Update
[gdb.git] / gdb / vec.h
blobd28fa703ade977df9912a621daf9e80989dac826
1 /* Vector API for GDB.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
3 Contributed by Nathan Sidwell <nathan@codesourcery.com>
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #if !defined (GDB_VEC_H)
21 #define GDB_VEC_H
23 #include <stddef.h>
24 #include "gdb_string.h"
25 #include "gdb_assert.h"
27 /* The macros here implement a set of templated vector types and
28 associated interfaces. These templates are implemented with
29 macros, as we're not in C++ land. The interface functions are
30 typesafe and use static inline functions, sometimes backed by
31 out-of-line generic functions.
33 Because of the different behavior of structure objects, scalar
34 objects and of pointers, there are three flavors, one for each of
35 these variants. Both the structure object and pointer variants
36 pass pointers to objects around -- in the former case the pointers
37 are stored into the vector and in the latter case the pointers are
38 dereferenced and the objects copied into the vector. The scalar
39 object variant is suitable for int-like objects, and the vector
40 elements are returned by value.
42 There are both 'index' and 'iterate' accessors. The iterator
43 returns a boolean iteration condition and updates the iteration
44 variable passed by reference. Because the iterator will be
45 inlined, the address-of can be optimized away.
47 The vectors are implemented using the trailing array idiom, thus
48 they are not resizeable without changing the address of the vector
49 object itself. This means you cannot have variables or fields of
50 vector type -- always use a pointer to a vector. The one exception
51 is the final field of a structure, which could be a vector type.
52 You will have to use the embedded_size & embedded_init calls to
53 create such objects, and they will probably not be resizeable (so
54 don't use the 'safe' allocation variants). The trailing array
55 idiom is used (rather than a pointer to an array of data), because,
56 if we allow NULL to also represent an empty vector, empty vectors
57 occupy minimal space in the structure containing them.
59 Each operation that increases the number of active elements is
60 available in 'quick' and 'safe' variants. The former presumes that
61 there is sufficient allocated space for the operation to succeed
62 (it dies if there is not). The latter will reallocate the
63 vector, if needed. Reallocation causes an exponential increase in
64 vector size. If you know you will be adding N elements, it would
65 be more efficient to use the reserve operation before adding the
66 elements with the 'quick' operation. This will ensure there are at
67 least as many elements as you ask for, it will exponentially
68 increase if there are too few spare slots. If you want reserve a
69 specific number of slots, but do not want the exponential increase
70 (for instance, you know this is the last allocation), use a
71 negative number for reservation. You can also create a vector of a
72 specific size from the get go.
74 You should prefer the push and pop operations, as they append and
75 remove from the end of the vector. If you need to remove several
76 items in one go, use the truncate operation. The insert and remove
77 operations allow you to change elements in the middle of the
78 vector. There are two remove operations, one which preserves the
79 element ordering 'ordered_remove', and one which does not
80 'unordered_remove'. The latter function copies the end element
81 into the removed slot, rather than invoke a memmove operation. The
82 'lower_bound' function will determine where to place an item in the
83 array using insert that will maintain sorted order.
85 If you need to directly manipulate a vector, then the 'address'
86 accessor will return the address of the start of the vector. Also
87 the 'space' predicate will tell you whether there is spare capacity
88 in the vector. You will not normally need to use these two functions.
90 Vector types are defined using a DEF_VEC_{O,P,I}(TYPEDEF) macro.
91 Variables of vector type are declared using a VEC(TYPEDEF) macro.
92 The characters O, P and I indicate whether TYPEDEF is a pointer
93 (P), object (O) or integral (I) type. Be careful to pick the
94 correct one, as you'll get an awkward and inefficient API if you
95 use the wrong one. There is a check, which results in a
96 compile-time warning, for the P and I versions, but there is no
97 check for the O versions, as that is not possible in plain C.
99 An example of their use would be,
101 DEF_VEC_P(tree); // non-managed tree vector.
103 struct my_struct {
104 VEC(tree) *v; // A (pointer to) a vector of tree pointers.
107 struct my_struct *s;
109 if (VEC_length(tree, s->v)) { we have some contents }
110 VEC_safe_push(tree, s->v, decl); // append some decl onto the end
111 for (ix = 0; VEC_iterate(tree, s->v, ix, elt); ix++)
112 { do something with elt }
116 /* Macros to invoke API calls. A single macro works for both pointer
117 and object vectors, but the argument and return types might well be
118 different. In each macro, T is the typedef of the vector elements.
