merge from gcc
[gdb/gnu.git] / bfd / coff-h8300.c
blob1e3427502ca1776382d44f5a09ccd2c7664b8601
1 /* BFD back-end for Renesas H8/300 COFF binaries.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2012
4 Free Software Foundation, Inc.
5 Written by Steve Chamberlain, <sac@cygnus.com>.
7 This file is part of BFD, the Binary File Descriptor library.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
24 #include "sysdep.h"
25 #include "bfd.h"
26 #include "libbfd.h"
27 #include "bfdlink.h"
28 #include "genlink.h"
29 #include "coff/h8300.h"
30 #include "coff/internal.h"
31 #include "libcoff.h"
32 #include "libiberty.h"
34 #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER (1)
36 /* We derive a hash table from the basic BFD hash table to
37 hold entries in the function vector. Aside from the
38 info stored by the basic hash table, we need the offset
39 of a particular entry within the hash table as well as
40 the offset where we'll add the next entry. */
42 struct funcvec_hash_entry
44 /* The basic hash table entry. */
45 struct bfd_hash_entry root;
47 /* The offset within the vectors section where
48 this entry lives. */
49 bfd_vma offset;
52 struct funcvec_hash_table
54 /* The basic hash table. */
55 struct bfd_hash_table root;
57 bfd *abfd;
59 /* Offset at which we'll add the next entry. */
60 unsigned int offset;
64 /* To lookup a value in the function vector hash table. */
65 #define funcvec_hash_lookup(table, string, create, copy) \
66 ((struct funcvec_hash_entry *) \
67 bfd_hash_lookup (&(table)->root, (string), (create), (copy)))
69 /* The derived h8300 COFF linker table. Note it's derived from
70 the generic linker hash table, not the COFF backend linker hash
71 table! We use this to attach additional data structures we
72 need while linking on the h8300. */
73 struct h8300_coff_link_hash_table {
74 /* The main hash table. */
75 struct generic_link_hash_table root;
77 /* Section for the vectors table. This gets attached to a
78 random input bfd, we keep it here for easy access. */
79 asection *vectors_sec;
81 /* Hash table of the functions we need to enter into the function
82 vector. */
83 struct funcvec_hash_table *funcvec_hash_table;
86 static struct bfd_link_hash_table *h8300_coff_link_hash_table_create (bfd *);
88 /* Get the H8/300 COFF linker hash table from a link_info structure. */
90 #define h8300_coff_hash_table(p) \
91 ((struct h8300_coff_link_hash_table *) ((coff_hash_table (p))))
93 /* Initialize fields within a funcvec hash table entry. Called whenever
94 a new entry is added to the funcvec hash table. */
96 static struct bfd_hash_entry *
97 funcvec_hash_newfunc (struct bfd_hash_entry *entry,
98 struct bfd_hash_table *gen_table,
99 const char *string)
101 struct funcvec_hash_entry *ret;
102 struct funcvec_hash_table *table;
104 ret = (struct funcvec_hash_entry *) entry;
105 table = (struct funcvec_hash_table *) gen_table;
107 /* Allocate the structure if it has not already been allocated by a
108 subclass. */
109 if (ret == NULL)
110 ret = ((struct funcvec_hash_entry *)
111 bfd_hash_allocate (gen_table,
112 sizeof (struct funcvec_hash_entry)));
113 if (ret == NULL)
114 return NULL;
116 /* Call the allocation method of the superclass. */
117 ret = ((struct funcvec_hash_entry *)
118 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, gen_table, string));
120 if (ret == NULL)
121 return NULL;
123 /* Note where this entry will reside in the function vector table. */
124 ret->offset = table->offset;
126 /* Bump the offset at which we store entries in the function
127 vector. We'd like to bump up the size of the vectors section,
128 but it's not easily available here. */
129 switch (bfd_get_mach (table->abfd))
131 case bfd_mach_h8300:
132 case bfd_mach_h8300hn:
133 case bfd_mach_h8300sn:
134 table->offset += 2;
135 break;
136 case bfd_mach_h8300h:
137 case bfd_mach_h8300s:
138 table->offset += 4;
139 break;
140 default:
141 return NULL;
144 /* Everything went OK. */
145 return (struct bfd_hash_entry *) ret;
148 /* Initialize the function vector hash table. */
150 static bfd_boolean
151 funcvec_hash_table_init (struct funcvec_hash_table *table,
152 bfd *abfd,
153 struct bfd_hash_entry *(*newfunc)
154 (struct bfd_hash_entry *,
155 struct bfd_hash_table *,
156 const char *),
157 unsigned int entsize)
159 /* Initialize our local fields, then call the generic initialization
160 routine. */
161 table->offset = 0;
162 table->abfd = abfd;
163 return (bfd_hash_table_init (&table->root, newfunc, entsize));
166 /* Create the derived linker hash table. We use a derived hash table
167 basically to hold "static" information during an H8/300 coff link
168 without using static variables. */
170 static struct bfd_link_hash_table *
171 h8300_coff_link_hash_table_create (bfd *abfd)
173 struct h8300_coff_link_hash_table *ret;
174 bfd_size_type amt = sizeof (struct h8300_coff_link_hash_table);
176 ret = (struct h8300_coff_link_hash_table *) bfd_zmalloc (amt);
177 if (ret == NULL)
178 return NULL;
179 if (!_bfd_link_hash_table_init (&ret->root.root, abfd,
180 _bfd_generic_link_hash_newfunc,
181 sizeof (struct generic_link_hash_entry)))
183 free (ret);
184 return NULL;
187 return &ret->root.root;
190 /* Special handling for H8/300 relocs.
