Tests for validate symbol file using build-id.
[gdb/archer.git] / gdb / aarch64-linux-nat.c
blob846f1562ab650a09150a7c7855c53a0c511fb28b
1 /* Native-dependent code for GNU/Linux AArch64.
3 Copyright (C) 2011-2013 Free Software Foundation, Inc.
4 Contributed by ARM Ltd.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "defs.h"
23 #include "inferior.h"
24 #include "gdbcore.h"
25 #include "regcache.h"
26 #include "linux-nat.h"
27 #include "target-descriptions.h"
28 #include "auxv.h"
29 #include "gdbcmd.h"
30 #include "aarch64-tdep.h"
31 #include "aarch64-linux-tdep.h"
32 #include "elf/common.h"
34 #include <sys/ptrace.h>
35 #include <sys/utsname.h>
37 #include "gregset.h"
39 #include "features/aarch64.c"
41 /* Defines ps_err_e, struct ps_prochandle. */
42 #include "gdb_proc_service.h"
44 #ifndef TRAP_HWBKPT
45 #define TRAP_HWBKPT 0x0004
46 #endif
48 /* On GNU/Linux, threads are implemented as pseudo-processes, in which
49 case we may be tracing more than one process at a time. In that
50 case, inferior_ptid will contain the main process ID and the
51 individual thread (process) ID. get_thread_id () is used to get
52 the thread id if it's available, and the process id otherwise. */
54 static int
55 get_thread_id (ptid_t ptid)
57 int tid = TIDGET (ptid);
59 if (0 == tid)
60 tid = PIDGET (ptid);
61 return tid;
64 /* Macro definitions, data structures, and code for the hardware
65 breakpoint and hardware watchpoint support follow. We use the
66 following abbreviations throughout the code:
68 hw - hardware
69 bp - breakpoint
70 wp - watchpoint */
72 /* Maximum number of hardware breakpoint and watchpoint registers.
73 Neither of these values may exceed the width of dr_changed_t
74 measured in bits. */
76 #define AARCH64_HBP_MAX_NUM 16
77 #define AARCH64_HWP_MAX_NUM 16
79 /* Alignment requirement in bytes for addresses written to
80 hardware breakpoint and watchpoint value registers.
82 A ptrace call attempting to set an address that does not meet the
83 alignment criteria will fail. Limited support has been provided in
84 this port for unaligned watchpoints, such that from a GDB user
85 perspective, an unaligned watchpoint may be requested.
87 This is achieved by minimally enlarging the watched area to meet the
88 alignment requirement, and if necessary, splitting the watchpoint
89 over several hardware watchpoint registers. */
91 #define AARCH64_HBP_ALIGNMENT 4
92 #define AARCH64_HWP_ALIGNMENT 8
94 /* The maximum length of a memory region that can be watched by one
95 hardware watchpoint register. */
97 #define AARCH64_HWP_MAX_LEN_PER_REG 8
99 /* ptrace hardware breakpoint resource info is formatted as follows:
101 31 24 16 8 0
102 +---------------+--------------+---------------+---------------+
103 | RESERVED | RESERVED | DEBUG_ARCH | NUM_SLOTS |
104 +---------------+--------------+---------------+---------------+ */
107 /* Macros to extract fields from the hardware debug information word. */
108 #define AARCH64_DEBUG_NUM_SLOTS(x) ((x) & 0xff)
109 #define AARCH64_DEBUG_ARCH(x) (((x) >> 8) & 0xff)
111 /* Macro for the expected version of the ARMv8-A debug architecture. */
112 #define AARCH64_DEBUG_ARCH_V8 0x6
114 /* Number of hardware breakpoints/watchpoints the target supports.
115 They are initialized with values obtained via the ptrace calls
116 with NT_ARM_HW_BREAK and NT_ARM_HW_WATCH respectively. */
118 static int aarch64_num_bp_regs;
119 static int aarch64_num_wp_regs;
121 /* Debugging of hardware breakpoint/watchpoint support. */
123 static int debug_hw_points;
125 /* Each bit of a variable of this type is used to indicate whether a
126 hardware breakpoint or watchpoint setting has been changed since
127 the last update.
129 Bit N corresponds to the Nth hardware breakpoint or watchpoint
130 setting which is managed in aarch64_debug_reg_state, where N is
131 valid between 0 and the total number of the hardware breakpoint or
132 watchpoint debug registers minus 1.
134 When bit N is 1, the corresponding breakpoint or watchpoint setting
135 has changed, and therefore the corresponding hardware debug
136 register needs to be updated via the ptrace interface.
138 In the per-thread arch-specific data area, we define two such
139 variables for per-thread hardware breakpoint and watchpoint
140 settings respectively.
142 This type is part of the mechanism which helps reduce the number of
143 ptrace calls to the kernel, i.e. avoid asking the kernel to write
144 to the debug registers with unchanged values. */
146 typedef unsigned LONGEST dr_changed_t;
148 /* Set each of the lower M bits of X to 1; assert X is wide enough. */
150 #define DR_MARK_ALL_CHANGED(x, m) \
151 do \
153 gdb_assert (sizeof ((x)) * 8 >= (m)); \
154 (x) = (((dr_changed_t)1 << (m)) - 1); \
155 } while (0)
157 #define DR_MARK_N_CHANGED(x, n) \
158 do \
160 (x) |= ((dr_changed_t)1 << (n)); \
161 } while (0)
163 #define DR_CLEAR_CHANGED(x) \
164 do \
166 (x) = 0; \
167 } while (0)
169 #define DR_HAS_CHANGED(x) ((x) != 0)
170 #define DR_N_HAS_CHANGED(x, n) ((x) & ((dr_changed_t)1 << (n)))
172 /* Structure for managing the hardware breakpoint/watchpoint resources.
