Update
[gdb.git] / gdb / i386-tdep.c
blob83ae9d1dcc608320778ce5bffff49da1bc0d994d
1 /* Intel 386 target-dependent stuff.
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "command.h"
25 #include "dummy-frame.h"
26 #include "dwarf2-frame.h"
27 #include "doublest.h"
28 #include "frame.h"
29 #include "frame-base.h"
30 #include "frame-unwind.h"
31 #include "inferior.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "osabi.h"
37 #include "regcache.h"
38 #include "reggroups.h"
39 #include "regset.h"
40 #include "symfile.h"
41 #include "symtab.h"
42 #include "target.h"
43 #include "value.h"
44 #include "dis-asm.h"
46 #include "gdb_assert.h"
47 #include "gdb_string.h"
49 #include "i386-tdep.h"
50 #include "i387-tdep.h"
52 /* Register names. */
54 static char *i386_register_names[] =
56 "eax", "ecx", "edx", "ebx",
57 "esp", "ebp", "esi", "edi",
58 "eip", "eflags", "cs", "ss",
59 "ds", "es", "fs", "gs",
60 "st0", "st1", "st2", "st3",
61 "st4", "st5", "st6", "st7",
62 "fctrl", "fstat", "ftag", "fiseg",
63 "fioff", "foseg", "fooff", "fop",
64 "xmm0", "xmm1", "xmm2", "xmm3",
65 "xmm4", "xmm5", "xmm6", "xmm7",
66 "mxcsr"
69 static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
71 /* Register names for MMX pseudo-registers. */
73 static char *i386_mmx_names[] =
75 "mm0", "mm1", "mm2", "mm3",
76 "mm4", "mm5", "mm6", "mm7"
79 static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
81 static int
82 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
84 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
86 if (mm0_regnum < 0)
87 return 0;
89 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
92 /* SSE register? */
94 static int
95 i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
97 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
99 #define I387_ST0_REGNUM tdep->st0_regnum
100 #define I387_NUM_XMM_REGS tdep->num_xmm_regs
102 if (I387_NUM_XMM_REGS == 0)
103 return 0;
105 return (I387_XMM0_REGNUM <= regnum && regnum < I387_MXCSR_REGNUM);
107 #undef I387_ST0_REGNUM
108 #undef I387_NUM_XMM_REGS
111 static int
112 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
114 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
116 #define I387_ST0_REGNUM tdep->st0_regnum
117 #define I387_NUM_XMM_REGS tdep->num_xmm_regs
119 if (I387_NUM_XMM_REGS == 0)
120 return 0;
122 return (regnum == I387_MXCSR_REGNUM);
124 #undef I387_ST0_REGNUM
125 #undef I387_NUM_XMM_REGS
128 #define I387_ST0_REGNUM (gdbarch_tdep (current_gdbarch)->st0_regnum)
129 #define I387_MM0_REGNUM (gdbarch_tdep (current_gdbarch)->mm0_regnum)
130 #define I387_NUM_XMM_REGS (gdbarch_tdep (current_gdbarch)->num_xmm_regs)
132 /* FP register? */
135 i386_fp_regnum_p (int regnum)
137 if (I387_ST0_REGNUM < 0)
138 return 0;
140 return (I387_ST0_REGNUM <= regnum && regnum < I387_FCTRL_REGNUM);
144 i386_fpc_regnum_p (int regnum)
146 if (I387_ST0_REGNUM < 0)
147 return 0;
149 return (I387_FCTRL_REGNUM <= regnum && regnum < I387_XMM0_REGNUM);
152 /* Return the name of register REGNUM. */
154 const char *
155 i386_register_name (struct gdbarch *gdbarch, int regnum)
157 if (i386_mmx_regnum_p (gdbarch, regnum))
158 return i386_mmx_names[regnum - I387_MM0_REGNUM];
160 if (regnum >= 0 && regnum < i386_num_register_names)
161 return i386_register_names[regnum];
163 return NULL;
166 /* Convert a dbx register number REG to the appropriate register
167 number used by GDB. */
169 static int
170 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
172 /* This implements what GCC calls the "default" register map
173 (dbx_register_map[]). */
175 if (reg >= 0 && reg <= 7)
177 /* General-purpose registers. The debug info calls %ebp
178 register 4, and %esp register 5. */
179 if (reg == 4)
180 return 5;
181 else if (reg == 5)
182 return 4;
183 else return reg;
185 else if (reg >= 12 && reg <= 19)
187 /* Floating-point registers. */
188 return reg - 12 + I387_ST0_REGNUM;
190 else if (reg >= 21 && reg <= 28)
192 /* SSE registers. */
193 return reg - 21 + I387_XMM0_REGNUM;
195 else if (reg >= 29 && reg <= 36)
197 /* MMX registers. */
198 return reg - 29 + I387_MM0_REGNUM;
201 /* This will hopefully provoke a warning. */
202 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
205 /* Convert SVR4 register number REG to the appropriate register number
206 used by GDB. */
208 static int
209 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
211 /* This implements the GCC register map that tries to be compatible
212 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
214 /* The SVR4 register numbering includes %eip and %eflags, and
215 numbers the floating point registers differently. */
216 if (reg >= 0 && reg <= 9)
218 /* General-purpose registers. */
219 return reg;
221 else if (reg >= 11 && reg <= 18)
223 /* Floating-point registers. */
224 return reg - 11 + I387_ST0_REGNUM;
226 else if (reg >= 21 && reg <= 36)
228 /* The SSE and MMX registers have the same numbers as with dbx. */
229 return i386_dbx_reg_to_regnum (gdbarch, reg);
232 switch (reg)
234 case 37: return I387_FCTRL_REGNUM;
235 case 38: return I387_FSTAT_REGNUM;
236 case 39: return I387_MXCSR_REGNUM;
237 case 40: return I386_ES_REGNUM;
238 case 41: return I386_CS_REGNUM;
239 case 42: return I386_SS_REGNUM;
240 case 43: return I386_DS_REGNUM;
241 case 44: return I386_FS_REGNUM;
242 case 45: return I386_GS_REGNUM;
245 /* This will hopefully provoke a warning. */
246 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
249 #undef I387_ST0_REGNUM
250 #undef I387_MM0_REGNUM
251 #undef I387_NUM_XMM_REGS
254 /* This is the variable that is set with "set disassembly-flavor", and
255 its legitimate values. */
256 static const char att_flavor[] = "att";
257 static const char intel_flavor[] = "intel";
258 static const char *valid_flavors[] =
260 att_flavor,
261 intel_flavor,
262 NULL
264 static const char *disassembly_flavor = att_flavor;
267 /* Use the program counter to determine the contents and size of a
268 breakpoint instruction. Return a pointer to a string of bytes that
269 encode a breakpoint instruction, store the length of the string in
270 *LEN and optionally adjust *PC to point to the correct memory
271 location for inserting the breakpoint.
273 On the i386 we have a single breakpoint that fits in a single byte
274 and can be inserted anywhere.
276 This function is 64-bit safe. */
278 static const gdb_byte *
279 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
281 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
283 *len = sizeof (break_insn);
284 return break_insn;
287 #ifdef I386_REGNO_TO_SYMMETRY
288 #error "The Sequent Symmetry is no longer supported."
