Update
[gdb.git] / gdb / ada-lang.c
blob2f0f55f5fb85ab8b08e2d6e3e67dcb5283c66088
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
60 #ifndef ADA_RETAIN_DOTS
61 #define ADA_RETAIN_DOTS 0
62 #endif
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70 #endif
72 static void extract_string (CORE_ADDR addr, char *buf);
74 static void modify_general_field (char *, LONGEST, int, int);
76 static struct type *desc_base_type (struct type *);
78 static struct type *desc_bounds_type (struct type *);
80 static struct value *desc_bounds (struct value *);
82 static int fat_pntr_bounds_bitpos (struct type *);
84 static int fat_pntr_bounds_bitsize (struct type *);
86 static struct type *desc_data_type (struct type *);
88 static struct value *desc_data (struct value *);
90 static int fat_pntr_data_bitpos (struct type *);
92 static int fat_pntr_data_bitsize (struct type *);
94 static struct value *desc_one_bound (struct value *, int, int);
96 static int desc_bound_bitpos (struct type *, int, int);
98 static int desc_bound_bitsize (struct type *, int, int);
100 static struct type *desc_index_type (struct type *, int);
102 static int desc_arity (struct type *);
104 static int ada_type_match (struct type *, struct type *, int);
106 static int ada_args_match (struct symbol *, struct value **, int);
108 static struct value *ensure_lval (struct value *, CORE_ADDR *);
110 static struct value *convert_actual (struct value *, struct type *,
111 CORE_ADDR *);
113 static struct value *make_array_descriptor (struct type *, struct value *,
114 CORE_ADDR *);
116 static void ada_add_block_symbols (struct obstack *,
117 struct block *, const char *,
118 domain_enum, struct objfile *,
119 struct symtab *, int);
121 static int is_nonfunction (struct ada_symbol_info *, int);
123 static void add_defn_to_vec (struct obstack *, struct symbol *,
124 struct block *, struct symtab *);
126 static int num_defns_collected (struct obstack *);
128 static struct ada_symbol_info *defns_collected (struct obstack *, int);
130 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
131 *, const char *, int,
132 domain_enum, int);
134 static struct symtab *symtab_for_sym (struct symbol *);
136 static struct value *resolve_subexp (struct expression **, int *, int,
137 struct type *);
139 static void replace_operator_with_call (struct expression **, int, int, int,
140 struct symbol *, struct block *);
142 static int possible_user_operator_p (enum exp_opcode, struct value **);
144 static char *ada_op_name (enum exp_opcode);
146 static const char *ada_decoded_op_name (enum exp_opcode);
148 static int numeric_type_p (struct type *);
150 static int integer_type_p (struct type *);
152 static int scalar_type_p (struct type *);
154 static int discrete_type_p (struct type *);
156 static enum ada_renaming_category parse_old_style_renaming (struct type *,
157 const char **,
158 int *,
159 const char **);
161 static struct symbol *find_old_style_renaming_symbol (const char *,
162 struct block *);
164 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
165 int, int, int *);
167 static struct value *evaluate_subexp (struct type *, struct expression *,
168 int *, enum noside);
170 static struct value *evaluate_subexp_type (struct expression *, int *);
172 static int is_dynamic_field (struct type *, int);
174 static struct type *to_fixed_variant_branch_type (struct type *,
175 const gdb_byte *,
176 CORE_ADDR, struct value *);
178 static struct type *to_fixed_array_type (struct type *, struct value *, int);
180 static struct type *to_fixed_range_type (char *, struct value *,
181 struct objfile *);
183 static struct type *to_static_fixed_type (struct type *);
184 static struct type *static_unwrap_type (struct type *type);
186 static struct value *unwrap_value (struct value *);
188 static struct type *packed_array_type (struct type *, long *);
190 static struct type *decode_packed_array_type (struct type *);
192 static struct value *decode_packed_array (struct value *);
194 static struct value *value_subscript_packed (struct value *, int,
195 struct value **);
197 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