173 DR_ADDR_* stores the address, DR_CTRL_* stores the control register
174 content, and DR_REF_COUNT_* counts the numbers of references to the
175 corresponding bp/wp, by which way the limited hardware resources
176 are not wasted on duplicated bp/wp settings (though so far gdb has
177 done a good job by not sending duplicated bp/wp requests). */
179 struct aarch64_debug_reg_state
181 /* hardware breakpoint */
182 CORE_ADDR dr_addr_bp[AARCH64_HBP_MAX_NUM];
183 unsigned int dr_ctrl_bp[AARCH64_HBP_MAX_NUM];
184 unsigned int dr_ref_count_bp[AARCH64_HBP_MAX_NUM];
186 /* hardware watchpoint */
187 CORE_ADDR dr_addr_wp[AARCH64_HWP_MAX_NUM];
188 unsigned int dr_ctrl_wp[AARCH64_HWP_MAX_NUM];
189 unsigned int dr_ref_count_wp[AARCH64_HWP_MAX_NUM];
192 /* Per-process data. We don't bind this to a per-inferior registry
193 because of targets like x86 GNU/Linux that need to keep track of
194 processes that aren't bound to any inferior (e.g., fork children,
195 checkpoints). */
197 struct aarch64_process_info
199 /* Linked list. */
200 struct aarch64_process_info *next;
202 /* The process identifier. */
203 pid_t pid;
205 /* Copy of aarch64 hardware debug registers. */
206 struct aarch64_debug_reg_state state;
209 static struct aarch64_process_info *aarch64_process_list = NULL;
211 /* Find process data for process PID. */
213 static struct aarch64_process_info *
214 aarch64_find_process_pid (pid_t pid)
216 struct aarch64_process_info *proc;
218 for (proc = aarch64_process_list; proc; proc = proc->next)
219 if (proc->pid == pid)
220 return proc;
222 return NULL;
225 /* Add process data for process PID. Returns newly allocated info
226 object. */
228 static struct aarch64_process_info *
229 aarch64_add_process (pid_t pid)
231 struct aarch64_process_info *proc;
233 proc = xcalloc (1, sizeof (*proc));
234 proc->pid = pid;
236 proc->next = aarch64_process_list;
237 aarch64_process_list = proc;
239 return proc;
242 /* Get data specific info for process PID, creating it if necessary.
243 Never returns NULL. */
245 static struct aarch64_process_info *
246 aarch64_process_info_get (pid_t pid)
248 struct aarch64_process_info *proc;
250 proc = aarch64_find_process_pid (pid);
251 if (proc == NULL)
252 proc = aarch64_add_process (pid);
254 return proc;
257 /* Called whenever GDB is no longer debugging process PID. It deletes
258 data structures that keep track of debug register state. */
260 static void
261 aarch64_forget_process (pid_t pid)
263 struct aarch64_process_info *proc, **proc_link;
265 proc = aarch64_process_list;
266 proc_link = &aarch64_process_list;
268 while (proc != NULL)
270 if (proc->pid == pid)
272 *proc_link = proc->next;
274 xfree (proc);
275 return;
278 proc_link = &proc->next;
279 proc = *proc_link;
283 /* Get debug registers state for process PID. */
285 static struct aarch64_debug_reg_state *
286 aarch64_get_debug_reg_state (pid_t pid)
288 return &aarch64_process_info_get (pid)->state;
291 /* Per-thread arch-specific data we want to keep. */
293 struct arch_lwp_info
295 /* When bit N is 1, it indicates the Nth hardware breakpoint or
296 watchpoint register pair needs to be updated when the thread is
297 resumed; see aarch64_linux_prepare_to_resume. */
298 dr_changed_t dr_changed_bp;
299 dr_changed_t dr_changed_wp;
302 /* Call ptrace to set the thread TID's hardware breakpoint/watchpoint
303 registers with data from *STATE. */
305 static void
306 aarch64_linux_set_debug_regs (const struct aarch64_debug_reg_state *state,
307 int tid, int watchpoint)
309 int i, count;
310 struct iovec iov;
311 struct user_hwdebug_state regs;
312 const CORE_ADDR *addr;
313 const unsigned int *ctrl;
315 iov.iov_base = &regs;
316 iov.iov_len = sizeof (regs);
317 count = watchpoint ? aarch64_num_wp_regs : aarch64_num_bp_regs;
318 addr = watchpoint ? state->dr_addr_wp : state->dr_addr_bp;
319 ctrl = watchpoint ? state->dr_ctrl_wp : state->dr_ctrl_bp;
321 for (i = 0; i < count; i++)
323 regs.dbg_regs[i].addr = addr[i];
324 regs.dbg_regs[i].ctrl = ctrl[i];
327 if (ptrace (PTRACE_SETREGSET, tid,
328 watchpoint ? NT_ARM_HW_WATCH : NT_ARM_HW_BREAK,
329 (void *) &iov))
330 error (_("Unexpected error setting hardware debug registers"));
333 struct aarch64_dr_update_callback_param
335 int is_watchpoint;
336 unsigned int idx;
339 /* Callback for iterate_over_lwps. Records the
340 information about the change of one hardware breakpoint/watchpoint
341 setting for the thread LWP.
342 The information is passed in via PTR.
343 N.B. The actual updating of hardware debug registers is not
344 carried out until the moment the thread is resumed. */
346 static int
347 debug_reg_change_callback (struct lwp_info *lwp, void *ptr)
349 struct aarch64_dr_update_callback_param *param_p
350 = (struct aarch64_dr_update_callback_param *) ptr;
351 int pid = get_thread_id (lwp->ptid);
352 int idx = param_p->idx;
353 int is_watchpoint = param_p->is_watchpoint;
354 struct arch_lwp_info *info = lwp->arch_private;
355 dr_changed_t *dr_changed_ptr;
356 dr_changed_t dr_changed;
358 if (info == NULL)
359 info = lwp->arch_private = XCNEW (struct arch_lwp_info);
361 if (debug_hw_points)
363 fprintf_unfiltered (gdb_stdlog,
364 "debug_reg_change_callback: \n\tOn entry:\n");
365 fprintf_unfiltered (gdb_stdlog,
366 "\tpid%d, dr_changed_bp=0x%s, "
367 "dr_changed_wp=0x%s\n",
368 pid, phex (info->dr_changed_bp, 8),
369 phex (info->dr_changed_wp, 8));
372 dr_changed_ptr = is_watchpoint ? &info->dr_changed_wp
373 : &info->dr_changed_bp;
374 dr_changed = *dr_changed_ptr;
376 gdb_assert (idx >= 0
377 && (idx <= (is_watchpoint ? aarch64_num_wp_regs
378 : aarch64_num_bp_regs)));
380 /* The actual update is done later just before resuming the lwp,
381 we just mark that one register pair needs updating. */
382 DR_MARK_N_CHANGED (dr_changed, idx);
383 *dr_changed_ptr = dr_changed;
385 /* If the lwp isn't stopped, force it to momentarily pause, so
386 we can update its debug registers. */