289 #endif
291 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
292 and %esp "belong" to the calling function. Therefore these
293 registers should be saved if they're going to be modified. */
295 /* The maximum number of saved registers. This should include all
296 registers mentioned above, and %eip. */
297 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
299 struct i386_frame_cache
301 /* Base address. */
302 CORE_ADDR base;
303 LONGEST sp_offset;
304 CORE_ADDR pc;
306 /* Saved registers. */
307 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
308 CORE_ADDR saved_sp;
309 int stack_align;
310 int pc_in_eax;
312 /* Stack space reserved for local variables. */
313 long locals;
316 /* Allocate and initialize a frame cache. */
318 static struct i386_frame_cache *
319 i386_alloc_frame_cache (void)
321 struct i386_frame_cache *cache;
322 int i;
324 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
326 /* Base address. */
327 cache->base = 0;
328 cache->sp_offset = -4;
329 cache->pc = 0;
331 /* Saved registers. We initialize these to -1 since zero is a valid
332 offset (that's where %ebp is supposed to be stored). */
333 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
334 cache->saved_regs[i] = -1;
335 cache->saved_sp = 0;
336 cache->stack_align = 0;
337 cache->pc_in_eax = 0;
339 /* Frameless until proven otherwise. */
340 cache->locals = -1;
342 return cache;
345 /* If the instruction at PC is a jump, return the address of its
346 target. Otherwise, return PC. */
348 static CORE_ADDR
349 i386_follow_jump (CORE_ADDR pc)
351 gdb_byte op;
352 long delta = 0;
353 int data16 = 0;
355 read_memory_nobpt (pc, &op, 1);
356 if (op == 0x66)
358 data16 = 1;
359 op = read_memory_unsigned_integer (pc + 1, 1);
362 switch (op)
364 case 0xe9:
365 /* Relative jump: if data16 == 0, disp32, else disp16. */
366 if (data16)
368 delta = read_memory_integer (pc + 2, 2);
370 /* Include the size of the jmp instruction (including the
371 0x66 prefix). */
372 delta += 4;
374 else
376 delta = read_memory_integer (pc + 1, 4);
378 /* Include the size of the jmp instruction. */
379 delta += 5;
381 break;
382 case 0xeb:
383 /* Relative jump, disp8 (ignore data16). */
384 delta = read_memory_integer (pc + data16 + 1, 1);
386 delta += data16 + 2;
387 break;
390 return pc + delta;
393 /* Check whether PC points at a prologue for a function returning a
394 structure or union. If so, it updates CACHE and returns the
395 address of the first instruction after the code sequence that
396 removes the "hidden" argument from the stack or CURRENT_PC,
397 whichever is smaller. Otherwise, return PC. */
399 static CORE_ADDR
400 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
401 struct i386_frame_cache *cache)
403 /* Functions that return a structure or union start with:
405 popl %eax 0x58
406 xchgl %eax, (%esp) 0x87 0x04 0x24
407 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
409 (the System V compiler puts out the second `xchg' instruction,
410 and the assembler doesn't try to optimize it, so the 'sib' form
411 gets generated). This sequence is used to get the address of the
412 return buffer for a function that returns a structure. */
413 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
414 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
415 gdb_byte buf[4];
416 gdb_byte op;
418 if (current_pc <= pc)
419 return pc;
421 read_memory_nobpt (pc, &op, 1);
423 if (op != 0x58) /* popl %eax */
424 return pc;
426 read_memory_nobpt (pc + 1, buf, 4);
427 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
428 return pc;
430 if (current_pc == pc)
432 cache->sp_offset += 4;
433 return current_pc;
436 if (current_pc == pc + 1)
438 cache->pc_in_eax = 1;
439 return current_pc;
442 if (buf[1] == proto1[1])
443 return pc + 4;
444 else
445 return pc + 5;
448 static CORE_ADDR
449 i386_skip_probe (CORE_ADDR pc)
451 /* A function may start with
453 pushl constant
454 call _probe
455 addl $4, %esp
457 followed by
459 pushl %ebp
461 etc. */
462 gdb_byte buf[8];
463 gdb_byte op;
465 read_memory_nobpt (pc, &op, 1);
467 if (op == 0x68 || op == 0x6a)
469 int delta;
471 /* Skip past the `pushl' instruction; it has either a one-byte or a
472 four-byte operand, depending on the opcode. */
473 if (op == 0x68)
474 delta = 5;
475 else
476 delta = 2;
478 /* Read the following 8 bytes, which should be `call _probe' (6
479 bytes) followed by `addl $4,%esp' (2 bytes). */
480 read_memory (pc + delta, buf, sizeof (buf));
481 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
482 pc += delta + sizeof (buf);
485 return pc;
488 /* GCC 4.1 and later, can put code in the prologue to realign the
489 stack pointer. Check whether PC points to such code, and update
490 CACHE accordingly. Return the first instruction after the code
491 sequence or CURRENT_PC, whichever is smaller. If we don't
492 recognize the code, return PC. */
494 static CORE_ADDR
495 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
496 struct i386_frame_cache *cache)
498 /* The register used by the compiler to perform the stack re-alignment
499 is, in order of preference, either %ecx, %edx, or %eax. GCC should
500 never use %ebx as it always treats it as callee-saved, whereas
501 the compiler can only use caller-saved registers. */
502 static const gdb_byte insns_ecx[10] = {
503 0x8d, 0x4c, 0x24, 0x04, /* leal 4(%esp), %ecx */
504 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
505 0xff, 0x71, 0xfc /* pushl -4(%ecx) */
507 static const gdb_byte insns_edx[10] = {
508 0x8d, 0x54, 0x24, 0x04, /* leal 4(%esp), %edx */
509 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
510 0xff, 0x72, 0xfc /* pushl -4(%edx) */
512 static const gdb_byte insns_eax[10] = {
513 0x8d, 0x44, 0x24, 0x04, /* leal 4(%esp), %eax */
514 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
515 0xff, 0x70, 0xfc /* pushl -4(%eax) */
517 gdb_byte buf[10];
519 if (target_read_memory (pc, buf, sizeof buf)
520 || (memcmp (buf, insns_ecx, sizeof buf) != 0
521 && memcmp (buf, insns_edx, sizeof buf) != 0
522 && memcmp (buf, insns_eax, sizeof buf) != 0))
523 return pc;
525 if (current_pc > pc + 4)
526 cache->stack_align = 1;
528 return min (pc + 10, current_pc);
531 /* Maximum instruction length we need to handle. */
532 #define I386_MAX_INSN_LEN 6
534 /* Instruction description. */
535 struct i386_insn
537 size_t len;
538 gdb_byte insn[I386_MAX_INSN_LEN];
539 gdb_byte mask[I386_MAX_INSN_LEN];
542 /* Search for the instruction at PC in the list SKIP_INSNS. Return
543 the first instruction description that matches. Otherwise, return
544 NULL. */
546 static struct i386_insn *
547 i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
549 struct i386_insn *insn;
550 gdb_byte op;
552 read_memory_nobpt (pc, &op, 1);
554 for (insn = skip_insns; insn->len > 0; insn++)
556 if ((op & insn->mask[0]) == insn->insn[0])
558 gdb_byte buf[I386_MAX_INSN_LEN - 1];
559 int insn_matched = 1;
560 size_t i;
562 gdb_assert (insn->len > 1);
563 gdb_assert (insn->len <= I386_MAX_INSN_LEN);
565 read_memory_nobpt (pc + 1, buf, insn->len - 1);
566 for (i = 1; i < insn->len; i++)
568 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
569 insn_matched = 0;
572 if (insn_matched)
573 return insn;
577 return NULL;
580 /* Some special instructions that might be migrated by GCC into the
581 part of the prologue that sets up the new stack frame. Because the
582 stack frame hasn't been setup yet, no registers have been saved
583 yet, and only the scratch registers %eax, %ecx and %edx can be
584 touched. */
586 struct i386_insn i386_frame_setup_skip_insns[] =
588 /* Check for `movb imm8, r' and `movl imm32, r'.
590 ??? Should we handle 16-bit operand-sizes here? */
592 /* `movb imm8, %al' and `movb imm8, %ah' */
593 /* `movb imm8, %cl' and `movb imm8, %ch' */
594 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
595 /* `movb imm8, %dl' and `movb imm8, %dh' */
596 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
597 /* `movl imm32, %eax' and `movl imm32, %ecx' */
598 { 5, { 0xb8 }, { 0xfe } },
599 /* `movl imm32, %edx' */
600 { 5, { 0xba }, { 0xff } },
602 /* Check for `mov imm32, r32'. Note that there is an alternative
603 encoding for `mov m32, %eax'.
605 ??? Should we handle SIB adressing here?
606 ??? Should we handle 16-bit operand-sizes here? */
608 /* `movl m32, %eax' */
609 { 5, { 0xa1 }, { 0xff } },
610 /* `movl m32, %eax' and `mov; m32, %ecx' */
611 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
612 /* `movl m32, %edx' */
613 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
615 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
616 Because of the symmetry, there are actually two ways to encode
617 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
618 opcode bytes 0x31 and 0x33 for `xorl'. */
620 /* `subl %eax, %eax' */
621 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
622 /* `subl %ecx, %ecx' */
623 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
624 /* `subl %edx, %edx' */
625 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
626 /* `xorl %eax, %eax' */
627 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
628 /* `xorl %ecx, %ecx' */
629 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
630 /* `xorl %edx, %edx' */
631 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
632 { 0 }
636 /* Check whether PC points to a no-op instruction. */
637 static CORE_ADDR
638 i386_skip_noop (CORE_ADDR pc)
640 gdb_byte op;
641 int check = 1;
643 read_memory_nobpt (pc, &op, 1);
645 while (check)
647 check = 0;
648 /* Ignore `nop' instruction. */
649 if (op == 0x90)
651 pc += 1;
652 read_memory_nobpt (pc, &op, 1);
653 check = 1;
655 /* Ignore no-op instruction `mov %edi, %edi'.
656 Microsoft system dlls often start with
657 a `mov %edi,%edi' instruction.
658 The 5 bytes before the function start are
659 filled with `nop' instructions.
660 This pattern can be used for hot-patching:
661 The `mov %edi, %edi' instruction can be replaced by a
662 near jump to the location of the 5 `nop' instructions
663 which can be replaced by a 32-bit jump to anywhere
664 in the 32-bit address space. */
666 else if (op == 0x8b)
668 read_memory_nobpt (pc + 1, &op, 1);
669 if (op == 0xff)
671 pc += 2;
672 read_memory_nobpt (pc, &op, 1);
673 check = 1;
677 return pc;
680 /* Check whether PC points at a code that sets up a new stack frame.
