12547 case R_ARM_GOT32:
12548 case R_ARM_GOT_PREL:
12549 case R_ARM_TLS_GD32:
12550 case R_ARM_TLS_IE32:
12551 case R_ARM_TLS_GOTDESC:
12552 case R_ARM_TLS_DESCSEQ:
12553 case R_ARM_THM_TLS_DESCSEQ:
12554 case R_ARM_TLS_CALL:
12555 case R_ARM_THM_TLS_CALL:
12556 /* This symbol requires a global offset table entry. */
12558 int tls_type, old_tls_type;
12560 switch (r_type)
12562 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
12564 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
12566 case R_ARM_TLS_GOTDESC:
12567 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
12568 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
12569 tls_type = GOT_TLS_GDESC; break;
12571 default: tls_type = GOT_NORMAL; break;
12574 if (h != NULL)
12576 h->got.refcount++;
12577 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
12579 else
12581 /* This is a global offset table entry for a local symbol. */
12582 if (!elf32_arm_allocate_local_sym_info (abfd))
12583 return FALSE;
12584 elf_local_got_refcounts (abfd)[r_symndx] += 1;
12585 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
12588 /* If a variable is accessed with both tls methods, two
12589 slots may be created. */
12590 if (GOT_TLS_GD_ANY_P (old_tls_type)
12591 && GOT_TLS_GD_ANY_P (tls_type))
12592 tls_type |= old_tls_type;
12594 /* We will already have issued an error message if there
12595 is a TLS/non-TLS mismatch, based on the symbol
12596 type. So just combine any TLS types needed. */
12597 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
12598 && tls_type != GOT_NORMAL)
12599 tls_type |= old_tls_type;
12601 /* If the symbol is accessed in both IE and GDESC
12602 method, we're able to relax. Turn off the GDESC flag,
12603 without messing up with any other kind of tls types
12604 that may be involved */
12605 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
12606 tls_type &= ~GOT_TLS_GDESC;
12608 if (old_tls_type != tls_type)
12610 if (h != NULL)
12611 elf32_arm_hash_entry (h)->tls_type = tls_type;
12612 else
12613 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
12616 /* Fall through. */
12618 case R_ARM_TLS_LDM32:
12619 if (r_type == R_ARM_TLS_LDM32)
12620 htab->tls_ldm_got.refcount++;
12621 /* Fall through. */
12623 case R_ARM_GOTOFF32:
12624 case R_ARM_GOTPC:
12625 if (htab->root.sgot == NULL
12626 && !create_got_section (htab->root.dynobj, info))
12627 return FALSE;
12628 break;
12630 case R_ARM_PC24:
12631 case R_ARM_PLT32:
12632 case R_ARM_CALL:
12633 case R_ARM_JUMP24:
12634 case R_ARM_PREL31:
12635 case R_ARM_THM_CALL:
12636 case R_ARM_THM_JUMP24:
12637 case R_ARM_THM_JUMP19:
12638 call_reloc_p = TRUE;
12639 may_need_local_target_p = TRUE;
12640 break;
12642 case R_ARM_ABS12:
12643 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
12644 ldr __GOTT_INDEX__ offsets. */
12645 if (!htab->vxworks_p)
12647 may_need_local_target_p = TRUE;
12648 break;
12650 /* Fall through. */
12652 case R_ARM_MOVW_ABS_NC:
12653 case R_ARM_MOVT_ABS:
12654 case R_ARM_THM_MOVW_ABS_NC:
12655 case R_ARM_THM_MOVT_ABS:
12656 if (info->shared)
12658 (*_bfd_error_handler)
12659 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
12660 abfd, elf32_arm_howto_table_1[r_type].name,
12661 (h) ? h->root.root.string : "a local symbol");
12662 bfd_set_error (bfd_error_bad_value);
12663 return FALSE;
12666 /* Fall through. */
12667 case R_ARM_ABS32:
12668 case R_ARM_ABS32_NOI:
12669 case R_ARM_REL32:
12670 case R_ARM_REL32_NOI:
12671 case R_ARM_MOVW_PREL_NC:
12672 case R_ARM_MOVT_PREL:
12673 case R_ARM_THM_MOVW_PREL_NC:
12674 case R_ARM_THM_MOVT_PREL:
12676 /* Should the interworking branches be listed here? */
12677 if ((info->shared || htab->root.is_relocatable_executable)
12678 && (sec->flags & SEC_ALLOC) != 0)
12680 if (h == NULL
12681 && (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI))
12683 /* In shared libraries and relocatable executables,
12684 we treat local relative references as calls;
12685 see the related SYMBOL_CALLS_LOCAL code in
12686 allocate_dynrelocs. */
12687 call_reloc_p = TRUE;
12688 may_need_local_target_p = TRUE;
12690 else
12691 /* We are creating a shared library or relocatable
12692 executable, and this is a reloc against a global symbol,
12693 or a non-PC-relative reloc against a local symbol.
12694 We may need to copy the reloc into the output. */
12695 may_become_dynamic_p = TRUE;
12697 else
12698 may_need_local_target_p = TRUE;
12699 break;
12701 /* This relocation describes the C++ object vtable hierarchy.
12702 Reconstruct it for later use during GC. */
12703 case R_ARM_GNU_VTINHERIT:
12704 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
12705 return FALSE;
12706 break;
12708 /* This relocation describes which C++ vtable entries are actually
12709 used. Record for later use during GC. */
12710 case R_ARM_GNU_VTENTRY:
12711 BFD_ASSERT (h != NULL);
12712 if (h != NULL
12713 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
12714 return FALSE;
12715 break;
12718 if (h != NULL)
12720 if (call_reloc_p)
12721 /* We may need a .plt entry if the function this reloc
12722 refers to is in a different object, regardless of the
12723 symbol's type. We can't tell for sure yet, because
12724 something later might force the symbol local. */
12725 h->needs_plt = 1;
12726 else if (may_need_local_target_p)
12727 /* If this reloc is in a read-only section, we might
12728 need a copy reloc. We can't check reliably at this
12729 stage whether the section is read-only, as input
12730 sections have not yet been mapped to output sections.
12731 Tentatively set the flag for now, and correct in
12732 adjust_dynamic_symbol. */
12733 h->non_got_ref = 1;
12736 if (may_need_local_target_p
12737 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
12739 union gotplt_union *root_plt;
12740 struct arm_plt_info *arm_plt;
12741 struct arm_local_iplt_info *local_iplt;
12743 if (h != NULL)
12745 root_plt = &h->plt;
12746 arm_plt = &eh->plt;
12748 else
12750 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
12751 if (local_iplt == NULL)
12752 return FALSE;
12753 root_plt = &local_iplt->root;
12754 arm_plt = &local_iplt->arm;
12757 /* If the symbol is a function that doesn't bind locally,
12758 this relocation will need a PLT entry. */
12759 if (root_plt->refcount != -1)
12760 root_plt->refcount += 1;
12762 if (!call_reloc_p)
12763 arm_plt->noncall_refcount++;
12765 /* It's too early to use htab->use_blx here, so we have to
12766 record possible blx references separately from
12767 relocs that definitely need a thumb stub. */
12769 if (r_type == R_ARM_THM_CALL)
12770 arm_plt->maybe_thumb_refcount += 1;
12772 if (r_type == R_ARM_THM_JUMP24
12773 || r_type == R_ARM_THM_JUMP19)
12774 arm_plt->thumb_refcount += 1;
12777 if (may_become_dynamic_p)
12779 struct elf_dyn_relocs *p, **head;
12781 /* Create a reloc section in dynobj. */
12782 if (sreloc == NULL)
12784 sreloc = _bfd_elf_make_dynamic_reloc_section
12785 (sec, dynobj, 2, abfd, ! htab->use_rel);
12787 if (sreloc == NULL)
12788 return FALSE;
12790 /* BPABI objects never have dynamic relocations mapped. */
12791 if (htab->symbian_p)
12793 flagword flags;
12795 flags = bfd_get_section_flags (dynobj, sreloc);
12796 flags &= ~(SEC_LOAD | SEC_ALLOC);
12797 bfd_set_section_flags (dynobj, sreloc, flags);
12801 /* If this is a global symbol, count the number of
12802 relocations we need for this symbol. */
12803 if (h != NULL)
12804 head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
12805 else
12807 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
12808 if (head == NULL)
12809 return FALSE;
12812 p = *head;
12813 if (p == NULL || p->sec != sec)
12815 bfd_size_type amt = sizeof *p;
12817 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
12818 if (p == NULL)
12819 return FALSE;
12820 p->next = *head;
12821 *head = p;
12822 p->sec = sec;
12823 p->count = 0;
12824 p->pc_count = 0;
12827 if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
12828 p->pc_count += 1;
12829 p->count += 1;
12833 return TRUE;
12836 /* Unwinding tables are not referenced directly. This pass marks them as
12837 required if the corresponding code section is marked. */
12839 static bfd_boolean
12840 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
12841 elf_gc_mark_hook_fn gc_mark_hook)
12843 bfd *sub;
12844 Elf_Internal_Shdr **elf_shdrp;
12845 bfd_boolean again;
12847 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12849 /* Marking EH data may cause additional code sections to be marked,
12850 requiring multiple passes. */
12851 again = TRUE;
12852 while (again)
12854 again = FALSE;
12855 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12857 asection *o;
12859 if (! is_arm_elf (sub))
12860 continue;
12862 elf_shdrp = elf_elfsections (sub);
12863 for (o = sub->sections; o != NULL; o = o->next)
12865 Elf_Internal_Shdr *hdr;
12867 hdr = &elf_section_data (o)->this_hdr;
12868 if (hdr->sh_type == SHT_ARM_EXIDX
12869 && hdr->sh_link
12870 && hdr->sh_link < elf_numsections (sub)
12871 && !o->gc_mark
12872 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
12874 again = TRUE;
12875 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12876 return FALSE;
12882 return TRUE;
12885 /* Treat mapping symbols as special target symbols. */
12887 static bfd_boolean
12888 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
12890 return bfd_is_arm_special_symbol_name (sym->name,
12891 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
12894 /* This is a copy of elf_find_function() from elf.c except that
12895 ARM mapping symbols are ignored when looking for function names
12896 and STT_ARM_TFUNC is considered to a function type. */
12898 static bfd_boolean
12899 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
12900 asection * section,
12901 asymbol ** symbols,
12902 bfd_vma offset,
12903 const char ** filename_ptr,
12904 const char ** functionname_ptr)
12906 const char * filename = NULL;
12907 asymbol * func = NULL;
12908 bfd_vma low_func = 0;
12909 asymbol ** p;
12911 for (p = symbols; *p != NULL; p++)
12913 elf_symbol_type *q;
12915 q = (elf_symbol_type *) *p;
12917 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
12919 default:
12920 break;
12921 case STT_FILE:
12922 filename = bfd_asymbol_name (&q->symbol);
12923 break;
12924 case STT_FUNC:
12925 case STT_ARM_TFUNC:
12926 case STT_NOTYPE:
12927 /* Skip mapping symbols. */
12928 if ((q->symbol.flags & BSF_LOCAL)
12929 && bfd_is_arm_special_symbol_name (q->symbol.name,
12930 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
12931 continue;
12932 /* Fall through. */
12933 if (bfd_get_section (&q->symbol) == section
12934 && q->symbol.value >= low_func
12935 && q->symbol.value <= offset)
12937 func = (asymbol *) q;
12938 low_func = q->symbol.value;
12940 break;
12944 if (func == NULL)
12945 return FALSE;
12947 if (filename_ptr)
12948 *filename_ptr = filename;
12949 if (functionname_ptr)
12950 *functionname_ptr = bfd_asymbol_name (func);
12952 return TRUE;
12956 /* Find the nearest line to a particular section and offset, for error
12957 reporting. This code is a duplicate of the code in elf.c, except
12958 that it uses arm_elf_find_function. */
12960 static bfd_boolean
12961 elf32_arm_find_nearest_line (bfd * abfd,
12962 asection * section,
12963 asymbol ** symbols,
12964 bfd_vma offset,
12965 const char ** filename_ptr,
12966 const char ** functionname_ptr,
12967 unsigned int * line_ptr)
12969 bfd_boolean found = FALSE;
12971 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
12973 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
12974 section, symbols, offset,
12975 filename_ptr, functionname_ptr,
12976 line_ptr, NULL, 0,
12977 & elf_tdata (abfd)->dwarf2_find_line_info))
12979 if (!*functionname_ptr)
12980 arm_elf_find_function (abfd, section, symbols, offset,
12981 *filename_ptr ? NULL : filename_ptr,
12982 functionname_ptr);
12984 return TRUE;
12987 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
12988 & found, filename_ptr,
12989 functionname_ptr, line_ptr,
12990 & elf_tdata (abfd)->line_info))
12991 return FALSE;
12993 if (found && (*functionname_ptr || *line_ptr))
12994 return TRUE;
12996 if (symbols == NULL)
12997 return FALSE;
12999 if (! arm_elf_find_function (abfd, section, symbols, offset,
13000 filename_ptr, functionname_ptr))
13001 return FALSE;
13003 *line_ptr = 0;
13004 return TRUE;
13007 static bfd_boolean
13008 elf32_arm_find_inliner_info (bfd * abfd,
13009 const char ** filename_ptr,
13010 const char ** functionname_ptr,
13011 unsigned int * line_ptr)
13013 bfd_boolean found;
13014 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
13015 functionname_ptr, line_ptr,
13016 & elf_tdata (abfd)->dwarf2_find_line_info);
13017 return found;
13020 /* Adjust a symbol defined by a dynamic object and referenced by a
13021 regular object. The current definition is in some section of the
13022 dynamic object, but we're not including those sections. We have to
13023 change the definition to something the rest of the link can
13024 understand. */
13026 static bfd_boolean
13027 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
13028 struct elf_link_hash_entry * h)
13030 bfd * dynobj;
13031 asection * s;
13032 struct elf32_arm_link_hash_entry * eh;
13033 struct elf32_arm_link_hash_table *globals;
13035 globals = elf32_arm_hash_table (info);
13036 if (globals == NULL)
13037 return FALSE;
13039 dynobj = elf_hash_table (info)->dynobj;
13041 /* Make sure we know what is going on here. */
13042 BFD_ASSERT (dynobj != NULL
13043 && (h->needs_plt
13044 || h->type == STT_GNU_IFUNC
13045 || h->u.weakdef != NULL
13046 || (h->def_dynamic
13047 && h->ref_regular
13048 && !h->def_regular)));
13050 eh = (struct elf32_arm_link_hash_entry *) h;
13052 /* If this is a function, put it in the procedure linkage table. We
13053 will fill in the contents of the procedure linkage table later,
13054 when we know the address of the .got section. */
13055 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
13057 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
13058 symbol binds locally. */
13059 if (h->plt.refcount <= 0
13060 || (h->type != STT_GNU_IFUNC
13061 && (SYMBOL_CALLS_LOCAL (info, h)
13062 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
13063 && h->root.type == bfd_link_hash_undefweak))))
13065 /* This case can occur if we saw a PLT32 reloc in an input
13066 file, but the symbol was never referred to by a dynamic
13067 object, or if all references were garbage collected. In
13068 such a case, we don't actually need to build a procedure
13069 linkage table, and we can just do a PC24 reloc instead. */
13070 h->plt.offset = (bfd_vma) -1;
13071 eh->plt.thumb_refcount = 0;
13072 eh->plt.maybe_thumb_refcount = 0;
13073 eh->plt.noncall_refcount = 0;
13074 h->needs_plt = 0;
13077 return TRUE;
13079 else
13081 /* It's possible that we incorrectly decided a .plt reloc was
13082 needed for an R_ARM_PC24 or similar reloc to a non-function sym
13083 in check_relocs. We can't decide accurately between function
13084 and non-function syms in check-relocs; Objects loaded later in
13085 the link may change h->type. So fix it now. */
13086 h->plt.offset = (bfd_vma) -1;
13087 eh->plt.thumb_refcount = 0;
13088 eh->plt.maybe_thumb_refcount = 0;
13089 eh->plt.noncall_refcount = 0;
13092 /* If this is a weak symbol, and there is a real definition, the
13093 processor independent code will have arranged for us to see the
13094 real definition first, and we can just use the same value. */
13095 if (h->u.weakdef != NULL)
13097 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
13098 || h->u.weakdef->root.type == bfd_link_hash_defweak);
13099 h->root.u.def.section = h->u.weakdef->root.u.def.section;
13100 h->root.u.def.value = h->u.weakdef->root.u.def.value;
13101 return TRUE;
13104 /* If there are no non-GOT references, we do not need a copy
13105 relocation. */
13106 if (!h->non_got_ref)
13107 return TRUE;
13109 /* This is a reference to a symbol defined by a dynamic object which
13110 is not a function. */
13112 /* If we are creating a shared library, we must presume that the
13113 only references to the symbol are via the global offset table.