387 if (!lwp->stopped)
388 linux_stop_lwp (lwp);
390 if (debug_hw_points)
392 fprintf_unfiltered (gdb_stdlog,
393 "\tOn exit:\n\tpid%d, dr_changed_bp=0x%s, "
394 "dr_changed_wp=0x%s\n",
395 pid, phex (info->dr_changed_bp, 8),
396 phex (info->dr_changed_wp, 8));
399 /* Continue the iteration. */
400 return 0;
403 /* Notify each thread that their IDXth breakpoint/watchpoint register
404 pair needs to be updated. The message will be recorded in each
405 thread's arch-specific data area, the actual updating will be done
406 when the thread is resumed. */
408 static void
409 aarch64_notify_debug_reg_change (const struct aarch64_debug_reg_state *state,
410 int is_watchpoint, unsigned int idx)
412 struct aarch64_dr_update_callback_param param;
413 ptid_t pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
415 param.is_watchpoint = is_watchpoint;
416 param.idx = idx;
418 iterate_over_lwps (pid_ptid, debug_reg_change_callback, (void *) &param);
421 /* Print the values of the cached breakpoint/watchpoint registers. */
423 static void
424 aarch64_show_debug_reg_state (struct aarch64_debug_reg_state *state,
425 const char *func, CORE_ADDR addr,
426 int len, int type)
428 int i;
430 fprintf_unfiltered (gdb_stdlog, "%s", func);
431 if (addr || len)
432 fprintf_unfiltered (gdb_stdlog, " (addr=0x%08lx, len=%d, type=%s)",
433 (unsigned long) addr, len,
434 type == hw_write ? "hw-write-watchpoint"
435 : (type == hw_read ? "hw-read-watchpoint"
436 : (type == hw_access ? "hw-access-watchpoint"
437 : (type == hw_execute ? "hw-breakpoint"
438 : "??unknown??"))));
439 fprintf_unfiltered (gdb_stdlog, ":\n");
441 fprintf_unfiltered (gdb_stdlog, "\tBREAKPOINTs:\n");
442 for (i = 0; i < aarch64_num_bp_regs; i++)
443 fprintf_unfiltered (gdb_stdlog,
444 "\tBP%d: addr=0x%08lx, ctrl=0x%08x, ref.count=%d\n",
445 i, state->dr_addr_bp[i],
446 state->dr_ctrl_bp[i], state->dr_ref_count_bp[i]);
448 fprintf_unfiltered (gdb_stdlog, "\tWATCHPOINTs:\n");
449 for (i = 0; i < aarch64_num_wp_regs; i++)
450 fprintf_unfiltered (gdb_stdlog,
451 "\tWP%d: addr=0x%08lx, ctrl=0x%08x, ref.count=%d\n",
452 i, state->dr_addr_wp[i],
453 state->dr_ctrl_wp[i], state->dr_ref_count_wp[i]);
456 /* Fill GDB's register array with the general-purpose register values
457 from the current thread. */
459 static void
460 fetch_gregs_from_thread (struct regcache *regcache)
462 int ret, regno, tid;
463 elf_gregset_t regs;
464 struct iovec iovec;
466 tid = get_thread_id (inferior_ptid);
468 iovec.iov_base = &regs;
469 iovec.iov_len = sizeof (regs);
471 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iovec);
472 if (ret < 0)
473 perror_with_name (_("Unable to fetch general registers."));
475 for (regno = AARCH64_X0_REGNUM; regno <= AARCH64_CPSR_REGNUM; regno++)
476 regcache_raw_supply (regcache, regno,
477 (char *) &regs[regno - AARCH64_X0_REGNUM]);
480 /* Store to the current thread the valid general-purpose register
481 values in the GDB's register array. */
483 static void
484 store_gregs_to_thread (const struct regcache *regcache)
486 int ret, regno, tid;
487 elf_gregset_t regs;
488 struct iovec iovec;
490 tid = get_thread_id (inferior_ptid);
492 iovec.iov_base = &regs;
493 iovec.iov_len = sizeof (regs);
495 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iovec);
496 if (ret < 0)
497 perror_with_name (_("Unable to fetch general registers."));
499 for (regno = AARCH64_X0_REGNUM; regno <= AARCH64_CPSR_REGNUM; regno++)
500 if (REG_VALID == regcache_register_status (regcache, regno))
501 regcache_raw_collect (regcache, regno,
502 (char *) &regs[regno - AARCH64_X0_REGNUM]);
504 ret = ptrace (PTRACE_SETREGSET, tid, NT_PRSTATUS, &iovec);
505 if (ret < 0)
506 perror_with_name (_("Unable to store general registers."));
509 /* Fill GDB's register array with the fp/simd register values
510 from the current thread. */
512 static void
513 fetch_fpregs_from_thread (struct regcache *regcache)
515 int ret, regno, tid;
516 elf_fpregset_t regs;
517 struct iovec iovec;
519 tid = get_thread_id (inferior_ptid);
521 iovec.iov_base = &regs;
522 iovec.iov_len = sizeof (regs);
524 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iovec);
525 if (ret < 0)
526 perror_with_name (_("Unable to fetch FP/SIMD registers."));
528 for (regno = AARCH64_V0_REGNUM; regno <= AARCH64_V31_REGNUM; regno++)
529 regcache_raw_supply (regcache, regno,
530 (char *) &regs.vregs[regno - AARCH64_V0_REGNUM]);
532 regcache_raw_supply (regcache, AARCH64_FPSR_REGNUM, (char *) &regs.fpsr);
533 regcache_raw_supply (regcache, AARCH64_FPCR_REGNUM, (char *) &regs.fpcr);
536 /* Store to the current thread the valid fp/simd register
537 values in the GDB's register array. */
539 static void
540 store_fpregs_to_thread (const struct regcache *regcache)
542 int ret, regno, tid;
543 elf_fpregset_t regs;
544 struct iovec iovec;
546 tid = get_thread_id (inferior_ptid);
548 iovec.iov_base = &regs;
549 iovec.iov_len = sizeof (regs);
551 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iovec);
552 if (ret < 0)
553 perror_with_name (_("Unable to fetch FP/SIMD registers."));
555 for (regno = AARCH64_V0_REGNUM; regno <= AARCH64_V31_REGNUM; regno++)
556 if (REG_VALID == regcache_register_status (regcache, regno))
557 regcache_raw_collect (regcache, regno,
558 (char *) &regs.vregs[regno - AARCH64_V0_REGNUM]);
560 if (REG_VALID == regcache_register_status (regcache, AARCH64_FPSR_REGNUM))
561 regcache_raw_collect (regcache, AARCH64_FPSR_REGNUM, (char *) &regs.fpsr);
562 if (REG_VALID == regcache_register_status (regcache, AARCH64_FPCR_REGNUM))
563 regcache_raw_collect (regcache, AARCH64_FPCR_REGNUM, (char *) &regs.fpcr);
565 ret = ptrace (PTRACE_SETREGSET, tid, NT_FPREGSET, &iovec);
566 if (ret < 0)
567 perror_with_name (_("Unable to store FP/SIMD registers."));
570 /* Implement the "to_fetch_register" target_ops method. */
572 static void
573 aarch64_linux_fetch_inferior_registers (struct target_ops *ops,