191 We only come here for pcrel stuff and return normally if not an -r link.
192 When doing -r, we can't do any arithmetic for the pcrel stuff, because
193 the code in reloc.c assumes that we can manipulate the targets of
194 the pcrel branches. This isn't so, since the H8/300 can do relaxing,
195 which means that the gap after the instruction may not be enough to
196 contain the offset required for the branch, so we have to use only
197 the addend until the final link. */
199 static bfd_reloc_status_type
200 special (bfd * abfd ATTRIBUTE_UNUSED,
201 arelent * reloc_entry ATTRIBUTE_UNUSED,
202 asymbol * symbol ATTRIBUTE_UNUSED,
203 void * data ATTRIBUTE_UNUSED,
204 asection * input_section ATTRIBUTE_UNUSED,
205 bfd * output_bfd,
206 char ** error_message ATTRIBUTE_UNUSED)
208 if (output_bfd == (bfd *) NULL)
209 return bfd_reloc_continue;
211 /* Adjust the reloc address to that in the output section. */
212 reloc_entry->address += input_section->output_offset;
213 return bfd_reloc_ok;
216 static reloc_howto_type howto_table[] =
218 HOWTO (R_RELBYTE, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "8", FALSE, 0x000000ff, 0x000000ff, FALSE),
219 HOWTO (R_RELWORD, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "16", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
220 HOWTO (R_RELLONG, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, special, "32", FALSE, 0xffffffff, 0xffffffff, FALSE),
221 HOWTO (R_PCRBYTE, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "DISP8", FALSE, 0x000000ff, 0x000000ff, TRUE),
222 HOWTO (R_PCRWORD, 0, 1, 16, TRUE, 0, complain_overflow_signed, special, "DISP16", FALSE, 0x0000ffff, 0x0000ffff, TRUE),
223 HOWTO (R_PCRLONG, 0, 2, 32, TRUE, 0, complain_overflow_signed, special, "DISP32", FALSE, 0xffffffff, 0xffffffff, TRUE),
224 HOWTO (R_MOV16B1, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "relaxable mov.b:16", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
225 HOWTO (R_MOV16B2, 0, 1, 8, FALSE, 0, complain_overflow_bitfield, special, "relaxed mov.b:16", FALSE, 0x000000ff, 0x000000ff, FALSE),
226 HOWTO (R_JMP1, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "16/pcrel", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
227 HOWTO (R_JMP2, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "pcrecl/16", FALSE, 0x000000ff, 0x000000ff, FALSE),
228 HOWTO (R_JMPL1, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, special, "24/pcrell", FALSE, 0x00ffffff, 0x00ffffff, FALSE),
229 HOWTO (R_JMPL2, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "pc8/24", FALSE, 0x000000ff, 0x000000ff, FALSE),
230 HOWTO (R_MOV24B1, 0, 1, 32, FALSE, 0, complain_overflow_bitfield, special, "relaxable mov.b:24", FALSE, 0xffffffff, 0xffffffff, FALSE),
231 HOWTO (R_MOV24B2, 0, 1, 8, FALSE, 0, complain_overflow_bitfield, special, "relaxed mov.b:24", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
233 /* An indirect reference to a function. This causes the function's address
234 to be added to the function vector in lo-mem and puts the address of
235 the function vector's entry in the jsr instruction. */
236 HOWTO (R_MEM_INDIRECT, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "8/indirect", FALSE, 0x000000ff, 0x000000ff, FALSE),
238 /* Internal reloc for relaxing. This is created when a 16-bit pc-relative
239 branch is turned into an 8-bit pc-relative branch. */
240 HOWTO (R_PCRWORD_B, 0, 0, 8, TRUE, 0, complain_overflow_bitfield, special, "relaxed bCC:16", FALSE, 0x000000ff, 0x000000ff, FALSE),
242 HOWTO (R_MOVL1, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,special, "32/24 relaxable move", FALSE, 0xffffffff, 0xffffffff, FALSE),
244 HOWTO (R_MOVL2, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "32/24 relaxed move", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
246 HOWTO (R_BCC_INV, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "DISP8 inverted", FALSE, 0x000000ff, 0x000000ff, TRUE),
248 HOWTO (R_JMP_DEL, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "Deleted jump", FALSE, 0x000000ff, 0x000000ff, TRUE),
251 /* Turn a howto into a reloc number. */
253 #define SELECT_RELOC(x,howto) \
254 { x.r_type = select_reloc (howto); }
256 #define BADMAG(x) (H8300BADMAG (x) && H8300HBADMAG (x) && H8300SBADMAG (x) \
257 && H8300HNBADMAG(x) && H8300SNBADMAG(x))
258 #define H8300 1 /* Customize coffcode.h */
259 #define __A_MAGIC_SET__
261 /* Code to swap in the reloc. */
262 #define SWAP_IN_RELOC_OFFSET H_GET_32
263 #define SWAP_OUT_RELOC_OFFSET H_PUT_32
264 #define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \
265 dst->r_stuff[0] = 'S'; \
266 dst->r_stuff[1] = 'C';
268 static int
269 select_reloc (reloc_howto_type *howto)
271 return howto->type;
274 /* Code to turn a r_type into a howto ptr, uses the above howto table. */
276 static void
277 rtype2howto (arelent *internal, struct internal_reloc *dst)
279 switch (dst->r_type)
281 case R_RELBYTE:
282 internal->howto = howto_table + 0;
283 break;
284 case R_RELWORD:
285 internal->howto = howto_table + 1;
286 break;
287 case R_RELLONG:
288 internal->howto = howto_table + 2;