199 static struct value *coerce_unspec_val_to_type (struct value *,
200 struct type *);
202 static struct value *get_var_value (char *, char *);
204 static int lesseq_defined_than (struct symbol *, struct symbol *);
206 static int equiv_types (struct type *, struct type *);
208 static int is_name_suffix (const char *);
210 static int wild_match (const char *, int, const char *);
212 static struct value *ada_coerce_ref (struct value *);
214 static LONGEST pos_atr (struct value *);
216 static struct value *value_pos_atr (struct value *);
218 static struct value *value_val_atr (struct type *, struct value *);
220 static struct symbol *standard_lookup (const char *, const struct block *,
221 domain_enum);
223 static struct value *ada_search_struct_field (char *, struct value *, int,
224 struct type *);
226 static struct value *ada_value_primitive_field (struct value *, int, int,
227 struct type *);
229 static int find_struct_field (char *, struct type *, int,
230 struct type **, int *, int *, int *, int *);
232 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
233 struct value *);
235 static struct value *ada_to_fixed_value (struct value *);
237 static int ada_resolve_function (struct ada_symbol_info *, int,
238 struct value **, int, const char *,
239 struct type *);
241 static struct value *ada_coerce_to_simple_array (struct value *);
243 static int ada_is_direct_array_type (struct type *);
245 static void ada_language_arch_info (struct gdbarch *,
246 struct language_arch_info *);
248 static void check_size (const struct type *);
250 static struct value *ada_index_struct_field (int, struct value *, int,
251 struct type *);
253 static struct value *assign_aggregate (struct value *, struct value *,
254 struct expression *, int *, enum noside);
256 static void aggregate_assign_from_choices (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int *,
259 int, LONGEST, LONGEST);
261 static void aggregate_assign_positional (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int *, int,
264 LONGEST, LONGEST);
267 static void aggregate_assign_others (struct value *, struct value *,
268 struct expression *,
269 int *, LONGEST *, int, LONGEST, LONGEST);
272 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
275 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
276 int *, enum noside);
278 static void ada_forward_operator_length (struct expression *, int, int *,
279 int *);
283 /* Maximum-sized dynamic type. */
284 static unsigned int varsize_limit;
286 /* FIXME: brobecker/2003-09-17: No longer a const because it is
287 returned by a function that does not return a const char *. */
288 static char *ada_completer_word_break_characters =
289 #ifdef VMS
290 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
291 #else
292 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
293 #endif
295 /* The name of the symbol to use to get the name of the main subprogram. */
296 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
297 = "__gnat_ada_main_program_name";
299 /* Limit on the number of warnings to raise per expression evaluation. */
300 static int warning_limit = 2;
302 /* Number of warning messages issued; reset to 0 by cleanups after
303 expression evaluation. */
304 static int warnings_issued = 0;
306 static const char *known_runtime_file_name_patterns[] = {
307 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
310 static const char *known_auxiliary_function_name_patterns[] = {
311 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
314 /* Space for allocating results of ada_lookup_symbol_list. */
315 static struct obstack symbol_list_obstack;
317 /* Utilities */
319 /* Given DECODED_NAME a string holding a symbol name in its
320 decoded form (ie using the Ada dotted notation), returns
321 its unqualified name. */
323 static const char *
324 ada_unqualified_name (const char *decoded_name)
326 const char *result = strrchr (decoded_name, '.');
328 if (result != NULL)
329 result++; /* Skip the dot... */
330 else
331 result = decoded_name;
333 return result;
336 /* Return a string starting with '<', followed by STR, and '>'.