574 struct regcache *regcache,
575 int regno)
577 if (regno == -1)
579 fetch_gregs_from_thread (regcache);
580 fetch_fpregs_from_thread (regcache);
582 else if (regno < AARCH64_V0_REGNUM)
583 fetch_gregs_from_thread (regcache);
584 else
585 fetch_fpregs_from_thread (regcache);
588 /* Implement the "to_store_register" target_ops method. */
590 static void
591 aarch64_linux_store_inferior_registers (struct target_ops *ops,
592 struct regcache *regcache,
593 int regno)
595 if (regno == -1)
597 store_gregs_to_thread (regcache);
598 store_fpregs_to_thread (regcache);
600 else if (regno < AARCH64_V0_REGNUM)
601 store_gregs_to_thread (regcache);
602 else
603 store_fpregs_to_thread (regcache);
606 /* Fill register REGNO (if it is a general-purpose register) in
607 *GREGSETPS with the value in GDB's register array. If REGNO is -1,
608 do this for all registers. */
610 void
611 fill_gregset (const struct regcache *regcache,
612 gdb_gregset_t *gregsetp, int regno)
614 gdb_byte *gregs_buf = (gdb_byte *) gregsetp;
615 int i;
617 for (i = AARCH64_X0_REGNUM; i <= AARCH64_CPSR_REGNUM; i++)
618 if (regno == -1 || regno == i)
619 regcache_raw_collect (regcache, i,
620 gregs_buf + X_REGISTER_SIZE
621 * (i - AARCH64_X0_REGNUM));
624 /* Fill GDB's register array with the general-purpose register values
625 in *GREGSETP. */
627 void
628 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
630 aarch64_linux_supply_gregset (regcache, (const gdb_byte *) gregsetp);
633 /* Fill register REGNO (if it is a floating-point register) in
634 *FPREGSETP with the value in GDB's register array. If REGNO is -1,
635 do this for all registers. */
637 void
638 fill_fpregset (const struct regcache *regcache,
639 gdb_fpregset_t *fpregsetp, int regno)
641 gdb_byte *fpregs_buf = (gdb_byte *) fpregsetp;
642 int i;
644 for (i = AARCH64_V0_REGNUM; i <= AARCH64_V31_REGNUM; i++)
645 if (regno == -1 || regno == i)
646 regcache_raw_collect (regcache, i,
647 fpregs_buf + V_REGISTER_SIZE
648 * (i - AARCH64_V0_REGNUM));
650 if (regno == -1 || regno == AARCH64_FPSR_REGNUM)
651 regcache_raw_collect (regcache, AARCH64_FPSR_REGNUM,
652 fpregs_buf + V_REGISTER_SIZE * 32);
654 if (regno == -1 || regno == AARCH64_FPCR_REGNUM)
655 regcache_raw_collect (regcache, AARCH64_FPCR_REGNUM,
656 fpregs_buf + V_REGISTER_SIZE * 32 + 4);
659 /* Fill GDB's register array with the floating-point register values
660 in *FPREGSETP. */
662 void
663 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t *fpregsetp)
665 aarch64_linux_supply_fpregset (regcache, (const gdb_byte *) fpregsetp);
668 /* Called when resuming a thread.
669 The hardware debug registers are updated when there is any change. */
671 static void
672 aarch64_linux_prepare_to_resume (struct lwp_info *lwp)
674 struct arch_lwp_info *info = lwp->arch_private;
676 /* NULL means this is the main thread still going through the shell,
677 or, no watchpoint has been set yet. In that case, there's
678 nothing to do. */
679 if (info == NULL)
680 return;
682 if (DR_HAS_CHANGED (info->dr_changed_bp)
683 || DR_HAS_CHANGED (info->dr_changed_wp))
685 int tid = GET_LWP (lwp->ptid);
686 struct aarch64_debug_reg_state *state
687 = aarch64_get_debug_reg_state (ptid_get_pid (lwp->ptid));
689 if (debug_hw_points)
690 fprintf_unfiltered (gdb_stdlog, "prepare_to_resume thread %d\n", tid);
692 /* Watchpoints. */
693 if (DR_HAS_CHANGED (info->dr_changed_wp))
695 aarch64_linux_set_debug_regs (state, tid, 1);
696 DR_CLEAR_CHANGED (info->dr_changed_wp);
699 /* Breakpoints. */
700 if (DR_HAS_CHANGED (info->dr_changed_bp))
702 aarch64_linux_set_debug_regs (state, tid, 0);
703 DR_CLEAR_CHANGED (info->dr_changed_bp);
708 static void
709 aarch64_linux_new_thread (struct lwp_info *lp)
711 struct arch_lwp_info *info = XCNEW (struct arch_lwp_info);
713 /* Mark that all the hardware breakpoint/watchpoint register pairs
714 for this thread need to be initialized. */
715 DR_MARK_ALL_CHANGED (info->dr_changed_bp, aarch64_num_bp_regs);
716 DR_MARK_ALL_CHANGED (info->dr_changed_wp, aarch64_num_wp_regs);
718 lp->arch_private = info;
721 /* linux_nat_new_fork hook. */
723 static void
724 aarch64_linux_new_fork (struct lwp_info *parent, pid_t child_pid)
726 pid_t parent_pid;
727 struct aarch64_debug_reg_state *parent_state;
728 struct aarch64_debug_reg_state *child_state;
730 /* NULL means no watchpoint has ever been set in the parent. In
731 that case, there's nothing to do. */
732 if (parent->arch_private == NULL)
733 return;
735 /* GDB core assumes the child inherits the watchpoints/hw
736 breakpoints of the parent, and will remove them all from the
737 forked off process. Copy the debug registers mirrors into the
738 new process so that all breakpoints and watchpoints can be
739 removed together. */
741 parent_pid = ptid_get_pid (parent->ptid);
742 parent_state = aarch64_get_debug_reg_state (parent_pid);
743 child_state = aarch64_get_debug_reg_state (child_pid);
744 *child_state = *parent_state;
748 /* Called by libthread_db. Returns a pointer to the thread local
749 storage (or its descriptor). */
751 ps_err_e
752 ps_get_thread_area (const struct ps_prochandle *ph,
753 lwpid_t lwpid, int idx, void **base)
755 struct iovec iovec;
756 uint64_t reg;
758 iovec.iov_base = &reg;
759 iovec.iov_len = sizeof (reg);
761 if (ptrace (PTRACE_GETREGSET, lwpid, NT_ARM_TLS, &iovec) != 0)
762 return PS_ERR;
764 /* IDX is the bias from the thread pointer to the beginning of the
765 thread descriptor. It has to be subtracted due to implementation
766 quirks in libthread_db. */
767 *base = (void *) (reg - idx);
769 return PS_OK;
773 /* Get the hardware debug register capacity information. */
775 static void
776 aarch64_linux_get_debug_reg_capacity (void)
778 int tid;
779 struct iovec iov;
780 struct user_hwdebug_state dreg_state;
782 tid = get_thread_id (inferior_ptid);
783 iov.iov_base = &dreg_state;
784 iov.iov_len = sizeof (dreg_state);
