Update
[gdb.git] / gdb / gdbtypes.c
blobf444153eb72d872c9c4b5c3deb6184b1471dee8f
1 /* Support routines for manipulating internal types for GDB.
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002,
4 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
6 Contributed by Cygnus Support, using pieces from other GDB modules.
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "bfd.h"
26 #include "symtab.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbtypes.h"
30 #include "expression.h"
31 #include "language.h"
32 #include "target.h"
33 #include "value.h"
34 #include "demangle.h"
35 #include "complaints.h"
36 #include "gdbcmd.h"
37 #include "wrapper.h"
38 #include "cp-abi.h"
39 #include "gdb_assert.h"
40 #include "hashtab.h"
42 /* These variables point to the objects
43 representing the predefined C data types. */
45 struct type *builtin_type_int0;
46 struct type *builtin_type_int8;
47 struct type *builtin_type_uint8;
48 struct type *builtin_type_int16;
49 struct type *builtin_type_uint16;
50 struct type *builtin_type_int32;
51 struct type *builtin_type_uint32;
52 struct type *builtin_type_int64;
53 struct type *builtin_type_uint64;
54 struct type *builtin_type_int128;
55 struct type *builtin_type_uint128;
57 /* Floatformat pairs. */
58 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
59 &floatformat_ieee_single_big,
60 &floatformat_ieee_single_little
62 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
63 &floatformat_ieee_double_big,
64 &floatformat_ieee_double_little
66 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_double_big,
68 &floatformat_ieee_double_littlebyte_bigword
70 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_i387_ext,
72 &floatformat_i387_ext
74 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_m68881_ext,
76 &floatformat_m68881_ext
78 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_arm_ext_big,
80 &floatformat_arm_ext_littlebyte_bigword
82 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_ia64_spill_big,
84 &floatformat_ia64_spill_little
86 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_ia64_quad_big,
88 &floatformat_ia64_quad_little
90 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_vax_f,
92 &floatformat_vax_f
94 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_vax_d,
96 &floatformat_vax_d
98 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ibm_long_double,
100 &floatformat_ibm_long_double
103 struct type *builtin_type_ieee_single;
104 struct type *builtin_type_ieee_double;
105 struct type *builtin_type_i387_ext;
106 struct type *builtin_type_m68881_ext;
107 struct type *builtin_type_arm_ext;
108 struct type *builtin_type_ia64_spill;
109 struct type *builtin_type_ia64_quad;
112 int opaque_type_resolution = 1;
113 static void
114 show_opaque_type_resolution (struct ui_file *file, int from_tty,
115 struct cmd_list_element *c,
116 const char *value)
118 fprintf_filtered (file, _("\
119 Resolution of opaque struct/class/union types (if set before loading symbols) is %s.\n"),
120 value);
123 int overload_debug = 0;
124 static void
125 show_overload_debug (struct ui_file *file, int from_tty,
126 struct cmd_list_element *c, const char *value)
128 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
129 value);
132 struct extra
134 char str[128];
135 int len;
136 }; /* Maximum extension is 128! FIXME */
138 static void print_bit_vector (B_TYPE *, int);
139 static void print_arg_types (struct field *, int, int);
140 static void dump_fn_fieldlists (struct type *, int);
141 static void print_cplus_stuff (struct type *, int);
144 /* Alloc a new type structure and fill it with some defaults. If
145 OBJFILE is non-NULL, then allocate the space for the type structure
146 in that objfile's objfile_obstack. Otherwise allocate the new type
147 structure by xmalloc () (for permanent types). */
149 struct type *
150 alloc_type (struct objfile *objfile)
152 struct type *type;
154 /* Alloc the structure and start off with all fields zeroed. */
156 if (objfile == NULL)
158 type = xmalloc (sizeof (struct type));
159 memset (type, 0, sizeof (struct type));
160 TYPE_MAIN_TYPE (type) = xmalloc (sizeof (struct main_type));
162 else
164 type = obstack_alloc (&objfile->objfile_obstack,
165 sizeof (struct type));
166 memset (type, 0, sizeof (struct type));
167 TYPE_MAIN_TYPE (type) = obstack_alloc (&objfile->objfile_obstack,
168 sizeof (struct main_type));
169 OBJSTAT (objfile, n_types++);
171 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
173 /* Initialize the fields that might not be zero. */
175 TYPE_CODE (type) = TYPE_CODE_UNDEF;
176 TYPE_OBJFILE (type) = objfile;
177 TYPE_VPTR_FIELDNO (type) = -1;
178 TYPE_CHAIN (type) = type; /* Chain back to itself. */
180 return (type);
183 /* Alloc a new type instance structure, fill it with some defaults,
184 and point it at OLDTYPE. Allocate the new type instance from the
185 same place as OLDTYPE. */
187 static struct type *
188 alloc_type_instance (struct type *oldtype)
190 struct type *type;
192 /* Allocate the structure. */
194 if (TYPE_OBJFILE (oldtype) == NULL)
196 type = xmalloc (sizeof (struct type));
197 memset (type, 0, sizeof (struct type));
199 else
201 type = obstack_alloc (&TYPE_OBJFILE (oldtype)->objfile_obstack,
202 sizeof (struct type));
203 memset (type, 0, sizeof (struct type));
205 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
207 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
209 return (type);
212 /* Clear all remnants of the previous type at TYPE, in preparation for
213 replacing it with something else. */
214 static void
215 smash_type (struct type *type)
217 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
219 /* For now, delete the rings. */
220 TYPE_CHAIN (type) = type;
222 /* For now, leave the pointer/reference types alone. */
225 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
226 to a pointer to memory where the pointer type should be stored.
227 If *TYPEPTR is zero, update it to point to the pointer type we return.
228 We allocate new memory if needed. */
230 struct type *
231 make_pointer_type (struct type *type, struct type **typeptr)
233 struct type *ntype; /* New type */
234 struct objfile *objfile;
235 struct type *chain;
237 ntype = TYPE_POINTER_TYPE (type);
239 if (ntype)
241 if (typeptr == 0)
242 return ntype; /* Don't care about alloc,
243 and have new type. */
244 else if (*typeptr == 0)
246 *typeptr = ntype; /* Tracking alloc, and have new type. */
247 return ntype;
251 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
253 ntype = alloc_type (TYPE_OBJFILE (type));
254 if (typeptr)
255 *typeptr = ntype;
257 else /* We have storage, but need to reset it. */
259 ntype = *typeptr;
260 objfile = TYPE_OBJFILE (ntype);
261 chain = TYPE_CHAIN (ntype);
262 smash_type (ntype);
263 TYPE_CHAIN (ntype) = chain;
264 TYPE_OBJFILE (ntype) = objfile;
267 TYPE_TARGET_TYPE (ntype) = type;
268 TYPE_POINTER_TYPE (type) = ntype;
270 /* FIXME! Assume the machine has only one representation for
271 pointers! */
273 TYPE_LENGTH (ntype) =
274 gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT;
275 TYPE_CODE (ntype) = TYPE_CODE_PTR;
277 /* Mark pointers as unsigned. The target converts between pointers
278 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
279 gdbarch_address_to_pointer. */
280 TYPE_FLAGS (ntype) |= TYPE_FLAG_UNSIGNED;
282 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
283 TYPE_POINTER_TYPE (type) = ntype;
285 /* Update the length of all the other variants of this type. */
286 chain = TYPE_CHAIN (ntype);
287 while (chain != ntype)
289 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
290 chain = TYPE_CHAIN (chain);
293 return ntype;
296 /* Given a type TYPE, return a type of pointers to that type.
297 May need to construct such a type if this is the first use. */
299 struct type *
300 lookup_pointer_type (struct type *type)
302 return make_pointer_type (type, (struct type **) 0);
305 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
306 points to a pointer to memory where the reference type should be
307 stored. If *TYPEPTR is zero, update it to point to the reference
308 type we return. We allocate new memory if needed. */
310 struct type *
311 make_reference_type (struct type *type, struct type **typeptr)
313 struct type *ntype; /* New type */
314 struct objfile *objfile;
315 struct type *chain;
317 ntype = TYPE_REFERENCE_TYPE (type);
319 if (ntype)
321 if (typeptr == 0)
322 return ntype; /* Don't care about alloc,
323 and have new type. */
324 else if (*typeptr == 0)
326 *typeptr = ntype; /* Tracking alloc, and have new type. */
327 return ntype;
331 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
333 ntype = alloc_type (TYPE_OBJFILE (type));
334 if (typeptr)
335 *typeptr = ntype;
337 else /* We have storage, but need to reset it. */
339 ntype = *typeptr;
340 objfile = TYPE_OBJFILE (ntype);
341 chain = TYPE_CHAIN (ntype);
342 smash_type (ntype);
343 TYPE_CHAIN (ntype) = chain;
344 TYPE_OBJFILE (ntype) = objfile;
347 TYPE_TARGET_TYPE (ntype) = type;
348 TYPE_REFERENCE_TYPE (type) = ntype;
350 /* FIXME! Assume the machine has only one representation for
351 references, and that it matches the (only) representation for
352 pointers! */
354 TYPE_LENGTH (ntype) = gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT;
355 TYPE_CODE (ntype) = TYPE_CODE_REF;
357 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
358 TYPE_REFERENCE_TYPE (type) = ntype;
360 /* Update the length of all the other variants of this type. */
361 chain = TYPE_CHAIN (ntype);
362 while (chain != ntype)
364 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
365 chain = TYPE_CHAIN (chain);
368 return ntype;
371 /* Same as above, but caller doesn't care about memory allocation
372 details. */
374 struct type *
375 lookup_reference_type (struct type *type)
377 return make_reference_type (type, (struct type **) 0);
380 /* Lookup a function type that returns type TYPE. TYPEPTR, if
381 nonzero, points to a pointer to memory where the function type
382 should be stored. If *TYPEPTR is zero, update it to point to the
383 function type we return. We allocate new memory if needed. */
385 struct type *
386 make_function_type (struct type *type, struct type **typeptr)
388 struct type *ntype; /* New type */
389 struct objfile *objfile;
391 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
393 ntype = alloc_type (TYPE_OBJFILE (type));
394 if (typeptr)
395 *typeptr = ntype;
397 else /* We have storage, but need to reset it. */
399 ntype = *typeptr;
400 objfile = TYPE_OBJFILE (ntype);
401 smash_type (ntype);
402 TYPE_OBJFILE (ntype) = objfile;
405 TYPE_TARGET_TYPE (ntype) = type;
407 TYPE_LENGTH (ntype) = 1;
408 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
410 return ntype;
414 /* Given a type TYPE, return a type of functions that return that type.
415 May need to construct such a type if this is the first use. */
417 struct type *
418 lookup_function_type (struct type *type)
420 return make_function_type (type, (struct type **) 0);
423 /* Identify address space identifier by name --
424 return the integer flag defined in gdbtypes.h. */
425 extern int
426 address_space_name_to_int (char *space_identifier)
428 struct gdbarch *gdbarch = current_gdbarch;
429 int type_flags;
430 /* Check for known address space delimiters. */
431 if (!strcmp (space_identifier, "code"))
432 return TYPE_FLAG_CODE_SPACE;
433 else if (!strcmp (space_identifier, "data"))
434 return TYPE_FLAG_DATA_SPACE;
435 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
436 && gdbarch_address_class_name_to_type_flags (gdbarch,
437 space_identifier,
438 &type_flags))
439 return type_flags;
440 else
441 error (_("Unknown address space specifier: \"%s\""), space_identifier);
444 /* Identify address space identifier by integer flag as defined in
445 gdbtypes.h -- return the string version of the adress space name. */
447 const char *
448 address_space_int_to_name (int space_flag)
450 struct gdbarch *gdbarch = current_gdbarch;
451 if (space_flag & TYPE_FLAG_CODE_SPACE)
452 return "code";
453 else if (space_flag & TYPE_FLAG_DATA_SPACE)
454 return "data";
455 else if ((space_flag & TYPE_FLAG_ADDRESS_CLASS_ALL)
456 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
457 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
458 else
459 return NULL;
462 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
464 If STORAGE is non-NULL, create the new type instance there.
465 STORAGE must be in the same obstack as TYPE. */
467 static struct type *
468 make_qualified_type (struct type *type, int new_flags,
469 struct type *storage)
471 struct type *ntype;
473 ntype = type;
474 do {
475 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
476 return ntype;
477 ntype = TYPE_CHAIN (ntype);
478 } while (ntype != type);
480 /* Create a new type instance. */
481 if (storage == NULL)
482 ntype = alloc_type_instance (type);
483 else
485 /* If STORAGE was provided, it had better be in the same objfile
486 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
487 if one objfile is freed and the other kept, we'd have
488 dangling pointers. */
489 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
491 ntype = storage;
492 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
493 TYPE_CHAIN (ntype) = ntype;
496 /* Pointers or references to the original type are not relevant to
497 the new type. */
498 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
499 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
501 /* Chain the new qualified type to the old type. */
502 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
503 TYPE_CHAIN (type) = ntype;
505 /* Now set the instance flags and return the new type. */
506 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
508 /* Set length of new type to that of the original type. */
509 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
511 return ntype;
514 /* Make an address-space-delimited variant of a type -- a type that
515 is identical to the one supplied except that it has an address
516 space attribute attached to it (such as "code" or "data").