13114 For such cases we need not do anything here; the relocations will
13115 be handled correctly by relocate_section. Relocatable executables
13116 can reference data in shared objects directly, so we don't need to
13117 do anything here. */
13118 if (info->shared || globals->root.is_relocatable_executable)
13119 return TRUE;
13121 /* We must allocate the symbol in our .dynbss section, which will
13122 become part of the .bss section of the executable. There will be
13123 an entry for this symbol in the .dynsym section. The dynamic
13124 object will contain position independent code, so all references
13125 from the dynamic object to this symbol will go through the global
13126 offset table. The dynamic linker will use the .dynsym entry to
13127 determine the address it must put in the global offset table, so
13128 both the dynamic object and the regular object will refer to the
13129 same memory location for the variable. */
13130 s = bfd_get_linker_section (dynobj, ".dynbss");
13131 BFD_ASSERT (s != NULL);
13133 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
13134 copy the initial value out of the dynamic object and into the
13135 runtime process image. We need to remember the offset into the
13136 .rel(a).bss section we are going to use. */
13137 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
13139 asection *srel;
13141 srel = bfd_get_linker_section (dynobj, RELOC_SECTION (globals, ".bss"));
13142 elf32_arm_allocate_dynrelocs (info, srel, 1);
13143 h->needs_copy = 1;
13146 return _bfd_elf_adjust_dynamic_copy (h, s);
13149 /* Allocate space in .plt, .got and associated reloc sections for
13150 dynamic relocs. */
13152 static bfd_boolean
13153 allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
13155 struct bfd_link_info *info;
13156 struct elf32_arm_link_hash_table *htab;
13157 struct elf32_arm_link_hash_entry *eh;
13158 struct elf_dyn_relocs *p;
13160 if (h->root.type == bfd_link_hash_indirect)
13161 return TRUE;
13163 eh = (struct elf32_arm_link_hash_entry *) h;
13165 info = (struct bfd_link_info *) inf;
13166 htab = elf32_arm_hash_table (info);
13167 if (htab == NULL)
13168 return FALSE;
13170 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
13171 && h->plt.refcount > 0)
13173 /* Make sure this symbol is output as a dynamic symbol.
13174 Undefined weak syms won't yet be marked as dynamic. */
13175 if (h->dynindx == -1
13176 && !h->forced_local)
13178 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13179 return FALSE;
13182 /* If the call in the PLT entry binds locally, the associated
13183 GOT entry should use an R_ARM_IRELATIVE relocation instead of
13184 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
13185 than the .plt section. */
13186 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
13188 eh->is_iplt = 1;
13189 if (eh->plt.noncall_refcount == 0
13190 && SYMBOL_REFERENCES_LOCAL (info, h))
13191 /* All non-call references can be resolved directly.
13192 This means that they can (and in some cases, must)
13193 resolve directly to the run-time target, rather than
13194 to the PLT. That in turns means that any .got entry
13195 would be equal to the .igot.plt entry, so there's
13196 no point having both. */
13197 h->got.refcount = 0;
13200 if (info->shared
13201 || eh->is_iplt
13202 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
13204 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
13206 /* If this symbol is not defined in a regular file, and we are
13207 not generating a shared library, then set the symbol to this
13208 location in the .plt. This is required to make function
13209 pointers compare as equal between the normal executable and
13210 the shared library. */
13211 if (! info->shared
13212 && !h->def_regular)
13214 h->root.u.def.section = htab->root.splt;
13215 h->root.u.def.value = h->plt.offset;
13217 /* Make sure the function is not marked as Thumb, in case
13218 it is the target of an ABS32 relocation, which will
13219 point to the PLT entry. */
13220 h->target_internal = ST_BRANCH_TO_ARM;
13223 htab->next_tls_desc_index++;
13225 /* VxWorks executables have a second set of relocations for
13226 each PLT entry. They go in a separate relocation section,
13227 which is processed by the kernel loader. */
13228 if (htab->vxworks_p && !info->shared)
13230 /* There is a relocation for the initial PLT entry:
13231 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
13232 if (h->plt.offset == htab->plt_header_size)
13233 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
13235 /* There are two extra relocations for each subsequent
13236 PLT entry: an R_ARM_32 relocation for the GOT entry,
13237 and an R_ARM_32 relocation for the PLT entry. */
13238 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
13241 else
13243 h->plt.offset = (bfd_vma) -1;
13244 h->needs_plt = 0;
13247 else
13249 h->plt.offset = (bfd_vma) -1;
13250 h->needs_plt = 0;
13253 eh = (struct elf32_arm_link_hash_entry *) h;
13254 eh->tlsdesc_got = (bfd_vma) -1;
13256 if (h->got.refcount > 0)
13258 asection *s;
13259 bfd_boolean dyn;
13260 int tls_type = elf32_arm_hash_entry (h)->tls_type;
13261 int indx;
13263 /* Make sure this symbol is output as a dynamic symbol.
13264 Undefined weak syms won't yet be marked as dynamic. */
13265 if (h->dynindx == -1
13266 && !h->forced_local)
13268 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13269 return FALSE;
13272 if (!htab->symbian_p)
13274 s = htab->root.sgot;
13275 h->got.offset = s->size;
13277 if (tls_type == GOT_UNKNOWN)
13278 abort ();
13280 if (tls_type == GOT_NORMAL)
13281 /* Non-TLS symbols need one GOT slot. */
13282 s->size += 4;
13283 else
13285 if (tls_type & GOT_TLS_GDESC)
13287 /* R_ARM_TLS_DESC needs 2 GOT slots. */
13288 eh->tlsdesc_got
13289 = (htab->root.sgotplt->size
13290 - elf32_arm_compute_jump_table_size (htab));
13291 htab->root.sgotplt->size += 8;
13292 h->got.offset = (bfd_vma) -2;
13293 /* plt.got_offset needs to know there's a TLS_DESC
13294 reloc in the middle of .got.plt. */
13295 htab->num_tls_desc++;
13298 if (tls_type & GOT_TLS_GD)
13300 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. If
13301 the symbol is both GD and GDESC, got.offset may
13302 have been overwritten. */
13303 h->got.offset = s->size;
13304 s->size += 8;
13307 if (tls_type & GOT_TLS_IE)
13308 /* R_ARM_TLS_IE32 needs one GOT slot. */
13309 s->size += 4;
13312 dyn = htab->root.dynamic_sections_created;
13314 indx = 0;
13315 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
13316 && (!info->shared
13317 || !SYMBOL_REFERENCES_LOCAL (info, h)))
13318 indx = h->dynindx;
13320 if (tls_type != GOT_NORMAL
13321 && (info->shared || indx != 0)
13322 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
13323 || h->root.type != bfd_link_hash_undefweak))
13325 if (tls_type & GOT_TLS_IE)
13326 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13328 if (tls_type & GOT_TLS_GD)
13329 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13331 if (tls_type & GOT_TLS_GDESC)
13333 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
13334 /* GDESC needs a trampoline to jump to. */
13335 htab->tls_trampoline = -1;
13338 /* Only GD needs it. GDESC just emits one relocation per
13339 2 entries. */
13340 if ((tls_type & GOT_TLS_GD) && indx != 0)
13341 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13343 else if (indx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
13345 if (htab->root.dynamic_sections_created)
13346 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
13347 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13349 else if (h->type == STT_GNU_IFUNC
13350 && eh->plt.noncall_refcount == 0)
13351 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
13352 they all resolve dynamically instead. Reserve room for the
13353 GOT entry's R_ARM_IRELATIVE relocation. */
13354 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
13355 else if (info->shared && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
13356 || h->root.type != bfd_link_hash_undefweak))
13357 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
13358 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13361 else
13362 h->got.offset = (bfd_vma) -1;
13364 /* Allocate stubs for exported Thumb functions on v4t. */
13365 if (!htab->use_blx && h->dynindx != -1
13366 && h->def_regular
13367 && h->target_internal == ST_BRANCH_TO_THUMB
13368 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
13370 struct elf_link_hash_entry * th;
13371 struct bfd_link_hash_entry * bh;
13372 struct elf_link_hash_entry * myh;
13373 char name[1024];
13374 asection *s;
13375 bh = NULL;
13376 /* Create a new symbol to regist the real location of the function. */
13377 s = h->root.u.def.section;
13378 sprintf (name, "__real_%s", h->root.root.string);
13379 _bfd_generic_link_add_one_symbol (info, s->owner,
13380 name, BSF_GLOBAL, s,
13381 h->root.u.def.value,
13382 NULL, TRUE, FALSE, &bh);
13384 myh = (struct elf_link_hash_entry *) bh;
13385 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
13386 myh->forced_local = 1;
13387 myh->target_internal = ST_BRANCH_TO_THUMB;
13388 eh->export_glue = myh;
13389 th = record_arm_to_thumb_glue (info, h);
13390 /* Point the symbol at the stub. */
13391 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
13392 h->target_internal = ST_BRANCH_TO_ARM;
13393 h->root.u.def.section = th->root.u.def.section;
13394 h->root.u.def.value = th->root.u.def.value & ~1;
13397 if (eh->dyn_relocs == NULL)
13398 return TRUE;
13400 /* In the shared -Bsymbolic case, discard space allocated for
13401 dynamic pc-relative relocs against symbols which turn out to be
13402 defined in regular objects. For the normal shared case, discard
13403 space for pc-relative relocs that have become local due to symbol
13404 visibility changes. */
13406 if (info->shared || htab->root.is_relocatable_executable)
13408 /* The only relocs that use pc_count are R_ARM_REL32 and
13409 R_ARM_REL32_NOI, which will appear on something like
13410 ".long foo - .". We want calls to protected symbols to resolve
13411 directly to the function rather than going via the plt. If people
13412 want function pointer comparisons to work as expected then they
13413 should avoid writing assembly like ".long foo - .". */
13414 if (SYMBOL_CALLS_LOCAL (info, h))
13416 struct elf_dyn_relocs **pp;
13418 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
13420 p->count -= p->pc_count;
13421 p->pc_count = 0;
13422 if (p->count == 0)
13423 *pp = p->next;
13424 else
13425 pp = &p->next;
13429 if (htab->vxworks_p)
13431 struct elf_dyn_relocs **pp;
13433 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
13435 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
13436 *pp = p->next;
13437 else
13438 pp = &p->next;
13442 /* Also discard relocs on undefined weak syms with non-default
13443 visibility. */
13444 if (eh->dyn_relocs != NULL
13445 && h->root.type == bfd_link_hash_undefweak)
13447 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
13448 eh->dyn_relocs = NULL;
13450 /* Make sure undefined weak symbols are output as a dynamic
13451 symbol in PIEs. */
13452 else if (h->dynindx == -1
13453 && !h->forced_local)
13455 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13456 return FALSE;
13460 else if (htab->root.is_relocatable_executable && h->dynindx == -1
13461 && h->root.type == bfd_link_hash_new)
13463 /* Output absolute symbols so that we can create relocations
13464 against them. For normal symbols we output a relocation
13465 against the section that contains them. */
13466 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13467 return FALSE;
13471 else
13473 /* For the non-shared case, discard space for relocs against
13474 symbols which turn out to need copy relocs or are not
13475 dynamic. */
13477 if (!h->non_got_ref
13478 && ((h->def_dynamic
13479 && !h->def_regular)
13480 || (htab->root.dynamic_sections_created
13481 && (h->root.type == bfd_link_hash_undefweak
13482 || h->root.type == bfd_link_hash_undefined))))
13484 /* Make sure this symbol is output as a dynamic symbol.