786 /* Get hardware watchpoint register info. */
787 if (ptrace (PTRACE_GETREGSET, tid, NT_ARM_HW_WATCH, &iov) == 0
788 && AARCH64_DEBUG_ARCH (dreg_state.dbg_info) == AARCH64_DEBUG_ARCH_V8)
790 aarch64_num_wp_regs = AARCH64_DEBUG_NUM_SLOTS (dreg_state.dbg_info);
791 if (aarch64_num_wp_regs > AARCH64_HWP_MAX_NUM)
793 warning (_("Unexpected number of hardware watchpoint registers"
794 " reported by ptrace, got %d, expected %d."),
795 aarch64_num_wp_regs, AARCH64_HWP_MAX_NUM);
796 aarch64_num_wp_regs = AARCH64_HWP_MAX_NUM;
799 else
801 warning (_("Unable to determine the number of hardware watchpoints"
802 " available."));
803 aarch64_num_wp_regs = 0;
806 /* Get hardware breakpoint register info. */
807 if (ptrace (PTRACE_GETREGSET, tid, NT_ARM_HW_BREAK, &iov) == 0
808 && AARCH64_DEBUG_ARCH (dreg_state.dbg_info) == AARCH64_DEBUG_ARCH_V8)
810 aarch64_num_bp_regs = AARCH64_DEBUG_NUM_SLOTS (dreg_state.dbg_info);
811 if (aarch64_num_bp_regs > AARCH64_HBP_MAX_NUM)
813 warning (_("Unexpected number of hardware breakpoint registers"
814 " reported by ptrace, got %d, expected %d."),
815 aarch64_num_bp_regs, AARCH64_HBP_MAX_NUM);
816 aarch64_num_bp_regs = AARCH64_HBP_MAX_NUM;
819 else
821 warning (_("Unable to determine the number of hardware breakpoints"
822 " available."));
823 aarch64_num_bp_regs = 0;
827 static void (*super_post_startup_inferior) (ptid_t ptid);
829 /* Implement the "to_post_startup_inferior" target_ops method. */
831 static void
832 aarch64_linux_child_post_startup_inferior (ptid_t ptid)
834 aarch64_forget_process (ptid_get_pid (ptid));
835 aarch64_linux_get_debug_reg_capacity ();
836 super_post_startup_inferior (ptid);
839 /* Implement the "to_read_description" target_ops method. */
841 static const struct target_desc *
842 aarch64_linux_read_description (struct target_ops *ops)
844 initialize_tdesc_aarch64 ();
845 return tdesc_aarch64;
848 /* Given the (potentially unaligned) watchpoint address in ADDR and
849 length in LEN, return the aligned address and aligned length in
850 *ALIGNED_ADDR_P and *ALIGNED_LEN_P, respectively. The returned
851 aligned address and length will be valid values to write to the
852 hardware watchpoint value and control registers.
854 The given watchpoint may get truncated if more than one hardware
855 register is needed to cover the watched region. *NEXT_ADDR_P
856 and *NEXT_LEN_P, if non-NULL, will return the address and length
857 of the remaining part of the watchpoint (which can be processed
858 by calling this routine again to generate another aligned address
859 and length pair.
861 See the comment above the function of the same name in
862 gdbserver/linux-aarch64-low.c for more information. */
864 static void
865 aarch64_align_watchpoint (CORE_ADDR addr, int len, CORE_ADDR *aligned_addr_p,
866 int *aligned_len_p, CORE_ADDR *next_addr_p,
867 int *next_len_p)
869 int aligned_len;
870 unsigned int offset;
871 CORE_ADDR aligned_addr;
872 const unsigned int alignment = AARCH64_HWP_ALIGNMENT;
873 const unsigned int max_wp_len = AARCH64_HWP_MAX_LEN_PER_REG;
875 /* As assumed by the algorithm. */
876 gdb_assert (alignment == max_wp_len);
878 if (len <= 0)
879 return;
881 /* Address to be put into the hardware watchpoint value register
882 must be aligned. */
883 offset = addr & (alignment - 1);
884 aligned_addr = addr - offset;
886 gdb_assert (offset >= 0 && offset < alignment);
887 gdb_assert (aligned_addr >= 0 && aligned_addr <= addr);
888 gdb_assert (offset + len > 0);
890 if (offset + len >= max_wp_len)
892 /* Need more than one watchpoint registers; truncate it at the
893 alignment boundary. */
894 aligned_len = max_wp_len;
895 len -= (max_wp_len - offset);
896 addr += (max_wp_len - offset);
897 gdb_assert ((addr & (alignment - 1)) == 0);
899 else
901 /* Find the smallest valid length that is large enough to
902 accommodate this watchpoint. */
903 static const unsigned char
904 aligned_len_array[AARCH64_HWP_MAX_LEN_PER_REG] =
905 { 1, 2, 4, 4, 8, 8, 8, 8 };
907 aligned_len = aligned_len_array[offset + len - 1];
908 addr += len;
909 len = 0;
912 if (aligned_addr_p)
913 *aligned_addr_p = aligned_addr;
914 if (aligned_len_p)
915 *aligned_len_p = aligned_len;
916 if (next_addr_p)
917 *next_addr_p = addr;
918 if (next_len_p)
919 *next_len_p = len;
922 /* Returns the number of hardware watchpoints of type TYPE that we can
923 set. Value is positive if we can set CNT watchpoints, zero if
924 setting watchpoints of type TYPE is not supported, and negative if
925 CNT is more than the maximum number of watchpoints of type TYPE
926 that we can support. TYPE is one of bp_hardware_watchpoint,
927 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
928 CNT is the number of such watchpoints used so far (including this
929 one). OTHERTYPE is non-zero if other types of watchpoints are
930 currently enabled.
932 We always return 1 here because we don't have enough information
933 about possible overlap of addresses that they want to watch. As an
934 extreme example, consider the case where all the watchpoints watch
935 the same address and the same region length: then we can handle a
936 virtually unlimited number of watchpoints, due to debug register
937 sharing implemented via reference counts. */
939 static int
940 aarch64_linux_can_use_hw_breakpoint (int type, int cnt, int othertype)
942 return 1;
945 /* ptrace expects control registers to be formatted as follows:
947 31 13 5 3 1 0
948 +--------------------------------+----------+------+------+----+
949 | RESERVED (SBZ) | LENGTH | TYPE | PRIV | EN |
950 +--------------------------------+----------+------+------+----+
952 The TYPE field is ignored for breakpoints. */
954 #define DR_CONTROL_ENABLED(ctrl) (((ctrl) & 0x1) == 1)
955 #define DR_CONTROL_LENGTH(ctrl) (((ctrl) >> 5) & 0xff)
957 /* Utility function that returns the length in bytes of a watchpoint
958 according to the content of a hardware debug control register CTRL.