681 If so, it updates CACHE and returns the address of the first
682 instruction after the sequence that sets up the frame or LIMIT,
683 whichever is smaller. If we don't recognize the code, return PC. */
685 static CORE_ADDR
686 i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR limit,
687 struct i386_frame_cache *cache)
689 struct i386_insn *insn;
690 gdb_byte op;
691 int skip = 0;
693 if (limit <= pc)
694 return limit;
696 read_memory_nobpt (pc, &op, 1);
698 if (op == 0x55) /* pushl %ebp */
700 /* Take into account that we've executed the `pushl %ebp' that
701 starts this instruction sequence. */
702 cache->saved_regs[I386_EBP_REGNUM] = 0;
703 cache->sp_offset += 4;
704 pc++;
706 /* If that's all, return now. */
707 if (limit <= pc)
708 return limit;
710 /* Check for some special instructions that might be migrated by
711 GCC into the prologue and skip them. At this point in the
712 prologue, code should only touch the scratch registers %eax,
713 %ecx and %edx, so while the number of posibilities is sheer,
714 it is limited.
716 Make sure we only skip these instructions if we later see the
717 `movl %esp, %ebp' that actually sets up the frame. */
718 while (pc + skip < limit)
720 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
721 if (insn == NULL)
722 break;
724 skip += insn->len;
727 /* If that's all, return now. */
728 if (limit <= pc + skip)
729 return limit;
731 read_memory_nobpt (pc + skip, &op, 1);
733 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
734 switch (op)
736 case 0x8b:
737 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xec)
738 return pc;
739 break;
740 case 0x89:
741 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xe5)
742 return pc;
743 break;
744 default:
745 return pc;
748 /* OK, we actually have a frame. We just don't know how large
749 it is yet. Set its size to zero. We'll adjust it if
750 necessary. We also now commit to skipping the special
751 instructions mentioned before. */
752 cache->locals = 0;
753 pc += (skip + 2);
755 /* If that's all, return now. */
756 if (limit <= pc)
757 return limit;
759 /* Check for stack adjustment
761 subl $XXX, %esp
763 NOTE: You can't subtract a 16-bit immediate from a 32-bit
764 reg, so we don't have to worry about a data16 prefix. */
765 read_memory_nobpt (pc, &op, 1);
766 if (op == 0x83)
768 /* `subl' with 8-bit immediate. */
769 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
770 /* Some instruction starting with 0x83 other than `subl'. */
771 return pc;
773 /* `subl' with signed 8-bit immediate (though it wouldn't
774 make sense to be negative). */
775 cache->locals = read_memory_integer (pc + 2, 1);
776 return pc + 3;
778 else if (op == 0x81)
780 /* Maybe it is `subl' with a 32-bit immediate. */
781 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
782 /* Some instruction starting with 0x81 other than `subl'. */
783 return pc;
785 /* It is `subl' with a 32-bit immediate. */
786 cache->locals = read_memory_integer (pc + 2, 4);
787 return pc + 6;
789 else
791 /* Some instruction other than `subl'. */
792 return pc;
795 else if (op == 0xc8) /* enter */
797 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
798 return pc + 4;
801 return pc;
804 /* Check whether PC points at code that saves registers on the stack.
805 If so, it updates CACHE and returns the address of the first
806 instruction after the register saves or CURRENT_PC, whichever is
807 smaller. Otherwise, return PC. */
809 static CORE_ADDR
810 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
811 struct i386_frame_cache *cache)
813 CORE_ADDR offset = 0;
814 gdb_byte op;
815 int i;
817 if (cache->locals > 0)
818 offset -= cache->locals;
819 for (i = 0; i < 8 && pc < current_pc; i++)
821 read_memory_nobpt (pc, &op, 1);
822 if (op < 0x50 || op > 0x57)
823 break;
825 offset -= 4;
826 cache->saved_regs[op - 0x50] = offset;
827 cache->sp_offset += 4;
828 pc++;
831 return pc;
834 /* Do a full analysis of the prologue at PC and update CACHE
835 accordingly. Bail out early if CURRENT_PC is reached. Return the
836 address where the analysis stopped.
838 We handle these cases:
840 The startup sequence can be at the start of the function, or the
841 function can start with a branch to startup code at the end.
843 %ebp can be set up with either the 'enter' instruction, or "pushl
844 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
845 once used in the System V compiler).
847 Local space is allocated just below the saved %ebp by either the
848 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
849 16-bit unsigned argument for space to allocate, and the 'addl'
850 instruction could have either a signed byte, or 32-bit immediate.
852 Next, the registers used by this function are pushed. With the
853 System V compiler they will always be in the order: %edi, %esi,
854 %ebx (and sometimes a harmless bug causes it to also save but not
855 restore %eax); however, the code below is willing to see the pushes
856 in any order, and will handle up to 8 of them.
858 If the setup sequence is at the end of the function, then the next
859 instruction will be a branch back to the start. */
861 static CORE_ADDR
862 i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
863 struct i386_frame_cache *cache)
865 pc = i386_skip_noop (pc);
866 pc = i386_follow_jump (pc);
867 pc = i386_analyze_struct_return (pc, current_pc, cache);
868 pc = i386_skip_probe (pc);
869 pc = i386_analyze_stack_align (pc, current_pc, cache);
870 pc = i386_analyze_frame_setup (pc, current_pc, cache);
871 return i386_analyze_register_saves (pc, current_pc, cache);
874 /* Return PC of first real instruction. */
876 static CORE_ADDR
877 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
879 static gdb_byte pic_pat[6] =
881 0xe8, 0, 0, 0, 0, /* call 0x0 */
882 0x5b, /* popl %ebx */
884 struct i386_frame_cache cache;
885 CORE_ADDR pc;
886 gdb_byte op;
887 int i;
889 cache.locals = -1;
890 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
891 if (cache.locals < 0)
892 return start_pc;
894 /* Found valid frame setup. */
896 /* The native cc on SVR4 in -K PIC mode inserts the following code
897 to get the address of the global offset table (GOT) into register
898 %ebx:
900 call 0x0
901 popl %ebx
902 movl %ebx,x(%ebp) (optional)
903 addl y,%ebx
905 This code is with the rest of the prologue (at the end of the
906 function), so we have to skip it to get to the first real
907 instruction at the start of the function. */
909 for (i = 0; i < 6; i++)
911 read_memory_nobpt (pc + i, &op, 1);
912 if (pic_pat[i] != op)
913 break;
915 if (i == 6)
917 int delta = 6;
919 read_memory_nobpt (pc + delta, &op, 1);
921 if (op == 0x89) /* movl %ebx, x(%ebp) */
923 op = read_memory_unsigned_integer (pc + delta + 1, 1);
925 if (op == 0x5d) /* One byte offset from %ebp. */
926 delta += 3;
927 else if (op == 0x9d) /* Four byte offset from %ebp. */
928 delta += 6;
929 else /* Unexpected instruction. */
930 delta = 0;
932 read_memory_nobpt (pc + delta, &op, 1);
935 /* addl y,%ebx */
936 if (delta > 0 && op == 0x81
937 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3)
939 pc += delta + 6;
943 /* If the function starts with a branch (to startup code at the end)
944 the last instruction should bring us back to the first
945 instruction of the real code. */
946 if (i386_follow_jump (start_pc) != start_pc)
947 pc = i386_follow_jump (pc);
949 return pc;
952 /* This function is 64-bit safe. */
954 static CORE_ADDR
955 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
957 gdb_byte buf[8];
959 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
960 return extract_typed_address (buf, builtin_type_void_func_ptr);
964 /* Normal frames. */
966 static struct i386_frame_cache *
967 i386_frame_cache (struct frame_info *next_frame, void **this_cache)
969 struct i386_frame_cache *cache;
970 gdb_byte buf[4];
971 int i;
973 if (*this_cache)
974 return *this_cache;
976 cache = i386_alloc_frame_cache ();
977 *this_cache = cache;
979 /* In principle, for normal frames, %ebp holds the frame pointer,
980 which holds the base address for the current stack frame.
981 However, for functions that don't need it, the frame pointer is
982 optional. For these "frameless" functions the frame pointer is
983 actually the frame pointer of the calling frame. Signal
984 trampolines are just a special case of a "frameless" function.