13485 Undefined weak syms won't yet be marked as dynamic. */
13486 if (h->dynindx == -1
13487 && !h->forced_local)
13489 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13490 return FALSE;
13493 /* If that succeeded, we know we'll be keeping all the
13494 relocs. */
13495 if (h->dynindx != -1)
13496 goto keep;
13499 eh->dyn_relocs = NULL;
13501 keep: ;
13504 /* Finally, allocate space. */
13505 for (p = eh->dyn_relocs; p != NULL; p = p->next)
13507 asection *sreloc = elf_section_data (p->sec)->sreloc;
13508 if (h->type == STT_GNU_IFUNC
13509 && eh->plt.noncall_refcount == 0
13510 && SYMBOL_REFERENCES_LOCAL (info, h))
13511 elf32_arm_allocate_irelocs (info, sreloc, p->count);
13512 else
13513 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
13516 return TRUE;
13519 /* Find any dynamic relocs that apply to read-only sections. */
13521 static bfd_boolean
13522 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
13524 struct elf32_arm_link_hash_entry * eh;
13525 struct elf_dyn_relocs * p;
13527 eh = (struct elf32_arm_link_hash_entry *) h;
13528 for (p = eh->dyn_relocs; p != NULL; p = p->next)
13530 asection *s = p->sec;
13532 if (s != NULL && (s->flags & SEC_READONLY) != 0)
13534 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13536 info->flags |= DF_TEXTREL;
13538 /* Not an error, just cut short the traversal. */
13539 return FALSE;
13542 return TRUE;
13545 void
13546 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
13547 int byteswap_code)
13549 struct elf32_arm_link_hash_table *globals;
13551 globals = elf32_arm_hash_table (info);
13552 if (globals == NULL)
13553 return;
13555 globals->byteswap_code = byteswap_code;
13558 /* Set the sizes of the dynamic sections. */
13560 static bfd_boolean
13561 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
13562 struct bfd_link_info * info)
13564 bfd * dynobj;
13565 asection * s;
13566 bfd_boolean plt;
13567 bfd_boolean relocs;
13568 bfd *ibfd;
13569 struct elf32_arm_link_hash_table *htab;
13571 htab = elf32_arm_hash_table (info);
13572 if (htab == NULL)
13573 return FALSE;
13575 dynobj = elf_hash_table (info)->dynobj;
13576 BFD_ASSERT (dynobj != NULL);
13577 check_use_blx (htab);
13579 if (elf_hash_table (info)->dynamic_sections_created)
13581 /* Set the contents of the .interp section to the interpreter. */
13582 if (info->executable)
13584 s = bfd_get_linker_section (dynobj, ".interp");
13585 BFD_ASSERT (s != NULL);
13586 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
13587 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
13591 /* Set up .got offsets for local syms, and space for local dynamic
13592 relocs. */
13593 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
13595 bfd_signed_vma *local_got;
13596 bfd_signed_vma *end_local_got;
13597 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
13598 char *local_tls_type;
13599 bfd_vma *local_tlsdesc_gotent;
13600 bfd_size_type locsymcount;
13601 Elf_Internal_Shdr *symtab_hdr;
13602 asection *srel;
13603 bfd_boolean is_vxworks = htab->vxworks_p;
13604 unsigned int symndx;
13606 if (! is_arm_elf (ibfd))
13607 continue;
13609 for (s = ibfd->sections; s != NULL; s = s->next)
13611 struct elf_dyn_relocs *p;
13613 for (p = (struct elf_dyn_relocs *)
13614 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
13616 if (!bfd_is_abs_section (p->sec)
13617 && bfd_is_abs_section (p->sec->output_section))
13619 /* Input section has been discarded, either because
13620 it is a copy of a linkonce section or due to
13621 linker script /DISCARD/, so we'll be discarding
13622 the relocs too. */
13624 else if (is_vxworks
13625 && strcmp (p->sec->output_section->name,
13626 ".tls_vars") == 0)
13628 /* Relocations in vxworks .tls_vars sections are
13629 handled specially by the loader. */
13631 else if (p->count != 0)
13633 srel = elf_section_data (p->sec)->sreloc;
13634 elf32_arm_allocate_dynrelocs (info, srel, p->count);
13635 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
13636 info->flags |= DF_TEXTREL;
13641 local_got = elf_local_got_refcounts (ibfd);
13642 if (!local_got)
13643 continue;
13645 symtab_hdr = & elf_symtab_hdr (ibfd);
13646 locsymcount = symtab_hdr->sh_info;
13647 end_local_got = local_got + locsymcount;
13648 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
13649 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
13650 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
13651 symndx = 0;
13652 s = htab->root.sgot;
13653 srel = htab->root.srelgot;
13654 for (; local_got < end_local_got;
13655 ++local_got, ++local_iplt_ptr, ++local_tls_type,
13656 ++local_tlsdesc_gotent, ++symndx)
13658 *local_tlsdesc_gotent = (bfd_vma) -1;
13659 local_iplt = *local_iplt_ptr;
13660 if (local_iplt != NULL)
13662 struct elf_dyn_relocs *p;
13664 if (local_iplt->root.refcount > 0)
13666 elf32_arm_allocate_plt_entry (info, TRUE,
13667 &local_iplt->root,
13668 &local_iplt->arm);
13669 if (local_iplt->arm.noncall_refcount == 0)
13670 /* All references to the PLT are calls, so all
13671 non-call references can resolve directly to the
13672 run-time target. This means that the .got entry
13673 would be the same as the .igot.plt entry, so there's
13674 no point creating both. */
13675 *local_got = 0;
13677 else
13679 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
13680 local_iplt->root.offset = (bfd_vma) -1;
13683 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
13685 asection *psrel;
13687 psrel = elf_section_data (p->sec)->sreloc;
13688 if (local_iplt->arm.noncall_refcount == 0)
13689 elf32_arm_allocate_irelocs (info, psrel, p->count);
13690 else
13691 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
13694 if (*local_got > 0)
13696 Elf_Internal_Sym *isym;
13698 *local_got = s->size;
13699 if (*local_tls_type & GOT_TLS_GD)
13700 /* TLS_GD relocs need an 8-byte structure in the GOT. */
13701 s->size += 8;
13702 if (*local_tls_type & GOT_TLS_GDESC)
13704 *local_tlsdesc_gotent = htab->root.sgotplt->size
13705 - elf32_arm_compute_jump_table_size (htab);
13706 htab->root.sgotplt->size += 8;
13707 *local_got = (bfd_vma) -2;
13708 /* plt.got_offset needs to know there's a TLS_DESC
13709 reloc in the middle of .got.plt. */
13710 htab->num_tls_desc++;
13712 if (*local_tls_type & GOT_TLS_IE)
13713 s->size += 4;
13715 if (*local_tls_type & GOT_NORMAL)
13717 /* If the symbol is both GD and GDESC, *local_got
13718 may have been overwritten. */
13719 *local_got = s->size;
13720 s->size += 4;
13723 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
13724 if (isym == NULL)
13725 return FALSE;
13727 /* If all references to an STT_GNU_IFUNC PLT are calls,
13728 then all non-call references, including this GOT entry,
13729 resolve directly to the run-time target. */
13730 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
13731 && (local_iplt == NULL
13732 || local_iplt->arm.noncall_refcount == 0))
13733 elf32_arm_allocate_irelocs (info, srel, 1);
13734 else if (info->shared || output_bfd->flags & DYNAMIC)
13736 if ((info->shared && !(*local_tls_type & GOT_TLS_GDESC))
13737 || *local_tls_type & GOT_TLS_GD)
13738 elf32_arm_allocate_dynrelocs (info, srel, 1);
13740 if (info->shared && *local_tls_type & GOT_TLS_GDESC)
13742 elf32_arm_allocate_dynrelocs (info,
13743 htab->root.srelplt, 1);
13744 htab->tls_trampoline = -1;
13748 else
13749 *local_got = (bfd_vma) -1;
13753 if (htab->tls_ldm_got.refcount > 0)
13755 /* Allocate two GOT entries and one dynamic relocation (if necessary)
13756 for R_ARM_TLS_LDM32 relocations. */
13757 htab->tls_ldm_got.offset = htab->root.sgot->size;
13758 htab->root.sgot->size += 8;
13759 if (info->shared)
13760 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13762 else
13763 htab->tls_ldm_got.offset = -1;
13765 /* Allocate global sym .plt and .got entries, and space for global
13766 sym dynamic relocs. */
13767 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
13769 /* Here we rummage through the found bfds to collect glue information. */
13770 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
13772 if (! is_arm_elf (ibfd))
13773 continue;
13775 /* Initialise mapping tables for code/data. */
13776 bfd_elf32_arm_init_maps (ibfd);
13778 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
13779 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
13780 /* xgettext:c-format */
13781 _bfd_error_handler (_("Errors encountered processing file %s"),
13782 ibfd->filename);
13785 /* Allocate space for the glue sections now that we've sized them. */
13786 bfd_elf32_arm_allocate_interworking_sections (info);
13788 /* For every jump slot reserved in the sgotplt, reloc_count is
13789 incremented. However, when we reserve space for TLS descriptors,
13790 it's not incremented, so in order to compute the space reserved
13791 for them, it suffices to multiply the reloc count by the jump
13792 slot size. */
13793 if (htab->root.srelplt)
13794 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
13796 if (htab->tls_trampoline)
13798 if (htab->root.splt->size == 0)
13799 htab->root.splt->size += htab->plt_header_size;
13801 htab->tls_trampoline = htab->root.splt->size;
13802 htab->root.splt->size += htab->plt_entry_size;
13804 /* If we're not using lazy TLS relocations, don't generate the
13805 PLT and GOT entries they require. */
13806 if (!(info->flags & DF_BIND_NOW))
13808 htab->dt_tlsdesc_got = htab->root.sgot->size;
13809 htab->root.sgot->size += 4;
13811 htab->dt_tlsdesc_plt = htab->root.splt->size;
13812 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
13816 /* The check_relocs and adjust_dynamic_symbol entry points have
13817 determined the sizes of the various dynamic sections. Allocate
13818 memory for them. */
13819 plt = FALSE;
13820 relocs = FALSE;
13821 for (s = dynobj->sections; s != NULL; s = s->next)
13823 const char * name;
13825 if ((s->flags & SEC_LINKER_CREATED) == 0)
13826 continue;
13828 /* It's OK to base decisions on the section name, because none
13829 of the dynobj section names depend upon the input files. */
13830 name = bfd_get_section_name (dynobj, s);
13832 if (s == htab->root.splt)
13834 /* Remember whether there is a PLT. */
13835 plt = s->size != 0;
13837 else if (CONST_STRNEQ (name, ".rel"))
13839 if (s->size != 0)
13841 /* Remember whether there are any reloc sections other
13842 than .rel(a).plt and .rela.plt.unloaded. */
13843 if (s != htab->root.srelplt && s != htab->srelplt2)
13844 relocs = TRUE;
13846 /* We use the reloc_count field as a counter if we need
13847 to copy relocs into the output file. */
13848 s->reloc_count = 0;
13851 else if (s != htab->root.sgot
13852 && s != htab->root.sgotplt
13853 && s != htab->root.iplt
13854 && s != htab->root.igotplt
13855 && s != htab->sdynbss)
13857 /* It's not one of our sections, so don't allocate space. */
13858 continue;
13861 if (s->size == 0)
13863 /* If we don't need this section, strip it from the
13864 output file. This is mostly to handle .rel(a).bss and
13865 .rel(a).plt. We must create both sections in
13866 create_dynamic_sections, because they must be created
13867 before the linker maps input sections to output
13868 sections. The linker does that before
13869 adjust_dynamic_symbol is called, and it is that
13870 function which decides whether anything needs to go
13871 into these sections. */
13872 s->flags |= SEC_EXCLUDE;
13873 continue;
13876 if ((s->flags & SEC_HAS_CONTENTS) == 0)
13877 continue;
13879 /* Allocate memory for the section contents. */
13880 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
13881 if (s->contents == NULL)
13882 return FALSE;
13885 if (elf_hash_table (info)->dynamic_sections_created)
13887 /* Add some entries to the .dynamic section. We fill in the
13888 values later, in elf32_arm_finish_dynamic_sections, but we
13889 must add the entries now so that we get the correct size for
13890 the .dynamic section. The DT_DEBUG entry is filled in by the
13891 dynamic linker and used by the debugger. */
13892 #define add_dynamic_entry(TAG, VAL) \
13893 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
13895 if (info->executable)
13897 if (!add_dynamic_entry (DT_DEBUG, 0))
13898 return FALSE;
13901 if (plt)
13903 if ( !add_dynamic_entry (DT_PLTGOT, 0)
13904 || !add_dynamic_entry (DT_PLTRELSZ, 0)
13905 || !add_dynamic_entry (DT_PLTREL,
13906 htab->use_rel ? DT_REL : DT_RELA)
13907 || !add_dynamic_entry (DT_JMPREL, 0))
13908 return FALSE;
13910 if (htab->dt_tlsdesc_plt &&
13911 (!add_dynamic_entry (DT_TLSDESC_PLT,0)
13912 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
13913 return FALSE;
13916 if (relocs)
13918 if (htab->use_rel)
13920 if (!add_dynamic_entry (DT_REL, 0)
13921 || !add_dynamic_entry (DT_RELSZ, 0)
13922 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
13923 return FALSE;
13925 else
13927 if (!add_dynamic_entry (DT_RELA, 0)
13928 || !add_dynamic_entry (DT_RELASZ, 0)
13929 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
13930 return FALSE;
13934 /* If any dynamic relocs apply to a read-only section,
13935 then we need a DT_TEXTREL entry. */
13936 if ((info->flags & DF_TEXTREL) == 0)
13937 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
13938 info);
13940 if ((info->flags & DF_TEXTREL) != 0)
13942 if (!add_dynamic_entry (DT_TEXTREL, 0))
13943 return FALSE;
13945 if (htab->vxworks_p
13946 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
13947 return FALSE;
13949 #undef add_dynamic_entry
13951 return TRUE;
13954 /* Size sections even though they're not dynamic. We use it to setup
13955 _TLS_MODULE_BASE_, if needed. */
13957 static bfd_boolean
13958 elf32_arm_always_size_sections (bfd *output_bfd,
13959 struct bfd_link_info *info)
13961 asection *tls_sec;
13963 if (info->relocatable)
13964 return TRUE;
13966 tls_sec = elf_hash_table (info)->tls_sec;
13968 if (tls_sec)
13970 struct elf_link_hash_entry *tlsbase;
13972 tlsbase = elf_link_hash_lookup
13973 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
13975 if (tlsbase)
13977 struct bfd_link_hash_entry *bh = NULL;
13978 const struct elf_backend_data *bed
13979 = get_elf_backend_data (output_bfd);
13981 if (!(_bfd_generic_link_add_one_symbol
13982 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
13983 tls_sec, 0, NULL, FALSE,
13984 bed->collect, &bh)))
13985 return FALSE;
13987 tlsbase->type = STT_TLS;
13988 tlsbase = (struct elf_link_hash_entry *)bh;
13989 tlsbase->def_regular = 1;
13990 tlsbase->other = STV_HIDDEN;
13991 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
13994 return TRUE;
13997 /* Finish up dynamic symbol handling. We set the contents of various
13998 dynamic sections here. */
14000 static bfd_boolean
14001 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
14002 struct bfd_link_info * info,
14003 struct elf_link_hash_entry * h,
14004 Elf_Internal_Sym * sym)
14006 struct elf32_arm_link_hash_table *htab;
14007 struct elf32_arm_link_hash_entry *eh;
14009 htab = elf32_arm_hash_table (info);
14010 if (htab == NULL)
14011 return FALSE;
14013 eh = (struct elf32_arm_link_hash_entry *) h;
14015 if (h->plt.offset != (bfd_vma) -1)
14017 if (!eh->is_iplt)
14019 BFD_ASSERT (h->dynindx != -1);
14020 elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
14021 h->dynindx, 0);
14024 if (!h->def_regular)
14026 /* Mark the symbol as undefined, rather than as defined in
14027 the .plt section. Leave the value alone. */
14028 sym->st_shndx = SHN_UNDEF;
14029 /* If the symbol is weak, we do need to clear the value.