959 Note that the kernel currently only supports the following Byte
960 Address Select (BAS) values: 0x1, 0x3, 0xf and 0xff, which means
961 that for a hardware watchpoint, its valid length can only be 1
962 byte, 2 bytes, 4 bytes or 8 bytes. */
964 static inline unsigned int
965 aarch64_watchpoint_length (unsigned int ctrl)
967 switch (DR_CONTROL_LENGTH (ctrl))
969 case 0x01:
970 return 1;
971 case 0x03:
972 return 2;
973 case 0x0f:
974 return 4;
975 case 0xff:
976 return 8;
977 default:
978 return 0;
982 /* Given the hardware breakpoint or watchpoint type TYPE and its
983 length LEN, return the expected encoding for a hardware
984 breakpoint/watchpoint control register. */
986 static unsigned int
987 aarch64_point_encode_ctrl_reg (int type, int len)
989 unsigned int ctrl, ttype;
991 /* type */
992 switch (type)
994 case hw_write:
995 ttype = 2;
996 break;
997 case hw_read:
998 ttype = 1;
999 break;
1000 case hw_access:
1001 ttype = 3;
1002 break;
1003 case hw_execute:
1004 ttype = 0;
1005 break;
1006 default:
1007 perror_with_name (_("Unrecognized breakpoint/watchpoint type"));
1009 ctrl = ttype << 3;
1011 /* length bitmask */
1012 ctrl |= ((1 << len) - 1) << 5;
1013 /* enabled at el0 */
1014 ctrl |= (2 << 1) | 1;
1016 return ctrl;
1019 /* Addresses to be written to the hardware breakpoint and watchpoint
1020 value registers need to be aligned; the alignment is 4-byte and
1021 8-type respectively. Linux kernel rejects any non-aligned address
1022 it receives from the related ptrace call. Furthermore, the kernel
1023 currently only supports the following Byte Address Select (BAS)
1024 values: 0x1, 0x3, 0xf and 0xff, which means that for a hardware
1025 watchpoint to be accepted by the kernel (via ptrace call), its
1026 valid length can only be 1 byte, 2 bytes, 4 bytes or 8 bytes.
1027 Despite these limitations, the unaligned watchpoint is supported in
1028 this port.
1030 Return 0 for any non-compliant ADDR and/or LEN; return 1 otherwise. */
1032 static int
1033 aarch64_point_is_aligned (int is_watchpoint, CORE_ADDR addr, int len)
1035 unsigned int alignment = is_watchpoint ? AARCH64_HWP_ALIGNMENT
1036 : AARCH64_HBP_ALIGNMENT;
1038 if (addr & (alignment - 1))
1039 return 0;
1041 if (len != 8 && len != 4 && len != 2 && len != 1)
1042 return 0;
1044 return 1;
1047 /* Record the insertion of one breakpoint/watchpoint, as represented
1048 by ADDR and CTRL, in the cached debug register state area *STATE. */
1050 static int
1051 aarch64_dr_state_insert_one_point (struct aarch64_debug_reg_state *state,
1052 int type, CORE_ADDR addr, int len)
1054 int i, idx, num_regs, is_watchpoint;
1055 unsigned int ctrl, *dr_ctrl_p, *dr_ref_count;
1056 CORE_ADDR *dr_addr_p;
1058 /* Set up state pointers. */
1059 is_watchpoint = (type != hw_execute);
1060 gdb_assert (aarch64_point_is_aligned (is_watchpoint, addr, len));
1061 if (is_watchpoint)
1063 num_regs = aarch64_num_wp_regs;
1064 dr_addr_p = state->dr_addr_wp;
1065 dr_ctrl_p = state->dr_ctrl_wp;
1066 dr_ref_count = state->dr_ref_count_wp;
1068 else
1070 num_regs = aarch64_num_bp_regs;
1071 dr_addr_p = state->dr_addr_bp;
1072 dr_ctrl_p = state->dr_ctrl_bp;
1073 dr_ref_count = state->dr_ref_count_bp;
1076 ctrl = aarch64_point_encode_ctrl_reg (type, len);
1078 /* Find an existing or free register in our cache. */
1079 idx = -1;
1080 for (i = 0; i < num_regs; ++i)
1082 if ((dr_ctrl_p[i] & 1) == 0)
1084 gdb_assert (dr_ref_count[i] == 0);
1085 idx = i;
1086 /* no break; continue hunting for an existing one. */
1088 else if (dr_addr_p[i] == addr && dr_ctrl_p[i] == ctrl)
1090 gdb_assert (dr_ref_count[i] != 0);
1091 idx = i;
1092 break;
1096 /* No space. */
1097 if (idx == -1)
1098 return -1;
1100 /* Update our cache. */
1101 if ((dr_ctrl_p[idx] & 1) == 0)
1103 /* new entry */
1104 dr_addr_p[idx] = addr;
1105 dr_ctrl_p[idx] = ctrl;
1106 dr_ref_count[idx] = 1;
1107 /* Notify the change. */
1108 aarch64_notify_debug_reg_change (state, is_watchpoint, idx);
1110 else
1112 /* existing entry */
1113 dr_ref_count[idx]++;
1116 return 0;
1119 /* Record the removal of one breakpoint/watchpoint, as represented by
1120 ADDR and CTRL, in the cached debug register state area *STATE. */
1122 static int
1123 aarch64_dr_state_remove_one_point (struct aarch64_debug_reg_state *state,
1124 int type, CORE_ADDR addr, int len)
1126 int i, num_regs, is_watchpoint;
1127 unsigned int ctrl, *dr_ctrl_p, *dr_ref_count;
1128 CORE_ADDR *dr_addr_p;
1130 /* Set up state pointers. */
1131 is_watchpoint = (type != hw_execute);
1132 gdb_assert (aarch64_point_is_aligned (is_watchpoint, addr, len));
1133 if (is_watchpoint)
1135 num_regs = aarch64_num_wp_regs;
1136 dr_addr_p = state->dr_addr_wp;
1137 dr_ctrl_p = state->dr_ctrl_wp;
1138 dr_ref_count = state->dr_ref_count_wp;
1140 else
1142 num_regs = aarch64_num_bp_regs;
1143 dr_addr_p = state->dr_addr_bp;
1144 dr_ctrl_p = state->dr_ctrl_bp;
1145 dr_ref_count = state->dr_ref_count_bp;
1148 ctrl = aarch64_point_encode_ctrl_reg (type, len);
1150 /* Find the entry that matches the ADDR and CTRL. */
1151 for (i = 0; i < num_regs; ++i)
1152 if (dr_addr_p[i] == addr && dr_ctrl_p[i] == ctrl)
1154 gdb_assert (dr_ref_count[i] != 0);
1155 break;
1158 /* Not found. */
1159 if (i == num_regs)
1160 return -1;
1162 /* Clear our cache. */
1163 if (--dr_ref_count[i] == 0)
1165 /* Clear the enable bit. */
1166 ctrl &= ~1;
1167 dr_addr_p[i] = 0;
1168 dr_ctrl_p[i] = ctrl;
1169 /* Notify the change. */
1170 aarch64_notify_debug_reg_change (state, is_watchpoint, i);
1173 return 0;
1176 /* Implement insertion and removal of a single breakpoint. */
1178 static int
1179 aarch64_handle_breakpoint (int type, CORE_ADDR addr, int len, int is_insert)
1181 struct aarch64_debug_reg_state *state;
1183 /* The hardware breakpoint on AArch64 should always be 4-byte
1184 aligned. */
1185 if (!aarch64_point_is_aligned (0 /* is_watchpoint */ , addr, len))
1186 return -1;
1188 state = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1190 if (is_insert)
1191 return aarch64_dr_state_insert_one_point (state, type, addr, len);
1192 else
1193 return aarch64_dr_state_remove_one_point (state, type, addr, len);
1196 /* Insert a hardware-assisted breakpoint at BP_TGT->placed_address.