985 They (usually) share their frame pointer with the frame that was
986 in progress when the signal occurred. */
988 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
989 cache->base = extract_unsigned_integer (buf, 4);
990 if (cache->base == 0)
991 return cache;
993 /* For normal frames, %eip is stored at 4(%ebp). */
994 cache->saved_regs[I386_EIP_REGNUM] = 4;
996 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
997 if (cache->pc != 0)
998 i386_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
1000 if (cache->stack_align)
1002 /* Saved stack pointer has been saved in %ecx. */
1003 frame_unwind_register (next_frame, I386_ECX_REGNUM, buf);
1004 cache->saved_sp = extract_unsigned_integer(buf, 4);
1007 if (cache->locals < 0)
1009 /* We didn't find a valid frame, which means that CACHE->base
1010 currently holds the frame pointer for our calling frame. If
1011 we're at the start of a function, or somewhere half-way its
1012 prologue, the function's frame probably hasn't been fully
1013 setup yet. Try to reconstruct the base address for the stack
1014 frame by looking at the stack pointer. For truly "frameless"
1015 functions this might work too. */
1017 if (cache->stack_align)
1019 /* We're halfway aligning the stack. */
1020 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1021 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1023 /* This will be added back below. */
1024 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1026 else
1028 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1029 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
1033 /* Now that we have the base address for the stack frame we can
1034 calculate the value of %esp in the calling frame. */
1035 if (cache->saved_sp == 0)
1036 cache->saved_sp = cache->base + 8;
1038 /* Adjust all the saved registers such that they contain addresses
1039 instead of offsets. */
1040 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1041 if (cache->saved_regs[i] != -1)
1042 cache->saved_regs[i] += cache->base;
1044 return cache;
1047 static void
1048 i386_frame_this_id (struct frame_info *next_frame, void **this_cache,
1049 struct frame_id *this_id)
1051 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1053 /* This marks the outermost frame. */
1054 if (cache->base == 0)
1055 return;
1057 /* See the end of i386_push_dummy_call. */
1058 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1061 static void
1062 i386_frame_prev_register (struct frame_info *next_frame, void **this_cache,
1063 int regnum, int *optimizedp,
1064 enum lval_type *lvalp, CORE_ADDR *addrp,
1065 int *realnump, gdb_byte *valuep)
1067 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1069 gdb_assert (regnum >= 0);
1071 /* The System V ABI says that:
1073 "The flags register contains the system flags, such as the
1074 direction flag and the carry flag. The direction flag must be
1075 set to the forward (that is, zero) direction before entry and
1076 upon exit from a function. Other user flags have no specified
1077 role in the standard calling sequence and are not preserved."
1079 To guarantee the "upon exit" part of that statement we fake a
1080 saved flags register that has its direction flag cleared.
1082 Note that GCC doesn't seem to rely on the fact that the direction
1083 flag is cleared after a function return; it always explicitly
1084 clears the flag before operations where it matters.
1086 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1087 right thing to do. The way we fake the flags register here makes
1088 it impossible to change it. */
1090 if (regnum == I386_EFLAGS_REGNUM)
1092 *optimizedp = 0;
1093 *lvalp = not_lval;
1094 *addrp = 0;
1095 *realnump = -1;
1096 if (valuep)
1098 ULONGEST val;
1100 /* Clear the direction flag. */
1101 val = frame_unwind_register_unsigned (next_frame,
1102 I386_EFLAGS_REGNUM);
1103 val &= ~(1 << 10);
1104 store_unsigned_integer (valuep, 4, val);
1107 return;
1110 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1112 *optimizedp = 0;
1113 *lvalp = lval_register;
1114 *addrp = 0;
1115 *realnump = I386_EAX_REGNUM;
1116 if (valuep)
1117 frame_unwind_register (next_frame, (*realnump), valuep);
1118 return;
1121 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
1123 *optimizedp = 0;
1124 *lvalp = not_lval;
1125 *addrp = 0;
1126 *realnump = -1;
1127 if (valuep)
1129 /* Store the value. */
1130 store_unsigned_integer (valuep, 4, cache->saved_sp);
1132 return;
1135 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1137 *optimizedp = 0;
1138 *lvalp = lval_memory;
1139 *addrp = cache->saved_regs[regnum];
1140 *realnump = -1;
1141 if (valuep)
1143 /* Read the value in from memory. */
1144 read_memory (*addrp, valuep,
1145 register_size (get_frame_arch (next_frame), regnum));
1147 return;
1150 *optimizedp = 0;
1151 *lvalp = lval_register;
1152 *addrp = 0;
1153 *realnump = regnum;
1154 if (valuep)
1155 frame_unwind_register (next_frame, (*realnump), valuep);
1158 static const struct frame_unwind i386_frame_unwind =
1160 NORMAL_FRAME,
1161 i386_frame_this_id,
1162 i386_frame_prev_register
1165 static const struct frame_unwind *
1166 i386_frame_sniffer (struct frame_info *next_frame)
1168 return &i386_frame_unwind;
1172 /* Signal trampolines. */
1174 static struct i386_frame_cache *
1175 i386_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
1177 struct i386_frame_cache *cache;
1178 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
1179 CORE_ADDR addr;
1180 gdb_byte buf[4];
1182 if (*this_cache)
1183 return *this_cache;
1185 cache = i386_alloc_frame_cache ();
1187 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1188 cache->base = extract_unsigned_integer (buf, 4) - 4;
1190 addr = tdep->sigcontext_addr (next_frame);
1191 if (tdep->sc_reg_offset)
1193 int i;
1195 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1197 for (i = 0; i < tdep->sc_num_regs; i++)
1198 if (tdep->sc_reg_offset[i] != -1)
1199 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
1201 else
1203 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1204 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
1207 *this_cache = cache;
1208 return cache;
1211 static void
1212 i386_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
1213 struct frame_id *this_id)
1215 struct i386_frame_cache *cache =
1216 i386_sigtramp_frame_cache (next_frame, this_cache);
1218 /* See the end of i386_push_dummy_call. */
1219 (*this_id) = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
1222 static void
1223 i386_sigtramp_frame_prev_register (struct frame_info *next_frame,
1224 void **this_cache,
1225 int regnum, int *optimizedp,
1226 enum lval_type *lvalp, CORE_ADDR *addrp,
1227 int *realnump, gdb_byte *valuep)
1229 /* Make sure we've initialized the cache. */
1230 i386_sigtramp_frame_cache (next_frame, this_cache);
1232 i386_frame_prev_register (next_frame, this_cache, regnum,
1233 optimizedp, lvalp, addrp, realnump, valuep);
1236 static const struct frame_unwind i386_sigtramp_frame_unwind =
1238 SIGTRAMP_FRAME,
1239 i386_sigtramp_frame_this_id,
1240 i386_sigtramp_frame_prev_register
1243 static const struct frame_unwind *
1244 i386_sigtramp_frame_sniffer (struct frame_info *next_frame)
1246 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
1248 /* We shouldn't even bother if we don't have a sigcontext_addr
1249 handler. */
1250 if (tdep->sigcontext_addr == NULL)
1251 return NULL;
1253 if (tdep->sigtramp_p != NULL)
1255 if (tdep->sigtramp_p (next_frame))
1256 return &i386_sigtramp_frame_unwind;
1259 if (tdep->sigtramp_start != 0)
1261 CORE_ADDR pc = frame_pc_unwind (next_frame);
1263 gdb_assert (tdep->sigtramp_end != 0);
1264 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1265 return &i386_sigtramp_frame_unwind;
1268 return NULL;
1272 static CORE_ADDR
1273 i386_frame_base_address (struct frame_info *next_frame, void **this_cache)
1275 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1277 return cache->base;
1280 static const struct frame_base i386_frame_base =
1282 &i386_frame_unwind,
1283 i386_frame_base_address,
1284 i386_frame_base_address,
1285 i386_frame_base_address
1288 static struct frame_id
1289 i386_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1291 gdb_byte buf[4];
1292 CORE_ADDR fp;
1294 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
1295 fp = extract_unsigned_integer (buf, 4);
1297 /* See the end of i386_push_dummy_call. */
1298 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
1302 /* Figure out where the longjmp will land. Slurp the args out of the
1303 stack. We expect the first arg to be a pointer to the jmp_buf
1304 structure from which we extract the address that we will land at.
1305 This address is copied into PC. This routine returns non-zero on
1306 success.
1308 This function is 64-bit safe. */
1310 static int
1311 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1313 gdb_byte buf[8];
1314 CORE_ADDR sp, jb_addr;
1315 int jb_pc_offset = gdbarch_tdep (get_frame_arch (frame))->jb_pc_offset;
1316 int len = TYPE_LENGTH (builtin_type_void_func_ptr);
1318 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1319 longjmp will land. */
1320 if (jb_pc_offset == -1)
1321 return 0;
1323 /* Don't use I386_ESP_REGNUM here, since this function is also used
1324 for AMD64. */
1325 get_frame_register (frame, gdbarch_sp_regnum (get_frame_arch (frame)), buf);
1326 sp = extract_typed_address (buf, builtin_type_void_data_ptr);
1327 if (target_read_memory (sp + len, buf, len))
1328 return 0;
1330 jb_addr = extract_typed_address (buf, builtin_type_void_data_ptr);
1331 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
1332 return 0;
1334 *pc = extract_typed_address (buf, builtin_type_void_func_ptr);
1335 return 1;
1339 static CORE_ADDR
1340 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1341 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1342 struct value **args, CORE_ADDR sp, int struct_return,
1343 CORE_ADDR struct_addr)
1345 gdb_byte buf[4];
1346 int i;
1348 /* Push arguments in reverse order. */
1349 for (i = nargs - 1; i >= 0; i--)
1351 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
1353 /* The System V ABI says that:
1355 "An argument's size is increased, if necessary, to make it a
1356 multiple of [32-bit] words. This may require tail padding,
1357 depending on the size of the argument."
