Tests for validate symbol file using build-id.
[gdb/archer.git] / gdb / ia64-hpux-nat.c
blobe4e1d3278e70773c4f44f09f7f36ac8b5233e77b
1 /* Copyright (C) 2010-2013 Free Software Foundation, Inc.
3 This file is part of GDB.
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18 #include "defs.h"
19 #include "ia64-tdep.h"
20 #include "inferior.h"
21 #include "inf-ttrace.h"
22 #include "regcache.h"
23 #include "solib-ia64-hpux.h"
25 #include <ia64/sys/uregs.h>
26 #include <sys/ttrace.h>
28 /* The offsets used with ttrace to read the value of the raw registers. */
30 static int u_offsets[] =
31 { /* Static General Registers. */
32 -1, __r1, __r2, __r3, __r4, __r5, __r6, __r7,
33 __r8, __r9, __r10, __r11, __r12, __r13, __r14, __r15,
34 __r16, __r17, __r18, __r19, __r20, __r21, __r22, __r23,
35 __r24, __r25, __r26, __r27, __r28, __r29, __r30, __r31,
36 -1, -1, -1, -1, -1, -1, -1, -1,
37 -1, -1, -1, -1, -1, -1, -1, -1,
38 -1, -1, -1, -1, -1, -1, -1, -1,
39 -1, -1, -1, -1, -1, -1, -1, -1,
40 -1, -1, -1, -1, -1, -1, -1, -1,
41 -1, -1, -1, -1, -1, -1, -1, -1,
42 -1, -1, -1, -1, -1, -1, -1, -1,
43 -1, -1, -1, -1, -1, -1, -1, -1,
44 -1, -1, -1, -1, -1, -1, -1, -1,
45 -1, -1, -1, -1, -1, -1, -1, -1,
46 -1, -1, -1, -1, -1, -1, -1, -1,
47 -1, -1, -1, -1, -1, -1, -1, -1,
49 /* Static Floating-Point Registers. */
50 -1, -1, __f2, __f3, __f4, __f5, __f6, __f7,
51 __f8, __f9, __f10, __f11, __f12, __f13, __f14, __f15,
52 __f16, __f17, __f18, __f19, __f20, __f21, __f22, __f23,
53 __f24, __f25, __f26, __f27, __f28, __f29, __f30, __f31,
54 __f32, __f33, __f34, __f35, __f36, __f37, __f38, __f39,
55 __f40, __f41, __f42, __f43, __f44, __f45, __f46, __f47,
56 __f48, __f49, __f50, __f51, __f52, __f53, __f54, __f55,
57 __f56, __f57, __f58, __f59, __f60, __f61, __f62, __f63,
58 __f64, __f65, __f66, __f67, __f68, __f69, __f70, __f71,
59 __f72, __f73, __f74, __f75, __f76, __f77, __f78, __f79,
60 __f80, __f81, __f82, __f83, __f84, __f85, __f86, __f87,
61 __f88, __f89, __f90, __f91, __f92, __f93, __f94, __f95,
62 __f96, __f97, __f98, __f99, __f100, __f101, __f102, __f103,
63 __f104, __f105, __f106, __f107, __f108, __f109, __f110, __f111,
64 __f112, __f113, __f114, __f115, __f116, __f117, __f118, __f119,
65 __f120, __f121, __f122, __f123, __f124, __f125, __f126, __f127,
67 -1, -1, -1, -1, -1, -1, -1, -1,
68 -1, -1, -1, -1, -1, -1, -1, -1,
69 -1, -1, -1, -1, -1, -1, -1, -1,
70 -1, -1, -1, -1, -1, -1, -1, -1,
71 -1, -1, -1, -1, -1, -1, -1, -1,
72 -1, -1, -1, -1, -1, -1, -1, -1,
73 -1, -1, -1, -1, -1, -1, -1, -1,
74 -1, -1, -1, -1, -1, -1, -1, -1,
76 /* Branch Registers. */
77 __b0, __b1, __b2, __b3, __b4, __b5, __b6, __b7,
79 /* Virtual frame pointer and virtual return address pointer. */
80 -1, -1,
82 /* Other registers. */
83 __pr, __ip, __cr_ipsr, __cfm,
85 /* Kernel registers. */