119 Some of these macros pass the vector, V, by reference (by taking
120 its address), this is noted in the descriptions. */
122 /* Length of vector
123 unsigned VEC_T_length(const VEC(T) *v);
125 Return the number of active elements in V. V can be NULL, in which
126 case zero is returned. */
128 #define VEC_length(T,V) (VEC_OP(T,length)(V))
131 /* Check if vector is empty
132 int VEC_T_empty(const VEC(T) *v);
134 Return nonzero if V is an empty vector (or V is NULL), zero otherwise. */
136 #define VEC_empty(T,V) (VEC_length (T,V) == 0)
139 /* Get the final element of the vector.
140 T VEC_T_last(VEC(T) *v); // Integer
141 T VEC_T_last(VEC(T) *v); // Pointer
142 T *VEC_T_last(VEC(T) *v); // Object
144 Return the final element. V must not be empty. */
146 #define VEC_last(T,V) (VEC_OP(T,last)(V VEC_ASSERT_INFO))
148 /* Index into vector
149 T VEC_T_index(VEC(T) *v, unsigned ix); // Integer
150 T VEC_T_index(VEC(T) *v, unsigned ix); // Pointer
151 T *VEC_T_index(VEC(T) *v, unsigned ix); // Object
153 Return the IX'th element. If IX must be in the domain of V. */
155 #define VEC_index(T,V,I) (VEC_OP(T,index)(V,I VEC_ASSERT_INFO))
157 /* Iterate over vector
158 int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Integer
159 int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Pointer
160 int VEC_T_iterate(VEC(T) *v, unsigned ix, T *&ptr); // Object
162 Return iteration condition and update PTR to point to the IX'th
163 element. At the end of iteration, sets PTR to NULL. Use this to
164 iterate over the elements of a vector as follows,
166 for (ix = 0; VEC_iterate(T,v,ix,ptr); ix++)
167 continue; */
169 #define VEC_iterate(T,V,I,P) (VEC_OP(T,iterate)(V,I,&(P)))
171 /* Allocate new vector.
172 VEC(T,A) *VEC_T_alloc(int reserve);
174 Allocate a new vector with space for RESERVE objects. If RESERVE
175 is zero, NO vector is created. */
177 #define VEC_alloc(T,N) (VEC_OP(T,alloc)(N))
179 /* Free a vector.
180 void VEC_T_free(VEC(T,A) *&);
182 Free a vector and set it to NULL. */
184 #define VEC_free(T,V) (VEC_OP(T,free)(&V))
186 /* Use these to determine the required size and initialization of a
187 vector embedded within another structure (as the final member).
189 size_t VEC_T_embedded_size(int reserve);
190 void VEC_T_embedded_init(VEC(T) *v, int reserve);
192 These allow the caller to perform the memory allocation. */
194 #define VEC_embedded_size(T,N) (VEC_OP(T,embedded_size)(N))
195 #define VEC_embedded_init(T,O,N) (VEC_OP(T,embedded_init)(VEC_BASE(O),N))
197 /* Copy a vector.
198 VEC(T,A) *VEC_T_copy(VEC(T) *);
200 Copy the live elements of a vector into a new vector. The new and
201 old vectors need not be allocated by the same mechanism. */
203 #define VEC_copy(T,V) (VEC_OP(T,copy)(V))
205 /* Determine if a vector has additional capacity.
207 int VEC_T_space (VEC(T) *v,int reserve)
209 If V has space for RESERVE additional entries, return nonzero. You
210 usually only need to use this if you are doing your own vector
211 reallocation, for instance on an embedded vector. This returns
212 nonzero in exactly the same circumstances that VEC_T_reserve
213 will. */
215 #define VEC_space(T,V,R) (VEC_OP(T,space)(V,R VEC_ASSERT_INFO))
217 /* Reserve space.