337 The result is good until the next call. */
339 static char *
340 add_angle_brackets (const char *str)
342 static char *result = NULL;
344 xfree (result);
345 result = (char *) xmalloc ((strlen (str) + 3) * sizeof (char));
347 sprintf (result, "<%s>", str);
348 return result;
351 static char *
352 ada_get_gdb_completer_word_break_characters (void)
354 return ada_completer_word_break_characters;
357 /* Print an array element index using the Ada syntax. */
359 static void
360 ada_print_array_index (struct value *index_value, struct ui_file *stream,
361 int format, enum val_prettyprint pretty)
363 LA_VALUE_PRINT (index_value, stream, format, pretty);
364 fprintf_filtered (stream, " => ");
367 /* Read the string located at ADDR from the inferior and store the
368 result into BUF. */
370 static void
371 extract_string (CORE_ADDR addr, char *buf)
373 int char_index = 0;
375 /* Loop, reading one byte at a time, until we reach the '\000'
376 end-of-string marker. */
379 target_read_memory (addr + char_index * sizeof (char),
380 buf + char_index * sizeof (char), sizeof (char));
381 char_index++;
383 while (buf[char_index - 1] != '\000');
386 /* Assuming VECT points to an array of *SIZE objects of size
387 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
388 updating *SIZE as necessary and returning the (new) array. */
390 void *
391 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
393 if (*size < min_size)
395 *size *= 2;
396 if (*size < min_size)
397 *size = min_size;
398 vect = xrealloc (vect, *size * element_size);
400 return vect;
403 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
404 suffix of FIELD_NAME beginning "___". */
406 static int
407 field_name_match (const char *field_name, const char *target)
409 int len = strlen (target);
410 return
411 (strncmp (field_name, target, len) == 0
412 && (field_name[len] == '\0'
413 || (strncmp (field_name + len, "___", 3) == 0
414 && strcmp (field_name + strlen (field_name) - 6,
415 "___XVN") != 0)));
419 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
420 FIELD_NAME, and return its index. This function also handles fields
421 whose name have ___ suffixes because the compiler sometimes alters
422 their name by adding such a suffix to represent fields with certain
423 constraints. If the field could not be found, return a negative
424 number if MAYBE_MISSING is set. Otherwise raise an error. */
427 ada_get_field_index (const struct type *type, const char *field_name,
428 int maybe_missing)
430 int fieldno;
431 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
432 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
433 return fieldno;
435 if (!maybe_missing)
436 error (_("Unable to find field %s in struct %s. Aborting"),
437 field_name, TYPE_NAME (type));
439 return -1;
442 /* The length of the prefix of NAME prior to any "___" suffix. */
445 ada_name_prefix_len (const char *name)
447 if (name == NULL)
448 return 0;
449 else
451 const char *p = strstr (name, "___");
452 if (p == NULL)
453 return strlen (name);
454 else
455 return p - name;
459 /* Return non-zero if SUFFIX is a suffix of STR.
460 Return zero if STR is null. */
462 static int
463 is_suffix (const char *str, const char *suffix)
465 int len1, len2;
466 if (str == NULL)
467 return 0;
468 len1 = strlen (str);
469 len2 = strlen (suffix);
470 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
473 /* Create a value of type TYPE whose contents come from VALADDR, if it
474 is non-null, and whose memory address (in the inferior) is
475 ADDRESS. */
477 struct value *
478 value_from_contents_and_address (struct type *type,
479 const gdb_byte *valaddr,
480 CORE_ADDR address)
482 struct value *v = allocate_value (type);
483 if (valaddr == NULL)
484 set_value_lazy (v, 1);
485 else
486 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
487 VALUE_ADDRESS (v) = address;
488 if (address != 0)
489 VALUE_LVAL (v) = lval_memory;
490 return v;
493 /* The contents of value VAL, treated as a value of type TYPE. The
494 result is an lval in memory if VAL is. */
496 static struct value *
497 coerce_unspec_val_to_type (struct value *val, struct type *type)
499 type = ada_check_typedef (type);
500 if (value_type (val) == type)
501 return val;
502 else
504 struct value *result;
506 /* Make sure that the object size is not unreasonable before
507 trying to allocate some memory for it. */
508 check_size (type);
510 result = allocate_value (type);
511 VALUE_LVAL (result) = VALUE_LVAL (val);
512 set_value_bitsize (result, value_bitsize (val));
513 set_value_bitpos (result, value_bitpos (val));
514 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
515 if (value_lazy (val)
516 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
517 set_value_lazy (result, 1);
518 else
519 memcpy (value_contents_raw (result), value_contents (val),
520 TYPE_LENGTH (type));
521 return result;
525 static const gdb_byte *
526 cond_offset_host (const gdb_byte *valaddr, long offset)
528 if (valaddr == NULL)
529 return NULL;
530 else
531 return valaddr + offset;
534 static CORE_ADDR
535 cond_offset_target (CORE_ADDR address, long offset)
537 if (address == 0)
538 return 0;
539 else
540 return address + offset;
543 /* Issue a warning (as for the definition of warning in utils.c, but
544 with exactly one argument rather than ...), unless the limit on the
545 number of warnings has passed during the evaluation of the current
546 expression. */
548 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
549 provided by "complaint". */
550 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
552 static void
553 lim_warning (const char *format, ...)