1359 This makes sure the stack stays word-aligned. */
1360 sp -= (len + 3) & ~3;
1361 write_memory (sp, value_contents_all (args[i]), len);
1364 /* Push value address. */
1365 if (struct_return)
1367 sp -= 4;
1368 store_unsigned_integer (buf, 4, struct_addr);
1369 write_memory (sp, buf, 4);
1372 /* Store return address. */
1373 sp -= 4;
1374 store_unsigned_integer (buf, 4, bp_addr);
1375 write_memory (sp, buf, 4);
1377 /* Finally, update the stack pointer... */
1378 store_unsigned_integer (buf, 4, sp);
1379 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1381 /* ...and fake a frame pointer. */
1382 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1384 /* MarkK wrote: This "+ 8" is all over the place:
1385 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1386 i386_unwind_dummy_id). It's there, since all frame unwinders for
1387 a given target have to agree (within a certain margin) on the
1388 definition of the stack address of a frame. Otherwise
1389 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1390 stack address *before* the function call as a frame's CFA. On
1391 the i386, when %ebp is used as a frame pointer, the offset
1392 between the contents %ebp and the CFA as defined by GCC. */
1393 return sp + 8;
1396 /* These registers are used for returning integers (and on some
1397 targets also for returning `struct' and `union' values when their
1398 size and alignment match an integer type). */
1399 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1400 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1402 /* Read, for architecture GDBARCH, a function return value of TYPE
1403 from REGCACHE, and copy that into VALBUF. */
1405 static void
1406 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
1407 struct regcache *regcache, gdb_byte *valbuf)
1409 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1410 int len = TYPE_LENGTH (type);
1411 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1413 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1415 if (tdep->st0_regnum < 0)
1417 warning (_("Cannot find floating-point return value."));
1418 memset (valbuf, 0, len);
1419 return;
1422 /* Floating-point return values can be found in %st(0). Convert
1423 its contents to the desired type. This is probably not
1424 exactly how it would happen on the target itself, but it is
1425 the best we can do. */
1426 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
1427 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
1429 else
1431 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
1432 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
1434 if (len <= low_size)
1436 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1437 memcpy (valbuf, buf, len);
1439 else if (len <= (low_size + high_size))
1441 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1442 memcpy (valbuf, buf, low_size);
1443 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
1444 memcpy (valbuf + low_size, buf, len - low_size);
1446 else
1447 internal_error (__FILE__, __LINE__,
1448 _("Cannot extract return value of %d bytes long."), len);
1452 /* Write, for architecture GDBARCH, a function return value of TYPE
1453 from VALBUF into REGCACHE. */
1455 static void
1456 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
1457 struct regcache *regcache, const gdb_byte *valbuf)
1459 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1460 int len = TYPE_LENGTH (type);
1462 /* Define I387_ST0_REGNUM such that we use the proper definitions
1463 for the architecture. */
1464 #define I387_ST0_REGNUM I386_ST0_REGNUM
1466 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1468 ULONGEST fstat;
1469 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1471 if (tdep->st0_regnum < 0)
1473 warning (_("Cannot set floating-point return value."));
1474 return;
1477 /* Returning floating-point values is a bit tricky. Apart from
1478 storing the return value in %st(0), we have to simulate the
1479 state of the FPU at function return point. */
1481 /* Convert the value found in VALBUF to the extended
1482 floating-point format used by the FPU. This is probably
1483 not exactly how it would happen on the target itself, but
1484 it is the best we can do. */
1485 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
1486 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
1488 /* Set the top of the floating-point register stack to 7. The
1489 actual value doesn't really matter, but 7 is what a normal
1490 function return would end up with if the program started out
1491 with a freshly initialized FPU. */
1492 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
1493 fstat |= (7 << 11);
1494 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM, fstat);
1496 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1497 the floating-point register stack to 7, the appropriate value
1498 for the tag word is 0x3fff. */
1499 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM, 0x3fff);
1501 else
1503 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
1504 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
1506 if (len <= low_size)
1507 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
1508 else if (len <= (low_size + high_size))
1510 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1511 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1512 len - low_size, valbuf + low_size);
1514 else
1515 internal_error (__FILE__, __LINE__,
1516 _("Cannot store return value of %d bytes long."), len);
1519 #undef I387_ST0_REGNUM
1523 /* This is the variable that is set with "set struct-convention", and
1524 its legitimate values. */
1525 static const char default_struct_convention[] = "default";
1526 static const char pcc_struct_convention[] = "pcc";
1527 static const char reg_struct_convention[] = "reg";
1528 static const char *valid_conventions[] =
1530 default_struct_convention,
1531 pcc_struct_convention,
1532 reg_struct_convention,
1533 NULL
1535 static const char *struct_convention = default_struct_convention;
1537 /* Return non-zero if TYPE, which is assumed to be a structure,
1538 a union type, or an array type, should be returned in registers
1539 for architecture GDBARCH. */
1541 static int
1542 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
1544 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1545 enum type_code code = TYPE_CODE (type);
1546 int len = TYPE_LENGTH (type);
1548 gdb_assert (code == TYPE_CODE_STRUCT
1549 || code == TYPE_CODE_UNION
1550 || code == TYPE_CODE_ARRAY);
1552 if (struct_convention == pcc_struct_convention
1553 || (struct_convention == default_struct_convention
1554 && tdep->struct_return == pcc_struct_return))
1555 return 0;
1557 /* Structures consisting of a single `float', `double' or 'long
1558 double' member are returned in %st(0). */
1559 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1561 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1562 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1563 return (len == 4 || len == 8 || len == 12);
1566 return (len == 1 || len == 2 || len == 4 || len == 8);
1569 /* Determine, for architecture GDBARCH, how a return value of TYPE
1570 should be returned. If it is supposed to be returned in registers,
1571 and READBUF is non-zero, read the appropriate value from REGCACHE,
1572 and copy it into READBUF. If WRITEBUF is non-zero, write the value
1573 from WRITEBUF into REGCACHE. */
1575 static enum return_value_convention
1576 i386_return_value (struct gdbarch *gdbarch, struct type *type,
1577 struct regcache *regcache, gdb_byte *readbuf,
1578 const gdb_byte *writebuf)
1580 enum type_code code = TYPE_CODE (type);
1582 if ((code == TYPE_CODE_STRUCT
1583 || code == TYPE_CODE_UNION
1584 || code == TYPE_CODE_ARRAY)
1585 && !i386_reg_struct_return_p (gdbarch, type))
1587 /* The System V ABI says that:
1589 "A function that returns a structure or union also sets %eax
1590 to the value of the original address of the caller's area
1591 before it returns. Thus when the caller receives control
1592 again, the address of the returned object resides in register
1593 %eax and can be used to access the object."
1595 So the ABI guarantees that we can always find the return
1596 value just after the function has returned. */
1598 /* Note that the ABI doesn't mention functions returning arrays,
1599 which is something possible in certain languages such as Ada.