218 int VEC_T_reserve(VEC(T,A) *&v, int reserve);
220 Ensure that V has at least abs(RESERVE) slots available. The
221 signedness of RESERVE determines the reallocation behavior. A
222 negative value will not create additional headroom beyond that
223 requested. A positive value will create additional headroom. Note
224 this can cause V to be reallocated. Returns nonzero iff
225 reallocation actually occurred. */
227 #define VEC_reserve(T,V,R) (VEC_OP(T,reserve)(&(V),R VEC_ASSERT_INFO))
229 /* Push object with no reallocation
230 T *VEC_T_quick_push (VEC(T) *v, T obj); // Integer
231 T *VEC_T_quick_push (VEC(T) *v, T obj); // Pointer
232 T *VEC_T_quick_push (VEC(T) *v, T *obj); // Object
234 Push a new element onto the end, returns a pointer to the slot
235 filled in. For object vectors, the new value can be NULL, in which
236 case NO initialization is performed. There must
237 be sufficient space in the vector. */
239 #define VEC_quick_push(T,V,O) (VEC_OP(T,quick_push)(V,O VEC_ASSERT_INFO))
241 /* Push object with reallocation
242 T *VEC_T_safe_push (VEC(T,A) *&v, T obj); // Integer
243 T *VEC_T_safe_push (VEC(T,A) *&v, T obj); // Pointer
244 T *VEC_T_safe_push (VEC(T,A) *&v, T *obj); // Object
246 Push a new element onto the end, returns a pointer to the slot
247 filled in. For object vectors, the new value can be NULL, in which
248 case NO initialization is performed. Reallocates V, if needed. */
250 #define VEC_safe_push(T,V,O) (VEC_OP(T,safe_push)(&(V),O VEC_ASSERT_INFO))
252 /* Pop element off end
253 T VEC_T_pop (VEC(T) *v); // Integer
254 T VEC_T_pop (VEC(T) *v); // Pointer
255 void VEC_T_pop (VEC(T) *v); // Object
257 Pop the last element off the end. Returns the element popped, for
258 pointer vectors. */
260 #define VEC_pop(T,V) (VEC_OP(T,pop)(V VEC_ASSERT_INFO))
262 /* Truncate to specific length
263 void VEC_T_truncate (VEC(T) *v, unsigned len);
265 Set the length as specified. The new length must be less than or
266 equal to the current length. This is an O(1) operation. */
268 #define VEC_truncate(T,V,I) \
269 (VEC_OP(T,truncate)(V,I VEC_ASSERT_INFO))
271 /* Grow to a specific length.
272 void VEC_T_safe_grow (VEC(T,A) *&v, int len);
274 Grow the vector to a specific length. The LEN must be as
275 long or longer than the current length. The new elements are
276 uninitialized. */
278 #define VEC_safe_grow(T,V,I) \
279 (VEC_OP(T,safe_grow)(&(V),I VEC_ASSERT_INFO))
281 /* Replace element
282 T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Integer
283 T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Pointer
284 T *VEC_T_replace (VEC(T) *v, unsigned ix, T *val); // Object
286 Replace the IXth element of V with a new value, VAL. For pointer
287 vectors returns the original value. For object vectors returns a
288 pointer to the new value. For object vectors the new value can be
289 NULL, in which case no overwriting of the slot is actually
290 performed. */
292 #define VEC_replace(T,V,I,O) (VEC_OP(T,replace)(V,I,O VEC_ASSERT_INFO))
294 /* Insert object with no reallocation
295 T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Integer
296 T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Pointer
297 T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T *val); // Object
299 Insert an element, VAL, at the IXth position of V. Return a pointer
300 to the slot created. For vectors of object, the new value can be
301 NULL, in which case no initialization of the inserted slot takes
302 place. There must be sufficient space. */
304 #define VEC_quick_insert(T,V,I,O) \
305 (VEC_OP(T,quick_insert)(V,I,O VEC_ASSERT_INFO))
307 /* Insert object with reallocation
308 T *VEC_T_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Integer
309 T *VEC_T_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Pointer
310 T *VEC_T_safe_insert (VEC(T,A) *&v, unsigned ix, T *val); // Object
312 Insert an element, VAL, at the IXth position of V. Return a pointer
313 to the slot created. For vectors of object, the new value can be
314 NULL, in which case no initialization of the inserted slot takes
315 place. Reallocate V, if necessary. */
317 #define VEC_safe_insert(T,V,I,O) \
318 (VEC_OP(T,safe_insert)(&(V),I,O VEC_ASSERT_INFO))
320 /* Remove element retaining order
321 T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Integer
322 T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Pointer
323 void VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Object
325 Remove an element from the IXth position of V. Ordering of
326 remaining elements is preserved. For pointer vectors returns the
327 removed object. This is an O(N) operation due to a memmove. */
329 #define VEC_ordered_remove(T,V,I) \
330 (VEC_OP(T,ordered_remove)(V,I VEC_ASSERT_INFO))
332 /* Remove element destroying order
333 T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Integer
334 T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Pointer
335 void VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Object
337 Remove an element from the IXth position of V. Ordering of
338 remaining elements is destroyed. For pointer vectors returns the
339 removed object. This is an O(1) operation. */
341 #define VEC_unordered_remove(T,V,I) \
342 (VEC_OP(T,unordered_remove)(V,I VEC_ASSERT_INFO))
344 /* Remove a block of elements
345 void VEC_T_block_remove (VEC(T) *v, unsigned ix, unsigned len);