1197 Return 0 on success, -1 on failure. */
1199 static int
1200 aarch64_linux_insert_hw_breakpoint (struct gdbarch *gdbarch,
1201 struct bp_target_info *bp_tgt)
1203 int ret;
1204 CORE_ADDR addr = bp_tgt->placed_address;
1205 const int len = 4;
1206 const int type = hw_execute;
1208 if (debug_hw_points)
1209 fprintf_unfiltered
1210 (gdb_stdlog,
1211 "insert_hw_breakpoint on entry (addr=0x%08lx, len=%d))\n",
1212 (unsigned long) addr, len);
1214 ret = aarch64_handle_breakpoint (type, addr, len, 1 /* is_insert */);
1216 if (debug_hw_points > 1)
1218 struct aarch64_debug_reg_state *state
1219 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1221 aarch64_show_debug_reg_state (state,
1222 "insert_hw_watchpoint", addr, len, type);
1225 return ret;
1228 /* Remove a hardware-assisted breakpoint at BP_TGT->placed_address.
1229 Return 0 on success, -1 on failure. */
1231 static int
1232 aarch64_linux_remove_hw_breakpoint (struct gdbarch *gdbarch,
1233 struct bp_target_info *bp_tgt)
1235 int ret;
1236 CORE_ADDR addr = bp_tgt->placed_address;
1237 const int len = 4;
1238 const int type = hw_execute;
1240 if (debug_hw_points)
1241 fprintf_unfiltered
1242 (gdb_stdlog, "remove_hw_breakpoint on entry (addr=0x%08lx, len=%d))\n",
1243 (unsigned long) addr, len);
1245 ret = aarch64_handle_breakpoint (type, addr, len, 0 /* is_insert */);
1247 if (debug_hw_points > 1)
1249 struct aarch64_debug_reg_state *state
1250 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1252 aarch64_show_debug_reg_state (state,
1253 "remove_hw_watchpoint", addr, len, type);
1256 return ret;
1259 /* This is essentially the same as aarch64_handle_breakpoint, apart
1260 from that it is an aligned watchpoint to be handled. */
1262 static int
1263 aarch64_handle_aligned_watchpoint (int type, CORE_ADDR addr, int len,
1264 int is_insert)
1266 struct aarch64_debug_reg_state *state
1267 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1269 if (is_insert)
1270 return aarch64_dr_state_insert_one_point (state, type, addr, len);
1271 else
1272 return aarch64_dr_state_remove_one_point (state, type, addr, len);
1275 /* Insert/remove unaligned watchpoint by calling
1276 aarch64_align_watchpoint repeatedly until the whole watched region,
1277 as represented by ADDR and LEN, has been properly aligned and ready
1278 to be written to one or more hardware watchpoint registers.
1279 IS_INSERT indicates whether this is an insertion or a deletion.
1280 Return 0 if succeed. */
1282 static int
1283 aarch64_handle_unaligned_watchpoint (int type, CORE_ADDR addr, int len,
1284 int is_insert)
1286 struct aarch64_debug_reg_state *state
1287 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1289 while (len > 0)
1291 CORE_ADDR aligned_addr;
1292 int aligned_len, ret;
1294 aarch64_align_watchpoint (addr, len, &aligned_addr, &aligned_len,
1295 &addr, &len);
1297 if (is_insert)
1298 ret = aarch64_dr_state_insert_one_point (state, type, aligned_addr,
1299 aligned_len);
1300 else
1301 ret = aarch64_dr_state_remove_one_point (state, type, aligned_addr,
1302 aligned_len);
1304 if (debug_hw_points)
1305 fprintf_unfiltered (gdb_stdlog,
1306 "handle_unaligned_watchpoint: is_insert: %d\n"
1307 " aligned_addr: 0x%08lx, aligned_len: %d\n"
1308 " next_addr: 0x%08lx, next_len: %d\n",
1309 is_insert, aligned_addr, aligned_len, addr, len);
1311 if (ret != 0)
1312 return ret;
1315 return 0;
1318 /* Implements insertion and removal of a single watchpoint. */
1320 static int
1321 aarch64_handle_watchpoint (int type, CORE_ADDR addr, int len, int is_insert)
1323 if (aarch64_point_is_aligned (1 /* is_watchpoint */ , addr, len))
1324 return aarch64_handle_aligned_watchpoint (type, addr, len, is_insert);
1325 else
1326 return aarch64_handle_unaligned_watchpoint (type, addr, len, is_insert);
1329 /* Implement the "to_insert_watchpoint" target_ops method.
1331 Insert a watchpoint to watch a memory region which starts at
1332 address ADDR and whose length is LEN bytes. Watch memory accesses
1333 of the type TYPE. Return 0 on success, -1 on failure. */
1335 static int
1336 aarch64_linux_insert_watchpoint (CORE_ADDR addr, int len, int type,
1337 struct expression *cond)
1339 int ret;
1341 if (debug_hw_points)
1342 fprintf_unfiltered (gdb_stdlog,
1343 "insert_watchpoint on entry (addr=0x%08lx, len=%d)\n",
1344 (unsigned long) addr, len);
1346 gdb_assert (type != hw_execute);
1348 ret = aarch64_handle_watchpoint (type, addr, len, 1 /* is_insert */);
1350 if (debug_hw_points > 1)
1352 struct aarch64_debug_reg_state *state
1353 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1355 aarch64_show_debug_reg_state (state,
1356 "insert_watchpoint", addr, len, type);
1359 return ret;
1362 /* Implement the "to_remove_watchpoint" target_ops method.