518 The space attributes "code" and "data" are for Harvard
519 architectures. The address space attributes are for architectures
520 which have alternately sized pointers or pointers with alternate
521 representations. */
523 struct type *
524 make_type_with_address_space (struct type *type, int space_flag)
526 struct type *ntype;
527 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
528 & ~(TYPE_FLAG_CODE_SPACE | TYPE_FLAG_DATA_SPACE
529 | TYPE_FLAG_ADDRESS_CLASS_ALL))
530 | space_flag);
532 return make_qualified_type (type, new_flags, NULL);
535 /* Make a "c-v" variant of a type -- a type that is identical to the
536 one supplied except that it may have const or volatile attributes
537 CNST is a flag for setting the const attribute
538 VOLTL is a flag for setting the volatile attribute
539 TYPE is the base type whose variant we are creating.
541 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
542 storage to hold the new qualified type; *TYPEPTR and TYPE must be
543 in the same objfile. Otherwise, allocate fresh memory for the new
544 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
545 new type we construct. */
546 struct type *
547 make_cv_type (int cnst, int voltl,
548 struct type *type,
549 struct type **typeptr)
551 struct type *ntype; /* New type */
552 struct type *tmp_type = type; /* tmp type */
553 struct objfile *objfile;
555 int new_flags = (TYPE_INSTANCE_FLAGS (type)
556 & ~(TYPE_FLAG_CONST | TYPE_FLAG_VOLATILE));
558 if (cnst)
559 new_flags |= TYPE_FLAG_CONST;
561 if (voltl)
562 new_flags |= TYPE_FLAG_VOLATILE;
564 if (typeptr && *typeptr != NULL)
566 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
567 a C-V variant chain that threads across objfiles: if one
568 objfile gets freed, then the other has a broken C-V chain.
570 This code used to try to copy over the main type from TYPE to
571 *TYPEPTR if they were in different objfiles, but that's
572 wrong, too: TYPE may have a field list or member function
573 lists, which refer to types of their own, etc. etc. The
574 whole shebang would need to be copied over recursively; you
575 can't have inter-objfile pointers. The only thing to do is
576 to leave stub types as stub types, and look them up afresh by
577 name each time you encounter them. */
578 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
581 ntype = make_qualified_type (type, new_flags,
582 typeptr ? *typeptr : NULL);
584 if (typeptr != NULL)
585 *typeptr = ntype;
587 return ntype;
590 /* Replace the contents of ntype with the type *type. This changes the
591 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
592 the changes are propogated to all types in the TYPE_CHAIN.
594 In order to build recursive types, it's inevitable that we'll need
595 to update types in place --- but this sort of indiscriminate
596 smashing is ugly, and needs to be replaced with something more
597 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
598 clear if more steps are needed. */
599 void
600 replace_type (struct type *ntype, struct type *type)
602 struct type *chain;
604 /* These two types had better be in the same objfile. Otherwise,
605 the assignment of one type's main type structure to the other
606 will produce a type with references to objects (names; field
607 lists; etc.) allocated on an objfile other than its own. */
608 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
610 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
612 /* The type length is not a part of the main type. Update it for
613 each type on the variant chain. */
614 chain = ntype;
615 do {
616 /* Assert that this element of the chain has no address-class bits
617 set in its flags. Such type variants might have type lengths
618 which are supposed to be different from the non-address-class
619 variants. This assertion shouldn't ever be triggered because
620 symbol readers which do construct address-class variants don't
621 call replace_type(). */
622 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
624 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
625 chain = TYPE_CHAIN (chain);
626 } while (ntype != chain);
628 /* Assert that the two types have equivalent instance qualifiers.
629 This should be true for at least all of our debug readers. */
630 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
633 /* Implement direct support for MEMBER_TYPE in GNU C++.
634 May need to construct such a type if this is the first use.
635 The TYPE is the type of the member. The DOMAIN is the type
636 of the aggregate that the member belongs to. */
638 struct type *
639 lookup_memberptr_type (struct type *type, struct type *domain)
641 struct type *mtype;
643 mtype = alloc_type (TYPE_OBJFILE (type));
644 smash_to_memberptr_type (mtype, domain, type);
645 return (mtype);
648 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
650 struct type *
651 lookup_methodptr_type (struct type *to_type)
653 struct type *mtype;
655 mtype = alloc_type (TYPE_OBJFILE (to_type));
656 TYPE_TARGET_TYPE (mtype) = to_type;
657 TYPE_DOMAIN_TYPE (mtype) = TYPE_DOMAIN_TYPE (to_type);
658 TYPE_LENGTH (mtype) = cplus_method_ptr_size ();
659 TYPE_CODE (mtype) = TYPE_CODE_METHODPTR;
660 return mtype;
663 /* Allocate a stub method whose return type is TYPE. This apparently
664 happens for speed of symbol reading, since parsing out the
665 arguments to the method is cpu-intensive, the way we are doing it.
666 So, we will fill in arguments later. This always returns a fresh
667 type. */
669 struct type *
670 allocate_stub_method (struct type *type)
672 struct type *mtype;
674 mtype = init_type (TYPE_CODE_METHOD, 1, TYPE_FLAG_STUB, NULL,
675 TYPE_OBJFILE (type));
676 TYPE_TARGET_TYPE (mtype) = type;
677 /* _DOMAIN_TYPE (mtype) = unknown yet */
678 return (mtype);
681 /* Create a range type using either a blank type supplied in
682 RESULT_TYPE, or creating a new type, inheriting the objfile from
683 INDEX_TYPE.
685 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
686 to HIGH_BOUND, inclusive.
688 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
689 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
691 struct type *
692 create_range_type (struct type *result_type, struct type *index_type,
693 int low_bound, int high_bound)
695 if (result_type == NULL)
697 result_type = alloc_type (TYPE_OBJFILE (index_type));
699 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
700 TYPE_TARGET_TYPE (result_type) = index_type;
701 if (TYPE_STUB (index_type))
702 TYPE_FLAGS (result_type) |= TYPE_FLAG_TARGET_STUB;
703 else
704 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
705 TYPE_NFIELDS (result_type) = 2;
706 TYPE_FIELDS (result_type) = (struct field *)
707 TYPE_ALLOC (result_type, 2 * sizeof (struct field));
708 memset (TYPE_FIELDS (result_type), 0, 2 * sizeof (struct field));
709 TYPE_FIELD_BITPOS (result_type, 0) = low_bound;
710 TYPE_FIELD_BITPOS (result_type, 1) = high_bound;
712 if (low_bound >= 0)
713 TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
715 return (result_type);
718 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
719 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
720 bounds will fit in LONGEST), or -1 otherwise. */
723 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
725 CHECK_TYPEDEF (type);
726 switch (TYPE_CODE (type))
728 case TYPE_CODE_RANGE:
729 *lowp = TYPE_LOW_BOUND (type);
730 *highp = TYPE_HIGH_BOUND (type);
731 return 1;
732 case TYPE_CODE_ENUM:
733 if (TYPE_NFIELDS (type) > 0)
735 /* The enums may not be sorted by value, so search all
736 entries */
737 int i;
739 *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
740 for (i = 0; i < TYPE_NFIELDS (type); i++)
742 if (TYPE_FIELD_BITPOS (type, i) < *lowp)
743 *lowp = TYPE_FIELD_BITPOS (type, i);
744 if (TYPE_FIELD_BITPOS (type, i) > *highp)
745 *highp = TYPE_FIELD_BITPOS (type, i);
748 /* Set unsigned indicator if warranted. */
749 if (*lowp >= 0)
751 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
754 else
756 *lowp = 0;
757 *highp = -1;
759 return 0;
760 case TYPE_CODE_BOOL:
761 *lowp = 0;
762 *highp = 1;
763 return 0;
764 case TYPE_CODE_INT:
765 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
766 return -1;
767 if (!TYPE_UNSIGNED (type))
769 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
770 *highp = -*lowp - 1;
771 return 0;
773 /* ... fall through for unsigned ints ... */
774 case TYPE_CODE_CHAR:
775 *lowp = 0;
776 /* This round-about calculation is to avoid shifting by
777 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
778 if TYPE_LENGTH (type) == sizeof (LONGEST). */
779 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
780 *highp = (*highp - 1) | *highp;
781 return 0;
782 default:
783 return -1;
787 /* Create an array type using either a blank type supplied in
788 RESULT_TYPE, or creating a new type, inheriting the objfile from
789 RANGE_TYPE.
791 Elements will be of type ELEMENT_TYPE, the indices will be of type
792 RANGE_TYPE.
794 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
795 sure it is TYPE_CODE_UNDEF before we bash it into an array
796 type? */
798 struct type *
799 create_array_type (struct type *result_type,
800 struct type *element_type,
801 struct type *range_type)
803 LONGEST low_bound, high_bound;
805 if (result_type == NULL)
807 result_type = alloc_type (TYPE_OBJFILE (range_type));
809 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
810 TYPE_TARGET_TYPE (result_type) = element_type;
811 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
812 low_bound = high_bound = 0;
813 CHECK_TYPEDEF (element_type);
814 /* Be careful when setting the array length. Ada arrays can be
815 empty arrays with the high_bound being smaller than the low_bound.
816 In such cases, the array length should be zero. */
817 if (high_bound < low_bound)
818 TYPE_LENGTH (result_type) = 0;
819 else
820 TYPE_LENGTH (result_type) =
821 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
822 TYPE_NFIELDS (result_type) = 1;
823 TYPE_FIELDS (result_type) =
824 (struct field *) TYPE_ALLOC (result_type, sizeof (struct field));
825 memset (TYPE_FIELDS (result_type), 0, sizeof (struct field));
826 TYPE_FIELD_TYPE (result_type, 0) = range_type;
827 TYPE_VPTR_FIELDNO (result_type) = -1;
829 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays */
830 if (TYPE_LENGTH (result_type) == 0)
831 TYPE_FLAGS (result_type) |= TYPE_FLAG_TARGET_STUB;
833 return (result_type);
836 /* Create a string type using either a blank type supplied in
837 RESULT_TYPE, or creating a new type. String types are similar
838 enough to array of char types that we can use create_array_type to
839 build the basic type and then bash it into a string type.
841 For fixed length strings, the range type contains 0 as the lower
842 bound and the length of the string minus one as the upper bound.
844 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
845 sure it is TYPE_CODE_UNDEF before we bash it into a string
846 type? */
848 struct type *
849 create_string_type (struct type *result_type,
850 struct type *range_type)
852 struct type *string_char_type;
854 string_char_type = language_string_char_type (current_language,
855 current_gdbarch);
856 result_type = create_array_type (result_type,
857 string_char_type,
858 range_type);
859 TYPE_CODE (result_type) = TYPE_CODE_STRING;
860 return (result_type);
863 struct type *
864 create_set_type (struct type *result_type, struct type *domain_type)
866 if (result_type == NULL)
868 result_type = alloc_type (TYPE_OBJFILE (domain_type));
870 TYPE_CODE (result_type) = TYPE_CODE_SET;
871 TYPE_NFIELDS (result_type) = 1;
872 TYPE_FIELDS (result_type) = (struct field *)
873 TYPE_ALLOC (result_type, 1 * sizeof (struct field));
874 memset (TYPE_FIELDS (result_type), 0, sizeof (struct field));
876 if (!TYPE_STUB (domain_type))
878 LONGEST low_bound, high_bound, bit_length;
879 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
880 low_bound = high_bound = 0;
881 bit_length = high_bound - low_bound + 1;
882 TYPE_LENGTH (result_type)
883 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
884 if (low_bound >= 0)
885 TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
887 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
889 return (result_type);
892 void
893 append_flags_type_flag (struct type *type, int bitpos, char *name)
895 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
896 gdb_assert (bitpos < TYPE_NFIELDS (type));
897 gdb_assert (bitpos >= 0);
899 if (name)
901 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
902 TYPE_FIELD_BITPOS (type, bitpos) = bitpos;
904 else
906 /* Don't show this field to the user. */
907 TYPE_FIELD_BITPOS (type, bitpos) = -1;
911 struct type *
912 init_flags_type (char *name, int length)
914 int nfields = length * TARGET_CHAR_BIT;
915 struct type *type;
917 type = init_type (TYPE_CODE_FLAGS, length,
918 TYPE_FLAG_UNSIGNED, name, NULL);
919 TYPE_NFIELDS (type) = nfields;
920 TYPE_FIELDS (type) = TYPE_ALLOC (type,
921 nfields * sizeof (struct field));
922 memset (TYPE_FIELDS (type), 0, nfields * sizeof (struct field));
924 return type;
927 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
928 and any array types nested inside it. */
930 void
931 make_vector_type (struct type *array_type)
933 struct type *inner_array, *elt_type;
934 int flags;
936 /* Find the innermost array type, in case the array is
937 multi-dimensional. */
938 inner_array = array_type;
939 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
940 inner_array = TYPE_TARGET_TYPE (inner_array);
942 elt_type = TYPE_TARGET_TYPE (inner_array);
943 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
945 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_FLAG_NOTTEXT;
946 elt_type = make_qualified_type (elt_type, flags, NULL);
947 TYPE_TARGET_TYPE (inner_array) = elt_type;
950 TYPE_FLAGS (array_type) |= TYPE_FLAG_VECTOR;
953 struct type *
954 init_vector_type (struct type *elt_type, int n)
956 struct type *array_type;
958 array_type = create_array_type (0, elt_type,
959 create_range_type (0,
960 builtin_type_int32,
961 0, n-1));
962 make_vector_type (array_type);
963 return array_type;
966 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
967 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
968 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
969 TYPE doesn't include the offset (that's the value of the MEMBER
970 itself), but does include the structure type into which it points
971 (for some reason).