86 -1, -1, -1, -1,
87 -1, -1, -1, -1,
89 -1, -1, -1, -1, -1, -1, -1, -1,
91 /* Some application registers. */
92 __ar_rsc, __ar_bsp, __ar_bspstore, __ar_rnat,
94 -1,
95 -1, /* Not available: FCR, IA32 floating control register. */
96 -1, -1,
98 -1, /* Not available: EFLAG. */
99 -1, /* Not available: CSD. */
100 -1, /* Not available: SSD. */
101 -1, /* Not available: CFLG. */
102 -1, /* Not available: FSR. */
103 -1, /* Not available: FIR. */
104 -1, /* Not available: FDR. */
106 __ar_ccv, -1, -1, -1, __ar_unat, -1, -1, -1,
107 __ar_fpsr, -1, -1, -1,
108 -1, /* Not available: ITC. */
109 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
110 -1, -1, -1, -1, -1, -1, -1, -1, -1,
111 __ar_pfs, __ar_lc, __ar_ec,
112 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
113 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
114 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
115 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
116 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
117 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
119 /* All following registers, starting with nat0, are handled as
120 pseudo registers, and hence are handled separately. */
123 /* Some register have a fixed value and can not be modified.
124 Store their value in static constant buffers that can be used
125 later to fill the register cache. */
126 static const char r0_value[8] = {0x00, 0x00, 0x00, 0x00,
127 0x00, 0x00, 0x00, 0x00};
128 static const char f0_value[16] = {0x00, 0x00, 0x00, 0x00,
129 0x00, 0x00, 0x00, 0x00,
130 0x00, 0x00, 0x00, 0x00,
131 0x00, 0x00, 0x00, 0x00};
132 static const char f1_value[16] = {0x00, 0x00, 0x00, 0x00,
133 0x00, 0x00, 0xff, 0xff,
134 0x80, 0x00, 0x00, 0x00,
135 0x00, 0x00, 0x00, 0x00};
137 /* The "to_wait" routine from the "inf-ttrace" layer. */
139 static ptid_t (*super_to_wait) (struct target_ops *, ptid_t,
140 struct target_waitstatus *, int);
142 /* The "to_wait" target_ops routine routine for ia64-hpux. */
144 static ptid_t
145 ia64_hpux_wait (struct target_ops *ops, ptid_t ptid,
146 struct target_waitstatus *ourstatus, int options)
148 ptid_t new_ptid;
150 new_ptid = super_to_wait (ops, ptid, ourstatus, options);
152 /* If this is a DLD event (hard-coded breakpoint instruction
153 that was activated by the solib-ia64-hpux module), we need to
154 process it, and then resume the execution as if the event did
155 not happen. */
156 if (ourstatus->kind == TARGET_WAITKIND_STOPPED
157 && ourstatus->value.sig == GDB_SIGNAL_TRAP
158 && ia64_hpux_at_dld_breakpoint_p (new_ptid))
160 ia64_hpux_handle_dld_breakpoint (new_ptid);
162 target_resume (new_ptid, 0, GDB_SIGNAL_0);
163 ourstatus->kind = TARGET_WAITKIND_IGNORE;
166 return new_ptid;
169 /* Fetch the RNAT register and supply it to the REGCACHE. */