555 va_list args;
556 va_start (args, format);
558 warnings_issued += 1;
559 if (warnings_issued <= warning_limit)
560 vwarning (format, args);
562 va_end (args);
565 /* Issue an error if the size of an object of type T is unreasonable,
566 i.e. if it would be a bad idea to allocate a value of this type in
567 GDB. */
569 static void
570 check_size (const struct type *type)
572 if (TYPE_LENGTH (type) > varsize_limit)
573 error (_("object size is larger than varsize-limit"));
577 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
578 gdbtypes.h, but some of the necessary definitions in that file
579 seem to have gone missing. */
581 /* Maximum value of a SIZE-byte signed integer type. */
582 static LONGEST
583 max_of_size (int size)
585 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
586 return top_bit | (top_bit - 1);
589 /* Minimum value of a SIZE-byte signed integer type. */
590 static LONGEST
591 min_of_size (int size)
593 return -max_of_size (size) - 1;
596 /* Maximum value of a SIZE-byte unsigned integer type. */
597 static ULONGEST
598 umax_of_size (int size)
600 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
601 return top_bit | (top_bit - 1);
604 /* Maximum value of integral type T, as a signed quantity. */
605 static LONGEST
606 max_of_type (struct type *t)
608 if (TYPE_UNSIGNED (t))
609 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
610 else
611 return max_of_size (TYPE_LENGTH (t));
614 /* Minimum value of integral type T, as a signed quantity. */
615 static LONGEST
616 min_of_type (struct type *t)
618 if (TYPE_UNSIGNED (t))
619 return 0;
620 else
621 return min_of_size (TYPE_LENGTH (t));
624 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
625 static struct value *
626 discrete_type_high_bound (struct type *type)
628 switch (TYPE_CODE (type))
630 case TYPE_CODE_RANGE:
631 return value_from_longest (TYPE_TARGET_TYPE (type),
632 TYPE_HIGH_BOUND (type));
633 case TYPE_CODE_ENUM:
634 return
635 value_from_longest (type,
636 TYPE_FIELD_BITPOS (type,
637 TYPE_NFIELDS (type) - 1));
638 case TYPE_CODE_INT:
639 return value_from_longest (type, max_of_type (type));
640 default:
641 error (_("Unexpected type in discrete_type_high_bound."));
645 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
646 static struct value *
647 discrete_type_low_bound (struct type *type)
649 switch (TYPE_CODE (type))
651 case TYPE_CODE_RANGE:
652 return value_from_longest (TYPE_TARGET_TYPE (type),
653 TYPE_LOW_BOUND (type));
654 case TYPE_CODE_ENUM:
655 return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0));
656 case TYPE_CODE_INT:
657 return value_from_longest (type, min_of_type (type));
658 default:
659 error (_("Unexpected type in discrete_type_low_bound."));
663 /* The identity on non-range types. For range types, the underlying
664 non-range scalar type. */
666 static struct type *
667 base_type (struct type *type)
669 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
671 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
672 return type;
673 type = TYPE_TARGET_TYPE (type);
675 return type;
679 /* Language Selection */
681 /* If the main program is in Ada, return language_ada, otherwise return LANG
682 (the main program is in Ada iif the adainit symbol is found).
684 MAIN_PST is not used. */
686 enum language
687 ada_update_initial_language (enum language lang,
688 struct partial_symtab *main_pst)
690 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
691 (struct objfile *) NULL) != NULL)
692 return language_ada;
694 return lang;
697 /* If the main procedure is written in Ada, then return its name.