289 break;
290 case R_PCRBYTE:
291 internal->howto = howto_table + 3;
292 break;
293 case R_PCRWORD:
294 internal->howto = howto_table + 4;
295 break;
296 case R_PCRLONG:
297 internal->howto = howto_table + 5;
298 break;
299 case R_MOV16B1:
300 internal->howto = howto_table + 6;
301 break;
302 case R_MOV16B2:
303 internal->howto = howto_table + 7;
304 break;
305 case R_JMP1:
306 internal->howto = howto_table + 8;
307 break;
308 case R_JMP2:
309 internal->howto = howto_table + 9;
310 break;
311 case R_JMPL1:
312 internal->howto = howto_table + 10;
313 break;
314 case R_JMPL2:
315 internal->howto = howto_table + 11;
316 break;
317 case R_MOV24B1:
318 internal->howto = howto_table + 12;
319 break;
320 case R_MOV24B2:
321 internal->howto = howto_table + 13;
322 break;
323 case R_MEM_INDIRECT:
324 internal->howto = howto_table + 14;
325 break;
326 case R_PCRWORD_B:
327 internal->howto = howto_table + 15;
328 break;
329 case R_MOVL1:
330 internal->howto = howto_table + 16;
331 break;
332 case R_MOVL2:
333 internal->howto = howto_table + 17;
334 break;
335 case R_BCC_INV:
336 internal->howto = howto_table + 18;
337 break;
338 case R_JMP_DEL:
339 internal->howto = howto_table + 19;
340 break;
341 default:
342 abort ();
343 break;
347 #define RTYPE2HOWTO(internal, relocentry) rtype2howto (internal, relocentry)
349 /* Perform any necessary magic to the addend in a reloc entry. */
351 #define CALC_ADDEND(abfd, symbol, ext_reloc, cache_ptr) \
352 cache_ptr->addend = ext_reloc.r_offset;
354 #define RELOC_PROCESSING(relent,reloc,symbols,abfd,section) \
355 reloc_processing (relent, reloc, symbols, abfd, section)
357 static void
358 reloc_processing (arelent *relent, struct internal_reloc *reloc,
359 asymbol **symbols, bfd *abfd, asection *section)
361 relent->address = reloc->r_vaddr;
362 rtype2howto (relent, reloc);
364 if (((int) reloc->r_symndx) > 0)
365 relent->sym_ptr_ptr = symbols + obj_convert (abfd)[reloc->r_symndx];
366 else
367 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
369 relent->addend = reloc->r_offset;
370 relent->address -= section->vma;
373 static bfd_boolean
374 h8300_symbol_address_p (bfd *abfd, asection *input_section, bfd_vma address)
376 asymbol **s;
378 s = _bfd_generic_link_get_symbols (abfd);
379 BFD_ASSERT (s != (asymbol **) NULL);
381 /* Search all the symbols for one in INPUT_SECTION with
382 address ADDRESS. */
383 while (*s)
385 asymbol *p = *s;
387 if (p->section == input_section
388 && (input_section->output_section->vma
389 + input_section->output_offset
390 + p->value) == address)
391 return TRUE;
392 s++;
394 return FALSE;
397 /* If RELOC represents a relaxable instruction/reloc, change it into
398 the relaxed reloc, notify the linker that symbol addresses
399 have changed (bfd_perform_slip) and return how much the current
400 section has shrunk by.
402 FIXME: Much of this code has knowledge of the ordering of entries
403 in the howto table. This needs to be fixed. */
405 static int
406 h8300_reloc16_estimate (bfd *abfd, asection *input_section, arelent *reloc,
407 unsigned int shrink, struct bfd_link_info *link_info)
409 bfd_vma value;
410 bfd_vma dot;
411 bfd_vma gap;
412 static asection *last_input_section = NULL;
413 static arelent *last_reloc = NULL;
415 /* The address of the thing to be relocated will have moved back by
416 the size of the shrink - but we don't change reloc->address here,
417 since we need it to know where the relocation lives in the source
418 uncooked section. */
419 bfd_vma address = reloc->address - shrink;
421 if (input_section != last_input_section)
422 last_reloc = NULL;
424 /* Only examine the relocs which might be relaxable. */
425 switch (reloc->howto->type)
427 /* This is the 16-/24-bit absolute branch which could become an
428 8-bit pc-relative branch. */
429 case R_JMP1:
430 case R_JMPL1:
431 /* Get the address of the target of this branch. */
432 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
434 /* Get the address of the next instruction (not the reloc). */
435 dot = (input_section->output_section->vma
436 + input_section->output_offset + address);
438 /* Adjust for R_JMP1 vs R_JMPL1. */
439 dot += (reloc->howto->type == R_JMP1 ? 1 : 2);
441 /* Compute the distance from this insn to the branch target. */
442 gap = value - dot;
444 /* If the distance is within -128..+128 inclusive, then we can relax
445 this jump. +128 is valid since the target will move two bytes
446 closer if we do relax this branch. */
447 if ((int) gap >= -128 && (int) gap <= 128)
449 bfd_byte code;
451 if (!bfd_get_section_contents (abfd, input_section, & code,
452 reloc->address, 1))
453 break;
454 code = bfd_get_8 (abfd, & code);
456 /* It's possible we may be able to eliminate this branch entirely;
457 if the previous instruction is a branch around this instruction,
458 and there's no label at this instruction, then we can reverse
459 the condition on the previous branch and eliminate this jump.
461 original: new:
462 bCC lab1 bCC' lab2
463 jmp lab2
464 lab1: lab1:
466 This saves 4 bytes instead of two, and should be relatively
467 common.