171 static void
172 ia64_hpux_fetch_rnat_register (struct regcache *regcache)
174 CORE_ADDR addr;
175 gdb_byte buf[8];
176 int status;
178 /* The value of RNAT is stored at bsp|0x1f8, and must be read using
179 TT_LWP_RDRSEBS. */
181 regcache_raw_read_unsigned (regcache, IA64_BSP_REGNUM, &addr);
182 addr |= 0x1f8;
184 status = ttrace (TT_LWP_RDRSEBS, ptid_get_pid (inferior_ptid),
185 ptid_get_lwp (inferior_ptid), addr, sizeof (buf),
186 (uintptr_t) buf);
187 if (status < 0)
188 error (_("failed to read RNAT register at %s"),
189 paddress (get_regcache_arch(regcache), addr));
191 regcache_raw_supply (regcache, IA64_RNAT_REGNUM, buf);
194 /* Read the value of the register saved at OFFSET in the save_state_t
195 structure, and store its value in BUF. LEN is the size of the register
196 to be read. */
198 static int
199 ia64_hpux_read_register_from_save_state_t (int offset, gdb_byte *buf, int len)
201 int status;
203 status = ttrace (TT_LWP_RUREGS, ptid_get_pid (inferior_ptid),
204 ptid_get_lwp (inferior_ptid), offset, len, (uintptr_t) buf);
206 return status;
209 /* Fetch register REGNUM from the inferior. */
211 static void
212 ia64_hpux_fetch_register (struct regcache *regcache, int regnum)
214 struct gdbarch *gdbarch = get_regcache_arch (regcache);
215 int offset, len, status;
216 gdb_byte *buf;
218 if (regnum == IA64_GR0_REGNUM)
220 /* r0 is always 0. */
221 regcache_raw_supply (regcache, regnum, r0_value);
222 return;
225 if (regnum == IA64_FR0_REGNUM)
227 /* f0 is always 0.0. */
228 regcache_raw_supply (regcache, regnum, f0_value);
229 return;
232 if (regnum == IA64_FR1_REGNUM)
234 /* f1 is always 1.0. */
235 regcache_raw_supply (regcache, regnum, f1_value);
236 return;
239 if (regnum == IA64_RNAT_REGNUM)
241 ia64_hpux_fetch_rnat_register (regcache);
242 return;
245 /* Get the register location. If the register can not be fetched,
246 then return now. */
247 offset = u_offsets[regnum];
248 if (offset == -1)
249 return;
251 len = register_size (gdbarch, regnum);
252 buf = alloca (len * sizeof (gdb_byte));
253 status = ia64_hpux_read_register_from_save_state_t (offset, buf, len);
254 if (status < 0)
255 warning (_("Failed to read register value for %s."),
256 gdbarch_register_name (gdbarch, regnum));
258 regcache_raw_supply (regcache, regnum, buf);
261 /* The "to_fetch_registers" target_ops routine for ia64-hpux. */
263 static void
264 ia64_hpux_fetch_registers (struct target_ops *ops,
265 struct regcache *regcache, int regnum)
267 if (regnum == -1)
268 for (regnum = 0;
269 regnum < gdbarch_num_regs (get_regcache_arch (regcache));
270 regnum++)
271 ia64_hpux_fetch_register (regcache, regnum);
272 else
273 ia64_hpux_fetch_register (regcache, regnum);
276 /* Save register REGNUM (stored in BUF) in the save_state_t structure.