698 The result is good until the next call. Return NULL if the main
699 procedure doesn't appear to be in Ada. */
701 char *
702 ada_main_name (void)
704 struct minimal_symbol *msym;
705 CORE_ADDR main_program_name_addr;
706 static char main_program_name[1024];
708 /* For Ada, the name of the main procedure is stored in a specific
709 string constant, generated by the binder. Look for that symbol,
710 extract its address, and then read that string. If we didn't find
711 that string, then most probably the main procedure is not written
712 in Ada. */
713 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
715 if (msym != NULL)
717 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
718 if (main_program_name_addr == 0)
719 error (_("Invalid address for Ada main program name."));
721 extract_string (main_program_name_addr, main_program_name);
722 return main_program_name;
725 /* The main procedure doesn't seem to be in Ada. */
726 return NULL;
729 /* Symbols */
731 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
732 of NULLs. */
734 const struct ada_opname_map ada_opname_table[] = {
735 {"Oadd", "\"+\"", BINOP_ADD},
736 {"Osubtract", "\"-\"", BINOP_SUB},
737 {"Omultiply", "\"*\"", BINOP_MUL},
738 {"Odivide", "\"/\"", BINOP_DIV},
739 {"Omod", "\"mod\"", BINOP_MOD},
740 {"Orem", "\"rem\"", BINOP_REM},
741 {"Oexpon", "\"**\"", BINOP_EXP},
742 {"Olt", "\"<\"", BINOP_LESS},
743 {"Ole", "\"<=\"", BINOP_LEQ},
744 {"Ogt", "\">\"", BINOP_GTR},
745 {"Oge", "\">=\"", BINOP_GEQ},
746 {"Oeq", "\"=\"", BINOP_EQUAL},
747 {"One", "\"/=\"", BINOP_NOTEQUAL},
748 {"Oand", "\"and\"", BINOP_BITWISE_AND},
749 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
750 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
751 {"Oconcat", "\"&\"", BINOP_CONCAT},
752 {"Oabs", "\"abs\"", UNOP_ABS},
753 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
754 {"Oadd", "\"+\"", UNOP_PLUS},
755 {"Osubtract", "\"-\"", UNOP_NEG},
756 {NULL, NULL}
759 /* Return non-zero if STR should be suppressed in info listings. */
761 static int
762 is_suppressed_name (const char *str)
764 if (strncmp (str, "_ada_", 5) == 0)
765 str += 5;
766 if (str[0] == '_' || str[0] == '\000')
767 return 1;
768 else
770 const char *p;
771 const char *suffix = strstr (str, "___");
772 if (suffix != NULL && suffix[3] != 'X')
773 return 1;
774 if (suffix == NULL)
775 suffix = str + strlen (str);
776 for (p = suffix - 1; p != str; p -= 1)
777 if (isupper (*p))
779 int i;
780 if (p[0] == 'X' && p[-1] != '_')
781 goto OK;
782 if (*p != 'O')
783 return 1;
784 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
785 if (strncmp (ada_opname_table[i].encoded, p,
786 strlen (ada_opname_table[i].encoded)) == 0)
787 goto OK;
788 return 1;
789 OK:;
791 return 0;
795 /* The "encoded" form of DECODED, according to GNAT conventions.
796 The result is valid until the next call to ada_encode. */
798 char *
799 ada_encode (const char *decoded)
801 static char *encoding_buffer = NULL;
802 static size_t encoding_buffer_size = 0;
803 const char *p;
804 int k;
806 if (decoded == NULL)
807 return NULL;
809 GROW_VECT (encoding_buffer, encoding_buffer_size,
810 2 * strlen (decoded) + 10);
812 k = 0;
813 for (p = decoded; *p != '\0'; p += 1)
815 if (!ADA_RETAIN_DOTS && *p == '.')
817 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
818 k += 2;
820 else if (*p == '"')
822 const struct ada_opname_map *mapping;
824 for (mapping = ada_opname_table;
825 mapping->encoded != NULL
826 && strncmp (mapping->decoded, p,
827 strlen (mapping->decoded)) != 0; mapping += 1)
829 if (mapping->encoded == NULL)
830 error (_("invalid Ada operator name: %s"), p);
831 strcpy (encoding_buffer + k, mapping->encoded);
832 k += strlen (mapping->encoded);
833 break;
835 else
837 encoding_buffer[k] = *p;
838 k += 1;
842 encoding_buffer[k] = '\0';
843 return encoding_buffer;
846 /* Return NAME folded to lower case, or, if surrounded by single
847 quotes, unfolded, but with the quotes stripped away. Result good
848 to next call. */
850 char *
851 ada_fold_name (const char *name)
853 static char *fold_buffer = NULL;
854 static size_t fold_buffer_size = 0;
856 int len = strlen (name);
857 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
859 if (name[0] == '\'')
861 strncpy (fold_buffer, name + 1, len - 2);
862 fold_buffer[len - 2] = '\000';
864 else
866 int i;
867 for (i = 0; i <= len; i += 1)
868 fold_buffer[i] = tolower (name[i]);
871 return fold_buffer;
874 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
876 static int
877 is_lower_alphanum (const char c)
879 return (isdigit (c) || (isalpha (c) && islower (c)));
882 /* Remove either of these suffixes:
883 . .{DIGIT}+
884 . ${DIGIT}+
885 . ___{DIGIT}+
886 . __{DIGIT}+.