1600 In this case, the value is returned as if it was wrapped in
1601 a record, so the convention applied to records also applies
1602 to arrays. */
1604 if (readbuf)
1606 ULONGEST addr;
1608 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
1609 read_memory (addr, readbuf, TYPE_LENGTH (type));
1612 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
1615 /* This special case is for structures consisting of a single
1616 `float', `double' or 'long double' member. These structures are
1617 returned in %st(0). For these structures, we call ourselves
1618 recursively, changing TYPE into the type of the first member of
1619 the structure. Since that should work for all structures that
1620 have only one member, we don't bother to check the member's type
1621 here. */
1622 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1624 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1625 return i386_return_value (gdbarch, type, regcache, readbuf, writebuf);
1628 if (readbuf)
1629 i386_extract_return_value (gdbarch, type, regcache, readbuf);
1630 if (writebuf)
1631 i386_store_return_value (gdbarch, type, regcache, writebuf);
1633 return RETURN_VALUE_REGISTER_CONVENTION;
1637 /* Type for %eflags. */
1638 struct type *i386_eflags_type;
1640 /* Type for %mxcsr. */
1641 struct type *i386_mxcsr_type;
1643 /* Construct types for ISA-specific registers. */
1644 static void
1645 i386_init_types (void)
1647 struct type *type;
1649 type = init_flags_type ("builtin_type_i386_eflags", 4);
1650 append_flags_type_flag (type, 0, "CF");
1651 append_flags_type_flag (type, 1, NULL);
1652 append_flags_type_flag (type, 2, "PF");
1653 append_flags_type_flag (type, 4, "AF");
1654 append_flags_type_flag (type, 6, "ZF");
1655 append_flags_type_flag (type, 7, "SF");
1656 append_flags_type_flag (type, 8, "TF");
1657 append_flags_type_flag (type, 9, "IF");
1658 append_flags_type_flag (type, 10, "DF");
1659 append_flags_type_flag (type, 11, "OF");
1660 append_flags_type_flag (type, 14, "NT");
1661 append_flags_type_flag (type, 16, "RF");
1662 append_flags_type_flag (type, 17, "VM");
1663 append_flags_type_flag (type, 18, "AC");
1664 append_flags_type_flag (type, 19, "VIF");
1665 append_flags_type_flag (type, 20, "VIP");
1666 append_flags_type_flag (type, 21, "ID");
1667 i386_eflags_type = type;
1669 type = init_flags_type ("builtin_type_i386_mxcsr", 4);
1670 append_flags_type_flag (type, 0, "IE");
1671 append_flags_type_flag (type, 1, "DE");
1672 append_flags_type_flag (type, 2, "ZE");
1673 append_flags_type_flag (type, 3, "OE");
1674 append_flags_type_flag (type, 4, "UE");
1675 append_flags_type_flag (type, 5, "PE");
1676 append_flags_type_flag (type, 6, "DAZ");
1677 append_flags_type_flag (type, 7, "IM");
1678 append_flags_type_flag (type, 8, "DM");
1679 append_flags_type_flag (type, 9, "ZM");
1680 append_flags_type_flag (type, 10, "OM");
1681 append_flags_type_flag (type, 11, "UM");
1682 append_flags_type_flag (type, 12, "PM");
1683 append_flags_type_flag (type, 15, "FZ");
1684 i386_mxcsr_type = type;
1687 /* Construct vector type for MMX registers. */
1688 struct type *
1689 i386_mmx_type (struct gdbarch *gdbarch)
1691 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1693 if (!tdep->i386_mmx_type)
1695 /* The type we're building is this: */
1696 #if 0
1697 union __gdb_builtin_type_vec64i
1699 int64_t uint64;
1700 int32_t v2_int32[2];
1701 int16_t v4_int16[4];
1702 int8_t v8_int8[8];
1704 #endif
1706 struct type *t;
1708 t = init_composite_type ("__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
1709 append_composite_type_field (t, "uint64", builtin_type_int64);
1710 append_composite_type_field (t, "v2_int32",
1711 init_vector_type (builtin_type_int32, 2));
1712 append_composite_type_field (t, "v4_int16",
1713 init_vector_type (builtin_type_int16, 4));
1714 append_composite_type_field (t, "v8_int8",
1715 init_vector_type (builtin_type_int8, 8));
1717 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
1718 TYPE_NAME (t) = "builtin_type_vec64i";
1719 tdep->i386_mmx_type = t;
1722 return tdep->i386_mmx_type;
1725 struct type *
1726 i386_sse_type (struct gdbarch *gdbarch)
1728 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1730 if (!tdep->i386_sse_type)
1732 /* The type we're building is this: */
1733 #if 0
1734 union __gdb_builtin_type_vec128i
1736 int128_t uint128;
1737 int64_t v2_int64[2];
1738 int32_t v4_int32[4];
1739 int16_t v8_int16[8];
1740 int8_t v16_int8[16];
1741 double v2_double[2];
1742 float v4_float[4];
1744 #endif
1746 struct type *t;
1748 t = init_composite_type ("__gdb_builtin_type_vec128i", TYPE_CODE_UNION);
1749 append_composite_type_field (t, "v4_float",
1750 init_vector_type (builtin_type_float, 4));
1751 append_composite_type_field (t, "v2_double",
1752 init_vector_type (builtin_type_double, 2));
1753 append_composite_type_field (t, "v16_int8",
1754 init_vector_type (builtin_type_int8, 16));
1755 append_composite_type_field (t, "v8_int16",
1756 init_vector_type (builtin_type_int16, 8));
1757 append_composite_type_field (t, "v4_int32",
1758 init_vector_type (builtin_type_int32, 4));
1759 append_composite_type_field (t, "v2_int64",
1760 init_vector_type (builtin_type_int64, 2));
1761 append_composite_type_field (t, "uint128", builtin_type_int128);
1763 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
1764 TYPE_NAME (t) = "builtin_type_vec128i";
1765 tdep->i386_sse_type = t;
1768 return tdep->i386_sse_type;
1771 /* Return the GDB type object for the "standard" data type of data in
1772 register REGNUM. Perhaps %esi and %edi should go here, but
1773 potentially they could be used for things other than address. */
1775 static struct type *
1776 i386_register_type (struct gdbarch *gdbarch, int regnum)
1778 if (regnum == I386_EIP_REGNUM)
1779 return builtin_type_void_func_ptr;
1781 if (regnum == I386_EFLAGS_REGNUM)
1782 return i386_eflags_type;
1784 if (regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
1785 return builtin_type_void_data_ptr;
1787 if (i386_fp_regnum_p (regnum))
1788 return builtin_type_i387_ext;
1790 if (i386_mmx_regnum_p (gdbarch, regnum))
1791 return i386_mmx_type (gdbarch);
1793 if (i386_sse_regnum_p (gdbarch, regnum))
1794 return i386_sse_type (gdbarch);
1796 #define I387_ST0_REGNUM I386_ST0_REGNUM
1797 #define I387_NUM_XMM_REGS (gdbarch_tdep (gdbarch)->num_xmm_regs)
1799 if (regnum == I387_MXCSR_REGNUM)
1800 return i386_mxcsr_type;
1802 #undef I387_ST0_REGNUM
1803 #undef I387_NUM_XMM_REGS
1805 return builtin_type_int;
1808 /* Map a cooked register onto a raw register or memory. For the i386,
1809 the MMX registers need to be mapped onto floating point registers. */
1811 static int
1812 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
1814 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1815 int mmxreg, fpreg;
1816 ULONGEST fstat;
1817 int tos;
1819 /* Define I387_ST0_REGNUM such that we use the proper definitions
1820 for REGCACHE's architecture. */
1821 #define I387_ST0_REGNUM tdep->st0_regnum
1823 mmxreg = regnum - tdep->mm0_regnum;
1824 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
1825 tos = (fstat >> 11) & 0x7;
1826 fpreg = (mmxreg + tos) % 8;
1828 return (I387_ST0_REGNUM + fpreg);
1830 #undef I387_ST0_REGNUM
1833 static void
1834 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1835 int regnum, gdb_byte *buf)
1837 if (i386_mmx_regnum_p (gdbarch, regnum))
1839 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
1840 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1842 /* Extract (always little endian). */
1843 regcache_raw_read (regcache, fpnum, mmx_buf);
1844 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
1846 else
1847 regcache_raw_read (regcache, regnum, buf);
1850 static void
1851 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1852 int regnum, const gdb_byte *buf)
1854 if (i386_mmx_regnum_p (gdbarch, regnum))
1856 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
1857 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1859 /* Read ... */
1860 regcache_raw_read (regcache, fpnum, mmx_buf);
1861 /* ... Modify ... (always little endian). */
1862 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
1863 /* ... Write. */
1864 regcache_raw_write (regcache, fpnum, mmx_buf);
1866 else
1867 regcache_raw_write (regcache, regnum, buf);
1871 /* Return the register number of the register allocated by GCC after
1872 REGNUM, or -1 if there is no such register. */
1874 static int
1875 i386_next_regnum (int regnum)
1877 /* GCC allocates the registers in the order:
1879 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
1881 Since storing a variable in %esp doesn't make any sense we return
1882 -1 for %ebp and for %esp itself. */
1883 static int next_regnum[] =
1885 I386_EDX_REGNUM, /* Slot for %eax. */
1886 I386_EBX_REGNUM, /* Slot for %ecx. */
1887 I386_ECX_REGNUM, /* Slot for %edx. */
1888 I386_ESI_REGNUM, /* Slot for %ebx. */
1889 -1, -1, /* Slots for %esp and %ebp. */
1890 I386_EDI_REGNUM, /* Slot for %esi. */
1891 I386_EBP_REGNUM /* Slot for %edi. */
1894 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
1895 return next_regnum[regnum];
1897 return -1;
1900 /* Return nonzero if a value of type TYPE stored in register REGNUM
1901 needs any special handling. */
1903 static int
1904 i386_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
1906 int len = TYPE_LENGTH (type);
1908 /* Values may be spread across multiple registers. Most debugging
1909 formats aren't expressive enough to specify the locations, so
1910 some heuristics is involved. Right now we only handle types that
1911 have a length that is a multiple of the word size, since GCC
1912 doesn't seem to put any other types into registers. */
1913 if (len > 4 && len % 4 == 0)
1915 int last_regnum = regnum;
1917 while (len > 4)
1919 last_regnum = i386_next_regnum (last_regnum);
1920 len -= 4;
1923 if (last_regnum != -1)
1924 return 1;
1927 return i387_convert_register_p (gdbarch, regnum, type);
1930 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
1931 return its contents in TO. */
1933 static void
1934 i386_register_to_value (struct frame_info *frame, int regnum,
1935 struct type *type, gdb_byte *to)
1937 int len = TYPE_LENGTH (type);
1939 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
1940 available in FRAME (i.e. if it wasn't saved)? */
1942 if (i386_fp_regnum_p (regnum))
1944 i387_register_to_value (frame, regnum, type, to);
1945 return;
1948 /* Read a value spread across multiple registers. */
1950 gdb_assert (len > 4 && len % 4 == 0);
1952 while (len > 0)
1954 gdb_assert (regnum != -1);
1955 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
1957 get_frame_register (frame, regnum, to);
1958 regnum = i386_next_regnum (regnum);
1959 len -= 4;
1960 to += 4;
1964 /* Write the contents FROM of a value of type TYPE into register
1965 REGNUM in frame FRAME. */
1967 static void
1968 i386_value_to_register (struct frame_info *frame, int regnum,
1969 struct type *type, const gdb_byte *from)