277 LEN is the size of the register in bytes.
279 Return the value from the corresponding ttrace call (a negative value
280 means that the operation failed). */
282 static int
283 ia64_hpux_write_register_to_saved_state_t (int offset, gdb_byte *buf, int len)
285 return ttrace (TT_LWP_WUREGS, ptid_get_pid (inferior_ptid),
286 ptid_get_lwp (inferior_ptid), offset, len, (uintptr_t) buf);
289 /* Store register REGNUM into the inferior. */
291 static void
292 ia64_hpux_store_register (const struct regcache *regcache, int regnum)
294 struct gdbarch *gdbarch = get_regcache_arch (regcache);
295 int offset = u_offsets[regnum];
296 gdb_byte *buf;
297 int len, status;
299 /* If the register can not be stored, then return now. */
300 if (offset == -1)
301 return;
303 /* I don't know how to store that register for now. So just ignore any
304 request to store it, to avoid an internal error. */
305 if (regnum == IA64_PSR_REGNUM)
306 return;
308 len = register_size (gdbarch, regnum);
309 buf = alloca (len * sizeof (gdb_byte));
310 regcache_raw_collect (regcache, regnum, buf);
312 status = ia64_hpux_write_register_to_saved_state_t (offset, buf, len);
314 if (status < 0)
315 error (_("failed to write register value for %s."),
316 gdbarch_register_name (gdbarch, regnum));
319 /* The "to_store_registers" target_ops routine for ia64-hpux. */
321 static void
322 ia64_hpux_store_registers (struct target_ops *ops,
323 struct regcache *regcache, int regnum)
325 if (regnum == -1)
326 for (regnum = 0;
327 regnum < gdbarch_num_regs (get_regcache_arch (regcache));
328 regnum++)
329 ia64_hpux_store_register (regcache, regnum);
330 else
331 ia64_hpux_store_register (regcache, regnum);
334 /* The "xfer_partial" routine from the "inf-ttrace" target layer.
335 Ideally, we would like to use this routine for all transfer
336 requests, but this platforms has a lot of special cases that
337 need to be handled manually. So we override this routine and
338 delegate back if we detect that we are not in a special case. */
340 static LONGEST (*super_xfer_partial) (struct target_ops *, enum target_object,
341 const char *, gdb_byte *,
342 const gdb_byte *, ULONGEST, LONGEST);
344 /* The "xfer_partial" routine for a memory region that is completely
345 outside of the backing-store region. */
347 static LONGEST
348 ia64_hpux_xfer_memory_no_bs (struct target_ops *ops, const char *annex,
349 gdb_byte *readbuf, const gdb_byte *writebuf,
350 CORE_ADDR addr, LONGEST len)
352 /* Memory writes need to be aligned on 16byte boundaries, at least
353 when writing in the text section. On the other hand, the size
354 of the buffer does not need to be a multiple of 16bytes.
356 No such restriction when performing memory reads. */
358 if (writebuf && addr & 0x0f)
360 const CORE_ADDR aligned_addr = addr & ~0x0f;
361 const int aligned_len = len + (addr - aligned_addr);
362 gdb_byte *aligned_buf = alloca (aligned_len * sizeof (gdb_byte));
363 LONGEST status;
365 /* Read the portion of memory between ALIGNED_ADDR and ADDR, so
366 that we can write it back during our aligned memory write. */
367 status = super_xfer_partial (ops, TARGET_OBJECT_MEMORY, annex,
368 aligned_buf /* read */,
369 NULL /* write */,
370 aligned_addr, addr - aligned_addr);
371 if (status <= 0)
372 return 0;
373 memcpy (aligned_buf + (addr - aligned_addr), writebuf, len);
375 return super_xfer_partial (ops, TARGET_OBJECT_MEMORY, annex,
376 NULL /* read */, aligned_buf /* write */,
377 aligned_addr, aligned_len);
379 else
380 /* Memory read or properly aligned memory write. */
381 return super_xfer_partial (ops, TARGET_OBJECT_MEMORY, annex, readbuf,
382 writebuf, addr, len);
385 /* Read LEN bytes at ADDR from memory, and store it in BUF. This memory
386 region is assumed to be inside the backing store.
388 Return zero if the operation failed. */
390 static int
391 ia64_hpux_read_memory_bs (gdb_byte *buf, CORE_ADDR addr, int len)
393 gdb_byte tmp_buf[8];
394 CORE_ADDR tmp_addr = addr & ~0x7;
396 while (tmp_addr < addr + len)
398 int status;
399 int skip_lo = 0;
400 int skip_hi = 0;
402 status = ttrace (TT_LWP_RDRSEBS, ptid_get_pid (inferior_ptid),
403 ptid_get_lwp (inferior_ptid), tmp_addr,
404 sizeof (tmp_buf), (uintptr_t) tmp_buf);
405 if (status < 0)
406 return 0;
408 if (tmp_addr < addr)
409 skip_lo = addr - tmp_addr;
411 if (tmp_addr + sizeof (tmp_buf) > addr + len)
412 skip_hi = (tmp_addr + sizeof (tmp_buf)) - (addr + len);
414 memcpy (buf + (tmp_addr + skip_lo - addr),
415 tmp_buf + skip_lo,
416 sizeof (tmp_buf) - skip_lo - skip_hi);
418 tmp_addr += sizeof (tmp_buf);
421 return 1;
424 /* Write LEN bytes from BUF in memory at ADDR. This memory region is assumed
425 to be inside the backing store.