14030 Otherwise, the PLT entry would provide a definition for
14031 the symbol even if the symbol wasn't defined anywhere,
14032 and so the symbol would never be NULL. */
14033 if (!h->ref_regular_nonweak)
14034 sym->st_value = 0;
14036 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
14038 /* At least one non-call relocation references this .iplt entry,
14039 so the .iplt entry is the function's canonical address. */
14040 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
14041 sym->st_target_internal = ST_BRANCH_TO_ARM;
14042 sym->st_shndx = (_bfd_elf_section_from_bfd_section
14043 (output_bfd, htab->root.iplt->output_section));
14044 sym->st_value = (h->plt.offset
14045 + htab->root.iplt->output_section->vma
14046 + htab->root.iplt->output_offset);
14050 if (h->needs_copy)
14052 asection * s;
14053 Elf_Internal_Rela rel;
14055 /* This symbol needs a copy reloc. Set it up. */
14056 BFD_ASSERT (h->dynindx != -1
14057 && (h->root.type == bfd_link_hash_defined
14058 || h->root.type == bfd_link_hash_defweak));
14060 s = htab->srelbss;
14061 BFD_ASSERT (s != NULL);
14063 rel.r_addend = 0;
14064 rel.r_offset = (h->root.u.def.value
14065 + h->root.u.def.section->output_section->vma
14066 + h->root.u.def.section->output_offset);
14067 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
14068 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
14071 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
14072 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
14073 to the ".got" section. */
14074 if (h == htab->root.hdynamic
14075 || (!htab->vxworks_p && h == htab->root.hgot))
14076 sym->st_shndx = SHN_ABS;
14078 return TRUE;
14081 static void
14082 arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
14083 void *contents,
14084 const unsigned long *template, unsigned count)
14086 unsigned ix;
14088 for (ix = 0; ix != count; ix++)
14090 unsigned long insn = template[ix];
14092 /* Emit mov pc,rx if bx is not permitted. */
14093 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
14094 insn = (insn & 0xf000000f) | 0x01a0f000;
14095 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
14099 /* Install the special first PLT entry for elf32-arm-nacl. Unlike
14100 other variants, NaCl needs this entry in a static executable's
14101 .iplt too. When we're handling that case, GOT_DISPLACEMENT is
14102 zero. For .iplt really only the last bundle is useful, and .iplt
14103 could have a shorter first entry, with each individual PLT entry's
14104 relative branch calculated differently so it targets the last
14105 bundle instead of the instruction before it (labelled .Lplt_tail
14106 above). But it's simpler to keep the size and layout of PLT0
14107 consistent with the dynamic case, at the cost of some dead code at
14108 the start of .iplt and the one dead store to the stack at the start
14109 of .Lplt_tail. */
14110 static void
14111 arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
14112 asection *plt, bfd_vma got_displacement)
14114 unsigned int i;
14116 put_arm_insn (htab, output_bfd,
14117 elf32_arm_nacl_plt0_entry[0]
14118 | arm_movw_immediate (got_displacement),
14119 plt->contents + 0);
14120 put_arm_insn (htab, output_bfd,
14121 elf32_arm_nacl_plt0_entry[1]
14122 | arm_movt_immediate (got_displacement),
14123 plt->contents + 4);
14125 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i)
14126 put_arm_insn (htab, output_bfd,
14127 elf32_arm_nacl_plt0_entry[i],
14128 plt->contents + (i * 4));
14131 /* Finish up the dynamic sections. */
14133 static bfd_boolean
14134 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
14136 bfd * dynobj;
14137 asection * sgot;
14138 asection * sdyn;
14139 struct elf32_arm_link_hash_table *htab;
14141 htab = elf32_arm_hash_table (info);
14142 if (htab == NULL)
14143 return FALSE;
14145 dynobj = elf_hash_table (info)->dynobj;
14147 sgot = htab->root.sgotplt;
14148 /* A broken linker script might have discarded the dynamic sections.
14149 Catch this here so that we do not seg-fault later on. */
14150 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
14151 return FALSE;
14152 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
14154 if (elf_hash_table (info)->dynamic_sections_created)
14156 asection *splt;
14157 Elf32_External_Dyn *dyncon, *dynconend;
14159 splt = htab->root.splt;
14160 BFD_ASSERT (splt != NULL && sdyn != NULL);
14161 BFD_ASSERT (htab->symbian_p || sgot != NULL);
14163 dyncon = (Elf32_External_Dyn *) sdyn->contents;
14164 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
14166 for (; dyncon < dynconend; dyncon++)
14168 Elf_Internal_Dyn dyn;
14169 const char * name;
14170 asection * s;
14172 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
14174 switch (dyn.d_tag)
14176 unsigned int type;
14178 default:
14179 if (htab->vxworks_p
14180 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
14181 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14182 break;
14184 case DT_HASH:
14185 name = ".hash";
14186 goto get_vma_if_bpabi;
14187 case DT_STRTAB:
14188 name = ".dynstr";
14189 goto get_vma_if_bpabi;
14190 case DT_SYMTAB:
14191 name = ".dynsym";
14192 goto get_vma_if_bpabi;
14193 case DT_VERSYM:
14194 name = ".gnu.version";
14195 goto get_vma_if_bpabi;
14196 case DT_VERDEF:
14197 name = ".gnu.version_d";
14198 goto get_vma_if_bpabi;
14199 case DT_VERNEED:
14200 name = ".gnu.version_r";
14201 goto get_vma_if_bpabi;
14203 case DT_PLTGOT:
14204 name = ".got";
14205 goto get_vma;
14206 case DT_JMPREL:
14207 name = RELOC_SECTION (htab, ".plt");
14208 get_vma:
14209 s = bfd_get_section_by_name (output_bfd, name);
14210 if (s == NULL)
14212 /* PR ld/14397: Issue an error message if a required section is missing. */
14213 (*_bfd_error_handler)
14214 (_("error: required section '%s' not found in the linker script"), name);
14215 bfd_set_error (bfd_error_invalid_operation);
14216 return FALSE;
14218 if (!htab->symbian_p)
14219 dyn.d_un.d_ptr = s->vma;
14220 else
14221 /* In the BPABI, tags in the PT_DYNAMIC section point
14222 at the file offset, not the memory address, for the
14223 convenience of the post linker. */
14224 dyn.d_un.d_ptr = s->filepos;
14225 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14226 break;
14228 get_vma_if_bpabi:
14229 if (htab->symbian_p)
14230 goto get_vma;
14231 break;
14233 case DT_PLTRELSZ:
14234 s = htab->root.srelplt;
14235 BFD_ASSERT (s != NULL);
14236 dyn.d_un.d_val = s->size;
14237 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14238 break;
14240 case DT_RELSZ:
14241 case DT_RELASZ:
14242 if (!htab->symbian_p)
14244 /* My reading of the SVR4 ABI indicates that the
14245 procedure linkage table relocs (DT_JMPREL) should be
14246 included in the overall relocs (DT_REL). This is
14247 what Solaris does. However, UnixWare can not handle
14248 that case. Therefore, we override the DT_RELSZ entry
14249 here to make it not include the JMPREL relocs. Since
14250 the linker script arranges for .rel(a).plt to follow all
14251 other relocation sections, we don't have to worry
14252 about changing the DT_REL entry. */
14253 s = htab->root.srelplt;
14254 if (s != NULL)
14255 dyn.d_un.d_val -= s->size;
14256 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14257 break;
14259 /* Fall through. */
14261 case DT_REL:
14262 case DT_RELA:
14263 /* In the BPABI, the DT_REL tag must point at the file
14264 offset, not the VMA, of the first relocation
14265 section. So, we use code similar to that in
14266 elflink.c, but do not check for SHF_ALLOC on the
14267 relcoation section, since relocations sections are
14268 never allocated under the BPABI. The comments above
14269 about Unixware notwithstanding, we include all of the
14270 relocations here. */
14271 if (htab->symbian_p)
14273 unsigned int i;
14274 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
14275 ? SHT_REL : SHT_RELA);
14276 dyn.d_un.d_val = 0;
14277 for (i = 1; i < elf_numsections (output_bfd); i++)
14279 Elf_Internal_Shdr *hdr
14280 = elf_elfsections (output_bfd)[i];
14281 if (hdr->sh_type == type)
14283 if (dyn.d_tag == DT_RELSZ
14284 || dyn.d_tag == DT_RELASZ)
14285 dyn.d_un.d_val += hdr->sh_size;
14286 else if ((ufile_ptr) hdr->sh_offset
14287 <= dyn.d_un.d_val - 1)
14288 dyn.d_un.d_val = hdr->sh_offset;
14291 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14293 break;
14295 case DT_TLSDESC_PLT:
14296 s = htab->root.splt;
14297 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
14298 + htab->dt_tlsdesc_plt);
14299 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14300 break;
14302 case DT_TLSDESC_GOT:
14303 s = htab->root.sgot;
14304 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
14305 + htab->dt_tlsdesc_got);
14306 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14307 break;
14309 /* Set the bottom bit of DT_INIT/FINI if the
14310 corresponding function is Thumb. */
14311 case DT_INIT:
14312 name = info->init_function;
14313 goto get_sym;
14314 case DT_FINI:
14315 name = info->fini_function;
14316 get_sym:
14317 /* If it wasn't set by elf_bfd_final_link
14318 then there is nothing to adjust. */
14319 if (dyn.d_un.d_val != 0)
14321 struct elf_link_hash_entry * eh;
14323 eh = elf_link_hash_lookup (elf_hash_table (info), name,
14324 FALSE, FALSE, TRUE);
14325 if (eh != NULL && eh->target_internal == ST_BRANCH_TO_THUMB)
14327 dyn.d_un.d_val |= 1;
14328 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14331 break;
14335 /* Fill in the first entry in the procedure linkage table. */
14336 if (splt->size > 0 && htab->plt_header_size)
14338 const bfd_vma *plt0_entry;
14339 bfd_vma got_address, plt_address, got_displacement;
14341 /* Calculate the addresses of the GOT and PLT. */
14342 got_address = sgot->output_section->vma + sgot->output_offset;
14343 plt_address = splt->output_section->vma + splt->output_offset;
14345 if (htab->vxworks_p)
14347 /* The VxWorks GOT is relocated by the dynamic linker.