347 Remove LEN elements starting at the IXth. Ordering is retained.
348 This is an O(1) operation. */
350 #define VEC_block_remove(T,V,I,L) \
351 (VEC_OP(T,block_remove)(V,I,L) VEC_ASSERT_INFO)
353 /* Get the address of the array of elements
354 T *VEC_T_address (VEC(T) v)
356 If you need to directly manipulate the array (for instance, you
357 want to feed it to qsort), use this accessor. */
359 #define VEC_address(T,V) (VEC_OP(T,address)(V))
361 /* Find the first index in the vector not less than the object.
362 unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
363 int (*lessthan) (const T, const T)); // Integer
364 unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
365 int (*lessthan) (const T, const T)); // Pointer
366 unsigned VEC_T_lower_bound (VEC(T) *v, const T *val,
367 int (*lessthan) (const T*, const T*)); // Object
369 Find the first position in which VAL could be inserted without
370 changing the ordering of V. LESSTHAN is a function that returns
371 true if the first argument is strictly less than the second. */
373 #define VEC_lower_bound(T,V,O,LT) \
374 (VEC_OP(T,lower_bound)(V,O,LT VEC_ASSERT_INFO))
376 /* Reallocate an array of elements with prefix. */
377 extern void *vec_p_reserve (void *, int);
378 extern void *vec_o_reserve (void *, int, size_t, size_t);
379 #define vec_free_(V) xfree (V)
381 #define VEC_ASSERT_INFO ,__FILE__,__LINE__
382 #define VEC_ASSERT_DECL ,const char *file_,unsigned line_
383 #define VEC_ASSERT_PASS ,file_,line_
384 #define vec_assert(expr, op) \
385 ((void)((expr) ? 0 : (gdb_assert_fail (op, file_, line_, ASSERT_FUNCTION), 0)))
387 #define VEC(T) VEC_##T
388 #define VEC_OP(T,OP) VEC_##T##_##OP
390 #define VEC_T(T) \
391 typedef struct VEC(T) \
393 unsigned num; \
394 unsigned alloc; \
395 T vec[1]; \
396 } VEC(T)
398 /* Vector of integer-like object. */
399 #define DEF_VEC_I(T) \
400 static inline void VEC_OP (T,must_be_integral_type) (void) \
402 (void)~(T)0; \
405 VEC_T(T); \
406 DEF_VEC_FUNC_P(T) \
407 DEF_VEC_ALLOC_FUNC_I(T) \
408 struct vec_swallow_trailing_semi
410 /* Vector of pointer to object. */
411 #define DEF_VEC_P(T) \
412 static inline void VEC_OP (T,must_be_pointer_type) (void) \
414 (void)((T)1 == (void *)1); \
417 VEC_T(T); \
418 DEF_VEC_FUNC_P(T) \
419 DEF_VEC_ALLOC_FUNC_P(T) \
420 struct vec_swallow_trailing_semi
422 /* Vector of object. */
423 #define DEF_VEC_O(T) \
424 VEC_T(T); \
425 DEF_VEC_FUNC_O(T) \
426 DEF_VEC_ALLOC_FUNC_O(T) \
427 struct vec_swallow_trailing_semi
429 #define DEF_VEC_ALLOC_FUNC_I(T) \
430 static inline VEC(T) *VEC_OP (T,alloc) \
431 (int alloc_) \
433 /* We must request exact size allocation, hence the negation. */ \
434 return (VEC(T) *) vec_o_reserve (NULL, -alloc_, \
435 offsetof (VEC(T),vec), sizeof (T)); \
438 static inline VEC(T) *VEC_OP (T,copy) (VEC(T) *vec_) \
440 size_t len_ = vec_ ? vec_->num : 0; \
441 VEC (T) *new_vec_ = NULL; \
443 if (len_) \
445 /* We must request exact size allocation, hence the negation. */ \
446 new_vec_ = (VEC (T) *) \
447 vec_o_reserve (NULL, -len_, offsetof (VEC(T),vec), sizeof (T)); \
449 new_vec_->num = len_; \
450 memcpy (new_vec_->vec, vec_->vec, sizeof (T) * len_); \
452 return new_vec_; \
455 static inline void VEC_OP (T,free) \