469 Only perform this optimisation for jumps (code 0x5a) not
470 subroutine calls, as otherwise it could transform:
472 mov.w r0,r0
473 beq .L1
474 jsr @_bar
475 .L1: rts
476 _bar: rts
477 into:
478 mov.w r0,r0
479 bne _bar
481 _bar: rts
483 which changes the call (jsr) into a branch (bne). */
484 if (code == 0x5a
485 && gap <= 126
486 && last_reloc
487 && last_reloc->howto->type == R_PCRBYTE)
489 bfd_vma last_value;
490 last_value = bfd_coff_reloc16_get_value (last_reloc, link_info,
491 input_section) + 1;
493 if (last_value == dot + 2
494 && last_reloc->address + 1 == reloc->address
495 && !h8300_symbol_address_p (abfd, input_section, dot - 2))
497 reloc->howto = howto_table + 19;
498 last_reloc->howto = howto_table + 18;
499 last_reloc->sym_ptr_ptr = reloc->sym_ptr_ptr;
500 last_reloc->addend = reloc->addend;
501 shrink += 4;
502 bfd_perform_slip (abfd, 4, input_section, address);
503 break;
507 /* Change the reloc type. */
508 reloc->howto = reloc->howto + 1;
510 /* This shrinks this section by two bytes. */
511 shrink += 2;
512 bfd_perform_slip (abfd, 2, input_section, address);
514 break;
516 /* This is the 16-bit pc-relative branch which could become an 8-bit
517 pc-relative branch. */
518 case R_PCRWORD:
519 /* Get the address of the target of this branch, add one to the value
520 because the addend field in PCrel jumps is off by -1. */
521 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section) + 1;
523 /* Get the address of the next instruction if we were to relax. */
524 dot = input_section->output_section->vma +
525 input_section->output_offset + address;
527 /* Compute the distance from this insn to the branch target. */
528 gap = value - dot;
530 /* If the distance is within -128..+128 inclusive, then we can relax
531 this jump. +128 is valid since the target will move two bytes
532 closer if we do relax this branch. */
533 if ((int) gap >= -128 && (int) gap <= 128)
535 /* Change the reloc type. */
536 reloc->howto = howto_table + 15;
538 /* This shrinks this section by two bytes. */
539 shrink += 2;
540 bfd_perform_slip (abfd, 2, input_section, address);
542 break;
544 /* This is a 16-bit absolute address in a mov.b insn, which can
545 become an 8-bit absolute address if it's in the right range. */
546 case R_MOV16B1:
547 /* Get the address of the data referenced by this mov.b insn. */
548 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
549 value = bfd_h8300_pad_address (abfd, value);
551 /* If the address is in the top 256 bytes of the address space
552 then we can relax this instruction. */
553 if (value >= 0xffffff00u)
555 /* Change the reloc type. */
556 reloc->howto = reloc->howto + 1;
558 /* This shrinks this section by two bytes. */
559 shrink += 2;
560 bfd_perform_slip (abfd, 2, input_section, address);
562 break;
564 /* Similarly for a 24-bit absolute address in a mov.b. Note that
565 if we can't relax this into an 8-bit absolute, we'll fall through
566 and try to relax it into a 16-bit absolute. */
567 case R_MOV24B1:
568 /* Get the address of the data referenced by this mov.b insn. */
569 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
570 value = bfd_h8300_pad_address (abfd, value);
572 if (value >= 0xffffff00u)
574 /* Change the reloc type. */
575 reloc->howto = reloc->howto + 1;
577 /* This shrinks this section by four bytes. */
578 shrink += 4;
579 bfd_perform_slip (abfd, 4, input_section, address);
581 /* Done with this reloc. */
582 break;
585 /* FALLTHROUGH and try to turn the 24-/32-bit reloc into a 16-bit
586 reloc. */
588 /* This is a 24-/32-bit absolute address in a mov insn, which can
589 become an 16-bit absolute address if it's in the right range. */
590 case R_MOVL1:
591 /* Get the address of the data referenced by this mov insn. */
592 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
593 value = bfd_h8300_pad_address (abfd, value);
595 /* If the address is a sign-extended 16-bit value then we can
596 relax this instruction. */
597 if (value <= 0x7fff || value >= 0xffff8000u)
599 /* Change the reloc type. */
600 reloc->howto = howto_table + 17;
602 /* This shrinks this section by two bytes. */
603 shrink += 2;
604 bfd_perform_slip (abfd, 2, input_section, address);
606 break;
608 /* No other reloc types represent relaxing opportunities. */
609 default:
610 break;
613 last_reloc = reloc;
614 last_input_section = input_section;
615 return shrink;
618 /* Handle relocations for the H8/300, including relocs for relaxed
619 instructions.
621 FIXME: Not all relocations check for overflow! */
623 static void
624 h8300_reloc16_extra_cases (bfd *abfd, struct bfd_link_info *link_info,
625 struct bfd_link_order *link_order, arelent *reloc,
626 bfd_byte *data, unsigned int *src_ptr,
627 unsigned int *dst_ptr)
629 unsigned int src_address = *src_ptr;
630 unsigned int dst_address = *dst_ptr;
631 asection *input_section = link_order->u.indirect.section;
632 bfd_vma value;
633 bfd_vma dot;
634 int gap, tmp;
635 unsigned char temp_code;
637 switch (reloc->howto->type)
639 /* Generic 8-bit pc-relative relocation. */
640 case R_PCRBYTE:
641 /* Get the address of the target of this branch. */
642 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
644 dot = (input_section->output_offset
645 + dst_address
646 + link_order->u.indirect.section->output_section->vma);
648 gap = value - dot;
650 /* Sanity check. */
651 if (gap < -128 || gap > 126)
653 if (! ((*link_info->callbacks->reloc_overflow)
654 (link_info, NULL,
655 bfd_asymbol_name (*reloc->sym_ptr_ptr),
656 reloc->howto->name, reloc->addend, input_section->owner,
657 input_section, reloc->address)))
658 abort ();
661 /* Everything looks OK. Apply the relocation and update the
662 src/dst address appropriately. */