973 When "smashing" the type, we preserve the objfile that the old type
974 pointed to, since we aren't changing where the type is actually
975 allocated. */
977 void
978 smash_to_memberptr_type (struct type *type, struct type *domain,
979 struct type *to_type)
981 struct objfile *objfile;
983 objfile = TYPE_OBJFILE (type);
985 smash_type (type);
986 TYPE_OBJFILE (type) = objfile;
987 TYPE_TARGET_TYPE (type) = to_type;
988 TYPE_DOMAIN_TYPE (type) = domain;
989 /* Assume that a data member pointer is the same size as a normal
990 pointer. */
991 TYPE_LENGTH (type) = gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT;
992 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
995 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
996 METHOD just means `function that gets an extra "this" argument'.
998 When "smashing" the type, we preserve the objfile that the old type
999 pointed to, since we aren't changing where the type is actually
1000 allocated. */
1002 void
1003 smash_to_method_type (struct type *type, struct type *domain,
1004 struct type *to_type, struct field *args,
1005 int nargs, int varargs)
1007 struct objfile *objfile;
1009 objfile = TYPE_OBJFILE (type);
1011 smash_type (type);
1012 TYPE_OBJFILE (type) = objfile;
1013 TYPE_TARGET_TYPE (type) = to_type;
1014 TYPE_DOMAIN_TYPE (type) = domain;
1015 TYPE_FIELDS (type) = args;
1016 TYPE_NFIELDS (type) = nargs;
1017 if (varargs)
1018 TYPE_FLAGS (type) |= TYPE_FLAG_VARARGS;
1019 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1020 TYPE_CODE (type) = TYPE_CODE_METHOD;
1023 /* Return a typename for a struct/union/enum type without "struct ",
1024 "union ", or "enum ". If the type has a NULL name, return NULL. */
1026 char *
1027 type_name_no_tag (const struct type *type)
1029 if (TYPE_TAG_NAME (type) != NULL)
1030 return TYPE_TAG_NAME (type);
1032 /* Is there code which expects this to return the name if there is
1033 no tag name? My guess is that this is mainly used for C++ in
1034 cases where the two will always be the same. */
1035 return TYPE_NAME (type);
1038 /* Lookup a typedef or primitive type named NAME, visible in lexical
1039 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1040 suitably defined. */
1042 struct type *
1043 lookup_typename (char *name, struct block *block, int noerr)
1045 struct symbol *sym;
1046 struct type *tmp;
1048 sym = lookup_symbol (name, block, VAR_DOMAIN, 0,
1049 (struct symtab **) NULL);
1050 if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
1052 tmp = language_lookup_primitive_type_by_name (current_language,
1053 current_gdbarch,
1054 name);
1055 if (tmp)
1057 return (tmp);
1059 else if (!tmp && noerr)
1061 return (NULL);
1063 else
1065 error (_("No type named %s."), name);
1068 return (SYMBOL_TYPE (sym));
1071 struct type *
1072 lookup_unsigned_typename (char *name)
1074 char *uns = alloca (strlen (name) + 10);
1076 strcpy (uns, "unsigned ");
1077 strcpy (uns + 9, name);
1078 return (lookup_typename (uns, (struct block *) NULL, 0));
1081 struct type *
1082 lookup_signed_typename (char *name)
1084 struct type *t;
1085 char *uns = alloca (strlen (name) + 8);
1087 strcpy (uns, "signed ");
1088 strcpy (uns + 7, name);
1089 t = lookup_typename (uns, (struct block *) NULL, 1);
1090 /* If we don't find "signed FOO" just try again with plain "FOO". */
1091 if (t != NULL)
1092 return t;
1093 return lookup_typename (name, (struct block *) NULL, 0);
1096 /* Lookup a structure type named "struct NAME",
1097 visible in lexical block BLOCK. */
1099 struct type *
1100 lookup_struct (char *name, struct block *block)
1102 struct symbol *sym;
1104 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0,
1105 (struct symtab **) NULL);
1107 if (sym == NULL)
1109 error (_("No struct type named %s."), name);
1111 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1113 error (_("This context has class, union or enum %s, not a struct."),
1114 name);
1116 return (SYMBOL_TYPE (sym));
1119 /* Lookup a union type named "union NAME",
1120 visible in lexical block BLOCK. */
1122 struct type *
1123 lookup_union (char *name, struct block *block)
1125 struct symbol *sym;
1126 struct type *t;
1128 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0,
1129 (struct symtab **) NULL);
1131 if (sym == NULL)
1132 error (_("No union type named %s."), name);
1134 t = SYMBOL_TYPE (sym);
1136 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1137 return (t);
1139 /* C++ unions may come out with TYPE_CODE_CLASS, but we look at
1140 * a further "declared_type" field to discover it is really a union.
1142 if (HAVE_CPLUS_STRUCT (t))
1143 if (TYPE_DECLARED_TYPE (t) == DECLARED_TYPE_UNION)
1144 return (t);
1146 /* If we get here, it's not a union. */
1147 error (_("This context has class, struct or enum %s, not a union."),
1148 name);
1152 /* Lookup an enum type named "enum NAME",
1153 visible in lexical block BLOCK. */
1155 struct type *
1156 lookup_enum (char *name, struct block *block)
1158 struct symbol *sym;
1160 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0,
1161 (struct symtab **) NULL);
1162 if (sym == NULL)
1164 error (_("No enum type named %s."), name);
1166 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1168 error (_("This context has class, struct or union %s, not an enum."),
1169 name);
1171 return (SYMBOL_TYPE (sym));
1174 /* Lookup a template type named "template NAME<TYPE>",
1175 visible in lexical block BLOCK. */
1177 struct type *
1178 lookup_template_type (char *name, struct type *type,
1179 struct block *block)
1181 struct symbol *sym;
1182 char *nam = (char *)
1183 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1184 strcpy (nam, name);
1185 strcat (nam, "<");
1186 strcat (nam, TYPE_NAME (type));
1187 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1189 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0,
1190 (struct symtab **) NULL);
1192 if (sym == NULL)
1194 error (_("No template type named %s."), name);
1196 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1198 error (_("This context has class, union or enum %s, not a struct."),
1199 name);
1201 return (SYMBOL_TYPE (sym));
1204 /* Given a type TYPE, lookup the type of the component of type named
1205 NAME.
1207 TYPE can be either a struct or union, or a pointer or reference to
1208 a struct or union. If it is a pointer or reference, its target
1209 type is automatically used. Thus '.' and '->' are interchangable,
1210 as specified for the definitions of the expression element types
1211 STRUCTOP_STRUCT and STRUCTOP_PTR.
1213 If NOERR is nonzero, return zero if NAME is not suitably defined.
1214 If NAME is the name of a baseclass type, return that type. */
1216 struct type *
1217 lookup_struct_elt_type (struct type *type, char *name, int noerr)
1219 int i;
1221 for (;;)
1223 CHECK_TYPEDEF (type);
1224 if (TYPE_CODE (type) != TYPE_CODE_PTR
1225 && TYPE_CODE (type) != TYPE_CODE_REF)
1226 break;
1227 type = TYPE_TARGET_TYPE (type);
1230 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1231 && TYPE_CODE (type) != TYPE_CODE_UNION)
1233 target_terminal_ours ();
1234 gdb_flush (gdb_stdout);
1235 fprintf_unfiltered (gdb_stderr, "Type ");
1236 type_print (type, "", gdb_stderr, -1);
1237 error (_(" is not a structure or union type."));
1240 #if 0
1241 /* FIXME: This change put in by Michael seems incorrect for the case
1242 where the structure tag name is the same as the member name.
1243 I.E. when doing "ptype bell->bar" for "struct foo { int bar; int
1244 foo; } bell;" Disabled by fnf. */
1246 char *typename;
1248 typename = type_name_no_tag (type);
1249 if (typename != NULL && strcmp (typename, name) == 0)
1250 return type;
1252 #endif
1254 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1256 char *t_field_name = TYPE_FIELD_NAME (type, i);
1258 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1260 return TYPE_FIELD_TYPE (type, i);
1264 /* OK, it's not in this class. Recursively check the baseclasses. */
1265 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1267 struct type *t;
1269 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1270 if (t != NULL)
1272 return t;
1276 if (noerr)
1278 return NULL;
1281 target_terminal_ours ();
1282 gdb_flush (gdb_stdout);
1283 fprintf_unfiltered (gdb_stderr, "Type ");
1284 type_print (type, "", gdb_stderr, -1);
1285 fprintf_unfiltered (gdb_stderr, " has no component named ");
1286 fputs_filtered (name, gdb_stderr);
1287 error (("."));
1288 return (struct type *) -1; /* For lint */
1291 /* Lookup the vptr basetype/fieldno values for TYPE.
1292 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1293 vptr_fieldno. Also, if found and basetype is from the same objfile,
1294 cache the results.
1295 If not found, return -1 and ignore BASETYPEP.
1296 Callers should be aware that in some cases (for example,
1297 the type or one of its baseclasses is a stub type and we are
1298 debugging a .o file), this function will not be able to find the
1299 virtual function table pointer, and vptr_fieldno will remain -1 and
1300 vptr_basetype will remain NULL or incomplete. */
1303 get_vptr_fieldno (struct type *type, struct type **basetypep)
1305 CHECK_TYPEDEF (type);
1307 if (TYPE_VPTR_FIELDNO (type) < 0)
1309 int i;
1311 /* We must start at zero in case the first (and only) baseclass
1312 is virtual (and hence we cannot share the table pointer). */
1313 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1315 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1316 int fieldno;
1317 struct type *basetype;
1319 fieldno = get_vptr_fieldno (baseclass, &basetype);
1320 if (fieldno >= 0)
1322 /* If the type comes from a different objfile we can't cache
1323 it, it may have a different lifetime. PR 2384 */
1324 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (baseclass))
1326 TYPE_VPTR_FIELDNO (type) = fieldno;
1327 TYPE_VPTR_BASETYPE (type) = basetype;
1329 if (basetypep)
1330 *basetypep = basetype;
1331 return fieldno;
1335 /* Not found. */
1336 return -1;
1338 else
1340 if (basetypep)
1341 *basetypep = TYPE_VPTR_BASETYPE (type);
1342 return TYPE_VPTR_FIELDNO (type);
1346 /* Find the method and field indices for the destructor in class type T.
1347 Return 1 if the destructor was found, otherwise, return 0. */
1350 get_destructor_fn_field (struct type *t,
1351 int *method_indexp,
1352 int *field_indexp)
1354 int i;
1356 for (i = 0; i < TYPE_NFN_FIELDS (t); i++)
1358 int j;
1359 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
1361 for (j = 0; j < TYPE_FN_FIELDLIST_LENGTH (t, i); j++)
1363 if (is_destructor_name (TYPE_FN_FIELD_PHYSNAME (f, j)) != 0)
1365 *method_indexp = i;
1366 *field_indexp = j;
1367 return 1;
1371 return 0;
1374 static void
1375 stub_noname_complaint (void)
1377 complaint (&symfile_complaints, _("stub type has NULL name"));
1380 /* Added by Bryan Boreham, Kewill, Sun Sep 17 18:07:17 1989.
1382 If this is a stubbed struct (i.e. declared as struct foo *), see if
1383 we can find a full definition in some other file. If so, copy this
1384 definition, so we can use it in future. There used to be a comment
1385 (but not any code) that if we don't find a full definition, we'd
1386 set a flag so we don't spend time in the future checking the same
1387 type. That would be a mistake, though--we might load in more
1388 symbols which contain a full definition for the type.