456 (VEC(T) **vec_) \
458 if (*vec_) \
459 vec_free_ (*vec_); \
460 *vec_ = NULL; \
463 static inline int VEC_OP (T,reserve) \
464 (VEC(T) **vec_, int alloc_ VEC_ASSERT_DECL) \
466 int extend = !VEC_OP (T,space) \
467 (*vec_, alloc_ < 0 ? -alloc_ : alloc_ VEC_ASSERT_PASS); \
469 if (extend) \
470 *vec_ = (VEC(T) *) vec_o_reserve (*vec_, alloc_, \
471 offsetof (VEC(T),vec), sizeof (T)); \
473 return extend; \
476 static inline void VEC_OP (T,safe_grow) \
477 (VEC(T) **vec_, int size_ VEC_ASSERT_DECL) \
479 vec_assert (size_ >= 0 && VEC_OP(T,length) (*vec_) <= (unsigned)size_, \
480 "safe_grow"); \
481 VEC_OP (T,reserve) (vec_, (int)(*vec_ ? (*vec_)->num : 0) - size_ \
482 VEC_ASSERT_PASS); \
483 (*vec_)->num = size_; \
486 static inline T *VEC_OP (T,safe_push) \
487 (VEC(T) **vec_, const T obj_ VEC_ASSERT_DECL) \
489 VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
491 return VEC_OP (T,quick_push) (*vec_, obj_ VEC_ASSERT_PASS); \
494 static inline T *VEC_OP (T,safe_insert) \
495 (VEC(T) **vec_, unsigned ix_, const T obj_ VEC_ASSERT_DECL) \
497 VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
499 return VEC_OP (T,quick_insert) (*vec_, ix_, obj_ VEC_ASSERT_PASS); \
502 #define DEF_VEC_FUNC_P(T) \
503 static inline unsigned VEC_OP (T,length) (const VEC(T) *vec_) \
505 return vec_ ? vec_->num : 0; \
508 static inline T VEC_OP (T,last) \
509 (const VEC(T) *vec_ VEC_ASSERT_DECL) \
511 vec_assert (vec_ && vec_->num, "last"); \
513 return vec_->vec[vec_->num - 1]; \
516 static inline T VEC_OP (T,index) \
517 (const VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
519 vec_assert (vec_ && ix_ < vec_->num, "index"); \
521 return vec_->vec[ix_]; \
524 static inline int VEC_OP (T,iterate) \
525 (const VEC(T) *vec_, unsigned ix_, T *ptr) \
527 if (vec_ && ix_ < vec_->num) \
529 *ptr = vec_->vec[ix_]; \
530 return 1; \
532 else \
534 *ptr = 0; \
535 return 0; \
539 static inline size_t VEC_OP (T,embedded_size) \
540 (int alloc_) \
542 return offsetof (VEC(T),vec) + alloc_ * sizeof(T); \
545 static inline void VEC_OP (T,embedded_init) \
546 (VEC(T) *vec_, int alloc_) \
548 vec_->num = 0; \
549 vec_->alloc = alloc_; \
552 static inline int VEC_OP (T,space) \
553 (VEC(T) *vec_, int alloc_ VEC_ASSERT_DECL) \
555 vec_assert (alloc_ >= 0, "space"); \
556 return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \
559 static inline T *VEC_OP (T,quick_push) \
560 (VEC(T) *vec_, T obj_ VEC_ASSERT_DECL) \
562 T *slot_; \
564 vec_assert (vec_->num < vec_->alloc, "quick_push"); \
565 slot_ = &vec_->vec[vec_->num++]; \
566 *slot_ = obj_; \
568 return slot_; \
571 static inline T VEC_OP (T,pop) (VEC(T) *vec_ VEC_ASSERT_DECL) \
573 T obj_; \
575 vec_assert (vec_->num, "pop"); \
576 obj_ = vec_->vec[--vec_->num]; \
578 return obj_; \
581 static inline void VEC_OP (T,truncate) \
582 (VEC(T) *vec_, unsigned size_ VEC_ASSERT_DECL) \
584 vec_assert (vec_ ? vec_->num >= size_ : !size_, "truncate"); \
585 if (vec_) \
586 vec_->num = size_; \
589 static inline T VEC_OP (T,replace) \
590 (VEC(T) *vec_, unsigned ix_, T obj_ VEC_ASSERT_DECL) \
592 T old_obj_; \
594 vec_assert (ix_ < vec_->num, "replace"); \
595 old_obj_ = vec_->vec[ix_]; \
596 vec_->vec[ix_] = obj_; \