663 bfd_put_8 (abfd, gap, data + dst_address);
664 dst_address++;
665 src_address++;
667 /* All done. */
668 break;
670 /* Generic 16-bit pc-relative relocation. */
671 case R_PCRWORD:
672 /* Get the address of the target of this branch. */
673 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
675 /* Get the address of the instruction (not the reloc). */
676 dot = (input_section->output_offset
677 + dst_address
678 + link_order->u.indirect.section->output_section->vma + 1);
680 gap = value - dot;
682 /* Sanity check. */
683 if (gap > 32766 || gap < -32768)
685 if (! ((*link_info->callbacks->reloc_overflow)
686 (link_info, NULL,
687 bfd_asymbol_name (*reloc->sym_ptr_ptr),
688 reloc->howto->name, reloc->addend, input_section->owner,
689 input_section, reloc->address)))
690 abort ();
693 /* Everything looks OK. Apply the relocation and update the
694 src/dst address appropriately. */
695 bfd_put_16 (abfd, (bfd_vma) gap, data + dst_address);
696 dst_address += 2;
697 src_address += 2;
699 /* All done. */
700 break;
702 /* Generic 8-bit absolute relocation. */
703 case R_RELBYTE:
704 /* Get the address of the object referenced by this insn. */
705 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
707 bfd_put_8 (abfd, value & 0xff, data + dst_address);
708 dst_address += 1;
709 src_address += 1;
711 /* All done. */
712 break;
714 /* Various simple 16-bit absolute relocations. */
715 case R_MOV16B1:
716 case R_JMP1:
717 case R_RELWORD:
718 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
719 bfd_put_16 (abfd, value, data + dst_address);
720 dst_address += 2;
721 src_address += 2;
722 break;
724 /* Various simple 24-/32-bit absolute relocations. */
725 case R_MOV24B1:
726 case R_MOVL1:
727 case R_RELLONG:
728 /* Get the address of the target of this branch. */
729 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
730 bfd_put_32 (abfd, value, data + dst_address);
731 dst_address += 4;
732 src_address += 4;
733 break;
735 /* Another 24-/32-bit absolute relocation. */
736 case R_JMPL1:
737 /* Get the address of the target of this branch. */
738 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
740 value = ((value & 0x00ffffff)
741 | (bfd_get_32 (abfd, data + src_address) & 0xff000000));
742 bfd_put_32 (abfd, value, data + dst_address);
743 dst_address += 4;
744 src_address += 4;
745 break;
747 /* This is a 24-/32-bit absolute address in one of the following
748 instructions:
750 "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
751 "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", "ldc.w",
752 "stc.w" and "mov.[bwl]"
754 We may relax this into an 16-bit absolute address if it's in
755 the right range. */
756 case R_MOVL2:
757 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
758 value = bfd_h8300_pad_address (abfd, value);
760 /* Sanity check. */
761 if (value <= 0x7fff || value >= 0xffff8000u)
763 /* Insert the 16-bit value into the proper location. */
764 bfd_put_16 (abfd, value, data + dst_address);
766 /* Fix the opcode. For all the instructions that belong to
767 this relaxation, we simply need to turn off bit 0x20 in
768 the previous byte. */
769 data[dst_address - 1] &= ~0x20;
770 dst_address += 2;
771 src_address += 4;
773 else
775 if (! ((*link_info->callbacks->reloc_overflow)
776 (link_info, NULL,
777 bfd_asymbol_name (*reloc->sym_ptr_ptr),
778 reloc->howto->name, reloc->addend, input_section->owner,
779 input_section, reloc->address)))
780 abort ();
782 break;
784 /* A 16-bit absolute branch that is now an 8-bit pc-relative branch. */
785 case R_JMP2:
786 /* Get the address of the target of this branch. */
787 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
789 /* Get the address of the next instruction. */
790 dot = (input_section->output_offset
791 + dst_address
792 + link_order->u.indirect.section->output_section->vma + 1);
794 gap = value - dot;
796 /* Sanity check. */
797 if (gap < -128 || gap > 126)
799 if (! ((*link_info->callbacks->reloc_overflow)
800 (link_info, NULL,
801 bfd_asymbol_name (*reloc->sym_ptr_ptr),
802 reloc->howto->name, reloc->addend, input_section->owner,
803 input_section, reloc->address)))
804 abort ();
807 /* Now fix the instruction itself. */
808 switch (data[dst_address - 1])
810 case 0x5e:
811 /* jsr -> bsr */
812 bfd_put_8 (abfd, 0x55, data + dst_address - 1);
813 break;
814 case 0x5a:
815 /* jmp -> bra */
816 bfd_put_8 (abfd, 0x40, data + dst_address - 1);
817 break;
819 default:
820 abort ();
823 /* Write out the 8-bit value. */
824 bfd_put_8 (abfd, gap, data + dst_address);
826 dst_address += 1;
827 src_address += 3;
829 break;
831 /* A 16-bit pc-relative branch that is now an 8-bit pc-relative branch. */
832 case R_PCRWORD_B:
833 /* Get the address of the target of this branch. */
834 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
836 /* Get the address of the instruction (not the reloc). */
837 dot = (input_section->output_offset
838 + dst_address
839 + link_order->u.indirect.section->output_section->vma - 1);
841 gap = value - dot;
843 /* Sanity check. */
844 if (gap < -128 || gap > 126)
846 if (! ((*link_info->callbacks->reloc_overflow)
847 (link_info, NULL,
848 bfd_asymbol_name (*reloc->sym_ptr_ptr),
849 reloc->howto->name, reloc->addend, input_section->owner,
850 input_section, reloc->address)))
851 abort ();
854 /* Now fix the instruction. */
855 switch (data[dst_address - 2])
857 case 0x58:
858 /* bCC:16 -> bCC:8 */
859 /* Get the second byte of the original insn, which contains
860 the condition code. */
861 tmp = data[dst_address - 1];
863 /* Compute the fisrt byte of the relaxed instruction. The
864 original sequence 0x58 0xX0 is relaxed to 0x4X, where X
865 represents the condition code. */
866 tmp &= 0xf0;
867 tmp >>= 4;