1390 This used to be coded as a macro, but I don't think it is called
1391 often enough to merit such treatment. */
1393 /* Find the real type of TYPE. This function returns the real type,
1394 after removing all layers of typedefs and completing opaque or stub
1395 types. Completion changes the TYPE argument, but stripping of
1396 typedefs does not. */
1398 struct type *
1399 check_typedef (struct type *type)
1401 struct type *orig_type = type;
1402 int is_const, is_volatile;
1404 gdb_assert (type);
1406 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1408 if (!TYPE_TARGET_TYPE (type))
1410 char *name;
1411 struct symbol *sym;
1413 /* It is dangerous to call lookup_symbol if we are currently
1414 reading a symtab. Infinite recursion is one danger. */
1415 if (currently_reading_symtab)
1416 return type;
1418 name = type_name_no_tag (type);
1419 /* FIXME: shouldn't we separately check the TYPE_NAME and
1420 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1421 VAR_DOMAIN as appropriate? (this code was written before
1422 TYPE_NAME and TYPE_TAG_NAME were separate). */
1423 if (name == NULL)
1425 stub_noname_complaint ();
1426 return type;
1428 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0,
1429 (struct symtab **) NULL);
1430 if (sym)
1431 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1432 else /* TYPE_CODE_UNDEF */
1433 TYPE_TARGET_TYPE (type) = alloc_type (NULL);
1435 type = TYPE_TARGET_TYPE (type);
1438 is_const = TYPE_CONST (type);
1439 is_volatile = TYPE_VOLATILE (type);
1441 /* If this is a struct/class/union with no fields, then check
1442 whether a full definition exists somewhere else. This is for
1443 systems where a type definition with no fields is issued for such
1444 types, instead of identifying them as stub types in the first
1445 place. */
1447 if (TYPE_IS_OPAQUE (type)
1448 && opaque_type_resolution
1449 && !currently_reading_symtab)
1451 char *name = type_name_no_tag (type);
1452 struct type *newtype;
1453 if (name == NULL)
1455 stub_noname_complaint ();
1456 return type;
1458 newtype = lookup_transparent_type (name);
1460 if (newtype)
1462 /* If the resolved type and the stub are in the same
1463 objfile, then replace the stub type with the real deal.
1464 But if they're in separate objfiles, leave the stub
1465 alone; we'll just look up the transparent type every time
1466 we call check_typedef. We can't create pointers between
1467 types allocated to different objfiles, since they may
1468 have different lifetimes. Trying to copy NEWTYPE over to
1469 TYPE's objfile is pointless, too, since you'll have to
1470 move over any other types NEWTYPE refers to, which could
1471 be an unbounded amount of stuff. */
1472 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1473 make_cv_type (is_const, is_volatile, newtype, &type);
1474 else
1475 type = newtype;
1478 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1479 types. */
1480 else if (TYPE_STUB (type) && !currently_reading_symtab)
1482 char *name = type_name_no_tag (type);
1483 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1484 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
1485 as appropriate? (this code was written before TYPE_NAME and
1486 TYPE_TAG_NAME were separate). */
1487 struct symbol *sym;
1488 if (name == NULL)
1490 stub_noname_complaint ();
1491 return type;
1493 sym = lookup_symbol (name, 0, STRUCT_DOMAIN,
1494 0, (struct symtab **) NULL);
1495 if (sym)
1497 /* Same as above for opaque types, we can replace the stub
1498 with the complete type only if they are int the same
1499 objfile. */
1500 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
1501 make_cv_type (is_const, is_volatile,
1502 SYMBOL_TYPE (sym), &type);
1503 else
1504 type = SYMBOL_TYPE (sym);
1508 if (TYPE_TARGET_STUB (type))
1510 struct type *range_type;
1511 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1513 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
1515 /* Empty. */
1517 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1518 && TYPE_NFIELDS (type) == 1
1519 && (TYPE_CODE (range_type = TYPE_FIELD_TYPE (type, 0))
1520 == TYPE_CODE_RANGE))
1522 /* Now recompute the length of the array type, based on its
1523 number of elements and the target type's length.
1524 Watch out for Ada null Ada arrays where the high bound
1525 is smaller than the low bound. */
1526 const int low_bound = TYPE_FIELD_BITPOS (range_type, 0);
1527 const int high_bound = TYPE_FIELD_BITPOS (range_type, 1);
1528 int nb_elements;
1530 if (high_bound < low_bound)
1531 nb_elements = 0;
1532 else
1533 nb_elements = high_bound - low_bound + 1;
1535 TYPE_LENGTH (type) = nb_elements * TYPE_LENGTH (target_type);
1536 TYPE_FLAGS (type) &= ~TYPE_FLAG_TARGET_STUB;
1538 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1540 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1541 TYPE_FLAGS (type) &= ~TYPE_FLAG_TARGET_STUB;
1544 /* Cache TYPE_LENGTH for future use. */
1545 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1546 return type;
1549 /* Parse a type expression in the string [P..P+LENGTH). If an error
1550 occurs, silently return builtin_type_void. */
1552 static struct type *
1553 safe_parse_type (char *p, int length)
1555 struct ui_file *saved_gdb_stderr;
1556 struct type *type;
1558 /* Suppress error messages. */
1559 saved_gdb_stderr = gdb_stderr;
1560 gdb_stderr = ui_file_new ();
1562 /* Call parse_and_eval_type() without fear of longjmp()s. */
1563 if (!gdb_parse_and_eval_type (p, length, &type))
1564 type = builtin_type_void;
1566 /* Stop suppressing error messages. */
1567 ui_file_delete (gdb_stderr);
1568 gdb_stderr = saved_gdb_stderr;
1570 return type;
1573 /* Ugly hack to convert method stubs into method types.
1575 He ain't kiddin'. This demangles the name of the method into a
1576 string including argument types, parses out each argument type,
1577 generates a string casting a zero to that type, evaluates the
1578 string, and stuffs the resulting type into an argtype vector!!!
1579 Then it knows the type of the whole function (including argument
1580 types for overloading), which info used to be in the stab's but was
1581 removed to hack back the space required for them. */
1583 static void
1584 check_stub_method (struct type *type, int method_id, int signature_id)
1586 struct fn_field *f;
1587 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1588 char *demangled_name = cplus_demangle (mangled_name,
1589 DMGL_PARAMS | DMGL_ANSI);
1590 char *argtypetext, *p;
1591 int depth = 0, argcount = 1;
1592 struct field *argtypes;
1593 struct type *mtype;
1595 /* Make sure we got back a function string that we can use. */
1596 if (demangled_name)
1597 p = strchr (demangled_name, '(');
1598 else
1599 p = NULL;
1601 if (demangled_name == NULL || p == NULL)
1602 error (_("Internal: Cannot demangle mangled name `%s'."),
1603 mangled_name);
1605 /* Now, read in the parameters that define this type. */
1606 p += 1;
1607 argtypetext = p;
1608 while (*p)
1610 if (*p == '(' || *p == '<')
1612 depth += 1;
1614 else if (*p == ')' || *p == '>')
1616 depth -= 1;
1618 else if (*p == ',' && depth == 0)
1620 argcount += 1;
1623 p += 1;
1626 /* If we read one argument and it was ``void'', don't count it. */
1627 if (strncmp (argtypetext, "(void)", 6) == 0)
1628 argcount -= 1;
1630 /* We need one extra slot, for the THIS pointer. */
1632 argtypes = (struct field *)
1633 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
1634 p = argtypetext;
1636 /* Add THIS pointer for non-static methods. */
1637 f = TYPE_FN_FIELDLIST1 (type, method_id);
1638 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1639 argcount = 0;
1640 else
1642 argtypes[0].type = lookup_pointer_type (type);
1643 argcount = 1;
1646 if (*p != ')') /* () means no args, skip while */
1648 depth = 0;
1649 while (*p)
1651 if (depth <= 0 && (*p == ',' || *p == ')'))
1653 /* Avoid parsing of ellipsis, they will be handled below.
1654 Also avoid ``void'' as above. */
1655 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1656 && strncmp (argtypetext, "void", p - argtypetext) != 0)
1658 argtypes[argcount].type =
1659 safe_parse_type (argtypetext, p - argtypetext);
1660 argcount += 1;
1662 argtypetext = p + 1;
1665 if (*p == '(' || *p == '<')
1667 depth += 1;
1669 else if (*p == ')' || *p == '>')
1671 depth -= 1;
1674 p += 1;
1678 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1680 /* Now update the old "stub" type into a real type. */
1681 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1682 TYPE_DOMAIN_TYPE (mtype) = type;
1683 TYPE_FIELDS (mtype) = argtypes;
1684 TYPE_NFIELDS (mtype) = argcount;
1685 TYPE_FLAGS (mtype) &= ~TYPE_FLAG_STUB;
1686 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
1687 if (p[-2] == '.')
1688 TYPE_FLAGS (mtype) |= TYPE_FLAG_VARARGS;
1690 xfree (demangled_name);
1693 /* This is the external interface to check_stub_method, above. This
1694 function unstubs all of the signatures for TYPE's METHOD_ID method
1695 name. After calling this function TYPE_FN_FIELD_STUB will be
1696 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1697 correct.
1699 This function unfortunately can not die until stabs do. */
1701 void
1702 check_stub_method_group (struct type *type, int method_id)
1704 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1705 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
1706 int j, found_stub = 0;
1708 for (j = 0; j < len; j++)
1709 if (TYPE_FN_FIELD_STUB (f, j))
1711 found_stub = 1;
1712 check_stub_method (type, method_id, j);
1715 /* GNU v3 methods with incorrect names were corrected when we read
1716 in type information, because it was cheaper to do it then. The
1717 only GNU v2 methods with incorrect method names are operators and
1718 destructors; destructors were also corrected when we read in type
1719 information.
1721 Therefore the only thing we need to handle here are v2 operator
1722 names. */
1723 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1725 int ret;
1726 char dem_opname[256];
1728 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1729 method_id),
1730 dem_opname, DMGL_ANSI);
1731 if (!ret)
1732 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1733 method_id),
1734 dem_opname, 0);
1735 if (ret)
1736 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1740 const struct cplus_struct_type cplus_struct_default;
1742 void
1743 allocate_cplus_struct_type (struct type *type)
1745 if (!HAVE_CPLUS_STRUCT (type))
1747 TYPE_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1748 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1749 *(TYPE_CPLUS_SPECIFIC (type)) = cplus_struct_default;
1753 /* Helper function to initialize the standard scalar types.
1755 If NAME is non-NULL and OBJFILE is non-NULL, then we make a copy of
1756 the string pointed to by name in the objfile_obstack for that
1757 objfile, and initialize the type name to that copy. There are
1758 places (mipsread.c in particular, where init_type is called with a
1759 NULL value for NAME). */
1761 struct type *
1762 init_type (enum type_code code, int length, int flags,
1763 char *name, struct objfile *objfile)
1765 struct type *type;
1767 type = alloc_type (objfile);
1768 TYPE_CODE (type) = code;
1769 TYPE_LENGTH (type) = length;
1770 TYPE_FLAGS (type) |= flags;
1771 if ((name != NULL) && (objfile != NULL))
1773 TYPE_NAME (type) = obsavestring (name, strlen (name),
1774 &objfile->objfile_obstack);
1776 else
1778 TYPE_NAME (type) = name;
1781 /* C++ fancies. */
1783 if (name && strcmp (name, "char") == 0)
1784 TYPE_FLAGS (type) |= TYPE_FLAG_NOSIGN;
1786 if (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
1787 || code == TYPE_CODE_NAMESPACE)
1789 INIT_CPLUS_SPECIFIC (type);
1791 return (type);
1794 /* Helper function. Create an empty composite type. */
1796 struct type *
1797 init_composite_type (char *name, enum type_code code)
1799 struct type *t;
1800 gdb_assert (code == TYPE_CODE_STRUCT
1801 || code == TYPE_CODE_UNION);
1802 t = init_type (code, 0, 0, NULL, NULL);
1803 TYPE_TAG_NAME (t) = name;
1804 return t;
1807 /* Helper function. Append a field to a composite type. */
1809 void
1810 append_composite_type_field (struct type *t, char *name,
1811 struct type *field)
1813 struct field *f;
1814 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
1815 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
1816 sizeof (struct field) * TYPE_NFIELDS (t));
1817 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
1818 memset (f, 0, sizeof f[0]);
1819 FIELD_TYPE (f[0]) = field;
1820 FIELD_NAME (f[0]) = name;
1821 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1823 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
1824 TYPE_LENGTH (t) = TYPE_LENGTH (field);
1826 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
1828 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
1829 if (TYPE_NFIELDS (t) > 1)
1831 FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
1832 + TYPE_LENGTH (field) * TARGET_CHAR_BIT);
1838 can_dereference (struct type *t)
1840 /* FIXME: Should we return true for references as well as
1841 pointers? */
1842 CHECK_TYPEDEF (t);
1843 return
1844 (t != NULL
1845 && TYPE_CODE (t) == TYPE_CODE_PTR
1846 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1850 is_integral_type (struct type *t)
1852 CHECK_TYPEDEF (t);
1853 return
1854 ((t != NULL)
1855 && ((TYPE_CODE (t) == TYPE_CODE_INT)
1856 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
1857 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
1858 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1859 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1860 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
1863 /* Check whether BASE is an ancestor or base class or DCLASS
1864 Return 1 if so, and 0 if not.
1865 Note: callers may want to check for identity of the types before
1866 calling this function -- identical types are considered to satisfy
1867 the ancestor relationship even if they're identical. */
1870 is_ancestor (struct type *base, struct type *dclass)
1872 int i;
1874 CHECK_TYPEDEF (base);
1875 CHECK_TYPEDEF (dclass);
1877 if (base == dclass)
1878 return 1;
1879 if (TYPE_NAME (base) && TYPE_NAME (dclass)
1880 && !strcmp (TYPE_NAME (base), TYPE_NAME (dclass)))
1881 return 1;
1883 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1884 if (is_ancestor (base, TYPE_BASECLASS (dclass, i)))
1885 return 1;
1887 return 0;
1892 /* Functions for overload resolution begin here */
1894 /* Compare two badness vectors A and B and return the result.