14348 Therefore, we must emit relocations rather than simply
14349 computing the values now. */
14350 Elf_Internal_Rela rel;
14352 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
14353 put_arm_insn (htab, output_bfd, plt0_entry[0],
14354 splt->contents + 0);
14355 put_arm_insn (htab, output_bfd, plt0_entry[1],
14356 splt->contents + 4);
14357 put_arm_insn (htab, output_bfd, plt0_entry[2],
14358 splt->contents + 8);
14359 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
14361 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
14362 rel.r_offset = plt_address + 12;
14363 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
14364 rel.r_addend = 0;
14365 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
14366 htab->srelplt2->contents);
14368 else if (htab->nacl_p)
14369 arm_nacl_put_plt0 (htab, output_bfd, splt,
14370 got_address + 8 - (plt_address + 16));
14371 else
14373 got_displacement = got_address - (plt_address + 16);
14375 plt0_entry = elf32_arm_plt0_entry;
14376 put_arm_insn (htab, output_bfd, plt0_entry[0],
14377 splt->contents + 0);
14378 put_arm_insn (htab, output_bfd, plt0_entry[1],
14379 splt->contents + 4);
14380 put_arm_insn (htab, output_bfd, plt0_entry[2],
14381 splt->contents + 8);
14382 put_arm_insn (htab, output_bfd, plt0_entry[3],
14383 splt->contents + 12);
14385 #ifdef FOUR_WORD_PLT
14386 /* The displacement value goes in the otherwise-unused
14387 last word of the second entry. */
14388 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
14389 #else
14390 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
14391 #endif
14395 /* UnixWare sets the entsize of .plt to 4, although that doesn't
14396 really seem like the right value. */
14397 if (splt->output_section->owner == output_bfd)
14398 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
14400 if (htab->dt_tlsdesc_plt)
14402 bfd_vma got_address
14403 = sgot->output_section->vma + sgot->output_offset;
14404 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
14405 + htab->root.sgot->output_offset);
14406 bfd_vma plt_address
14407 = splt->output_section->vma + splt->output_offset;
14409 arm_put_trampoline (htab, output_bfd,
14410 splt->contents + htab->dt_tlsdesc_plt,
14411 dl_tlsdesc_lazy_trampoline, 6);
14413 bfd_put_32 (output_bfd,
14414 gotplt_address + htab->dt_tlsdesc_got
14415 - (plt_address + htab->dt_tlsdesc_plt)
14416 - dl_tlsdesc_lazy_trampoline[6],
14417 splt->contents + htab->dt_tlsdesc_plt + 24);
14418 bfd_put_32 (output_bfd,
14419 got_address - (plt_address + htab->dt_tlsdesc_plt)
14420 - dl_tlsdesc_lazy_trampoline[7],
14421 splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
14424 if (htab->tls_trampoline)
14426 arm_put_trampoline (htab, output_bfd,
14427 splt->contents + htab->tls_trampoline,
14428 tls_trampoline, 3);
14429 #ifdef FOUR_WORD_PLT
14430 bfd_put_32 (output_bfd, 0x00000000,
14431 splt->contents + htab->tls_trampoline + 12);
14432 #endif
14435 if (htab->vxworks_p && !info->shared && htab->root.splt->size > 0)
14437 /* Correct the .rel(a).plt.unloaded relocations. They will have
14438 incorrect symbol indexes. */
14439 int num_plts;
14440 unsigned char *p;
14442 num_plts = ((htab->root.splt->size - htab->plt_header_size)
14443 / htab->plt_entry_size);
14444 p = htab->srelplt2->contents + RELOC_SIZE (htab);
14446 for (; num_plts; num_plts--)
14448 Elf_Internal_Rela rel;
14450 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
14451 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
14452 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
14453 p += RELOC_SIZE (htab);
14455 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
14456 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
14457 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
14458 p += RELOC_SIZE (htab);
14463 if (htab->nacl_p && htab->root.iplt != NULL && htab->root.iplt->size > 0)
14464 /* NaCl uses a special first entry in .iplt too. */
14465 arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0);
14467 /* Fill in the first three entries in the global offset table. */
14468 if (sgot)
14470 if (sgot->size > 0)
14472 if (sdyn == NULL)
14473 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
14474 else
14475 bfd_put_32 (output_bfd,
14476 sdyn->output_section->vma + sdyn->output_offset,
14477 sgot->contents);
14478 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
14479 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
14482 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
14485 return TRUE;
14488 static void
14489 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
14491 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
14492 struct elf32_arm_link_hash_table *globals;
14494 i_ehdrp = elf_elfheader (abfd);
14496 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
14497 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
14498 else
14499 i_ehdrp->e_ident[EI_OSABI] = 0;
14500 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
14502 if (link_info)
14504 globals = elf32_arm_hash_table (link_info);
14505 if (globals != NULL && globals->byteswap_code)
14506 i_ehdrp->e_flags |= EF_ARM_BE8;
14509 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5
14510 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC)))
14512 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args);
14513 if (abi)
14514 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD;
14515 else
14516 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT;
14520 static enum elf_reloc_type_class
14521 elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
14522 const asection *rel_sec ATTRIBUTE_UNUSED,
14523 const Elf_Internal_Rela *rela)
14525 switch ((int) ELF32_R_TYPE (rela->r_info))
14527 case R_ARM_RELATIVE:
14528 return reloc_class_relative;
14529 case R_ARM_JUMP_SLOT:
14530 return reloc_class_plt;
14531 case R_ARM_COPY:
14532 return reloc_class_copy;
14533 default:
14534 return reloc_class_normal;
14538 static void
14539 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
14541 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
14544 /* Return TRUE if this is an unwinding table entry. */
14546 static bfd_boolean
14547 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
14549 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
14550 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
14554 /* Set the type and flags for an ARM section. We do this by
14555 the section name, which is a hack, but ought to work. */
14557 static bfd_boolean
14558 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
14560 const char * name;
14562 name = bfd_get_section_name (abfd, sec);
14564 if (is_arm_elf_unwind_section_name (abfd, name))
14566 hdr->sh_type = SHT_ARM_EXIDX;
14567 hdr->sh_flags |= SHF_LINK_ORDER;
14569 return TRUE;
14572 /* Handle an ARM specific section when reading an object file. This is
14573 called when bfd_section_from_shdr finds a section with an unknown
14574 type. */
14576 static bfd_boolean
14577 elf32_arm_section_from_shdr (bfd *abfd,
14578 Elf_Internal_Shdr * hdr,
14579 const char *name,
14580 int shindex)
14582 /* There ought to be a place to keep ELF backend specific flags, but
14583 at the moment there isn't one. We just keep track of the
14584 sections by their name, instead. Fortunately, the ABI gives
14585 names for all the ARM specific sections, so we will probably get
14586 away with this. */
14587 switch (hdr->sh_type)
14589 case SHT_ARM_EXIDX:
14590 case SHT_ARM_PREEMPTMAP:
14591 case SHT_ARM_ATTRIBUTES:
14592 break;
14594 default:
14595 return FALSE;
14598 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
14599 return FALSE;
14601 return TRUE;
14604 static _arm_elf_section_data *
14605 get_arm_elf_section_data (asection * sec)
14607 if (sec && sec->owner && is_arm_elf (sec->owner))
14608 return elf32_arm_section_data (sec);
14609 else
14610 return NULL;
14613 typedef struct
14615 void *flaginfo;
14616 struct bfd_link_info *info;
14617 asection *sec;
14618 int sec_shndx;
14619 int (*func) (void *, const char *, Elf_Internal_Sym *,
14620 asection *, struct elf_link_hash_entry *);
14621 } output_arch_syminfo;
14623 enum map_symbol_type
14625 ARM_MAP_ARM,
14626 ARM_MAP_THUMB,
14627 ARM_MAP_DATA
14631 /* Output a single mapping symbol. */
14633 static bfd_boolean
14634 elf32_arm_output_map_sym (output_arch_syminfo *osi,
14635 enum map_symbol_type type,
14636 bfd_vma offset)
14638 static const char *names[3] = {"$a", "$t", "$d"};
14639 Elf_Internal_Sym sym;
14641 sym.st_value = osi->sec->output_section->vma
14642 + osi->sec->output_offset
14643 + offset;
14644 sym.st_size = 0;
14645 sym.st_other = 0;
14646 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
14647 sym.st_shndx = osi->sec_shndx;
14648 sym.st_target_internal = 0;
14649 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
14650 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1;
14653 /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
14654 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
14656 static bfd_boolean
14657 elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
14658 bfd_boolean is_iplt_entry_p,
14659 union gotplt_union *root_plt,
14660 struct arm_plt_info *arm_plt)
14662 struct elf32_arm_link_hash_table *htab;
14663 bfd_vma addr, plt_header_size;
14665 if (root_plt->offset == (bfd_vma) -1)
14666 return TRUE;
14668 htab = elf32_arm_hash_table (osi->info);
14669 if (htab == NULL)
14670 return FALSE;
14672 if (is_iplt_entry_p)
14674 osi->sec = htab->root.iplt;
14675 plt_header_size = 0;
14677 else
14679 osi->sec = htab->root.splt;
14680 plt_header_size = htab->plt_header_size;
14682 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
14683 (osi->info->output_bfd, osi->sec->output_section));
14685 addr = root_plt->offset & -2;
14686 if (htab->symbian_p)
14688 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14689 return FALSE;
14690 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
14691 return FALSE;
14693 else if (htab->vxworks_p)
14695 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14696 return FALSE;
14697 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
14698 return FALSE;
14699 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
14700 return FALSE;
14701 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
14702 return FALSE;
14704 else if (htab->nacl_p)
14706 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14707 return FALSE;
14709 else
14711 bfd_boolean thumb_stub_p;
14713 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
14714 if (thumb_stub_p)
14716 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
14717 return FALSE;
14719 #ifdef FOUR_WORD_PLT
14720 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14721 return FALSE;
14722 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
14723 return FALSE;
14724 #else
14725 /* A three-word PLT with no Thumb thunk contains only Arm code,
14726 so only need to output a mapping symbol for the first PLT entry and
14727 entries with thumb thunks. */
14728 if (thumb_stub_p || addr == plt_header_size)
14730 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14731 return FALSE;
14733 #endif
14736 return TRUE;
14739 /* Output mapping symbols for PLT entries associated with H. */
14741 static bfd_boolean
14742 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
14744 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
14745 struct elf32_arm_link_hash_entry *eh;
14747 if (h->root.type == bfd_link_hash_indirect)
14748 return TRUE;
14750 if (h->root.type == bfd_link_hash_warning)
14751 /* When warning symbols are created, they **replace** the "real"
14752 entry in the hash table, thus we never get to see the real
14753 symbol in a hash traversal. So look at it now. */
14754 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14756 eh = (struct elf32_arm_link_hash_entry *) h;
14757 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
14758 &h->plt, &eh->plt);
14761 /* Output a single local symbol for a generated stub. */
14763 static bfd_boolean
14764 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
14765 bfd_vma offset, bfd_vma size)
14767 Elf_Internal_Sym sym;
14769 sym.st_value = osi->sec->output_section->vma
14770 + osi->sec->output_offset
14771 + offset;
14772 sym.st_size = size;
14773 sym.st_other = 0;
14774 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
14775 sym.st_shndx = osi->sec_shndx;
14776 sym.st_target_internal = 0;
14777 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1;
14780 static bfd_boolean
14781 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
14782 void * in_arg)
14784 struct elf32_arm_stub_hash_entry *stub_entry;
14785 asection *stub_sec;
14786 bfd_vma addr;
14787 char *stub_name;
14788 output_arch_syminfo *osi;
14789 const insn_sequence *template_sequence;
14790 enum stub_insn_type prev_type;
14791 int size;
14792 int i;
14793 enum map_symbol_type sym_type;
14795 /* Massage our args to the form they really have. */
14796 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
14797 osi = (output_arch_syminfo *) in_arg;
14799 stub_sec = stub_entry->stub_sec;
14801 /* Ensure this stub is attached to the current section being
14802 processed. */
14803 if (stub_sec != osi->sec)
14804 return TRUE;
14806 addr = (bfd_vma) stub_entry->stub_offset;
14807 stub_name = stub_entry->output_name;
14809 template_sequence = stub_entry->stub_template;
14810 switch (template_sequence[0].type)
14812 case ARM_TYPE:
14813 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, stub_entry->stub_size))
14814 return FALSE;
14815 break;
14816 case THUMB16_TYPE:
14817 case THUMB32_TYPE:
14818 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
14819 stub_entry->stub_size))
14820 return FALSE;
14821 break;
14822 default:
14823 BFD_FAIL ();
14824 return 0;
14827 prev_type = DATA_TYPE;
14828 size = 0;
14829 for (i = 0; i < stub_entry->stub_template_size; i++)
14831 switch (template_sequence[i].type)
14833 case ARM_TYPE:
14834 sym_type = ARM_MAP_ARM;
14835 break;
14837 case THUMB16_TYPE:
14838 case THUMB32_TYPE:
14839 sym_type = ARM_MAP_THUMB;
14840 break;
14842 case DATA_TYPE:
14843 sym_type = ARM_MAP_DATA;
14844 break;
14846 default:
14847 BFD_FAIL ();
14848 return FALSE;
14851 if (template_sequence[i].type != prev_type)
14853 prev_type = template_sequence[i].type;
14854 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
14855 return FALSE;
14858 switch (template_sequence[i].type)
14860 case ARM_TYPE:
14861 case THUMB32_TYPE:
14862 size += 4;
14863 break;
14865 case THUMB16_TYPE:
14866 size += 2;
14867 break;
14869 case DATA_TYPE:
14870 size += 4;
14871 break;
14873 default:
14874 BFD_FAIL ();
14875 return FALSE;
14879 return TRUE;
14882 /* Output mapping symbols for linker generated sections,
14883 and for those data-only sections that do not have a
14884 $d. */
14886 static bfd_boolean
14887 elf32_arm_output_arch_local_syms (bfd *output_bfd,
14888 struct bfd_link_info *info,
14889 void *flaginfo,
14890 int (*func) (void *, const char *,
14891 Elf_Internal_Sym *,