868 tmp |= 0x40;
870 /* Write it. */
871 bfd_put_8 (abfd, tmp, data + dst_address - 2);
872 break;
874 case 0x5c:
875 /* bsr:16 -> bsr:8 */
876 bfd_put_8 (abfd, 0x55, data + dst_address - 2);
877 break;
879 default:
880 abort ();
883 /* Output the target. */
884 bfd_put_8 (abfd, gap, data + dst_address - 1);
886 /* We don't advance dst_address -- the 8-bit reloc is applied at
887 dst_address - 1, so the next insn should begin at dst_address. */
888 src_address += 2;
890 break;
892 /* Similarly for a 24-bit absolute that is now 8 bits. */
893 case R_JMPL2:
894 /* Get the address of the target of this branch. */
895 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
897 /* Get the address of the instruction (not the reloc). */
898 dot = (input_section->output_offset
899 + dst_address
900 + link_order->u.indirect.section->output_section->vma + 2);
902 gap = value - dot;
904 /* Fix the instruction. */
905 switch (data[src_address])
907 case 0x5e:
908 /* jsr -> bsr */
909 bfd_put_8 (abfd, 0x55, data + dst_address);
910 break;
911 case 0x5a:
912 /* jmp ->bra */
913 bfd_put_8 (abfd, 0x40, data + dst_address);
914 break;
915 default:
916 abort ();
919 bfd_put_8 (abfd, gap, data + dst_address + 1);
920 dst_address += 2;
921 src_address += 4;
923 break;
925 /* This is a 16-bit absolute address in one of the following
926 instructions:
928 "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
929 "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", and
930 "mov.b"
932 We may relax this into an 8-bit absolute address if it's in
933 the right range. */
934 case R_MOV16B2:
935 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
937 /* All instructions with R_H8_DIR16B2 start with 0x6a. */
938 if (data[dst_address - 2] != 0x6a)
939 abort ();
941 temp_code = data[src_address - 1];
943 /* If this is a mov.b instruction, clear the lower nibble, which
944 contains the source/destination register number. */
945 if ((temp_code & 0x10) != 0x10)
946 temp_code &= 0xf0;
948 /* Fix up the opcode. */
949 switch (temp_code)
951 case 0x00:
952 /* This is mov.b @aa:16,Rd. */
953 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
954 break;
955 case 0x80:
956 /* This is mov.b Rs,@aa:16. */
957 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
958 break;
959 case 0x18:
960 /* This is a bit-maniputation instruction that stores one
961 bit into memory, one of "bclr", "bist", "bnot", "bset",
962 and "bst". */
963 data[dst_address - 2] = 0x7f;
964 break;
965 case 0x10:
966 /* This is a bit-maniputation instruction that loads one bit
967 from memory, one of "band", "biand", "bild", "bior",
968 "bixor", "bld", "bor", "btst", and "bxor". */
969 data[dst_address - 2] = 0x7e;
970 break;
971 default:
972 abort ();
975 bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
976 src_address += 2;
977 break;
979 /* This is a 24-bit absolute address in one of the following
980 instructions:
982 "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
983 "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", and
984 "mov.b"
986 We may relax this into an 8-bit absolute address if it's in
987 the right range. */
988 case R_MOV24B2:
989 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
991 /* All instructions with R_MOV24B2 start with 0x6a. */
992 if (data[dst_address - 2] != 0x6a)
993 abort ();
995 temp_code = data[src_address - 1];
997 /* If this is a mov.b instruction, clear the lower nibble, which
998 contains the source/destination register number. */
999 if ((temp_code & 0x30) != 0x30)
1000 temp_code &= 0xf0;
1002 /* Fix up the opcode. */
1003 switch (temp_code)
1005 case 0x20:
1006 /* This is mov.b @aa:24/32,Rd. */
1007 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
1008 break;
1009 case 0xa0:
1010 /* This is mov.b Rs,@aa:24/32. */
1011 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
1012 break;
1013 case 0x38:
1014 /* This is a bit-maniputation instruction that stores one
1015 bit into memory, one of "bclr", "bist", "bnot", "bset",
1016 and "bst". */
1017 data[dst_address - 2] = 0x7f;
1018 break;
1019 case 0x30:
1020 /* This is a bit-maniputation instruction that loads one bit
1021 from memory, one of "band", "biand", "bild", "bior",
1022 "bixor", "bld", "bor", "btst", and "bxor". */
1023 data[dst_address - 2] = 0x7e;
1024 break;
1025 default:
1026 abort ();
1029 bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
1030 src_address += 4;
1031 break;
1033 case R_BCC_INV:
1034 /* Get the address of the target of this branch. */
1035 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
1037 dot = (input_section->output_offset
1038 + dst_address
1039 + link_order->u.indirect.section->output_section->vma) + 1;
1041 gap = value - dot;
1043 /* Sanity check. */
1044 if (gap < -128 || gap > 126)
1046 if (! ((*link_info->callbacks->reloc_overflow)
1047 (link_info, NULL,
1048 bfd_asymbol_name (*reloc->sym_ptr_ptr),
1049 reloc->howto->name, reloc->addend, input_section->owner,
1050 input_section, reloc->address)))
1051 abort ();
1054 /* Everything looks OK. Fix the condition in the instruction, apply
1055 the relocation, and update the src/dst address appropriately. */
1057 bfd_put_8 (abfd, bfd_get_8 (abfd, data + dst_address - 1) ^ 1,
1058 data + dst_address - 1);
1059 bfd_put_8 (abfd, gap, data + dst_address);
1060 dst_address++;
1061 src_address++;
1063 /* All done. */
1064 break;
1066 case R_JMP_DEL:
1067 src_address += 4;
1068 break;
1070 /* An 8-bit memory indirect instruction (jmp/jsr).
1072 There's several things that need to be done to handle
1073 this relocation.
1075 If this is a reloc against the absolute symbol, then
1076 we should handle it just R_RELBYTE. Likewise if it's
1077 for a symbol with a value ge 0 and le 0xff.