1895 0 => A and B are identical
1896 1 => A and B are incomparable
1897 2 => A is better than B
1898 3 => A is worse than B */
1901 compare_badness (struct badness_vector *a, struct badness_vector *b)
1903 int i;
1904 int tmp;
1905 short found_pos = 0; /* any positives in c? */
1906 short found_neg = 0; /* any negatives in c? */
1908 /* differing lengths => incomparable */
1909 if (a->length != b->length)
1910 return 1;
1912 /* Subtract b from a */
1913 for (i = 0; i < a->length; i++)
1915 tmp = a->rank[i] - b->rank[i];
1916 if (tmp > 0)
1917 found_pos = 1;
1918 else if (tmp < 0)
1919 found_neg = 1;
1922 if (found_pos)
1924 if (found_neg)
1925 return 1; /* incomparable */
1926 else
1927 return 3; /* A > B */
1929 else
1930 /* no positives */
1932 if (found_neg)
1933 return 2; /* A < B */
1934 else
1935 return 0; /* A == B */
1939 /* Rank a function by comparing its parameter types (PARMS, length
1940 NPARMS), to the types of an argument list (ARGS, length NARGS).
1941 Return a pointer to a badness vector. This has NARGS + 1
1942 entries. */
1944 struct badness_vector *
1945 rank_function (struct type **parms, int nparms,
1946 struct type **args, int nargs)
1948 int i;
1949 struct badness_vector *bv;
1950 int min_len = nparms < nargs ? nparms : nargs;
1952 bv = xmalloc (sizeof (struct badness_vector));
1953 bv->length = nargs + 1; /* add 1 for the length-match rank */
1954 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
1956 /* First compare the lengths of the supplied lists.
1957 If there is a mismatch, set it to a high value. */
1959 /* pai/1997-06-03 FIXME: when we have debug info about default
1960 arguments and ellipsis parameter lists, we should consider those
1961 and rank the length-match more finely. */
1963 LENGTH_MATCH (bv) = (nargs != nparms) ? LENGTH_MISMATCH_BADNESS : 0;
1965 /* Now rank all the parameters of the candidate function */
1966 for (i = 1; i <= min_len; i++)
1967 bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
1969 /* If more arguments than parameters, add dummy entries */
1970 for (i = min_len + 1; i <= nargs; i++)
1971 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
1973 return bv;
1976 /* Compare the names of two integer types, assuming that any sign
1977 qualifiers have been checked already. We do it this way because
1978 there may be an "int" in the name of one of the types. */
1980 static int
1981 integer_types_same_name_p (const char *first, const char *second)
1983 int first_p, second_p;
1985 /* If both are shorts, return 1; if neither is a short, keep
1986 checking. */
1987 first_p = (strstr (first, "short") != NULL);
1988 second_p = (strstr (second, "short") != NULL);
1989 if (first_p && second_p)
1990 return 1;
1991 if (first_p || second_p)
1992 return 0;
1994 /* Likewise for long. */
1995 first_p = (strstr (first, "long") != NULL);
1996 second_p = (strstr (second, "long") != NULL);
1997 if (first_p && second_p)
1998 return 1;
1999 if (first_p || second_p)
2000 return 0;
2002 /* Likewise for char. */
2003 first_p = (strstr (first, "char") != NULL);
2004 second_p = (strstr (second, "char") != NULL);
2005 if (first_p && second_p)
2006 return 1;
2007 if (first_p || second_p)
2008 return 0;
2010 /* They must both be ints. */
2011 return 1;
2014 /* Compare one type (PARM) for compatibility with another (ARG).
2015 * PARM is intended to be the parameter type of a function; and
2016 * ARG is the supplied argument's type. This function tests if
2017 * the latter can be converted to the former.
2019 * Return 0 if they are identical types;
2020 * Otherwise, return an integer which corresponds to how compatible
2021 * PARM is to ARG. The higher the return value, the worse the match.
2022 * Generally the "bad" conversions are all uniformly assigned a 100. */
2025 rank_one_type (struct type *parm, struct type *arg)
2027 /* Identical type pointers. */
2028 /* However, this still doesn't catch all cases of same type for arg
2029 and param. The reason is that builtin types are different from
2030 the same ones constructed from the object. */
2031 if (parm == arg)
2032 return 0;
2034 /* Resolve typedefs */
2035 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2036 parm = check_typedef (parm);
2037 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2038 arg = check_typedef (arg);
2041 Well, damnit, if the names are exactly the same, I'll say they
2042 are exactly the same. This happens when we generate method
2043 stubs. The types won't point to the same address, but they
2044 really are the same.
2047 if (TYPE_NAME (parm) && TYPE_NAME (arg)
2048 && !strcmp (TYPE_NAME (parm), TYPE_NAME (arg)))
2049 return 0;
2051 /* Check if identical after resolving typedefs. */
2052 if (parm == arg)
2053 return 0;
2055 /* See through references, since we can almost make non-references
2056 references. */
2057 if (TYPE_CODE (arg) == TYPE_CODE_REF)
2058 return (rank_one_type (parm, TYPE_TARGET_TYPE (arg))
2059 + REFERENCE_CONVERSION_BADNESS);
2060 if (TYPE_CODE (parm) == TYPE_CODE_REF)
2061 return (rank_one_type (TYPE_TARGET_TYPE (parm), arg)
2062 + REFERENCE_CONVERSION_BADNESS);
2063 if (overload_debug)
2064 /* Debugging only. */
2065 fprintf_filtered (gdb_stderr,
2066 "------ Arg is %s [%d], parm is %s [%d]\n",
2067 TYPE_NAME (arg), TYPE_CODE (arg),
2068 TYPE_NAME (parm), TYPE_CODE (parm));
2070 /* x -> y means arg of type x being supplied for parameter of type y */
2072 switch (TYPE_CODE (parm))
2074 case TYPE_CODE_PTR:
2075 switch (TYPE_CODE (arg))
2077 case TYPE_CODE_PTR:
2078 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
2079 return VOID_PTR_CONVERSION_BADNESS;
2080 else
2081 return rank_one_type (TYPE_TARGET_TYPE (parm),
2082 TYPE_TARGET_TYPE (arg));
2083 case TYPE_CODE_ARRAY:
2084 return rank_one_type (TYPE_TARGET_TYPE (parm),
2085 TYPE_TARGET_TYPE (arg));
2086 case TYPE_CODE_FUNC:
2087 return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
2088 case TYPE_CODE_INT:
2089 case TYPE_CODE_ENUM:
2090 case TYPE_CODE_FLAGS:
2091 case TYPE_CODE_CHAR:
2092 case TYPE_CODE_RANGE:
2093 case TYPE_CODE_BOOL:
2094 return POINTER_CONVERSION_BADNESS;
2095 default:
2096 return INCOMPATIBLE_TYPE_BADNESS;
2098 case TYPE_CODE_ARRAY:
2099 switch (TYPE_CODE (arg))
2101 case TYPE_CODE_PTR:
2102 case TYPE_CODE_ARRAY:
2103 return rank_one_type (TYPE_TARGET_TYPE (parm),
2104 TYPE_TARGET_TYPE (arg));
2105 default:
2106 return INCOMPATIBLE_TYPE_BADNESS;
2108 case TYPE_CODE_FUNC:
2109 switch (TYPE_CODE (arg))
2111 case TYPE_CODE_PTR: /* funcptr -> func */
2112 return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
2113 default:
2114 return INCOMPATIBLE_TYPE_BADNESS;
2116 case TYPE_CODE_INT:
2117 switch (TYPE_CODE (arg))
2119 case TYPE_CODE_INT:
2120 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2122 /* Deal with signed, unsigned, and plain chars and
2123 signed and unsigned ints. */
2124 if (TYPE_NOSIGN (parm))
2126 /* This case only for character types */
2127 if (TYPE_NOSIGN (arg))
2128 return 0; /* plain char -> plain char */
2129 else /* signed/unsigned char -> plain char */
2130 return INTEGER_CONVERSION_BADNESS;
2132 else if (TYPE_UNSIGNED (parm))
2134 if (TYPE_UNSIGNED (arg))
2136 /* unsigned int -> unsigned int, or
2137 unsigned long -> unsigned long */
2138 if (integer_types_same_name_p (TYPE_NAME (parm),
2139 TYPE_NAME (arg)))
2140 return 0;
2141 else if (integer_types_same_name_p (TYPE_NAME (arg),
2142 "int")
2143 && integer_types_same_name_p (TYPE_NAME (parm),
2144 "long"))
2145 return INTEGER_PROMOTION_BADNESS; /* unsigned int -> unsigned long */
2146 else
2147 return INTEGER_CONVERSION_BADNESS; /* unsigned long -> unsigned int */
2149 else
2151 if (integer_types_same_name_p (TYPE_NAME (arg),
2152 "long")
2153 && integer_types_same_name_p (TYPE_NAME (parm),
2154 "int"))
2155 return INTEGER_CONVERSION_BADNESS; /* signed long -> unsigned int */
2156 else
2157 return INTEGER_CONVERSION_BADNESS; /* signed int/long -> unsigned int/long */
2160 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2162 if (integer_types_same_name_p (TYPE_NAME (parm),
2163 TYPE_NAME (arg)))
2164 return 0;
2165 else if (integer_types_same_name_p (TYPE_NAME (arg),
2166 "int")
2167 && integer_types_same_name_p (TYPE_NAME (parm),
2168 "long"))
2169 return INTEGER_PROMOTION_BADNESS;
2170 else
2171 return INTEGER_CONVERSION_BADNESS;
2173 else
2174 return INTEGER_CONVERSION_BADNESS;
2176 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2177 return INTEGER_PROMOTION_BADNESS;
2178 else
2179 return INTEGER_CONVERSION_BADNESS;
2180 case TYPE_CODE_ENUM:
2181 case TYPE_CODE_FLAGS:
2182 case TYPE_CODE_CHAR:
2183 case TYPE_CODE_RANGE:
2184 case TYPE_CODE_BOOL:
2185 return INTEGER_PROMOTION_BADNESS;
2186 case TYPE_CODE_FLT:
2187 return INT_FLOAT_CONVERSION_BADNESS;
2188 case TYPE_CODE_PTR:
2189 return NS_POINTER_CONVERSION_BADNESS;
2190 default:
2191 return INCOMPATIBLE_TYPE_BADNESS;
2193 break;
2194 case TYPE_CODE_ENUM:
2195 switch (TYPE_CODE (arg))
2197 case TYPE_CODE_INT:
2198 case TYPE_CODE_CHAR:
2199 case TYPE_CODE_RANGE:
2200 case TYPE_CODE_BOOL:
2201 case TYPE_CODE_ENUM:
2202 return INTEGER_CONVERSION_BADNESS;
2203 case TYPE_CODE_FLT:
2204 return INT_FLOAT_CONVERSION_BADNESS;
2205 default:
2206 return INCOMPATIBLE_TYPE_BADNESS;
2208 break;
2209 case TYPE_CODE_CHAR:
2210 switch (TYPE_CODE (arg))
2212 case TYPE_CODE_RANGE:
2213 case TYPE_CODE_BOOL:
2214 case TYPE_CODE_ENUM:
2215 return INTEGER_CONVERSION_BADNESS;
2216 case TYPE_CODE_FLT:
2217 return INT_FLOAT_CONVERSION_BADNESS;
2218 case TYPE_CODE_INT:
2219 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
2220 return INTEGER_CONVERSION_BADNESS;
2221 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2222 return INTEGER_PROMOTION_BADNESS;
2223 /* >>> !! else fall through !! <<< */
2224 case TYPE_CODE_CHAR:
2225 /* Deal with signed, unsigned, and plain chars for C++ and
2226 with int cases falling through from previous case. */
2227 if (TYPE_NOSIGN (parm))
2229 if (TYPE_NOSIGN (arg))
2230 return 0;
2231 else
2232 return INTEGER_CONVERSION_BADNESS;
2234 else if (TYPE_UNSIGNED (parm))
2236 if (TYPE_UNSIGNED (arg))
2237 return 0;
2238 else
2239 return INTEGER_PROMOTION_BADNESS;
2241 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2242 return 0;
2243 else
2244 return INTEGER_CONVERSION_BADNESS;
2245 default:
2246 return INCOMPATIBLE_TYPE_BADNESS;
2248 break;
2249 case TYPE_CODE_RANGE:
2250 switch (TYPE_CODE (arg))
2252 case TYPE_CODE_INT:
2253 case TYPE_CODE_CHAR:
2254 case TYPE_CODE_RANGE:
2255 case TYPE_CODE_BOOL:
2256 case TYPE_CODE_ENUM:
2257 return INTEGER_CONVERSION_BADNESS;