1971 int len = TYPE_LENGTH (type);
1973 if (i386_fp_regnum_p (regnum))
1975 i387_value_to_register (frame, regnum, type, from);
1976 return;
1979 /* Write a value spread across multiple registers. */
1981 gdb_assert (len > 4 && len % 4 == 0);
1983 while (len > 0)
1985 gdb_assert (regnum != -1);
1986 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
1988 put_frame_register (frame, regnum, from);
1989 regnum = i386_next_regnum (regnum);
1990 len -= 4;
1991 from += 4;
1995 /* Supply register REGNUM from the buffer specified by GREGS and LEN
1996 in the general-purpose register set REGSET to register cache
1997 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
1999 void
2000 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
2001 int regnum, const void *gregs, size_t len)
2003 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2004 const gdb_byte *regs = gregs;
2005 int i;
2007 gdb_assert (len == tdep->sizeof_gregset);
2009 for (i = 0; i < tdep->gregset_num_regs; i++)
2011 if ((regnum == i || regnum == -1)
2012 && tdep->gregset_reg_offset[i] != -1)
2013 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
2017 /* Collect register REGNUM from the register cache REGCACHE and store
2018 it in the buffer specified by GREGS and LEN as described by the
2019 general-purpose register set REGSET. If REGNUM is -1, do this for
2020 all registers in REGSET. */
2022 void
2023 i386_collect_gregset (const struct regset *regset,
2024 const struct regcache *regcache,
2025 int regnum, void *gregs, size_t len)
2027 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2028 gdb_byte *regs = gregs;
2029 int i;
2031 gdb_assert (len == tdep->sizeof_gregset);
2033 for (i = 0; i < tdep->gregset_num_regs; i++)
2035 if ((regnum == i || regnum == -1)
2036 && tdep->gregset_reg_offset[i] != -1)
2037 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
2041 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2042 in the floating-point register set REGSET to register cache
2043 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2045 static void
2046 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2047 int regnum, const void *fpregs, size_t len)
2049 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2051 if (len == I387_SIZEOF_FXSAVE)
2053 i387_supply_fxsave (regcache, regnum, fpregs);
2054 return;
2057 gdb_assert (len == tdep->sizeof_fpregset);
2058 i387_supply_fsave (regcache, regnum, fpregs);
2061 /* Collect register REGNUM from the register cache REGCACHE and store
2062 it in the buffer specified by FPREGS and LEN as described by the
2063 floating-point register set REGSET. If REGNUM is -1, do this for
2064 all registers in REGSET. */
2066 static void
2067 i386_collect_fpregset (const struct regset *regset,
2068 const struct regcache *regcache,
2069 int regnum, void *fpregs, size_t len)
2071 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2073 if (len == I387_SIZEOF_FXSAVE)
2075 i387_collect_fxsave (regcache, regnum, fpregs);
2076 return;
2079 gdb_assert (len == tdep->sizeof_fpregset);
2080 i387_collect_fsave (regcache, regnum, fpregs);
2083 /* Return the appropriate register set for the core section identified
2084 by SECT_NAME and SECT_SIZE. */
2086 const struct regset *
2087 i386_regset_from_core_section (struct gdbarch *gdbarch,
2088 const char *sect_name, size_t sect_size)
2090 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2092 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
2094 if (tdep->gregset == NULL)
2095 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
2096 i386_collect_gregset);
2097 return tdep->gregset;
2100 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2101 || (strcmp (sect_name, ".reg-xfp") == 0
2102 && sect_size == I387_SIZEOF_FXSAVE))
2104 if (tdep->fpregset == NULL)
2105 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
2106 i386_collect_fpregset);
2107 return tdep->fpregset;
2110 return NULL;
2114 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
2116 CORE_ADDR
2117 i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
2119 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
2121 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
2122 struct minimal_symbol *indsym =
2123 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
2124 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
2126 if (symname)
2128 if (strncmp (symname, "__imp_", 6) == 0
2129 || strncmp (symname, "_imp_", 5) == 0)
2130 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
2133 return 0; /* Not a trampoline. */
2137 /* Return whether the frame preceding NEXT_FRAME corresponds to a
2138 sigtramp routine. */
2140 static int
2141 i386_sigtramp_p (struct frame_info *next_frame)
2143 CORE_ADDR pc = frame_pc_unwind (next_frame);
2144 char *name;
2146 find_pc_partial_function (pc, &name, NULL, NULL);
2147 return (name && strcmp ("_sigtramp", name) == 0);
2151 /* We have two flavours of disassembly. The machinery on this page
2152 deals with switching between those. */
2154 static int
2155 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
2157 gdb_assert (disassembly_flavor == att_flavor
2158 || disassembly_flavor == intel_flavor);
2160 /* FIXME: kettenis/20020915: Until disassembler_options is properly
2161 constified, cast to prevent a compiler warning. */
2162 info->disassembler_options = (char *) disassembly_flavor;
2163 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
2165 return print_insn_i386 (pc, info);
2169 /* There are a few i386 architecture variants that differ only
2170 slightly from the generic i386 target. For now, we don't give them
2171 their own source file, but include them here. As a consequence,
2172 they'll always be included. */
2174 /* System V Release 4 (SVR4). */
2176 /* Return whether the frame preceding NEXT_FRAME corresponds to a SVR4
2177 sigtramp routine. */
2179 static int
2180 i386_svr4_sigtramp_p (struct frame_info *next_frame)
2182 CORE_ADDR pc = frame_pc_unwind (next_frame);
2183 char *name;
2185 /* UnixWare uses _sigacthandler. The origin of the other symbols is
2186 currently unknown. */
2187 find_pc_partial_function (pc, &name, NULL, NULL);
2188 return (name && (strcmp ("_sigreturn", name) == 0
2189 || strcmp ("_sigacthandler", name) == 0
2190 || strcmp ("sigvechandler", name) == 0));
2193 /* Assuming NEXT_FRAME is for a frame following a SVR4 sigtramp
2194 routine, return the address of the associated sigcontext (ucontext)
2195 structure. */
2197 static CORE_ADDR
2198 i386_svr4_sigcontext_addr (struct frame_info *next_frame)
2200 gdb_byte buf[4];
2201 CORE_ADDR sp;
2203 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
2204 sp = extract_unsigned_integer (buf, 4);
2206 return read_memory_unsigned_integer (sp + 8, 4);
2210 /* Generic ELF. */
2212 void
2213 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2215 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
2216 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2219 /* System V Release 4 (SVR4). */
2221 void
2222 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2224 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2226 /* System V Release 4 uses ELF. */
2227 i386_elf_init_abi (info, gdbarch);
2229 /* System V Release 4 has shared libraries. */
2230 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
2232 tdep->sigtramp_p = i386_svr4_sigtramp_p;
2233 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
2234 tdep->sc_pc_offset = 36 + 14 * 4;
2235 tdep->sc_sp_offset = 36 + 17 * 4;
2237 tdep->jb_pc_offset = 20;
2240 /* DJGPP. */
2242 static void
2243 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2245 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2247 /* DJGPP doesn't have any special frames for signal handlers. */
2248 tdep->sigtramp_p = NULL;
2250 tdep->jb_pc_offset = 36;
2254 /* i386 register groups. In addition to the normal groups, add "mmx"
2255 and "sse". */
2257 static struct reggroup *i386_sse_reggroup;
2258 static struct reggroup *i386_mmx_reggroup;
2260 static void
2261 i386_init_reggroups (void)
2263 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
2264 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
2267 static void
2268 i386_add_reggroups (struct gdbarch *gdbarch)
2270 reggroup_add (gdbarch, i386_sse_reggroup);
2271 reggroup_add (gdbarch, i386_mmx_reggroup);
2272 reggroup_add (gdbarch, general_reggroup);
2273 reggroup_add (gdbarch, float_reggroup);
2274 reggroup_add (gdbarch, all_reggroup);
2275 reggroup_add (gdbarch, save_reggroup);
2276 reggroup_add (gdbarch, restore_reggroup);
2277 reggroup_add (gdbarch, vector_reggroup);
2278 reggroup_add (gdbarch, system_reggroup);
2282 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2283 struct reggroup *group)
2285 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
2286 || i386_mxcsr_regnum_p (gdbarch, regnum));
2287 int fp_regnum_p = (i386_fp_regnum_p (regnum)
2288 || i386_fpc_regnum_p (regnum));
2289 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
2291 if (group == i386_mmx_reggroup)
2292 return mmx_regnum_p;
2293 if (group == i386_sse_reggroup)
2294 return sse_regnum_p;
2295 if (group == vector_reggroup)
2296 return (mmx_regnum_p || sse_regnum_p);
2297 if (group == float_reggroup)
2298 return fp_regnum_p;
2299 if (group == general_reggroup)
2300 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
2302 return default_register_reggroup_p (gdbarch, regnum, group);
2306 /* Get the ARGIth function argument for the current function. */
2308 static CORE_ADDR
2309 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
2310 struct type *type)
2312 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
2313 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
2317 static struct gdbarch *
2318 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2320 struct gdbarch_tdep *tdep;
2321 struct gdbarch *gdbarch;
2323 /* If there is already a candidate, use it. */
2324 arches = gdbarch_list_lookup_by_info (arches, &info);
2325 if (arches != NULL)
2326 return arches->gdbarch;
2328 /* Allocate space for the new architecture. */
2329 tdep = XCALLOC (1, struct gdbarch_tdep);
2330 gdbarch = gdbarch_alloc (&info, tdep);
2332 /* General-purpose registers. */
2333 tdep->gregset = NULL;
2334 tdep->gregset_reg_offset = NULL;
2335 tdep->gregset_num_regs = I386_NUM_GREGS;
2336 tdep->sizeof_gregset = 0;
2338 /* Floating-point registers. */
2339 tdep->fpregset = NULL;
2340 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
2342 /* The default settings include the FPU registers, the MMX registers
2343 and the SSE registers. This can be overridden for a specific ABI
2344 by adjusting the members `st0_regnum', `mm0_regnum' and
2345 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
2346 will show up in the output of "info all-registers". Ideally we
2347 should try to autodetect whether they are available, such that we
2348 can prevent "info all-registers" from displaying registers that
2349 aren't available.