427 Return zero if the operation failed. */
429 static int
430 ia64_hpux_write_memory_bs (const gdb_byte *buf, CORE_ADDR addr, int len)
432 gdb_byte tmp_buf[8];
433 CORE_ADDR tmp_addr = addr & ~0x7;
435 while (tmp_addr < addr + len)
437 int status;
438 int lo = 0;
439 int hi = 7;
441 if (tmp_addr < addr || tmp_addr + sizeof (tmp_buf) > addr + len)
442 /* Part of the 8byte region pointed by tmp_addr needs to be preserved.
443 So read it in before we copy the data that needs to be changed. */
444 if (!ia64_hpux_read_memory_bs (tmp_buf, tmp_addr, sizeof (tmp_buf)))
445 return 0;
447 if (tmp_addr < addr)
448 lo = addr - tmp_addr;
450 if (tmp_addr + sizeof (tmp_buf) > addr + len)
451 hi = addr - tmp_addr + len - 1;
453 memcpy (tmp_buf + lo, buf + tmp_addr - addr + lo, hi - lo + 1);
455 status = ttrace (TT_LWP_WRRSEBS, ptid_get_pid (inferior_ptid),
456 ptid_get_lwp (inferior_ptid), tmp_addr,
457 sizeof (tmp_buf), (uintptr_t) tmp_buf);
458 if (status < 0)
459 return 0;
461 tmp_addr += sizeof (tmp_buf);
464 return 1;
467 /* The "xfer_partial" routine for a memory region that is completely
468 inside of the backing-store region. */
470 static LONGEST
471 ia64_hpux_xfer_memory_bs (struct target_ops *ops, const char *annex,
472 gdb_byte *readbuf, const gdb_byte *writebuf,
473 CORE_ADDR addr, LONGEST len)
475 int success;
477 if (readbuf)
478 success = ia64_hpux_read_memory_bs (readbuf, addr, len);
479 else
480 success = ia64_hpux_write_memory_bs (writebuf, addr, len);
482 if (success)
483 return len;
484 else
485 return 0;
488 /* Get a register value as a unsigned value directly from the system,
489 instead of going through the regcache.
491 This function is meant to be used when inferior_ptid is not
492 a thread/process known to GDB. */
494 static ULONGEST
495 ia64_hpux_get_register_from_save_state_t (int regnum, int reg_size)
497 gdb_byte *buf = alloca (reg_size);
498 int offset = u_offsets[regnum];
499 int status;
501 /* The register is assumed to be available for fetching. */
502 gdb_assert (offset != -1);
504 status = ia64_hpux_read_register_from_save_state_t (offset, buf, reg_size);
505 if (status < 0)
507 /* This really should not happen. If it does, emit a warning
508 and pretend the register value is zero. Not exactly the best
509 error recovery mechanism, but better than nothing. We will
510 try to do better if we can demonstrate that this can happen
511 under normal circumstances. */
512 warning (_("Failed to read value of register number %d."), regnum);
513 return 0;
516 return extract_unsigned_integer (buf, reg_size, BFD_ENDIAN_BIG);
519 /* The "xfer_partial" target_ops routine for ia64-hpux, in the case
520 where the requested object is TARGET_OBJECT_MEMORY. */
522 static LONGEST
523 ia64_hpux_xfer_memory (struct target_ops *ops, const char *annex,
524 gdb_byte *readbuf, const gdb_byte *writebuf,
525 CORE_ADDR addr, LONGEST len)
527 CORE_ADDR bsp, bspstore;
528 CORE_ADDR start_addr, short_len;
529 int status = 0;
531 /* The back-store region cannot be read/written by the standard memory
532 read/write operations. So we handle the memory region piecemeal:
533 (1) and (2) The regions before and after the backing-store region,
534 which can be treated as normal memory;
535 (3) The region inside the backing-store, which needs to be
536 read/written specially. */
538 if (in_inferior_list (ptid_get_pid (inferior_ptid)))
540 struct regcache *regcache = get_current_regcache ();
542 regcache_raw_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
543 regcache_raw_read_unsigned (regcache, IA64_BSPSTORE_REGNUM, &bspstore);
545 else
547 /* This is probably a child of our inferior created by a fork.