2258 case TYPE_CODE_FLT:
2259 return INT_FLOAT_CONVERSION_BADNESS;
2260 default:
2261 return INCOMPATIBLE_TYPE_BADNESS;
2263 break;
2264 case TYPE_CODE_BOOL:
2265 switch (TYPE_CODE (arg))
2267 case TYPE_CODE_INT:
2268 case TYPE_CODE_CHAR:
2269 case TYPE_CODE_RANGE:
2270 case TYPE_CODE_ENUM:
2271 case TYPE_CODE_FLT:
2272 case TYPE_CODE_PTR:
2273 return BOOLEAN_CONVERSION_BADNESS;
2274 case TYPE_CODE_BOOL:
2275 return 0;
2276 default:
2277 return INCOMPATIBLE_TYPE_BADNESS;
2279 break;
2280 case TYPE_CODE_FLT:
2281 switch (TYPE_CODE (arg))
2283 case TYPE_CODE_FLT:
2284 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2285 return FLOAT_PROMOTION_BADNESS;
2286 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2287 return 0;
2288 else
2289 return FLOAT_CONVERSION_BADNESS;
2290 case TYPE_CODE_INT:
2291 case TYPE_CODE_BOOL:
2292 case TYPE_CODE_ENUM:
2293 case TYPE_CODE_RANGE:
2294 case TYPE_CODE_CHAR:
2295 return INT_FLOAT_CONVERSION_BADNESS;
2296 default:
2297 return INCOMPATIBLE_TYPE_BADNESS;
2299 break;
2300 case TYPE_CODE_COMPLEX:
2301 switch (TYPE_CODE (arg))
2302 { /* Strictly not needed for C++, but... */
2303 case TYPE_CODE_FLT:
2304 return FLOAT_PROMOTION_BADNESS;
2305 case TYPE_CODE_COMPLEX:
2306 return 0;
2307 default:
2308 return INCOMPATIBLE_TYPE_BADNESS;
2310 break;
2311 case TYPE_CODE_STRUCT:
2312 /* currently same as TYPE_CODE_CLASS */
2313 switch (TYPE_CODE (arg))
2315 case TYPE_CODE_STRUCT:
2316 /* Check for derivation */
2317 if (is_ancestor (parm, arg))
2318 return BASE_CONVERSION_BADNESS;
2319 /* else fall through */
2320 default:
2321 return INCOMPATIBLE_TYPE_BADNESS;
2323 break;
2324 case TYPE_CODE_UNION:
2325 switch (TYPE_CODE (arg))
2327 case TYPE_CODE_UNION:
2328 default:
2329 return INCOMPATIBLE_TYPE_BADNESS;
2331 break;
2332 case TYPE_CODE_MEMBERPTR:
2333 switch (TYPE_CODE (arg))
2335 default:
2336 return INCOMPATIBLE_TYPE_BADNESS;
2338 break;
2339 case TYPE_CODE_METHOD:
2340 switch (TYPE_CODE (arg))
2343 default:
2344 return INCOMPATIBLE_TYPE_BADNESS;
2346 break;
2347 case TYPE_CODE_REF:
2348 switch (TYPE_CODE (arg))
2351 default:
2352 return INCOMPATIBLE_TYPE_BADNESS;
2355 break;
2356 case TYPE_CODE_SET:
2357 switch (TYPE_CODE (arg))
2359 /* Not in C++ */
2360 case TYPE_CODE_SET:
2361 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
2362 TYPE_FIELD_TYPE (arg, 0));
2363 default:
2364 return INCOMPATIBLE_TYPE_BADNESS;
2366 break;
2367 case TYPE_CODE_VOID:
2368 default:
2369 return INCOMPATIBLE_TYPE_BADNESS;
2370 } /* switch (TYPE_CODE (arg)) */
2374 /* End of functions for overload resolution */
2376 static void
2377 print_bit_vector (B_TYPE *bits, int nbits)
2379 int bitno;
2381 for (bitno = 0; bitno < nbits; bitno++)
2383 if ((bitno % 8) == 0)
2385 puts_filtered (" ");
2387 if (B_TST (bits, bitno))
2388 printf_filtered (("1"));
2389 else
2390 printf_filtered (("0"));
2394 /* Note the first arg should be the "this" pointer, we may not want to
2395 include it since we may get into a infinitely recursive
2396 situation. */
2398 static void
2399 print_arg_types (struct field *args, int nargs, int spaces)
2401 if (args != NULL)
2403 int i;
2405 for (i = 0; i < nargs; i++)
2406 recursive_dump_type (args[i].type, spaces + 2);
2410 static void
2411 dump_fn_fieldlists (struct type *type, int spaces)
2413 int method_idx;
2414 int overload_idx;
2415 struct fn_field *f;
2417 printfi_filtered (spaces, "fn_fieldlists ");
2418 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
2419 printf_filtered ("\n");
2420 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2422 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2423 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2424 method_idx,
2425 TYPE_FN_FIELDLIST_NAME (type, method_idx));
2426 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2427 gdb_stdout);
2428 printf_filtered (_(") length %d\n"),
2429 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2430 for (overload_idx = 0;
2431 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2432 overload_idx++)
2434 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2435 overload_idx,
2436 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
2437 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2438 gdb_stdout);
2439 printf_filtered (")\n");
2440 printfi_filtered (spaces + 8, "type ");
2441 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2442 gdb_stdout);
2443 printf_filtered ("\n");
2445 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2446 spaces + 8 + 2);
2448 printfi_filtered (spaces + 8, "args ");
2449 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2450 gdb_stdout);
2451 printf_filtered ("\n");
2453 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
2454 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2455 overload_idx)),
2456 spaces);
2457 printfi_filtered (spaces + 8, "fcontext ");
2458 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2459 gdb_stdout);
2460 printf_filtered ("\n");
2462 printfi_filtered (spaces + 8, "is_const %d\n",
2463 TYPE_FN_FIELD_CONST (f, overload_idx));
2464 printfi_filtered (spaces + 8, "is_volatile %d\n",
2465 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2466 printfi_filtered (spaces + 8, "is_private %d\n",
2467 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2468 printfi_filtered (spaces + 8, "is_protected %d\n",
2469 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2470 printfi_filtered (spaces + 8, "is_stub %d\n",
2471 TYPE_FN_FIELD_STUB (f, overload_idx));
2472 printfi_filtered (spaces + 8, "voffset %u\n",
2473 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2478 static void
2479 print_cplus_stuff (struct type *type, int spaces)
2481 printfi_filtered (spaces, "n_baseclasses %d\n",
2482 TYPE_N_BASECLASSES (type));
2483 printfi_filtered (spaces, "nfn_fields %d\n",
2484 TYPE_NFN_FIELDS (type));
2485 printfi_filtered (spaces, "nfn_fields_total %d\n",
2486 TYPE_NFN_FIELDS_TOTAL (type));
2487 if (TYPE_N_BASECLASSES (type) > 0)
2489 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2490 TYPE_N_BASECLASSES (type));
2491 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2492 gdb_stdout);
2493 printf_filtered (")");
2495 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2496 TYPE_N_BASECLASSES (type));
2497 puts_filtered ("\n");
2499 if (TYPE_NFIELDS (type) > 0)
2501 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2503 printfi_filtered (spaces,
2504 "private_field_bits (%d bits at *",
2505 TYPE_NFIELDS (type));
2506 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2507 gdb_stdout);
2508 printf_filtered (")");
2509 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2510 TYPE_NFIELDS (type));
2511 puts_filtered ("\n");
2513 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2515 printfi_filtered (spaces,
2516 "protected_field_bits (%d bits at *",
2517 TYPE_NFIELDS (type));
2518 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
2519 gdb_stdout);
2520 printf_filtered (")");
2521 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2522 TYPE_NFIELDS (type));
2523 puts_filtered ("\n");
2526 if (TYPE_NFN_FIELDS (type) > 0)
2528 dump_fn_fieldlists (type, spaces);
2532 static void
2533 print_bound_type (int bt)
2535 switch (bt)
2537 case BOUND_CANNOT_BE_DETERMINED:
2538 printf_filtered ("(BOUND_CANNOT_BE_DETERMINED)");
2539 break;
2540 case BOUND_BY_REF_ON_STACK:
2541 printf_filtered ("(BOUND_BY_REF_ON_STACK)");
2542 break;
2543 case BOUND_BY_VALUE_ON_STACK:
2544 printf_filtered ("(BOUND_BY_VALUE_ON_STACK)");
2545 break;
2546 case BOUND_BY_REF_IN_REG:
2547 printf_filtered ("(BOUND_BY_REF_IN_REG)");
2548 break;
2549 case BOUND_BY_VALUE_IN_REG:
2550 printf_filtered ("(BOUND_BY_VALUE_IN_REG)");
2551 break;
2552 case BOUND_SIMPLE:
2553 printf_filtered ("(BOUND_SIMPLE)");
2554 break;
2555 default:
2556 printf_filtered (_("(unknown bound type)"));
2557 break;
2561 static struct obstack dont_print_type_obstack;
2563 void
2564 recursive_dump_type (struct type *type, int spaces)
2566 int idx;
2568 if (spaces == 0)
2569 obstack_begin (&dont_print_type_obstack, 0);
2571 if (TYPE_NFIELDS (type) > 0
2572 || (TYPE_CPLUS_SPECIFIC (type) && TYPE_NFN_FIELDS (type) > 0))
2574 struct type **first_dont_print
2575 = (struct type **) obstack_base (&dont_print_type_obstack);
2577 int i = (struct type **)
2578 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
2580 while (--i >= 0)
2582 if (type == first_dont_print[i])
2584 printfi_filtered (spaces, "type node ");
2585 gdb_print_host_address (type, gdb_stdout);
2586 printf_filtered (_(" <same as already seen type>\n"));
2587 return;
2591 obstack_ptr_grow (&dont_print_type_obstack, type);
2594 printfi_filtered (spaces, "type node ");
2595 gdb_print_host_address (type, gdb_stdout);
2596 printf_filtered ("\n");
2597 printfi_filtered (spaces, "name '%s' (",
2598 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
2599 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
2600 printf_filtered (")\n");
2601 printfi_filtered (spaces, "tagname '%s' (",
2602 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
2603 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2604 printf_filtered (")\n");
2605 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
2606 switch (TYPE_CODE (type))
2608 case TYPE_CODE_UNDEF:
2609 printf_filtered ("(TYPE_CODE_UNDEF)");
2610 break;
2611 case TYPE_CODE_PTR:
2612 printf_filtered ("(TYPE_CODE_PTR)");
2613 break;
2614 case TYPE_CODE_ARRAY:
2615 printf_filtered ("(TYPE_CODE_ARRAY)");
2616 break;
2617 case TYPE_CODE_STRUCT:
2618 printf_filtered ("(TYPE_CODE_STRUCT)");
2619 break;
2620 case TYPE_CODE_UNION:
2621 printf_filtered ("(TYPE_CODE_UNION)");
2622 break;
2623 case TYPE_CODE_ENUM:
2624 printf_filtered ("(TYPE_CODE_ENUM)");
2625 break;
2626 case TYPE_CODE_FLAGS:
2627 printf_filtered ("(TYPE_CODE_FLAGS)");
2628 break;
2629 case TYPE_CODE_FUNC:
2630 printf_filtered ("(TYPE_CODE_FUNC)");
2631 break;
2632 case TYPE_CODE_INT:
2633 printf_filtered ("(TYPE_CODE_INT)");
2634 break;
2635 case TYPE_CODE_FLT:
2636 printf_filtered ("(TYPE_CODE_FLT)");
2637 break;
2638 case TYPE_CODE_VOID:
2639 printf_filtered ("(TYPE_CODE_VOID)");
2640 break;
2641 case TYPE_CODE_SET:
2642 printf_filtered ("(TYPE_CODE_SET)");
2643 break;
2644 case TYPE_CODE_RANGE:
2645 printf_filtered ("(TYPE_CODE_RANGE)");
2646 break;
2647 case TYPE_CODE_STRING:
2648 printf_filtered ("(TYPE_CODE_STRING)");
2649 break;
2650 case TYPE_CODE_BITSTRING:
2651 printf_filtered ("(TYPE_CODE_BITSTRING)");
2652 break;
2653 case TYPE_CODE_ERROR:
2654 printf_filtered ("(TYPE_CODE_ERROR)");
2655 break;
2656 case TYPE_CODE_MEMBERPTR:
2657 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
2658 break;
2659 case TYPE_CODE_METHODPTR:
2660 printf_filtered ("(TYPE_CODE_METHODPTR)");
2661 break;
2662 case TYPE_CODE_METHOD:
2663 printf_filtered ("(TYPE_CODE_METHOD)");
2664 break;
2665 case TYPE_CODE_REF:
2666 printf_filtered ("(TYPE_CODE_REF)");
2667 break;
2668 case TYPE_CODE_CHAR:
2669 printf_filtered ("(TYPE_CODE_CHAR)");
2670 break;
2671 case TYPE_CODE_BOOL:
2672 printf_filtered ("(TYPE_CODE_BOOL)");
2673 break;
2674 case TYPE_CODE_COMPLEX:
2675 printf_filtered ("(TYPE_CODE_COMPLEX)");
2676 break;
2677 case TYPE_CODE_TYPEDEF:
2678 printf_filtered ("(TYPE_CODE_TYPEDEF)");
2679 break;
2680 case TYPE_CODE_TEMPLATE:
2681 printf_filtered ("(TYPE_CODE_TEMPLATE)");
2682 break;
2683 case TYPE_CODE_TEMPLATE_ARG:
2684 printf_filtered ("(TYPE_CODE_TEMPLATE_ARG)");
2685 break;
2686 case TYPE_CODE_NAMESPACE:
2687 printf_filtered ("(TYPE_CODE_NAMESPACE)");
2688 break;
2689 default:
2690 printf_filtered ("(UNKNOWN TYPE CODE)");
2691 break;
2693 puts_filtered ("\n");
2694 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
2695 printfi_filtered (spaces, "upper_bound_type 0x%x ",
2696 TYPE_ARRAY_UPPER_BOUND_TYPE (type));
2697 print_bound_type (TYPE_ARRAY_UPPER_BOUND_TYPE (type));
2698 puts_filtered ("\n");
2699 printfi_filtered (spaces, "lower_bound_type 0x%x ",
2700 TYPE_ARRAY_LOWER_BOUND_TYPE (type));
2701 print_bound_type (TYPE_ARRAY_LOWER_BOUND_TYPE (type));
2702 puts_filtered ("\n");
2703 printfi_filtered (spaces, "objfile ");
2704 gdb_print_host_address (TYPE_OBJFILE (type), gdb_stdout);
2705 printf_filtered ("\n");
2706 printfi_filtered (spaces, "target_type ");
2707 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
2708 printf_filtered ("\n");
2709 if (TYPE_TARGET_TYPE (type) != NULL)
2711 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
2713 printfi_filtered (spaces, "pointer_type ");
2714 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
2715 printf_filtered ("\n");
2716 printfi_filtered (spaces, "reference_type ");
2717 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
2718 printf_filtered ("\n");
2719 printfi_filtered (spaces, "type_chain ");
2720 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
2721 printf_filtered ("\n");
2722 printfi_filtered (spaces, "instance_flags 0x%x",
2723 TYPE_INSTANCE_FLAGS (type));
2724 if (TYPE_CONST (type))
2726 puts_filtered (" TYPE_FLAG_CONST");
2728 if (TYPE_VOLATILE (type))
2730 puts_filtered (" TYPE_FLAG_VOLATILE");
2732 if (TYPE_CODE_SPACE (type))
2734 puts_filtered (" TYPE_FLAG_CODE_SPACE");
2736 if (TYPE_DATA_SPACE (type))
2738 puts_filtered (" TYPE_FLAG_DATA_SPACE");
2740 if (TYPE_ADDRESS_CLASS_1 (type))
2742 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
2744 if (TYPE_ADDRESS_CLASS_2 (type))
2746 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
2748 puts_filtered ("\n");
2749 printfi_filtered (spaces, "flags 0x%x", TYPE_FLAGS (type));
2750 if (TYPE_UNSIGNED (type))
2752 puts_filtered (" TYPE_FLAG_UNSIGNED");
2754 if (TYPE_NOSIGN (type))
2756 puts_filtered (" TYPE_FLAG_NOSIGN");
2758 if (TYPE_STUB (type))
2760 puts_filtered (" TYPE_FLAG_STUB");
2762 if (TYPE_TARGET_STUB (type))
2764 puts_filtered (" TYPE_FLAG_TARGET_STUB");
2766 if (TYPE_STATIC (type))
2768 puts_filtered (" TYPE_FLAG_STATIC");
2770 if (TYPE_PROTOTYPED (type))
2772 puts_filtered (" TYPE_FLAG_PROTOTYPED");
2774 if (TYPE_INCOMPLETE (type))
2776 puts_filtered (" TYPE_FLAG_INCOMPLETE");
2778 if (TYPE_VARARGS (type))
2780 puts_filtered (" TYPE_FLAG_VARARGS");
2782 /* This is used for things like AltiVec registers on ppc. Gcc emits
2783 an attribute for the array type, which tells whether or not we
2784 have a vector, instead of a regular array. */
2785 if (TYPE_VECTOR (type))
2787 puts_filtered (" TYPE_FLAG_VECTOR");
2789 puts_filtered ("\n");
2790 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
2791 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
2792 puts_filtered ("\n");
2793 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
2795 printfi_filtered (spaces + 2,
2796 "[%d] bitpos %d bitsize %d type ",
2797 idx, TYPE_FIELD_BITPOS (type, idx),
2798 TYPE_FIELD_BITSIZE (type, idx));
2799 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
2800 printf_filtered (" name '%s' (",
2801 TYPE_FIELD_NAME (type, idx) != NULL
2802 ? TYPE_FIELD_NAME (type, idx)
2803 : "<NULL>");
2804 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
2805 printf_filtered (")\n");
2806 if (TYPE_FIELD_TYPE (type, idx) != NULL)
2808 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
2811 printfi_filtered (spaces, "vptr_basetype ");
2812 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
2813 puts_filtered ("\n");
2814 if (TYPE_VPTR_BASETYPE (type) != NULL)
2816 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
2818 printfi_filtered (spaces, "vptr_fieldno %d\n",
2819 TYPE_VPTR_FIELDNO (type));
2820 switch (TYPE_CODE (type))
2822 case TYPE_CODE_STRUCT:
2823 printfi_filtered (spaces, "cplus_stuff ");
2824 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
2825 gdb_stdout);
2826 puts_filtered ("\n");
2827 print_cplus_stuff (type, spaces);
2828 break;
2830 case TYPE_CODE_FLT:
2831 printfi_filtered (spaces, "floatformat ");
2832 if (TYPE_FLOATFORMAT (type) == NULL)
2833 puts_filtered ("(null)");
2834 else
2836 puts_filtered ("{ ");
2837 if (TYPE_FLOATFORMAT (type)[0] == NULL
2838 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
2839 puts_filtered ("(null)");
2840 else
2841 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
2843 puts_filtered (", ");
2844 if (TYPE_FLOATFORMAT (type)[1] == NULL
2845 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
2846 puts_filtered ("(null)");
2847 else
2848 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
2850 puts_filtered (" }");
2852 puts_filtered ("\n");
2853 break;
2855 default:
2856 /* We have to pick one of the union types to be able print and
2857 test the value. Pick cplus_struct_type, even though we know
2858 it isn't any particular one. */
2859 printfi_filtered (spaces, "type_specific ");
2860 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type), gdb_stdout);
2861 if (TYPE_CPLUS_SPECIFIC (type) != NULL)
2863 printf_filtered (_(" (unknown data form)"));
2865 printf_filtered ("\n");
2866 break;
2869 if (spaces == 0)
2870 obstack_free (&dont_print_type_obstack, NULL);
2873 /* Trivial helpers for the libiberty hash table, for mapping one
2874 type to another. */
2876 struct type_pair
2878 struct type *old, *new;
2881 static hashval_t
2882 type_pair_hash (const void *item)
2884 const struct type_pair *pair = item;
2885 return htab_hash_pointer (pair->old);
2888 static int
2889 type_pair_eq (const void *item_lhs, const void *item_rhs)
2891 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
2892 return lhs->old == rhs->old;
2895 /* Allocate the hash table used by copy_type_recursive to walk
2896 types without duplicates. We use OBJFILE's obstack, because
2897 OBJFILE is about to be deleted. */
2899 htab_t
2900 create_copied_types_hash (struct objfile *objfile)
2902 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
2903 NULL, &objfile->objfile_obstack,
2904 hashtab_obstack_allocate,
2905 dummy_obstack_deallocate);
2908 /* Recursively copy (deep copy) TYPE, if it is associated with
2909 OBJFILE. Return a new type allocated using malloc, a saved type if
2910 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
2911 not associated with OBJFILE. */
2913 struct type *
2914 copy_type_recursive (struct objfile *objfile,
2915 struct type *type,
2916 htab_t copied_types)
2918 struct type_pair *stored, pair;
2919 void **slot;
2920 struct type *new_type;
2922 if (TYPE_OBJFILE (type) == NULL)
2923 return type;
2925 /* This type shouldn't be pointing to any types in other objfiles;
2926 if it did, the type might disappear unexpectedly. */
2927 gdb_assert (TYPE_OBJFILE (type) == objfile);
2929 pair.old = type;
2930 slot = htab_find_slot (copied_types, &pair, INSERT);
2931 if (*slot != NULL)
2932 return ((struct type_pair *) *slot)->new;
2934 new_type = alloc_type (NULL);
2936 /* We must add the new type to the hash table immediately, in case
2937 we encounter this type again during a recursive call below. */
2938 stored = xmalloc (sizeof (struct type_pair));
2939 stored->old = type;
2940 stored->new = new_type;
2941 *slot = stored;
2943 /* Copy the common fields of types. */
2944 TYPE_CODE (new_type) = TYPE_CODE (type);
2945 TYPE_ARRAY_UPPER_BOUND_TYPE (new_type) =
2946 TYPE_ARRAY_UPPER_BOUND_TYPE (type);
2947 TYPE_ARRAY_LOWER_BOUND_TYPE (new_type) =
2948 TYPE_ARRAY_LOWER_BOUND_TYPE (type);
2949 if (TYPE_NAME (type))
2950 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
2951 if (TYPE_TAG_NAME (type))
2952 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
2953 TYPE_FLAGS (new_type) = TYPE_FLAGS (type);
2954 TYPE_VPTR_FIELDNO (new_type) = TYPE_VPTR_FIELDNO (type);
2956 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
2957 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
2959 /* Copy the fields. */
2960 TYPE_NFIELDS (new_type) = TYPE_NFIELDS (type);
2961 if (TYPE_NFIELDS (type))
2963 int i, nfields;
2965 nfields = TYPE_NFIELDS (type);
2966 TYPE_FIELDS (new_type) = xmalloc (sizeof (struct field) * nfields);
2967 for (i = 0; i < nfields; i++)
2969 TYPE_FIELD_ARTIFICIAL (new_type, i) =
2970 TYPE_FIELD_ARTIFICIAL (type, i);
2971 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
2972 if (TYPE_FIELD_TYPE (type, i))
2973 TYPE_FIELD_TYPE (new_type, i)
2974 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
2975 copied_types);
2976 if (TYPE_FIELD_NAME (type, i))
2977 TYPE_FIELD_NAME (new_type, i) =
2978 xstrdup (TYPE_FIELD_NAME (type, i));
2979 if (TYPE_FIELD_STATIC_HAS_ADDR (type, i))
2980 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
2981 TYPE_FIELD_STATIC_PHYSADDR (type, i));
2982 else if (TYPE_FIELD_STATIC (type, i))
2983 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
2984 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
2985 i)));
2986 else
2988 TYPE_FIELD_BITPOS (new_type, i) =
2989 TYPE_FIELD_BITPOS (type, i);
2990 TYPE_FIELD_STATIC_KIND (new_type, i) = 0;
2995 /* Copy pointers to other types. */
2996 if (TYPE_TARGET_TYPE (type))
2997 TYPE_TARGET_TYPE (new_type) =
2998 copy_type_recursive (objfile,
2999 TYPE_TARGET_TYPE (type),
3000 copied_types);
3001 if (TYPE_VPTR_BASETYPE (type))
3002 TYPE_VPTR_BASETYPE (new_type) =
3003 copy_type_recursive (objfile,
3004 TYPE_VPTR_BASETYPE (type),
3005 copied_types);
3006 /* Maybe copy the type_specific bits.