598 return old_obj_; \
601 static inline T *VEC_OP (T,quick_insert) \
602 (VEC(T) *vec_, unsigned ix_, T obj_ VEC_ASSERT_DECL) \
604 T *slot_; \
606 vec_assert (vec_->num < vec_->alloc && ix_ <= vec_->num, "quick_insert"); \
607 slot_ = &vec_->vec[ix_]; \
608 memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \
609 *slot_ = obj_; \
611 return slot_; \
614 static inline T VEC_OP (T,ordered_remove) \
615 (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
617 T *slot_; \
618 T obj_; \
620 vec_assert (ix_ < vec_->num, "ordered_remove"); \
621 slot_ = &vec_->vec[ix_]; \
622 obj_ = *slot_; \
623 memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \
625 return obj_; \
628 static inline T VEC_OP (T,unordered_remove) \
629 (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
631 T *slot_; \
632 T obj_; \
634 vec_assert (ix_ < vec_->num, "unordered_remove"); \
635 slot_ = &vec_->vec[ix_]; \
636 obj_ = *slot_; \
637 *slot_ = vec_->vec[--vec_->num]; \
639 return obj_; \
642 static inline void VEC_OP (T,block_remove) \
643 (VEC(T) *vec_, unsigned ix_, unsigned len_ VEC_ASSERT_DECL) \
645 T *slot_; \
647 vec_assert (ix_ + len_ <= vec_->num, "block_remove"); \
648 slot_ = &vec_->vec[ix_]; \
649 vec_->num -= len_; \
650 memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \
653 static inline T *VEC_OP (T,address) \
654 (VEC(T) *vec_) \
656 return vec_ ? vec_->vec : 0; \
659 static inline unsigned VEC_OP (T,lower_bound) \
660 (VEC(T) *vec_, const T obj_, \
661 int (*lessthan_)(const T, const T) VEC_ASSERT_DECL) \
663 unsigned int len_ = VEC_OP (T, length) (vec_); \
664 unsigned int half_, middle_; \
665 unsigned int first_ = 0; \
666 while (len_ > 0) \
668 T middle_elem_; \
669 half_ = len_ >> 1; \
670 middle_ = first_; \
671 middle_ += half_; \
672 middle_elem_ = VEC_OP (T,index) (vec_, middle_ VEC_ASSERT_PASS); \
673 if (lessthan_ (middle_elem_, obj_)) \
675 first_ = middle_; \
676 ++first_; \
677 len_ = len_ - half_ - 1; \
679 else \
680 len_ = half_; \
682 return first_; \
685 #define DEF_VEC_ALLOC_FUNC_P(T) \
686 static inline VEC(T) *VEC_OP (T,alloc) \
687 (int alloc_) \
689 /* We must request exact size allocation, hence the negation. */ \
690 return (VEC(T) *) vec_p_reserve (NULL, -alloc_); \
693 static inline void VEC_OP (T,free) \
694 (VEC(T) **vec_) \
696 if (*vec_) \
697 vec_free_ (*vec_); \
698 *vec_ = NULL; \
701 static inline VEC(T) *VEC_OP (T,copy) (VEC(T) *vec_) \
703 size_t len_ = vec_ ? vec_->num : 0; \
704 VEC (T) *new_vec_ = NULL; \
706 if (len_) \
708 /* We must request exact size allocation, hence the negation. */ \
709 new_vec_ = (VEC (T) *)(vec_p_reserve (NULL, -len_)); \
711 new_vec_->num = len_; \
712 memcpy (new_vec_->vec, vec_->vec, sizeof (T) * len_); \
714 return new_vec_; \
717 static inline int VEC_OP (T,reserve) \
718 (VEC(T) **vec_, int alloc_ VEC_ASSERT_DECL) \
720 int extend = !VEC_OP (T,space) \
721 (*vec_, alloc_ < 0 ? -alloc_ : alloc_ VEC_ASSERT_PASS); \
723 if (extend) \
724 *vec_ = (VEC(T) *) vec_p_reserve (*vec_, alloc_); \
726 return extend; \
729 static inline void VEC_OP (T,safe_grow) \
730 (VEC(T) **vec_, int size_ VEC_ASSERT_DECL) \
732 vec_assert (size_ >= 0 && VEC_OP(T,length) (*vec_) <= (unsigned)size_, \