548 Because this process has not been added to our inferior list
549 (we are probably in the process of handling that child
550 process), we do not have a regcache to read the registers
551 from. So get those values directly from the kernel. */
552 bsp = ia64_hpux_get_register_from_save_state_t (IA64_BSP_REGNUM, 8);
553 bspstore =
554 ia64_hpux_get_register_from_save_state_t (IA64_BSPSTORE_REGNUM, 8);
557 /* 1. Memory region before BSPSTORE. */
559 if (addr < bspstore)
561 short_len = len;
562 if (addr + len > bspstore)
563 short_len = bspstore - addr;
565 status = ia64_hpux_xfer_memory_no_bs (ops, annex, readbuf, writebuf,
566 addr, short_len);
567 if (status <= 0)
568 return 0;
571 /* 2. Memory region after BSP. */
573 if (addr + len > bsp)
575 start_addr = addr;
576 if (start_addr < bsp)
577 start_addr = bsp;
578 short_len = len + addr - start_addr;
580 status = ia64_hpux_xfer_memory_no_bs
581 (ops, annex,
582 readbuf ? readbuf + (start_addr - addr) : NULL,
583 writebuf ? writebuf + (start_addr - addr) : NULL,
584 start_addr, short_len);
585 if (status <= 0)
586 return 0;
589 /* 3. Memory region between BSPSTORE and BSP. */
591 if (bspstore != bsp
592 && ((addr < bspstore && addr + len > bspstore)
593 || (addr + len <= bsp && addr + len > bsp)))
595 start_addr = addr;
596 if (addr < bspstore)
597 start_addr = bspstore;
598 short_len = len + addr - start_addr;
600 if (start_addr + short_len > bsp)
601 short_len = bsp - start_addr;
603 gdb_assert (short_len > 0);
605 status = ia64_hpux_xfer_memory_bs
606 (ops, annex,
607 readbuf ? readbuf + (start_addr - addr) : NULL,
608 writebuf ? writebuf + (start_addr - addr) : NULL,
609 start_addr, short_len);
610 if (status < 0)
611 return 0;
614 return len;
617 /* Handle the transfer of TARGET_OBJECT_HPUX_UREGS objects on ia64-hpux.
618 ANNEX is currently ignored.
620 The current implementation does not support write transfers (because
621 we do not currently do not need these transfers), and will raise
622 a failed assertion if WRITEBUF is not NULL. */
624 static LONGEST
625 ia64_hpux_xfer_uregs (struct target_ops *ops, const char *annex,
626 gdb_byte *readbuf, const gdb_byte *writebuf,
627 ULONGEST offset, LONGEST len)
629 int status;
631 gdb_assert (writebuf == NULL);
633 status = ia64_hpux_read_register_from_save_state_t (offset, readbuf, len);
634 if (status < 0)
635 return -1;
636 return len;
639 /* Handle the transfer of TARGET_OBJECT_HPUX_SOLIB_GOT objects on ia64-hpux.