1363 Remove a watchpoint that watched the memory region which starts at
1364 address ADDR, whose length is LEN bytes, and for accesses of the
1365 type TYPE. Return 0 on success, -1 on failure. */
1367 static int
1368 aarch64_linux_remove_watchpoint (CORE_ADDR addr, int len, int type,
1369 struct expression *cond)
1371 int ret;
1373 if (debug_hw_points)
1374 fprintf_unfiltered (gdb_stdlog,
1375 "remove_watchpoint on entry (addr=0x%08lx, len=%d)\n",
1376 (unsigned long) addr, len);
1378 gdb_assert (type != hw_execute);
1380 ret = aarch64_handle_watchpoint (type, addr, len, 0 /* is_insert */);
1382 if (debug_hw_points > 1)
1384 struct aarch64_debug_reg_state *state
1385 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1387 aarch64_show_debug_reg_state (state,
1388 "remove_watchpoint", addr, len, type);
1391 return ret;
1394 /* Implement the "to_region_ok_for_hw_watchpoint" target_ops method. */
1396 static int
1397 aarch64_linux_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1399 CORE_ADDR aligned_addr;
1401 /* Can not set watchpoints for zero or negative lengths. */
1402 if (len <= 0)
1403 return 0;
1405 /* Must have hardware watchpoint debug register(s). */
1406 if (aarch64_num_wp_regs == 0)
1407 return 0;
1409 /* We support unaligned watchpoint address and arbitrary length,
1410 as long as the size of the whole watched area after alignment
1411 doesn't exceed size of the total area that all watchpoint debug
1412 registers can watch cooperatively.
1414 This is a very relaxed rule, but unfortunately there are
1415 limitations, e.g. false-positive hits, due to limited support of
1416 hardware debug registers in the kernel. See comment above
1417 aarch64_align_watchpoint for more information. */
1419 aligned_addr = addr & ~(AARCH64_HWP_MAX_LEN_PER_REG - 1);
1420 if (aligned_addr + aarch64_num_wp_regs * AARCH64_HWP_MAX_LEN_PER_REG
1421 < addr + len)
1422 return 0;
1424 /* All tests passed so we are likely to be able to set the watchpoint.
1425 The reason that it is 'likely' rather than 'must' is because
1426 we don't check the current usage of the watchpoint registers, and
1427 there may not be enough registers available for this watchpoint.
1428 Ideally we should check the cached debug register state, however
1429 the checking is costly. */
1430 return 1;
1433 /* Implement the "to_stopped_data_address" target_ops method. */
1435 static int
1436 aarch64_linux_stopped_data_address (struct target_ops *target,
1437 CORE_ADDR *addr_p)
1439 siginfo_t siginfo;
1440 int i, tid;
1441 struct aarch64_debug_reg_state *state;
1443 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
1444 return 0;
1446 /* This must be a hardware breakpoint. */
1447 if (siginfo.si_signo != SIGTRAP
1448 || (siginfo.si_code & 0xffff) != TRAP_HWBKPT)
1449 return 0;
1451 /* Check if the address matches any watched address. */
1452 state = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1453 for (i = aarch64_num_wp_regs - 1; i >= 0; --i)
1455 const unsigned int len = aarch64_watchpoint_length (state->dr_ctrl_wp[i]);
1456 const CORE_ADDR addr_trap = (CORE_ADDR) siginfo.si_addr;
1457 const CORE_ADDR addr_watch = state->dr_addr_wp[i];
1459 if (state->dr_ref_count_wp[i]
1460 && DR_CONTROL_ENABLED (state->dr_ctrl_wp[i])
1461 && addr_trap >= addr_watch
1462 && addr_trap < addr_watch + len)
1464 *addr_p = addr_trap;
1465 return 1;
1469 return 0;
1472 /* Implement the "to_stopped_by_watchpoint" target_ops method. */
1474 static int
1475 aarch64_linux_stopped_by_watchpoint (void)
1477 CORE_ADDR addr;
1479 return aarch64_linux_stopped_data_address (&current_target, &addr);
1482 /* Implement the "to_watchpoint_addr_within_range" target_ops method. */
1484 static int
1485 aarch64_linux_watchpoint_addr_within_range (struct target_ops *target,
1486 CORE_ADDR addr,
1487 CORE_ADDR start, int length)
1489 return start <= addr && start + length - 1 >= addr;
1492 /* Define AArch64 maintenance commands. */
1494 static void
1495 add_show_debug_regs_command (void)
1497 /* A maintenance command to enable printing the internal DRi mirror
1498 variables. */
1499 add_setshow_boolean_cmd ("show-debug-regs", class_maintenance,
1500 &debug_hw_points, _("\
1501 Set whether to show variables that mirror the AArch64 debug registers."), _("\
1502 Show whether to show variables that mirror the AArch64 debug registers."), _("\
1503 Use \"on\" to enable, \"off\" to disable.\n\
1504 If enabled, the debug registers values are shown when GDB inserts\n\
1505 or removes a hardware breakpoint or watchpoint, and when the inferior\n\
1506 triggers a breakpoint or watchpoint."),
1507 NULL,
1508 NULL,
1509 &maintenance_set_cmdlist,
1510 &maintenance_show_cmdlist);
1513 /* -Wmissing-prototypes. */
1514 void _initialize_aarch64_linux_nat (void);
1516 void
1517 _initialize_aarch64_linux_nat (void)
1519 struct target_ops *t;
1521 /* Fill in the generic GNU/Linux methods. */
1522 t = linux_target ();
1524 add_show_debug_regs_command ();
1526 /* Add our register access methods. */
1527 t->to_fetch_registers = aarch64_linux_fetch_inferior_registers;
1528 t->to_store_registers = aarch64_linux_store_inferior_registers;
1530 t->to_read_description = aarch64_linux_read_description;
1532 t->to_can_use_hw_breakpoint = aarch64_linux_can_use_hw_breakpoint;
1533 t->to_insert_hw_breakpoint = aarch64_linux_insert_hw_breakpoint;
1534 t->to_remove_hw_breakpoint = aarch64_linux_remove_hw_breakpoint;
1535 t->to_region_ok_for_hw_watchpoint =
1536 aarch64_linux_region_ok_for_hw_watchpoint;
1537 t->to_insert_watchpoint = aarch64_linux_insert_watchpoint;
1538 t->to_remove_watchpoint = aarch64_linux_remove_watchpoint;
1539 t->to_stopped_by_watchpoint = aarch64_linux_stopped_by_watchpoint;
1540 t->to_stopped_data_address = aarch64_linux_stopped_data_address;
1541 t->to_watchpoint_addr_within_range =
1542 aarch64_linux_watchpoint_addr_within_range;
1544 /* Override the GNU/Linux inferior startup hook. */
1545 super_post_startup_inferior = t->to_post_startup_inferior;
1546 t->to_post_startup_inferior = aarch64_linux_child_post_startup_inferior;
1548 /* Register the target. */
1549 linux_nat_add_target (t);
1550 linux_nat_set_new_thread (t, aarch64_linux_new_thread);
1551 linux_nat_set_new_fork (t, aarch64_linux_new_fork);
1552 linux_nat_set_forget_process (t, aarch64_forget_process);
1553 linux_nat_set_prepare_to_resume (t, aarch64_linux_prepare_to_resume);