733 "safe_grow"); \
734 VEC_OP (T,reserve) \
735 (vec_, (int)(*vec_ ? (*vec_)->num : 0) - size_ VEC_ASSERT_PASS); \
736 (*vec_)->num = size_; \
739 static inline T *VEC_OP (T,safe_push) \
740 (VEC(T) **vec_, T obj_ VEC_ASSERT_DECL) \
742 VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
744 return VEC_OP (T,quick_push) (*vec_, obj_ VEC_ASSERT_PASS); \
747 static inline T *VEC_OP (T,safe_insert) \
748 (VEC(T) **vec_, unsigned ix_, T obj_ VEC_ASSERT_DECL) \
750 VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
752 return VEC_OP (T,quick_insert) (*vec_, ix_, obj_ VEC_ASSERT_PASS); \
755 #define DEF_VEC_FUNC_O(T) \
756 static inline unsigned VEC_OP (T,length) (const VEC(T) *vec_) \
758 return vec_ ? vec_->num : 0; \
761 static inline T *VEC_OP (T,last) (VEC(T) *vec_ VEC_ASSERT_DECL) \
763 vec_assert (vec_ && vec_->num, "last"); \
765 return &vec_->vec[vec_->num - 1]; \
768 static inline T *VEC_OP (T,index) \
769 (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
771 vec_assert (vec_ && ix_ < vec_->num, "index"); \
773 return &vec_->vec[ix_]; \
776 static inline int VEC_OP (T,iterate) \
777 (VEC(T) *vec_, unsigned ix_, T **ptr) \
779 if (vec_ && ix_ < vec_->num) \
781 *ptr = &vec_->vec[ix_]; \
782 return 1; \
784 else \
786 *ptr = 0; \
787 return 0; \
791 static inline size_t VEC_OP (T,embedded_size) \
792 (int alloc_) \
794 return offsetof (VEC(T),vec) + alloc_ * sizeof(T); \
797 static inline void VEC_OP (T,embedded_init) \
798 (VEC(T) *vec_, int alloc_) \
800 vec_->num = 0; \
801 vec_->alloc = alloc_; \
804 static inline int VEC_OP (T,space) \
805 (VEC(T) *vec_, int alloc_ VEC_ASSERT_DECL) \
807 vec_assert (alloc_ >= 0, "space"); \
808 return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \
811 static inline T *VEC_OP (T,quick_push) \
812 (VEC(T) *vec_, const T *obj_ VEC_ASSERT_DECL) \
814 T *slot_; \
816 vec_assert (vec_->num < vec_->alloc, "quick_push"); \
817 slot_ = &vec_->vec[vec_->num++]; \
818 if (obj_) \
819 *slot_ = *obj_; \
821 return slot_; \
824 static inline void VEC_OP (T,pop) (VEC(T) *vec_ VEC_ASSERT_DECL) \
826 vec_assert (vec_->num, "pop"); \
827 --vec_->num; \
830 static inline void VEC_OP (T,truncate) \
831 (VEC(T) *vec_, unsigned size_ VEC_ASSERT_DECL) \
833 vec_assert (vec_ ? vec_->num >= size_ : !size_, "truncate"); \
834 if (vec_) \
835 vec_->num = size_; \
838 static inline T *VEC_OP (T,replace) \
839 (VEC(T) *vec_, unsigned ix_, const T *obj_ VEC_ASSERT_DECL) \
841 T *slot_; \
843 vec_assert (ix_ < vec_->num, "replace"); \
844 slot_ = &vec_->vec[ix_]; \
845 if (obj_) \
846 *slot_ = *obj_; \
848 return slot_; \
851 static inline T *VEC_OP (T,quick_insert) \
852 (VEC(T) *vec_, unsigned ix_, const T *obj_ VEC_ASSERT_DECL) \
854 T *slot_; \
856 vec_assert (vec_->num < vec_->alloc && ix_ <= vec_->num, "quick_insert"); \
857 slot_ = &vec_->vec[ix_]; \
858 memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \
859 if (obj_) \
860 *slot_ = *obj_; \
862 return slot_; \
865 static inline void VEC_OP (T,ordered_remove) \
866 (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
868 T *slot_; \
870 vec_assert (ix_ < vec_->num, "ordered_remove"); \
871 slot_ = &vec_->vec[ix_]; \
872 memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \
875 static inline void VEC_OP (T,unordered_remove) \
876 (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
878 vec_assert (ix_ < vec_->num, "unordered_remove"); \
879 vec_->vec[ix_] = vec_->vec[--vec_->num]; \
882 static inline void VEC_OP (T,block_remove) \
883 (VEC(T) *vec_, unsigned ix_, unsigned len_ VEC_ASSERT_DECL) \
885 T *slot_; \
887 vec_assert (ix_ + len_ <= vec_->num, "block_remove"); \
888 slot_ = &vec_->vec[ix_]; \
889 vec_->num -= len_; \
890 memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \
893 static inline T *VEC_OP (T,address) \
894 (VEC(T) *vec_) \
896 return vec_ ? vec_->vec : 0; \
899 static inline unsigned VEC_OP (T,lower_bound) \
900 (VEC(T) *vec_, const T *obj_, \
901 int (*lessthan_)(const T *, const T *) VEC_ASSERT_DECL) \
903 unsigned int len_ = VEC_OP (T, length) (vec_); \
904 unsigned int half_, middle_; \
905 unsigned int first_ = 0; \
906 while (len_ > 0) \
908 T *middle_elem_; \
909 half_ = len_ >> 1; \
910 middle_ = first_; \
911 middle_ += half_; \
912 middle_elem_ = VEC_OP (T,index) (vec_, middle_ VEC_ASSERT_PASS); \
913 if (lessthan_ (middle_elem_, obj_)) \
915 first_ = middle_; \
916 ++first_; \
917 len_ = len_ - half_ - 1; \
919 else \
920 len_ = half_; \
922 return first_; \
925 #define DEF_VEC_ALLOC_FUNC_O(T) \
926 static inline VEC(T) *VEC_OP (T,alloc) \
927 (int alloc_) \
929 /* We must request exact size allocation, hence the negation. */ \
930 return (VEC(T) *) vec_o_reserve (NULL, -alloc_, \
931 offsetof (VEC(T),vec), sizeof (T)); \
934 static inline VEC(T) *VEC_OP (T,copy) (VEC(T) *vec_) \
936 size_t len_ = vec_ ? vec_->num : 0; \
937 VEC (T) *new_vec_ = NULL; \
939 if (len_) \
941 /* We must request exact size allocation, hence the negation. */ \
942 new_vec_ = (VEC (T) *) \
943 vec_o_reserve (NULL, -len_, offsetof (VEC(T),vec), sizeof (T)); \
945 new_vec_->num = len_; \
946 memcpy (new_vec_->vec, vec_->vec, sizeof (T) * len_); \
948 return new_vec_; \
951 static inline void VEC_OP (T,free) \
952 (VEC(T) **vec_) \
954 if (*vec_) \
955 vec_free_ (*vec_); \
956 *vec_ = NULL; \
959 static inline int VEC_OP (T,reserve) \
960 (VEC(T) **vec_, int alloc_ VEC_ASSERT_DECL) \
962 int extend = !VEC_OP (T,space) (*vec_, alloc_ < 0 ? -alloc_ : alloc_ \
963 VEC_ASSERT_PASS); \
965 if (extend) \
966 *vec_ = (VEC(T) *) \
967 vec_o_reserve (*vec_, alloc_, offsetof (VEC(T),vec), sizeof (T)); \
969 return extend; \
972 static inline void VEC_OP (T,safe_grow) \
973 (VEC(T) **vec_, int size_ VEC_ASSERT_DECL) \
975 vec_assert (size_ >= 0 && VEC_OP(T,length) (*vec_) <= (unsigned)size_, \
976 "safe_grow"); \
977 VEC_OP (T,reserve) \
978 (vec_, (int)(*vec_ ? (*vec_)->num : 0) - size_ VEC_ASSERT_PASS); \
979 (*vec_)->num = size_; \
982 static inline T *VEC_OP (T,safe_push) \
983 (VEC(T) **vec_, const T *obj_ VEC_ASSERT_DECL) \
985 VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
987 return VEC_OP (T,quick_push) (*vec_, obj_ VEC_ASSERT_PASS); \
990 static inline T *VEC_OP (T,safe_insert) \
991 (VEC(T) **vec_, unsigned ix_, const T *obj_ VEC_ASSERT_DECL) \
993 VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
995 return VEC_OP (T,quick_insert) (*vec_, ix_, obj_ VEC_ASSERT_PASS); \
998 #endif /* GDB_VEC_H */