641 The current implementation does not support write transfers (because
642 we do not currently do not need these transfers), and will raise
643 a failed assertion if WRITEBUF is not NULL. */
645 static LONGEST
646 ia64_hpux_xfer_solib_got (struct target_ops *ops, const char *annex,
647 gdb_byte *readbuf, const gdb_byte *writebuf,
648 ULONGEST offset, LONGEST len)
650 CORE_ADDR fun_addr;
651 /* The linkage pointer. We use a uint64_t to make sure that the size
652 of the object we are returning is always 64 bits long, as explained
653 in the description of the TARGET_OBJECT_HPUX_SOLIB_GOT object.
654 This is probably paranoia, but we do not use a CORE_ADDR because
655 it could conceivably be larger than uint64_t. */
656 uint64_t got;
658 gdb_assert (writebuf == NULL);
660 if (offset > sizeof (got))
661 return 0;
663 fun_addr = string_to_core_addr (annex);
664 got = ia64_hpux_get_solib_linkage_addr (fun_addr);
666 if (len > sizeof (got) - offset)
667 len = sizeof (got) - offset;
668 memcpy (readbuf, &got + offset, len);
670 return len;
673 /* The "to_xfer_partial" target_ops routine for ia64-hpux. */
675 static LONGEST
676 ia64_hpux_xfer_partial (struct target_ops *ops, enum target_object object,
677 const char *annex, gdb_byte *readbuf,
678 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
680 LONGEST val;
682 if (object == TARGET_OBJECT_MEMORY)
683 val = ia64_hpux_xfer_memory (ops, annex, readbuf, writebuf, offset, len);
684 else if (object == TARGET_OBJECT_HPUX_UREGS)
685 val = ia64_hpux_xfer_uregs (ops, annex, readbuf, writebuf, offset, len);
686 else if (object == TARGET_OBJECT_HPUX_SOLIB_GOT)
687 val = ia64_hpux_xfer_solib_got (ops, annex, readbuf, writebuf, offset,
688 len);
689 else
690 val = super_xfer_partial (ops, object, annex, readbuf, writebuf, offset,
691 len);
693 return val;
696 /* The "to_can_use_hw_breakpoint" target_ops routine for ia64-hpux. */
698 static int
699 ia64_hpux_can_use_hw_breakpoint (int type, int cnt, int othertype)
701 /* No hardware watchpoint/breakpoint support yet. */
702 return 0;
705 /* The "to_mourn_inferior" routine from the "inf-ttrace" target_ops layer. */
707 static void (*super_mourn_inferior) (struct target_ops *);
709 /* The "to_mourn_inferior" target_ops routine for ia64-hpux. */
711 static void
712 ia64_hpux_mourn_inferior (struct target_ops *ops)
714 const int pid = ptid_get_pid (inferior_ptid);
715 int status;
717 super_mourn_inferior (ops);
719 /* On this platform, the process still exists even after we received
720 an exit event. Detaching from the process isn't sufficient either,
721 as it only turns the process into a zombie. So the only solution
722 we found is to kill it. */
723 ttrace (TT_PROC_EXIT, pid, 0, 0, 0, 0);
724 wait (&status);
727 /* Prevent warning from -Wmissing-prototypes. */
728 void _initialize_ia64_hpux_nat (void);
730 void
731 _initialize_ia64_hpux_nat (void)
733 struct target_ops *t;
735 t = inf_ttrace_target ();
736 super_to_wait = t->to_wait;
737 super_xfer_partial = t->to_xfer_partial;
738 super_mourn_inferior = t->to_mourn_inferior;
740 t->to_wait = ia64_hpux_wait;
741 t->to_fetch_registers = ia64_hpux_fetch_registers;
742 t->to_store_registers = ia64_hpux_store_registers;
743 t->to_xfer_partial = ia64_hpux_xfer_partial;
744 t->to_can_use_hw_breakpoint = ia64_hpux_can_use_hw_breakpoint;
745 t->to_mourn_inferior = ia64_hpux_mourn_inferior;
746 t->to_attach_no_wait = 1;
748 add_target (t);