14892 asection *,
14893 struct elf_link_hash_entry *))
14895 output_arch_syminfo osi;
14896 struct elf32_arm_link_hash_table *htab;
14897 bfd_vma offset;
14898 bfd_size_type size;
14899 bfd *input_bfd;
14901 htab = elf32_arm_hash_table (info);
14902 if (htab == NULL)
14903 return FALSE;
14905 check_use_blx (htab);
14907 osi.flaginfo = flaginfo;
14908 osi.info = info;
14909 osi.func = func;
14911 /* Add a $d mapping symbol to data-only sections that
14912 don't have any mapping symbol. This may result in (harmless) redundant
14913 mapping symbols. */
14914 for (input_bfd = info->input_bfds;
14915 input_bfd != NULL;
14916 input_bfd = input_bfd->link_next)
14918 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
14919 for (osi.sec = input_bfd->sections;
14920 osi.sec != NULL;
14921 osi.sec = osi.sec->next)
14923 if (osi.sec->output_section != NULL
14924 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
14925 != 0)
14926 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
14927 == SEC_HAS_CONTENTS
14928 && get_arm_elf_section_data (osi.sec) != NULL
14929 && get_arm_elf_section_data (osi.sec)->mapcount == 0
14930 && osi.sec->size > 0
14931 && (osi.sec->flags & SEC_EXCLUDE) == 0)
14933 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14934 (output_bfd, osi.sec->output_section);
14935 if (osi.sec_shndx != (int)SHN_BAD)
14936 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
14941 /* ARM->Thumb glue. */
14942 if (htab->arm_glue_size > 0)
14944 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
14945 ARM2THUMB_GLUE_SECTION_NAME);
14947 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14948 (output_bfd, osi.sec->output_section);
14949 if (info->shared || htab->root.is_relocatable_executable
14950 || htab->pic_veneer)
14951 size = ARM2THUMB_PIC_GLUE_SIZE;
14952 else if (htab->use_blx)
14953 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
14954 else
14955 size = ARM2THUMB_STATIC_GLUE_SIZE;
14957 for (offset = 0; offset < htab->arm_glue_size; offset += size)
14959 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
14960 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
14964 /* Thumb->ARM glue. */
14965 if (htab->thumb_glue_size > 0)
14967 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
14968 THUMB2ARM_GLUE_SECTION_NAME);
14970 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14971 (output_bfd, osi.sec->output_section);
14972 size = THUMB2ARM_GLUE_SIZE;
14974 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
14976 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
14977 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
14981 /* ARMv4 BX veneers. */
14982 if (htab->bx_glue_size > 0)
14984 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
14985 ARM_BX_GLUE_SECTION_NAME);
14987 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14988 (output_bfd, osi.sec->output_section);
14990 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
14993 /* Long calls stubs. */
14994 if (htab->stub_bfd && htab->stub_bfd->sections)
14996 asection* stub_sec;
14998 for (stub_sec = htab->stub_bfd->sections;
14999 stub_sec != NULL;
15000 stub_sec = stub_sec->next)
15002 /* Ignore non-stub sections. */
15003 if (!strstr (stub_sec->name, STUB_SUFFIX))
15004 continue;
15006 osi.sec = stub_sec;
15008 osi.sec_shndx = _bfd_elf_section_from_bfd_section
15009 (output_bfd, osi.sec->output_section);
15011 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
15015 /* Finally, output mapping symbols for the PLT. */
15016 if (htab->root.splt && htab->root.splt->size > 0)
15018 osi.sec = htab->root.splt;
15019 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
15020 (output_bfd, osi.sec->output_section));
15022 /* Output mapping symbols for the plt header. SymbianOS does not have a
15023 plt header. */
15024 if (htab->vxworks_p)
15026 /* VxWorks shared libraries have no PLT header. */
15027 if (!info->shared)
15029 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
15030 return FALSE;
15031 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
15032 return FALSE;
15035 else if (htab->nacl_p)
15037 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
15038 return FALSE;
15040 else if (!htab->symbian_p)
15042 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
15043 return FALSE;
15044 #ifndef FOUR_WORD_PLT
15045 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
15046 return FALSE;
15047 #endif
15050 if (htab->nacl_p && htab->root.iplt && htab->root.iplt->size > 0)
15052 /* NaCl uses a special first entry in .iplt too. */
15053 osi.sec = htab->root.iplt;
15054 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
15055 (output_bfd, osi.sec->output_section));
15056 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
15057 return FALSE;
15059 if ((htab->root.splt && htab->root.splt->size > 0)
15060 || (htab->root.iplt && htab->root.iplt->size > 0))
15062 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
15063 for (input_bfd = info->input_bfds;
15064 input_bfd != NULL;
15065 input_bfd = input_bfd->link_next)
15067 struct arm_local_iplt_info **local_iplt;
15068 unsigned int i, num_syms;
15070 local_iplt = elf32_arm_local_iplt (input_bfd);
15071 if (local_iplt != NULL)
15073 num_syms = elf_symtab_hdr (input_bfd).sh_info;
15074 for (i = 0; i < num_syms; i++)
15075 if (local_iplt[i] != NULL
15076 && !elf32_arm_output_plt_map_1 (&osi, TRUE,
15077 &local_iplt[i]->root,
15078 &local_iplt[i]->arm))
15079 return FALSE;
15083 if (htab->dt_tlsdesc_plt != 0)
15085 /* Mapping symbols for the lazy tls trampoline. */
15086 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
15087 return FALSE;
15089 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
15090 htab->dt_tlsdesc_plt + 24))
15091 return FALSE;
15093 if (htab->tls_trampoline != 0)
15095 /* Mapping symbols for the tls trampoline. */
15096 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
15097 return FALSE;
15098 #ifdef FOUR_WORD_PLT
15099 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
15100 htab->tls_trampoline + 12))
15101 return FALSE;
15102 #endif
15105 return TRUE;
15108 /* Allocate target specific section data. */
15110 static bfd_boolean
15111 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
15113 if (!sec->used_by_bfd)
15115 _arm_elf_section_data *sdata;
15116 bfd_size_type amt = sizeof (*sdata);
15118 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
15119 if (sdata == NULL)
15120 return FALSE;
15121 sec->used_by_bfd = sdata;
15124 return _bfd_elf_new_section_hook (abfd, sec);
15128 /* Used to order a list of mapping symbols by address. */
15130 static int
15131 elf32_arm_compare_mapping (const void * a, const void * b)
15133 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
15134 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
15136 if (amap->vma > bmap->vma)
15137 return 1;
15138 else if (amap->vma < bmap->vma)
15139 return -1;
15140 else if (amap->type > bmap->type)
15141 /* Ensure results do not depend on the host qsort for objects with
15142 multiple mapping symbols at the same address by sorting on type
15143 after vma. */
15144 return 1;
15145 else if (amap->type < bmap->type)
15146 return -1;
15147 else
15148 return 0;
15151 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
15153 static unsigned long
15154 offset_prel31 (unsigned long addr, bfd_vma offset)
15156 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
15159 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
15160 relocations. */
15162 static void
15163 copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
15165 unsigned long first_word = bfd_get_32 (output_bfd, from);
15166 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
15168 /* High bit of first word is supposed to be zero. */
15169 if ((first_word & 0x80000000ul) == 0)
15170 first_word = offset_prel31 (first_word, offset);
15172 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
15173 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
15174 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
15175 second_word = offset_prel31 (second_word, offset);
15177 bfd_put_32 (output_bfd, first_word, to);
15178 bfd_put_32 (output_bfd, second_word, to + 4);
15181 /* Data for make_branch_to_a8_stub(). */
15183 struct a8_branch_to_stub_data
15185 asection *writing_section;
15186 bfd_byte *contents;
15190 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
15191 places for a particular section. */
15193 static bfd_boolean
15194 make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
15195 void *in_arg)
15197 struct elf32_arm_stub_hash_entry *stub_entry;
15198 struct a8_branch_to_stub_data *data;
15199 bfd_byte *contents;
15200 unsigned long branch_insn;
15201 bfd_vma veneered_insn_loc, veneer_entry_loc;
15202 bfd_signed_vma branch_offset;
15203 bfd *abfd;
15204 unsigned int target;
15206 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
15207 data = (struct a8_branch_to_stub_data *) in_arg;
15209 if (stub_entry->target_section != data->writing_section
15210 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
15211 return TRUE;
15213 contents = data->contents;
15215 veneered_insn_loc = stub_entry->target_section->output_section->vma
15216 + stub_entry->target_section->output_offset
15217 + stub_entry->target_value;
15219 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
15220 + stub_entry->stub_sec->output_offset
15221 + stub_entry->stub_offset;
15223 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
15224 veneered_insn_loc &= ~3u;
15226 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
15228 abfd = stub_entry->target_section->owner;
15229 target = stub_entry->target_value;
15231 /* We attempt to avoid this condition by setting stubs_always_after_branch
15232 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
15233 This check is just to be on the safe side... */
15234 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
15236 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub is "
15237 "allocated in unsafe location"), abfd);
15238 return FALSE;
15241 switch (stub_entry->stub_type)
15243 case arm_stub_a8_veneer_b:
15244 case arm_stub_a8_veneer_b_cond:
15245 branch_insn = 0xf0009000;
15246 goto jump24;
15248 case arm_stub_a8_veneer_blx:
15249 branch_insn = 0xf000e800;
15250 goto jump24;
15252 case arm_stub_a8_veneer_bl:
15254 unsigned int i1, j1, i2, j2, s;
15256 branch_insn = 0xf000d000;
15258 jump24:
15259 if (branch_offset < -16777216 || branch_offset > 16777214)
15261 /* There's not much we can do apart from complain if this
15262 happens. */
15263 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub out "
15264 "of range (input file too large)"), abfd);
15265 return FALSE;
15268 /* i1 = not(j1 eor s), so:
15269 not i1 = j1 eor s
15270 j1 = (not i1) eor s. */
15272 branch_insn |= (branch_offset >> 1) & 0x7ff;
15273 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
15274 i2 = (branch_offset >> 22) & 1;
15275 i1 = (branch_offset >> 23) & 1;
15276 s = (branch_offset >> 24) & 1;
15277 j1 = (!i1) ^ s;
15278 j2 = (!i2) ^ s;
15279 branch_insn |= j2 << 11;
15280 branch_insn |= j1 << 13;
15281 branch_insn |= s << 26;
15283 break;
15285 default:
15286 BFD_FAIL ();
15287 return FALSE;
15290 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[target]);
15291 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[target + 2]);
15293 return TRUE;
15296 /* Do code byteswapping. Return FALSE afterwards so that the section is
15297 written out as normal. */
15299 static bfd_boolean
15300 elf32_arm_write_section (bfd *output_bfd,
15301 struct bfd_link_info *link_info,
15302 asection *sec,
15303 bfd_byte *contents)
15305 unsigned int mapcount, errcount;
15306 _arm_elf_section_data *arm_data;
15307 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
15308 elf32_arm_section_map *map;
15309 elf32_vfp11_erratum_list *errnode;
15310 bfd_vma ptr;
15311 bfd_vma end;
15312 bfd_vma offset = sec->output_section->vma + sec->output_offset;
15313 bfd_byte tmp;
15314 unsigned int i;
15316 if (globals == NULL)
15317 return FALSE;
15319 /* If this section has not been allocated an _arm_elf_section_data
15320 structure then we cannot record anything. */
15321 arm_data = get_arm_elf_section_data (sec);
15322 if (arm_data == NULL)
15323 return FALSE;
15325 mapcount = arm_data->mapcount;
15326 map = arm_data->map;
15327 errcount = arm_data->erratumcount;
15329 if (errcount != 0)
15331 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
15333 for (errnode = arm_data->erratumlist; errnode != 0;
15334 errnode = errnode->next)
15336 bfd_vma target = errnode->vma - offset;
15338 switch (errnode->type)
15340 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
15342 bfd_vma branch_to_veneer;
15343 /* Original condition code of instruction, plus bit mask for
15344 ARM B instruction. */
15345 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
15346 | 0x0a000000;
15348 /* The instruction is before the label. */
15349 target -= 4;
15351 /* Above offset included in -4 below. */
15352 branch_to_veneer = errnode->u.b.veneer->vma
15353 - errnode->vma - 4;
15355 if ((signed) branch_to_veneer < -(1 << 25)
15356 || (signed) branch_to_veneer >= (1 << 25))
15357 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
15358 "range"), output_bfd);
15360 insn |= (branch_to_veneer >> 2) & 0xffffff;
15361 contents[endianflip ^ target] = insn & 0xff;
15362 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
15363 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
15364 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
15366 break;
15368 case VFP11_ERRATUM_ARM_VENEER:
15370 bfd_vma branch_from_veneer;
15371 unsigned int insn;
15373 /* Take size of veneer into account. */
15374 branch_from_veneer = errnode->u.v.branch->vma
15375 - errnode->vma - 12;
15377 if ((signed) branch_from_veneer < -(1 << 25)
15378 || (signed) branch_from_veneer >= (1 << 25))
15379 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
15380 "range"), output_bfd);
15382 /* Original instruction. */
15383 insn = errnode->u.v.branch->u.b.vfp_insn;
15384 contents[endianflip ^ target] = insn & 0xff;
15385 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
15386 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
15387 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
15389 /* Branch back to insn after original insn. */
15390 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
15391 contents[endianflip ^ (target + 4)] = insn & 0xff;
15392 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
15393 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
15394 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
15396 break;
15398 default:
15399 abort ();
15404 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
15406 arm_unwind_table_edit *edit_node
15407 = arm_data->u.exidx.unwind_edit_list;
15408 /* Now, sec->size is the size of the section we will write. The original
15409 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
15410 markers) was sec->rawsize. (This isn't the case if we perform no