1079 Otherwise it's a jump/call through the function vector,
1080 and the linker is expected to set up the function vector
1081 and put the right value into the jump/call instruction. */
1082 case R_MEM_INDIRECT:
1084 /* We need to find the symbol so we can determine it's
1085 address in the function vector table. */
1086 asymbol *symbol;
1087 const char *name;
1088 struct funcvec_hash_table *ftab;
1089 struct funcvec_hash_entry *h;
1090 struct h8300_coff_link_hash_table *htab;
1091 asection *vectors_sec;
1093 if (link_info->output_bfd->xvec != abfd->xvec)
1095 (*_bfd_error_handler)
1096 (_("cannot handle R_MEM_INDIRECT reloc when using %s output"),
1097 link_info->output_bfd->xvec->name);
1099 /* What else can we do? This function doesn't allow return
1100 of an error, and we don't want to call abort as that
1101 indicates an internal error. */
1102 #ifndef EXIT_FAILURE
1103 #define EXIT_FAILURE 1
1104 #endif
1105 xexit (EXIT_FAILURE);
1107 htab = h8300_coff_hash_table (link_info);
1108 vectors_sec = htab->vectors_sec;
1110 /* First see if this is a reloc against the absolute symbol
1111 or against a symbol with a nonnegative value <= 0xff. */
1112 symbol = *(reloc->sym_ptr_ptr);
1113 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
1114 if (symbol == bfd_abs_section_ptr->symbol
1115 || value <= 0xff)
1117 /* This should be handled in a manner very similar to
1118 R_RELBYTES. If the value is in range, then just slam
1119 the value into the right location. Else trigger a
1120 reloc overflow callback. */
1121 if (value <= 0xff)
1123 bfd_put_8 (abfd, value, data + dst_address);
1124 dst_address += 1;
1125 src_address += 1;
1127 else
1129 if (! ((*link_info->callbacks->reloc_overflow)
1130 (link_info, NULL,
1131 bfd_asymbol_name (*reloc->sym_ptr_ptr),
1132 reloc->howto->name, reloc->addend, input_section->owner,
1133 input_section, reloc->address)))
1134 abort ();
1136 break;
1139 /* This is a jump/call through a function vector, and we're
1140 expected to create the function vector ourselves.
1142 First look up this symbol in the linker hash table -- we need
1143 the derived linker symbol which holds this symbol's index
1144 in the function vector. */
1145 name = symbol->name;
1146 if (symbol->flags & BSF_LOCAL)
1148 char *new_name = bfd_malloc ((bfd_size_type) strlen (name) + 10);
1150 if (new_name == NULL)
1151 abort ();
1153 sprintf (new_name, "%s_%08x", name, symbol->section->id);
1154 name = new_name;
1157 ftab = htab->funcvec_hash_table;
1158 h = funcvec_hash_lookup (ftab, name, FALSE, FALSE);
1160 /* This shouldn't ever happen. If it does that means we've got
1161 data corruption of some kind. Aborting seems like a reasonable
1162 thing to do here. */
1163 if (h == NULL || vectors_sec == NULL)
1164 abort ();
1166 /* Place the address of the function vector entry into the
1167 reloc's address. */
1168 bfd_put_8 (abfd,
1169 vectors_sec->output_offset + h->offset,
1170 data + dst_address);
1172 dst_address++;
1173 src_address++;
1175 /* Now create an entry in the function vector itself. */
1176 switch (bfd_get_mach (input_section->owner))
1178 case bfd_mach_h8300:
1179 case bfd_mach_h8300hn:
1180 case bfd_mach_h8300sn:
1181 bfd_put_16 (abfd,
1182 bfd_coff_reloc16_get_value (reloc,
1183 link_info,
1184 input_section),
1185 vectors_sec->contents + h->offset);
1186 break;
1187 case bfd_mach_h8300h:
1188 case bfd_mach_h8300s:
1189 bfd_put_32 (abfd,
1190 bfd_coff_reloc16_get_value (reloc,
1191 link_info,
1192 input_section),
1193 vectors_sec->contents + h->offset);
1194 break;
1195 default:
1196 abort ();
1199 /* Gross. We've already written the contents of the vector section
1200 before we get here... So we write it again with the new data. */
1201 bfd_set_section_contents (vectors_sec->output_section->owner,
1202 vectors_sec->output_section,
1203 vectors_sec->contents,
1204 (file_ptr) vectors_sec->output_offset,
1205 vectors_sec->size);
1206 break;
1209 default:
1210 abort ();
1211 break;
1215 *src_ptr = src_address;
1216 *dst_ptr = dst_address;
1219 /* Routine for the h8300 linker.
1221 This routine is necessary to handle the special R_MEM_INDIRECT
1222 relocs on the h8300. It's responsible for generating a vectors
1223 section and attaching it to an input bfd as well as sizing
1224 the vectors section. It also creates our vectors hash table.