3008 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3009 base classes and methods. There's no fundamental reason why we
3010 can't, but at the moment it is not needed. */
3012 if (TYPE_CODE (type) == TYPE_CODE_FLT)
3013 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
3014 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3015 || TYPE_CODE (type) == TYPE_CODE_UNION
3016 || TYPE_CODE (type) == TYPE_CODE_TEMPLATE
3017 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3018 INIT_CPLUS_SPECIFIC (new_type);
3020 return new_type;
3023 static struct type *
3024 build_flt (int bit, char *name, const struct floatformat **floatformats)
3026 struct type *t;
3028 if (bit == -1)
3030 gdb_assert (floatformats != NULL);
3031 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3032 bit = floatformats[0]->totalsize;
3034 gdb_assert (bit >= 0);
3036 t = init_type (TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, 0, name, NULL);
3037 TYPE_FLOATFORMAT (t) = floatformats;
3038 return t;
3041 static struct gdbarch_data *gdbtypes_data;
3043 const struct builtin_type *
3044 builtin_type (struct gdbarch *gdbarch)
3046 return gdbarch_data (gdbarch, gdbtypes_data);
3050 static struct type *
3051 build_complex (int bit, char *name, struct type *target_type)
3053 struct type *t;
3054 if (bit <= 0 || target_type == builtin_type_error)
3056 gdb_assert (builtin_type_error != NULL);
3057 return builtin_type_error;
3059 t = init_type (TYPE_CODE_COMPLEX, 2 * bit / TARGET_CHAR_BIT,
3060 0, name, (struct objfile *) NULL);
3061 TYPE_TARGET_TYPE (t) = target_type;
3062 return t;
3065 static void *
3066 gdbtypes_post_init (struct gdbarch *gdbarch)
3068 struct builtin_type *builtin_type
3069 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3071 builtin_type->builtin_void =
3072 init_type (TYPE_CODE_VOID, 1,
3074 "void", (struct objfile *) NULL);
3075 builtin_type->builtin_char =
3076 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3077 (TYPE_FLAG_NOSIGN
3078 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
3079 "char", (struct objfile *) NULL);
3080 builtin_type->builtin_true_char =
3081 init_type (TYPE_CODE_CHAR, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3083 "true character", (struct objfile *) NULL);
3084 builtin_type->builtin_true_unsigned_char =
3085 init_type (TYPE_CODE_CHAR, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3086 TYPE_FLAG_UNSIGNED,
3087 "true character", (struct objfile *) NULL);
3088 builtin_type->builtin_signed_char =
3089 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3091 "signed char", (struct objfile *) NULL);
3092 builtin_type->builtin_unsigned_char =
3093 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3094 TYPE_FLAG_UNSIGNED,
3095 "unsigned char", (struct objfile *) NULL);
3096 builtin_type->builtin_short =
3097 init_type (TYPE_CODE_INT,
3098 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3099 0, "short", (struct objfile *) NULL);
3100 builtin_type->builtin_unsigned_short =
3101 init_type (TYPE_CODE_INT,
3102 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3103 TYPE_FLAG_UNSIGNED, "unsigned short",
3104 (struct objfile *) NULL);
3105 builtin_type->builtin_int =
3106 init_type (TYPE_CODE_INT,
3107 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3108 0, "int", (struct objfile *) NULL);
3109 builtin_type->builtin_unsigned_int =
3110 init_type (TYPE_CODE_INT,
3111 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3112 TYPE_FLAG_UNSIGNED, "unsigned int",
3113 (struct objfile *) NULL);
3114 builtin_type->builtin_long =
3115 init_type (TYPE_CODE_INT,
3116 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3117 0, "long", (struct objfile *) NULL);
3118 builtin_type->builtin_unsigned_long =
3119 init_type (TYPE_CODE_INT,
3120 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3121 TYPE_FLAG_UNSIGNED, "unsigned long",
3122 (struct objfile *) NULL);
3123 builtin_type->builtin_long_long =
3124 init_type (TYPE_CODE_INT,
3125 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3126 0, "long long", (struct objfile *) NULL);
3127 builtin_type->builtin_unsigned_long_long =
3128 init_type (TYPE_CODE_INT,
3129 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3130 TYPE_FLAG_UNSIGNED, "unsigned long long",
3131 (struct objfile *) NULL);
3132 builtin_type->builtin_float
3133 = build_flt (gdbarch_float_bit (gdbarch), "float",
3134 gdbarch_float_format (gdbarch));
3135 builtin_type->builtin_double
3136 = build_flt (gdbarch_double_bit (gdbarch), "double",
3137 gdbarch_double_format (gdbarch));
3138 builtin_type->builtin_long_double
3139 = build_flt (gdbarch_long_double_bit (gdbarch), "long double",
3140 gdbarch_long_double_format (gdbarch));
3141 builtin_type->builtin_complex
3142 = build_complex (gdbarch_float_bit (gdbarch), "complex",
3143 builtin_type->builtin_float);
3144 builtin_type->builtin_double_complex
3145 = build_complex (gdbarch_double_bit (gdbarch), "double complex",
3146 builtin_type->builtin_double);
3147 builtin_type->builtin_string =
3148 init_type (TYPE_CODE_STRING, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3150 "string", (struct objfile *) NULL);
3151 builtin_type->builtin_bool =
3152 init_type (TYPE_CODE_BOOL, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3154 "bool", (struct objfile *) NULL);
3156 /* The following three are about decimal floating point types, which
3157 are 32-bits, 64-bits and 128-bits respectively. */
3158 builtin_type->builtin_decfloat
3159 = init_type (TYPE_CODE_DECFLOAT, 32 / 8,
3161 "_Decimal32", (struct objfile *) NULL);
3162 builtin_type->builtin_decdouble
3163 = init_type (TYPE_CODE_DECFLOAT, 64 / 8,
3165 "_Decimal64", (struct objfile *) NULL);
3166 builtin_type->builtin_declong
3167 = init_type (TYPE_CODE_DECFLOAT, 128 / 8,
3169 "_Decimal128", (struct objfile *) NULL);
3171 /* Pointer/Address types. */
3173 /* NOTE: on some targets, addresses and pointers are not necessarily
3174 the same --- for example, on the D10V, pointers are 16 bits long,
3175 but addresses are 32 bits long. See doc/gdbint.texinfo,
3176 ``Pointers Are Not Always Addresses''.
3178 The upshot is:
3179 - gdb's `struct type' always describes the target's
3180 representation.
3181 - gdb's `struct value' objects should always hold values in
3182 target form.
3183 - gdb's CORE_ADDR values are addresses in the unified virtual
3184 address space that the assembler and linker work with. Thus,
3185 since target_read_memory takes a CORE_ADDR as an argument, it
3186 can access any memory on the target, even if the processor has
3187 separate code and data address spaces.
3189 So, for example:
3190 - If v is a value holding a D10V code pointer, its contents are
3191 in target form: a big-endian address left-shifted two bits.
3192 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3193 sizeof (void *) == 2 on the target.
3195 In this context, builtin_type->CORE_ADDR is a bit odd: it's a
3196 target type for a value the target will never see. It's only
3197 used to hold the values of (typeless) linker symbols, which are
3198 indeed in the unified virtual address space. */
3200 builtin_type->builtin_data_ptr =
3201 make_pointer_type (builtin_type->builtin_void, NULL);
3202 builtin_type->builtin_func_ptr =
3203 lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
3204 builtin_type->builtin_core_addr =
3205 init_type (TYPE_CODE_INT,
3206 gdbarch_addr_bit (gdbarch) / 8,
3207 TYPE_FLAG_UNSIGNED,
3208 "__CORE_ADDR", (struct objfile *) NULL);
3211 /* The following set of types is used for symbols with no
3212 debug information. */
3213 builtin_type->nodebug_text_symbol =
3214 init_type (TYPE_CODE_FUNC, 1, 0,
3215 "<text variable, no debug info>", NULL);
3216 TYPE_TARGET_TYPE (builtin_type->nodebug_text_symbol) =
3217 builtin_type->builtin_int;
3218 builtin_type->nodebug_data_symbol =
3219 init_type (TYPE_CODE_INT,
3220 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3221 "<data variable, no debug info>", NULL);
3222 builtin_type->nodebug_unknown_symbol =
3223 init_type (TYPE_CODE_INT, 1, 0,
3224 "<variable (not text or data), no debug info>", NULL);
3225 builtin_type->nodebug_tls_symbol =
3226 init_type (TYPE_CODE_INT,
3227 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3228 "<thread local variable, no debug info>", NULL);
3230 return builtin_type;
3233 extern void _initialize_gdbtypes (void);
3234 void
3235 _initialize_gdbtypes (void)
3237 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
3239 /* FIXME: The following types are architecture-neutral. However,
3240 they contain pointer_type and reference_type fields potentially
3241 caching pointer or reference types that *are* architecture
3242 dependent. */
3244 builtin_type_int0 =
3245 init_type (TYPE_CODE_INT, 0 / 8,
3247 "int0_t", (struct objfile *) NULL);
3248 builtin_type_int8 =
3249 init_type (TYPE_CODE_INT, 8 / 8,
3250 TYPE_FLAG_NOTTEXT,
3251 "int8_t", (struct objfile *) NULL);
3252 builtin_type_uint8 =
3253 init_type (TYPE_CODE_INT, 8 / 8,
3254 TYPE_FLAG_UNSIGNED | TYPE_FLAG_NOTTEXT,
3255 "uint8_t", (struct objfile *) NULL);
3256 builtin_type_int16 =
3257 init_type (TYPE_CODE_INT, 16 / 8,
3259 "int16_t", (struct objfile *) NULL);
3260 builtin_type_uint16 =
3261 init_type (TYPE_CODE_INT, 16 / 8,
3262 TYPE_FLAG_UNSIGNED,
3263 "uint16_t", (struct objfile *) NULL);
3264 builtin_type_int32 =
3265 init_type (TYPE_CODE_INT, 32 / 8,
3267 "int32_t", (struct objfile *) NULL);
3268 builtin_type_uint32 =
3269 init_type (TYPE_CODE_INT, 32 / 8,
3270 TYPE_FLAG_UNSIGNED,
3271 "uint32_t", (struct objfile *) NULL);
3272 builtin_type_int64 =
3273 init_type (TYPE_CODE_INT, 64 / 8,
3275 "int64_t", (struct objfile *) NULL);
3276 builtin_type_uint64 =
3277 init_type (TYPE_CODE_INT, 64 / 8,
3278 TYPE_FLAG_UNSIGNED,
3279 "uint64_t", (struct objfile *) NULL);
3280 builtin_type_int128 =
3281 init_type (TYPE_CODE_INT, 128 / 8,
3283 "int128_t", (struct objfile *) NULL);
3284 builtin_type_uint128 =
3285 init_type (TYPE_CODE_INT, 128 / 8,
3286 TYPE_FLAG_UNSIGNED,
3287 "uint128_t", (struct objfile *) NULL);
3289 builtin_type_ieee_single =
3290 build_flt (-1, "builtin_type_ieee_single", floatformats_ieee_single);
3291 builtin_type_ieee_double =
3292 build_flt (-1, "builtin_type_ieee_double", floatformats_ieee_double);
3293 builtin_type_i387_ext =
3294 build_flt (-1, "builtin_type_i387_ext", floatformats_i387_ext);
3295 builtin_type_m68881_ext =
3296 build_flt (-1, "builtin_type_m68881_ext", floatformats_m68881_ext);
3297 builtin_type_arm_ext =
3298 build_flt (-1, "builtin_type_arm_ext", floatformats_arm_ext);
3299 builtin_type_ia64_spill =
3300 build_flt (-1, "builtin_type_ia64_spill", floatformats_ia64_spill);
3301 builtin_type_ia64_quad =
3302 build_flt (-1, "builtin_type_ia64_quad", floatformats_ia64_quad);
3304 add_setshow_zinteger_cmd ("overload", no_class, &overload_debug, _("\
3305 Set debugging of C++ overloading."), _("\
3306 Show debugging of C++ overloading."), _("\
3307 When enabled, ranking of the functions is displayed."),
3308 NULL,
3309 show_overload_debug,
3310 &setdebuglist, &showdebuglist);
3312 /* Add user knob for controlling resolution of opaque types. */
3313 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3314 &opaque_type_resolution, _("\
3315 Set resolution of opaque struct/class/union types (if set before loading symbols)."), _("\
3316 Show resolution of opaque struct/class/union types (if set before loading symbols)."), NULL,
3317 NULL,
3318 show_opaque_type_resolution,
3319 &setlist, &showlist);