15411 edits, then rawsize will be zero and we should use size). */
15412 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
15413 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
15414 unsigned int in_index, out_index;
15415 bfd_vma add_to_offsets = 0;
15417 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
15419 if (edit_node)
15421 unsigned int edit_index = edit_node->index;
15423 if (in_index < edit_index && in_index * 8 < input_size)
15425 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
15426 contents + in_index * 8, add_to_offsets);
15427 out_index++;
15428 in_index++;
15430 else if (in_index == edit_index
15431 || (in_index * 8 >= input_size
15432 && edit_index == UINT_MAX))
15434 switch (edit_node->type)
15436 case DELETE_EXIDX_ENTRY:
15437 in_index++;
15438 add_to_offsets += 8;
15439 break;
15441 case INSERT_EXIDX_CANTUNWIND_AT_END:
15443 asection *text_sec = edit_node->linked_section;
15444 bfd_vma text_offset = text_sec->output_section->vma
15445 + text_sec->output_offset
15446 + text_sec->size;
15447 bfd_vma exidx_offset = offset + out_index * 8;
15448 unsigned long prel31_offset;
15450 /* Note: this is meant to be equivalent to an
15451 R_ARM_PREL31 relocation. These synthetic
15452 EXIDX_CANTUNWIND markers are not relocated by the
15453 usual BFD method. */
15454 prel31_offset = (text_offset - exidx_offset)
15455 & 0x7ffffffful;
15457 /* First address we can't unwind. */
15458 bfd_put_32 (output_bfd, prel31_offset,
15459 &edited_contents[out_index * 8]);
15461 /* Code for EXIDX_CANTUNWIND. */
15462 bfd_put_32 (output_bfd, 0x1,
15463 &edited_contents[out_index * 8 + 4]);
15465 out_index++;
15466 add_to_offsets -= 8;
15468 break;
15471 edit_node = edit_node->next;
15474 else
15476 /* No more edits, copy remaining entries verbatim. */
15477 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
15478 contents + in_index * 8, add_to_offsets);
15479 out_index++;
15480 in_index++;
15484 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
15485 bfd_set_section_contents (output_bfd, sec->output_section,
15486 edited_contents,
15487 (file_ptr) sec->output_offset, sec->size);
15489 return TRUE;
15492 /* Fix code to point to Cortex-A8 erratum stubs. */
15493 if (globals->fix_cortex_a8)
15495 struct a8_branch_to_stub_data data;
15497 data.writing_section = sec;
15498 data.contents = contents;
15500 bfd_hash_traverse (&globals->stub_hash_table, make_branch_to_a8_stub,
15501 &data);
15504 if (mapcount == 0)
15505 return FALSE;
15507 if (globals->byteswap_code)
15509 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
15511 ptr = map[0].vma;
15512 for (i = 0; i < mapcount; i++)
15514 if (i == mapcount - 1)
15515 end = sec->size;
15516 else
15517 end = map[i + 1].vma;
15519 switch (map[i].type)
15521 case 'a':
15522 /* Byte swap code words. */
15523 while (ptr + 3 < end)
15525 tmp = contents[ptr];
15526 contents[ptr] = contents[ptr + 3];
15527 contents[ptr + 3] = tmp;
15528 tmp = contents[ptr + 1];
15529 contents[ptr + 1] = contents[ptr + 2];
15530 contents[ptr + 2] = tmp;
15531 ptr += 4;
15533 break;
15535 case 't':
15536 /* Byte swap code halfwords. */
15537 while (ptr + 1 < end)
15539 tmp = contents[ptr];
15540 contents[ptr] = contents[ptr + 1];
15541 contents[ptr + 1] = tmp;
15542 ptr += 2;
15544 break;
15546 case 'd':
15547 /* Leave data alone. */
15548 break;
15550 ptr = end;
15554 free (map);
15555 arm_data->mapcount = -1;
15556 arm_data->mapsize = 0;
15557 arm_data->map = NULL;
15559 return FALSE;
15562 /* Mangle thumb function symbols as we read them in. */
15564 static bfd_boolean
15565 elf32_arm_swap_symbol_in (bfd * abfd,
15566 const void *psrc,
15567 const void *pshn,
15568 Elf_Internal_Sym *dst)
15570 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
15571 return FALSE;
15573 /* New EABI objects mark thumb function symbols by setting the low bit of
15574 the address. */
15575 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
15576 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
15578 if (dst->st_value & 1)
15580 dst->st_value &= ~(bfd_vma) 1;
15581 dst->st_target_internal = ST_BRANCH_TO_THUMB;
15583 else
15584 dst->st_target_internal = ST_BRANCH_TO_ARM;
15586 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
15588 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
15589 dst->st_target_internal = ST_BRANCH_TO_THUMB;
15591 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
15592 dst->st_target_internal = ST_BRANCH_LONG;
15593 else
15594 dst->st_target_internal = ST_BRANCH_UNKNOWN;
15596 return TRUE;
15600 /* Mangle thumb function symbols as we write them out. */
15602 static void
15603 elf32_arm_swap_symbol_out (bfd *abfd,
15604 const Elf_Internal_Sym *src,
15605 void *cdst,
15606 void *shndx)
15608 Elf_Internal_Sym newsym;
15610 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
15611 of the address set, as per the new EABI. We do this unconditionally
15612 because objcopy does not set the elf header flags until after
15613 it writes out the symbol table. */
15614 if (src->st_target_internal == ST_BRANCH_TO_THUMB)
15616 newsym = *src;
15617 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
15618 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
15619 if (newsym.st_shndx != SHN_UNDEF)
15621 /* Do this only for defined symbols. At link type, the static
15622 linker will simulate the work of dynamic linker of resolving
15623 symbols and will carry over the thumbness of found symbols to
15624 the output symbol table. It's not clear how it happens, but
15625 the thumbness of undefined symbols can well be different at
15626 runtime, and writing '1' for them will be confusing for users
15627 and possibly for dynamic linker itself.
15629 newsym.st_value |= 1;
15632 src = &newsym;
15634 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
15637 /* Add the PT_ARM_EXIDX program header. */
15639 static bfd_boolean
15640 elf32_arm_modify_segment_map (bfd *abfd,
15641 struct bfd_link_info *info ATTRIBUTE_UNUSED)
15643 struct elf_segment_map *m;
15644 asection *sec;
15646 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
15647 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
15649 /* If there is already a PT_ARM_EXIDX header, then we do not
15650 want to add another one. This situation arises when running
15651 "strip"; the input binary already has the header. */
15652 m = elf_seg_map (abfd);
15653 while (m && m->p_type != PT_ARM_EXIDX)
15654 m = m->next;
15655 if (!m)
15657 m = (struct elf_segment_map *)
15658 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
15659 if (m == NULL)
15660 return FALSE;
15661 m->p_type = PT_ARM_EXIDX;
15662 m->count = 1;
15663 m->sections[0] = sec;
15665 m->next = elf_seg_map (abfd);
15666 elf_seg_map (abfd) = m;
15670 return TRUE;
15673 /* We may add a PT_ARM_EXIDX program header. */
15675 static int
15676 elf32_arm_additional_program_headers (bfd *abfd,
15677 struct bfd_link_info *info ATTRIBUTE_UNUSED)
15679 asection *sec;
15681 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
15682 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
15683 return 1;
15684 else
15685 return 0;
15688 /* Hook called by the linker routine which adds symbols from an object
15689 file. */
15691 static bfd_boolean
15692 elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
15693 Elf_Internal_Sym *sym, const char **namep,
15694 flagword *flagsp, asection **secp, bfd_vma *valp)
15696 if ((abfd->flags & DYNAMIC) == 0
15697 && (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
15698 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE))
15699 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
15701 if (elf32_arm_hash_table (info)->vxworks_p
15702 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
15703 flagsp, secp, valp))
15704 return FALSE;
15706 return TRUE;
15709 /* We use this to override swap_symbol_in and swap_symbol_out. */
15710 const struct elf_size_info elf32_arm_size_info =
15712 sizeof (Elf32_External_Ehdr),
15713 sizeof (Elf32_External_Phdr),
15714 sizeof (Elf32_External_Shdr),
15715 sizeof (Elf32_External_Rel),
15716 sizeof (Elf32_External_Rela),
15717 sizeof (Elf32_External_Sym),
15718 sizeof (Elf32_External_Dyn),
15719 sizeof (Elf_External_Note),
15722 32, 2,
15723 ELFCLASS32, EV_CURRENT,
15724 bfd_elf32_write_out_phdrs,
15725 bfd_elf32_write_shdrs_and_ehdr,
15726 bfd_elf32_checksum_contents,
15727 bfd_elf32_write_relocs,
15728 elf32_arm_swap_symbol_in,
15729 elf32_arm_swap_symbol_out,
15730 bfd_elf32_slurp_reloc_table,
15731 bfd_elf32_slurp_symbol_table,
15732 bfd_elf32_swap_dyn_in,
15733 bfd_elf32_swap_dyn_out,
15734 bfd_elf32_swap_reloc_in,
15735 bfd_elf32_swap_reloc_out,
15736 bfd_elf32_swap_reloca_in,
15737 bfd_elf32_swap_reloca_out
15740 #define ELF_ARCH bfd_arch_arm
15741 #define ELF_TARGET_ID ARM_ELF_DATA
15742 #define ELF_MACHINE_CODE EM_ARM
15743 #ifdef __QNXTARGET__
15744 #define ELF_MAXPAGESIZE 0x1000
15745 #else
15746 #define ELF_MAXPAGESIZE 0x8000
15747 #endif
15748 #define ELF_MINPAGESIZE 0x1000
15749 #define ELF_COMMONPAGESIZE 0x1000
15751 #define bfd_elf32_mkobject elf32_arm_mkobject
15753 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
15754 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
15755 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
15756 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
15757 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
15758 #define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
15759 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
15760 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
15761 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
15762 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
15763 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
15764 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
15765 #define bfd_elf32_bfd_final_link elf32_arm_final_link
15767 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
15768 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
15769 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
15770 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
15771 #define elf_backend_check_relocs elf32_arm_check_relocs
15772 #define elf_backend_relocate_section elf32_arm_relocate_section
15773 #define elf_backend_write_section elf32_arm_write_section
15774 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
15775 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
15776 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
15777 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
15778 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
15779 #define elf_backend_always_size_sections elf32_arm_always_size_sections
15780 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
15781 #define elf_backend_post_process_headers elf32_arm_post_process_headers
15782 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
15783 #define elf_backend_object_p elf32_arm_object_p
15784 #define elf_backend_fake_sections elf32_arm_fake_sections
15785 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
15786 #define elf_backend_final_write_processing elf32_arm_final_write_processing
15787 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
15788 #define elf_backend_size_info elf32_arm_size_info
15789 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
15790 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
15791 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
15792 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
15793 #define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
15795 #define elf_backend_can_refcount 1
15796 #define elf_backend_can_gc_sections 1
15797 #define elf_backend_plt_readonly 1
15798 #define elf_backend_want_got_plt 1
15799 #define elf_backend_want_plt_sym 0
15800 #define elf_backend_may_use_rel_p 1
15801 #define elf_backend_may_use_rela_p 0
15802 #define elf_backend_default_use_rela_p 0
15804 #define elf_backend_got_header_size 12
15806 #undef elf_backend_obj_attrs_vendor
15807 #define elf_backend_obj_attrs_vendor "aeabi"
15808 #undef elf_backend_obj_attrs_section
15809 #define elf_backend_obj_attrs_section ".ARM.attributes"
15810 #undef elf_backend_obj_attrs_arg_type
15811 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
15812 #undef elf_backend_obj_attrs_section_type
15813 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
15814 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
15815 #define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
15817 #include "elf32-target.h"
15819 /* Native Client targets. */
15821 #undef TARGET_LITTLE_SYM
15822 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_nacl_vec
15823 #undef TARGET_LITTLE_NAME
15824 #define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
15825 #undef TARGET_BIG_SYM
15826 #define TARGET_BIG_SYM bfd_elf32_bigarm_nacl_vec
15827 #undef TARGET_BIG_NAME
15828 #define TARGET_BIG_NAME "elf32-bigarm-nacl"
15830 /* Like elf32_arm_link_hash_table_create -- but overrides
15831 appropriately for NaCl. */
15833 static struct bfd_link_hash_table *
15834 elf32_arm_nacl_link_hash_table_create (bfd *abfd)
15836 struct bfd_link_hash_table *ret;
15838 ret = elf32_arm_link_hash_table_create (abfd);
15839 if (ret)
15841 struct elf32_arm_link_hash_table *htab
15842 = (struct elf32_arm_link_hash_table *) ret;
15844 htab->nacl_p = 1;
15846 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry);
15847 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry);
15849 return ret;
15852 /* Since NaCl doesn't use the ARM-specific unwind format, we don't
15853 really need to use elf32_arm_modify_segment_map. But we do it
15854 anyway just to reduce gratuitous differences with the stock ARM backend. */
15856 static bfd_boolean
15857 elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
15859 return (elf32_arm_modify_segment_map (abfd, info)
15860 && nacl_modify_segment_map (abfd, info));
15863 static void
15864 elf32_arm_nacl_final_write_processing (bfd *abfd, bfd_boolean linker)
15866 elf32_arm_final_write_processing (abfd, linker);
15867 nacl_final_write_processing (abfd, linker);
15871 #undef elf32_bed
15872 #define elf32_bed elf32_arm_nacl_bed
15873 #undef bfd_elf32_bfd_link_hash_table_create
15874 #define bfd_elf32_bfd_link_hash_table_create \
15875 elf32_arm_nacl_link_hash_table_create
15876 #undef elf_backend_plt_alignment
15877 #define elf_backend_plt_alignment 4
15878 #undef elf_backend_modify_segment_map
15879 #define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
15880 #undef elf_backend_modify_program_headers
15881 #define elf_backend_modify_program_headers nacl_modify_program_headers
15882 #undef elf_backend_final_write_processing
15883 #define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing
15885 #undef ELF_MAXPAGESIZE
15886 #define ELF_MAXPAGESIZE 0x10000
15887 #undef ELF_MINPAGESIZE
15888 #undef ELF_COMMONPAGESIZE
15891 #include "elf32-target.h"
15893 /* Reset to defaults. */
15894 #undef elf_backend_plt_alignment