1226 It uses the generic linker routines to actually add the symbols.
1227 from this BFD to the bfd linker hash table. It may add a few
1228 selected static symbols to the bfd linker hash table. */
1230 static bfd_boolean
1231 h8300_bfd_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
1233 asection *sec;
1234 struct funcvec_hash_table *funcvec_hash_table;
1235 bfd_size_type amt;
1236 struct h8300_coff_link_hash_table *htab;
1238 /* Add the symbols using the generic code. */
1239 _bfd_generic_link_add_symbols (abfd, info);
1241 if (info->output_bfd->xvec != abfd->xvec)
1242 return TRUE;
1244 htab = h8300_coff_hash_table (info);
1246 /* If we haven't created a vectors section, do so now. */
1247 if (!htab->vectors_sec)
1249 flagword flags;
1251 /* Make sure the appropriate flags are set, including SEC_IN_MEMORY. */
1252 flags = (SEC_ALLOC | SEC_LOAD
1253 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_READONLY);
1254 htab->vectors_sec = bfd_make_section_with_flags (abfd, ".vectors",
1255 flags);
1257 /* If the section wasn't created, or we couldn't set the flags,
1258 quit quickly now, rather than dying a painful death later. */
1259 if (!htab->vectors_sec)
1260 return FALSE;
1262 /* Also create the vector hash table. */
1263 amt = sizeof (struct funcvec_hash_table);
1264 funcvec_hash_table = (struct funcvec_hash_table *) bfd_alloc (abfd, amt);
1266 if (!funcvec_hash_table)
1267 return FALSE;
1269 /* And initialize the funcvec hash table. */
1270 if (!funcvec_hash_table_init (funcvec_hash_table, abfd,
1271 funcvec_hash_newfunc,
1272 sizeof (struct funcvec_hash_entry)))
1274 bfd_release (abfd, funcvec_hash_table);
1275 return FALSE;
1278 /* Store away a pointer to the funcvec hash table. */
1279 htab->funcvec_hash_table = funcvec_hash_table;
1282 /* Load up the function vector hash table. */
1283 funcvec_hash_table = htab->funcvec_hash_table;
1285 /* Now scan the relocs for all the sections in this bfd; create
1286 additional space in the .vectors section as needed. */
1287 for (sec = abfd->sections; sec; sec = sec->next)
1289 long reloc_size, reloc_count, i;
1290 asymbol **symbols;
1291 arelent **relocs;
1293 /* Suck in the relocs, symbols & canonicalize them. */
1294 reloc_size = bfd_get_reloc_upper_bound (abfd, sec);
1295 if (reloc_size <= 0)
1296 continue;
1298 relocs = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
1299 if (!relocs)
1300 return FALSE;
1302 /* The symbols should have been read in by _bfd_generic link_add_symbols
1303 call abovec, so we can cheat and use the pointer to them that was
1304 saved in the above call. */
1305 symbols = _bfd_generic_link_get_symbols(abfd);
1306 reloc_count = bfd_canonicalize_reloc (abfd, sec, relocs, symbols);
1307 if (reloc_count <= 0)
1309 free (relocs);
1310 continue;
1313 /* Now walk through all the relocations in this section. */
1314 for (i = 0; i < reloc_count; i++)
1316 arelent *reloc = relocs[i];
1317 asymbol *symbol = *(reloc->sym_ptr_ptr);
1318 const char *name;
1320 /* We've got an indirect reloc. See if we need to add it
1321 to the function vector table. At this point, we have
1322 to add a new entry for each unique symbol referenced
1323 by an R_MEM_INDIRECT relocation except for a reloc
1324 against the absolute section symbol. */
1325 if (reloc->howto->type == R_MEM_INDIRECT
1326 && symbol != bfd_abs_section_ptr->symbol)
1329 struct funcvec_hash_table *ftab;
1330 struct funcvec_hash_entry *h;
1332 name = symbol->name;
1333 if (symbol->flags & BSF_LOCAL)
1335 char *new_name;
1337 new_name = bfd_malloc ((bfd_size_type) strlen (name) + 10);
1338 if (new_name == NULL)
1339 abort ();
1341 sprintf (new_name, "%s_%08x", name, symbol->section->id);
1342 name = new_name;
1345 /* Look this symbol up in the function vector hash table. */
1346 ftab = htab->funcvec_hash_table;
1347 h = funcvec_hash_lookup (ftab, name, FALSE, FALSE);
1349 /* If this symbol isn't already in the hash table, add
1350 it and bump up the size of the hash table. */
1351 if (h == NULL)
1353 h = funcvec_hash_lookup (ftab, name, TRUE, TRUE);
1354 if (h == NULL)
1356 free (relocs);
1357 return FALSE;
1360 /* Bump the size of the vectors section. Each vector
1361 takes 2 bytes on the h8300 and 4 bytes on the h8300h. */
1362 switch (bfd_get_mach (abfd))
1364 case bfd_mach_h8300:
1365 case bfd_mach_h8300hn:
1366 case bfd_mach_h8300sn:
1367 htab->vectors_sec->size += 2;
1368 break;
1369 case bfd_mach_h8300h:
1370 case bfd_mach_h8300s:
1371 htab->vectors_sec->size += 4;
1372 break;
1373 default:
1374 abort ();
1380 /* We're done with the relocations, release them. */
1381 free (relocs);
1384 /* Now actually allocate some space for the function vector. It's
1385 wasteful to do this more than once, but this is easier. */
1386 sec = htab->vectors_sec;
1387 if (sec->size != 0)
1389 /* Free the old contents. */
1390 if (sec->contents)
1391 free (sec->contents);
1393 /* Allocate new contents. */
1394 sec->contents = bfd_malloc (sec->size);
1397 return TRUE;
1400 #define coff_reloc16_extra_cases h8300_reloc16_extra_cases
1401 #define coff_reloc16_estimate h8300_reloc16_estimate
1402 #define coff_bfd_link_add_symbols h8300_bfd_link_add_symbols
1403 #define coff_bfd_link_hash_table_create h8300_coff_link_hash_table_create
1405 #define COFF_LONG_FILENAMES
1407 #ifndef bfd_pe_print_pdata
1408 #define bfd_pe_print_pdata NULL
1409 #endif
1411 #include "coffcode.h"
1413 #undef coff_bfd_get_relocated_section_contents
1414 #undef coff_bfd_relax_section
1415 #define coff_bfd_get_relocated_section_contents \
1416 bfd_coff_reloc16_get_relocated_section_contents
1417 #define coff_bfd_relax_section bfd_coff_reloc16_relax_section
1419 CREATE_BIG_COFF_TARGET_VEC (h8300coff_vec, "coff-h8300", BFD_IS_RELAXABLE, 0, '_', NULL, COFF_SWAP_TABLE)