2351 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
2352 [the SSE registers] always (even when they don't exist) or never
2353 showing them to the user (even when they do exist), I prefer the
2354 former over the latter. */
2356 tdep->st0_regnum = I386_ST0_REGNUM;
2358 /* The MMX registers are implemented as pseudo-registers. Put off
2359 calculating the register number for %mm0 until we know the number
2360 of raw registers. */
2361 tdep->mm0_regnum = 0;
2363 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
2364 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
2366 tdep->jb_pc_offset = -1;
2367 tdep->struct_return = pcc_struct_return;
2368 tdep->sigtramp_start = 0;
2369 tdep->sigtramp_end = 0;
2370 tdep->sigtramp_p = i386_sigtramp_p;
2371 tdep->sigcontext_addr = NULL;
2372 tdep->sc_reg_offset = NULL;
2373 tdep->sc_pc_offset = -1;
2374 tdep->sc_sp_offset = -1;
2376 /* The format used for `long double' on almost all i386 targets is
2377 the i387 extended floating-point format. In fact, of all targets
2378 in the GCC 2.95 tree, only OSF/1 does it different, and insists
2379 on having a `long double' that's not `long' at all. */
2380 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
2382 /* Although the i387 extended floating-point has only 80 significant
2383 bits, a `long double' actually takes up 96, probably to enforce
2384 alignment. */
2385 set_gdbarch_long_double_bit (gdbarch, 96);
2387 /* The default ABI includes general-purpose registers,
2388 floating-point registers, and the SSE registers. */
2389 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
2390 set_gdbarch_register_name (gdbarch, i386_register_name);
2391 set_gdbarch_register_type (gdbarch, i386_register_type);
2393 /* Register numbers of various important registers. */
2394 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
2395 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
2396 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
2397 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
2399 /* NOTE: kettenis/20040418: GCC does have two possible register
2400 numbering schemes on the i386: dbx and SVR4. These schemes
2401 differ in how they number %ebp, %esp, %eflags, and the
2402 floating-point registers, and are implemented by the arrays
2403 dbx_register_map[] and svr4_dbx_register_map in
2404 gcc/config/i386.c. GCC also defines a third numbering scheme in
2405 gcc/config/i386.c, which it designates as the "default" register
2406 map used in 64bit mode. This last register numbering scheme is
2407 implemented in dbx64_register_map, and is used for AMD64; see
2408 amd64-tdep.c.
2410 Currently, each GCC i386 target always uses the same register
2411 numbering scheme across all its supported debugging formats
2412 i.e. SDB (COFF), stabs and DWARF 2. This is because
2413 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
2414 DBX_REGISTER_NUMBER macro which is defined by each target's
2415 respective config header in a manner independent of the requested
2416 output debugging format.
2418 This does not match the arrangement below, which presumes that
2419 the SDB and stabs numbering schemes differ from the DWARF and
2420 DWARF 2 ones. The reason for this arrangement is that it is
2421 likely to get the numbering scheme for the target's
2422 default/native debug format right. For targets where GCC is the
2423 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
2424 targets where the native toolchain uses a different numbering
2425 scheme for a particular debug format (stabs-in-ELF on Solaris)
2426 the defaults below will have to be overridden, like
2427 i386_elf_init_abi() does. */
2429 /* Use the dbx register numbering scheme for stabs and COFF. */
2430 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2431 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2433 /* Use the SVR4 register numbering scheme for DWARF and DWARF 2. */
2434 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2435 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2437 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
2438 be in use on any of the supported i386 targets. */
2440 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
2442 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
2444 /* Call dummy code. */
2445 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
2447 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
2448 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
2449 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
2451 set_gdbarch_return_value (gdbarch, i386_return_value);
2453 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
2455 /* Stack grows downward. */
2456 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2458 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
2459 set_gdbarch_decr_pc_after_break (gdbarch, 1);
2461 set_gdbarch_frame_args_skip (gdbarch, 8);
2463 /* Wire in the MMX registers. */
2464 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
2465 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
2466 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
2468 set_gdbarch_print_insn (gdbarch, i386_print_insn);
2470 set_gdbarch_unwind_dummy_id (gdbarch, i386_unwind_dummy_id);
2472 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
2474 /* Add the i386 register groups. */
2475 i386_add_reggroups (gdbarch);
2476 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
2478 /* Helper for function argument information. */
2479 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
2481 /* Hook in the DWARF CFI frame unwinder. */
2482 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2484 frame_base_set_default (gdbarch, &i386_frame_base);
2486 /* Hook in ABI-specific overrides, if they have been registered. */
2487 gdbarch_init_osabi (info, gdbarch);
2489 frame_unwind_append_sniffer (gdbarch, i386_sigtramp_frame_sniffer);
2490 frame_unwind_append_sniffer (gdbarch, i386_frame_sniffer);
2492 /* If we have a register mapping, enable the generic core file
2493 support, unless it has already been enabled. */
2494 if (tdep->gregset_reg_offset
2495 && !gdbarch_regset_from_core_section_p (gdbarch))
2496 set_gdbarch_regset_from_core_section (gdbarch,
2497 i386_regset_from_core_section);
2499 /* Unless support for MMX has been disabled, make %mm0 the first
2500 pseudo-register. */
2501 if (tdep->mm0_regnum == 0)
2502 tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
2504 return gdbarch;
2507 static enum gdb_osabi
2508 i386_coff_osabi_sniffer (bfd *abfd)
2510 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
2511 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
2512 return GDB_OSABI_GO32;
2514 return GDB_OSABI_UNKNOWN;
2518 /* Provide a prototype to silence -Wmissing-prototypes. */
2519 void _initialize_i386_tdep (void);
2521 void
2522 _initialize_i386_tdep (void)
2524 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
2526 /* Add the variable that controls the disassembly flavor. */
2527 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
2528 &disassembly_flavor, _("\
2529 Set the disassembly flavor."), _("\
2530 Show the disassembly flavor."), _("\
2531 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
2532 NULL,
2533 NULL, /* FIXME: i18n: */
2534 &setlist, &showlist);
2536 /* Add the variable that controls the convention for returning
2537 structs. */
2538 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
2539 &struct_convention, _("\
2540 Set the convention for returning small structs."), _("\
2541 Show the convention for returning small structs."), _("\
2542 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
2543 is \"default\"."),
2544 NULL,
2545 NULL, /* FIXME: i18n: */
2546 &setlist, &showlist);
2548 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
2549 i386_coff_osabi_sniffer);
2551 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
2552 i386_svr4_init_abi);
2553 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
2554 i386_go32_init_abi);
2556 /* Initialize the i386-specific register groups & types. */
2557 i386_init_reggroups ();
2558 i386_init_types();