15895 #undef elf_backend_modify_segment_map
15896 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
15897 #undef elf_backend_modify_program_headers
15898 #undef elf_backend_final_write_processing
15899 #define elf_backend_final_write_processing elf32_arm_final_write_processing
15900 #undef ELF_MINPAGESIZE
15901 #define ELF_MINPAGESIZE 0x1000
15902 #undef ELF_COMMONPAGESIZE
15903 #define ELF_COMMONPAGESIZE 0x1000
15906 /* VxWorks Targets. */
15908 #undef TARGET_LITTLE_SYM
15909 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
15910 #undef TARGET_LITTLE_NAME
15911 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
15912 #undef TARGET_BIG_SYM
15913 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
15914 #undef TARGET_BIG_NAME
15915 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
15917 /* Like elf32_arm_link_hash_table_create -- but overrides
15918 appropriately for VxWorks. */
15920 static struct bfd_link_hash_table *
15921 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
15923 struct bfd_link_hash_table *ret;
15925 ret = elf32_arm_link_hash_table_create (abfd);
15926 if (ret)
15928 struct elf32_arm_link_hash_table *htab
15929 = (struct elf32_arm_link_hash_table *) ret;
15930 htab->use_rel = 0;
15931 htab->vxworks_p = 1;
15933 return ret;
15936 static void
15937 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
15939 elf32_arm_final_write_processing (abfd, linker);
15940 elf_vxworks_final_write_processing (abfd, linker);
15943 #undef elf32_bed
15944 #define elf32_bed elf32_arm_vxworks_bed
15946 #undef bfd_elf32_bfd_link_hash_table_create
15947 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
15948 #undef elf_backend_final_write_processing
15949 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
15950 #undef elf_backend_emit_relocs
15951 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
15953 #undef elf_backend_may_use_rel_p
15954 #define elf_backend_may_use_rel_p 0
15955 #undef elf_backend_may_use_rela_p
15956 #define elf_backend_may_use_rela_p 1
15957 #undef elf_backend_default_use_rela_p
15958 #define elf_backend_default_use_rela_p 1
15959 #undef elf_backend_want_plt_sym
15960 #define elf_backend_want_plt_sym 1
15961 #undef ELF_MAXPAGESIZE
15962 #define ELF_MAXPAGESIZE 0x1000
15964 #include "elf32-target.h"
15967 /* Merge backend specific data from an object file to the output
15968 object file when linking. */
15970 static bfd_boolean
15971 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
15973 flagword out_flags;
15974 flagword in_flags;
15975 bfd_boolean flags_compatible = TRUE;
15976 asection *sec;
15978 /* Check if we have the same endianness. */
15979 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
15980 return FALSE;
15982 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
15983 return TRUE;
15985 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
15986 return FALSE;
15988 /* The input BFD must have had its flags initialised. */
15989 /* The following seems bogus to me -- The flags are initialized in
15990 the assembler but I don't think an elf_flags_init field is
15991 written into the object. */
15992 /* BFD_ASSERT (elf_flags_init (ibfd)); */
15994 in_flags = elf_elfheader (ibfd)->e_flags;
15995 out_flags = elf_elfheader (obfd)->e_flags;
15997 /* In theory there is no reason why we couldn't handle this. However
15998 in practice it isn't even close to working and there is no real
15999 reason to want it. */
16000 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
16001 && !(ibfd->flags & DYNAMIC)
16002 && (in_flags & EF_ARM_BE8))
16004 _bfd_error_handler (_("error: %B is already in final BE8 format"),
16005 ibfd);
16006 return FALSE;
16009 if (!elf_flags_init (obfd))
16011 /* If the input is the default architecture and had the default
16012 flags then do not bother setting the flags for the output
16013 architecture, instead allow future merges to do this. If no
16014 future merges ever set these flags then they will retain their
16015 uninitialised values, which surprise surprise, correspond
16016 to the default values. */
16017 if (bfd_get_arch_info (ibfd)->the_default
16018 && elf_elfheader (ibfd)->e_flags == 0)
16019 return TRUE;
16021 elf_flags_init (obfd) = TRUE;
16022 elf_elfheader (obfd)->e_flags = in_flags;
16024 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
16025 && bfd_get_arch_info (obfd)->the_default)
16026 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
16028 return TRUE;
16031 /* Determine what should happen if the input ARM architecture
16032 does not match the output ARM architecture. */
16033 if (! bfd_arm_merge_machines (ibfd, obfd))
16034 return FALSE;
16036 /* Identical flags must be compatible. */
16037 if (in_flags == out_flags)
16038 return TRUE;
16040 /* Check to see if the input BFD actually contains any sections. If
16041 not, its flags may not have been initialised either, but it
16042 cannot actually cause any incompatiblity. Do not short-circuit
16043 dynamic objects; their section list may be emptied by
16044 elf_link_add_object_symbols.
16046 Also check to see if there are no code sections in the input.
16047 In this case there is no need to check for code specific flags.
16048 XXX - do we need to worry about floating-point format compatability
16049 in data sections ? */
16050 if (!(ibfd->flags & DYNAMIC))
16052 bfd_boolean null_input_bfd = TRUE;
16053 bfd_boolean only_data_sections = TRUE;
16055 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
16057 /* Ignore synthetic glue sections. */
16058 if (strcmp (sec->name, ".glue_7")
16059 && strcmp (sec->name, ".glue_7t"))
16061 if ((bfd_get_section_flags (ibfd, sec)
16062 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
16063 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
16064 only_data_sections = FALSE;
16066 null_input_bfd = FALSE;
16067 break;
16071 if (null_input_bfd || only_data_sections)
16072 return TRUE;
16075 /* Complain about various flag mismatches. */
16076 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
16077 EF_ARM_EABI_VERSION (out_flags)))
16079 _bfd_error_handler
16080 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
16081 ibfd, obfd,
16082 (in_flags & EF_ARM_EABIMASK) >> 24,
16083 (out_flags & EF_ARM_EABIMASK) >> 24);
16084 return FALSE;
16087 /* Not sure what needs to be checked for EABI versions >= 1. */
16088 /* VxWorks libraries do not use these flags. */
16089 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
16090 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
16091 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
16093 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
16095 _bfd_error_handler
16096 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
16097 ibfd, obfd,
16098 in_flags & EF_ARM_APCS_26 ? 26 : 32,
16099 out_flags & EF_ARM_APCS_26 ? 26 : 32);
16100 flags_compatible = FALSE;
16103 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
16105 if (in_flags & EF_ARM_APCS_FLOAT)
16106 _bfd_error_handler
16107 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
16108 ibfd, obfd);
16109 else
16110 _bfd_error_handler
16111 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
16112 ibfd, obfd);
16114 flags_compatible = FALSE;
16117 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
16119 if (in_flags & EF_ARM_VFP_FLOAT)
16120 _bfd_error_handler
16121 (_("error: %B uses VFP instructions, whereas %B does not"),
16122 ibfd, obfd);
16123 else
16124 _bfd_error_handler
16125 (_("error: %B uses FPA instructions, whereas %B does not"),
16126 ibfd, obfd);
16128 flags_compatible = FALSE;
16131 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
16133 if (in_flags & EF_ARM_MAVERICK_FLOAT)
16134 _bfd_error_handler
16135 (_("error: %B uses Maverick instructions, whereas %B does not"),
16136 ibfd, obfd);
16137 else
16138 _bfd_error_handler
16139 (_("error: %B does not use Maverick instructions, whereas %B does"),
16140 ibfd, obfd);
16142 flags_compatible = FALSE;
16145 #ifdef EF_ARM_SOFT_FLOAT
16146 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
16148 /* We can allow interworking between code that is VFP format
16149 layout, and uses either soft float or integer regs for
16150 passing floating point arguments and results. We already
16151 know that the APCS_FLOAT flags match; similarly for VFP
16152 flags. */
16153 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
16154 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
16156 if (in_flags & EF_ARM_SOFT_FLOAT)
16157 _bfd_error_handler
16158 (_("error: %B uses software FP, whereas %B uses hardware FP"),
16159 ibfd, obfd);
16160 else
16161 _bfd_error_handler
16162 (_("error: %B uses hardware FP, whereas %B uses software FP"),
16163 ibfd, obfd);
16165 flags_compatible = FALSE;
16168 #endif
16170 /* Interworking mismatch is only a warning. */
16171 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
16173 if (in_flags & EF_ARM_INTERWORK)
16175 _bfd_error_handler
16176 (_("Warning: %B supports interworking, whereas %B does not"),
16177 ibfd, obfd);
16179 else
16181 _bfd_error_handler
16182 (_("Warning: %B does not support interworking, whereas %B does"),
16183 ibfd, obfd);
16188 return flags_compatible;
16192 /* Symbian OS Targets. */
16194 #undef TARGET_LITTLE_SYM
16195 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
16196 #undef TARGET_LITTLE_NAME
16197 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
16198 #undef TARGET_BIG_SYM
16199 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
16200 #undef TARGET_BIG_NAME
16201 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
16203 /* Like elf32_arm_link_hash_table_create -- but overrides
16204 appropriately for Symbian OS. */
16206 static struct bfd_link_hash_table *
16207 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
16209 struct bfd_link_hash_table *ret;
16211 ret = elf32_arm_link_hash_table_create (abfd);
16212 if (ret)
16214 struct elf32_arm_link_hash_table *htab
16215 = (struct elf32_arm_link_hash_table *)ret;
16216 /* There is no PLT header for Symbian OS. */
16217 htab->plt_header_size = 0;
16218 /* The PLT entries are each one instruction and one word. */
16219 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
16220 htab->symbian_p = 1;
16221 /* Symbian uses armv5t or above, so use_blx is always true. */
16222 htab->use_blx = 1;
16223 htab->root.is_relocatable_executable = 1;
16225 return ret;
16228 static const struct bfd_elf_special_section
16229 elf32_arm_symbian_special_sections[] =
16231 /* In a BPABI executable, the dynamic linking sections do not go in
16232 the loadable read-only segment. The post-linker may wish to
16233 refer to these sections, but they are not part of the final
16234 program image. */
16235 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
16236 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
16237 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
16238 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
16239 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
16240 /* These sections do not need to be writable as the SymbianOS
16241 postlinker will arrange things so that no dynamic relocation is
16242 required. */
16243 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
16244 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
16245 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
16246 { NULL, 0, 0, 0, 0 }
16249 static void
16250 elf32_arm_symbian_begin_write_processing (bfd *abfd,
16251 struct bfd_link_info *link_info)
16253 /* BPABI objects are never loaded directly by an OS kernel; they are
16254 processed by a postlinker first, into an OS-specific format. If
16255 the D_PAGED bit is set on the file, BFD will align segments on
16256 page boundaries, so that an OS can directly map the file. With
16257 BPABI objects, that just results in wasted space. In addition,
16258 because we clear the D_PAGED bit, map_sections_to_segments will
16259 recognize that the program headers should not be mapped into any
16260 loadable segment. */
16261 abfd->flags &= ~D_PAGED;
16262 elf32_arm_begin_write_processing (abfd, link_info);
16265 static bfd_boolean
16266 elf32_arm_symbian_modify_segment_map (bfd *abfd,
16267 struct bfd_link_info *info)
16269 struct elf_segment_map *m;
16270 asection *dynsec;
16272 /* BPABI shared libraries and executables should have a PT_DYNAMIC
16273 segment. However, because the .dynamic section is not marked
16274 with SEC_LOAD, the generic ELF code will not create such a
16275 segment. */
16276 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
16277 if (dynsec)
16279 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
16280 if (m->p_type == PT_DYNAMIC)
16281 break;
16283 if (m == NULL)
16285 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
16286 m->next = elf_seg_map (abfd);
16287 elf_seg_map (abfd) = m;
16291 /* Also call the generic arm routine. */
16292 return elf32_arm_modify_segment_map (abfd, info);
16295 /* Return address for Ith PLT stub in section PLT, for relocation REL
16296 or (bfd_vma) -1 if it should not be included. */
16298 static bfd_vma
16299 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
16300 const arelent *rel ATTRIBUTE_UNUSED)
16302 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
16306 #undef elf32_bed
16307 #define elf32_bed elf32_arm_symbian_bed
16309 /* The dynamic sections are not allocated on SymbianOS; the postlinker
16310 will process them and then discard them. */
16311 #undef ELF_DYNAMIC_SEC_FLAGS
16312 #define ELF_DYNAMIC_SEC_FLAGS \
16313 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
16315 #undef elf_backend_emit_relocs
16317 #undef bfd_elf32_bfd_link_hash_table_create
16318 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
16319 #undef elf_backend_special_sections
16320 #define elf_backend_special_sections elf32_arm_symbian_special_sections
16321 #undef elf_backend_begin_write_processing
16322 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
16323 #undef elf_backend_final_write_processing
16324 #define elf_backend_final_write_processing elf32_arm_final_write_processing
16326 #undef elf_backend_modify_segment_map
16327 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
16329 /* There is no .got section for BPABI objects, and hence no header. */
16330 #undef elf_backend_got_header_size
16331 #define elf_backend_got_header_size 0
16333 /* Similarly, there is no .got.plt section. */
16334 #undef elf_backend_want_got_plt
16335 #define elf_backend_want_got_plt 0
16337 #undef elf_backend_plt_sym_val
16338 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
16340 #undef elf_backend_may_use_rel_p
16341 #define elf_backend_may_use_rel_p 1
16342 #undef elf_backend_may_use_rela_p
16343 #define elf_backend_may_use_rela_p 0
16344 #undef elf_backend_default_use_rela_p
16345 #define elf_backend_default_use_rela_p 0
16346 #undef elf_backend_want_plt_sym
16347 #define elf_backend_want_plt_sym 0
16348 #undef ELF_MAXPAGESIZE
16349 #define ELF_MAXPAGESIZE 0x8000
16351 #include "elf32-target.h"