887 These are suffixes introduced by the compiler for entities such as
888 nested subprogram for instance, in order to avoid name clashes.
889 They do not serve any purpose for the debugger. */
891 static void
892 ada_remove_trailing_digits (const char *encoded, int *len)
894 if (*len > 1 && isdigit (encoded[*len - 1]))
896 int i = *len - 2;
897 while (i > 0 && isdigit (encoded[i]))
898 i--;
899 if (i >= 0 && encoded[i] == '.')
900 *len = i;
901 else if (i >= 0 && encoded[i] == '$')
902 *len = i;
903 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
904 *len = i - 2;
905 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
906 *len = i - 1;
910 /* Remove the suffix introduced by the compiler for protected object
911 subprograms. */
913 static void
914 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
916 /* Remove trailing N. */
918 /* Protected entry subprograms are broken into two
919 separate subprograms: The first one is unprotected, and has
920 a 'N' suffix; the second is the protected version, and has
921 the 'P' suffix. The second calls the first one after handling
922 the protection. Since the P subprograms are internally generated,
923 we leave these names undecoded, giving the user a clue that this
924 entity is internal. */
926 if (*len > 1
927 && encoded[*len - 1] == 'N'
928 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
929 *len = *len - 1;
932 /* If ENCODED follows the GNAT entity encoding conventions, then return
933 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
934 replaced by ENCODED.
936 The resulting string is valid until the next call of ada_decode.
937 If the string is unchanged by decoding, the original string pointer
938 is returned. */
940 const char *
941 ada_decode (const char *encoded)
943 int i, j;
944 int len0;
945 const char *p;
946 char *decoded;
947 int at_start_name;
948 static char *decoding_buffer = NULL;
949 static size_t decoding_buffer_size = 0;
951 /* The name of the Ada main procedure starts with "_ada_".
952 This prefix is not part of the decoded name, so skip this part
953 if we see this prefix. */
954 if (strncmp (encoded, "_ada_", 5) == 0)
955 encoded += 5;
957 /* If the name starts with '_', then it is not a properly encoded
958 name, so do not attempt to decode it. Similarly, if the name
959 starts with '<', the name should not be decoded. */
960 if (encoded[0] == '_' || encoded[0] == '<')
961 goto Suppress;
963 len0 = strlen (encoded);
965 ada_remove_trailing_digits (encoded, &len0);
966 ada_remove_po_subprogram_suffix (encoded, &len0);
968 /* Remove the ___X.* suffix if present. Do not forget to verify that
969 the suffix is located before the current "end" of ENCODED. We want
970 to avoid re-matching parts of ENCODED that have previously been
971 marked as discarded (by decrementing LEN0). */
972 p = strstr (encoded, "___");
973 if (p != NULL && p - encoded < len0 - 3)
975 if (p[3] == 'X')
976 len0 = p - encoded;
977 else
978 goto Suppress;
981 /* Remove any trailing TKB suffix. It tells us that this symbol
982 is for the body of a task, but that information does not actually
983 appear in the decoded name. */
985 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
986 len0 -= 3;
988 /* Remove trailing "B" suffixes. */
989 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
991 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
992 len0 -= 1;
994 /* Make decoded big enough for possible expansion by operator name. */
996 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
997 decoded = decoding_buffer;
999 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1001 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1003 i = len0 - 2;
1004 while ((i >= 0 && isdigit (encoded[i]))
1005 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1006 i -= 1;
1007 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1008 len0 = i - 1;
1009 else if (encoded[i] == '$')
1010 len0 = i;
1013 /* The first few characters that are not alphabetic are not part
1014 of any encoding we use, so we can copy them over verbatim. */
1016 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1017 decoded[j] = encoded[i];
1019 at_start_name = 1;
1020 while (i < len0)
1022 /* Is this a symbol function? */
1023 if (at_start_name && encoded[i] == 'O')
1025 int k;
1026 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1028 int op_len = strlen (ada_opname_table[k].encoded);
1029 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1030 op_len - 1) == 0)
1031 && !isalnum (encoded[i + op_len]))
1033 strcpy (decoded + j, ada_opname_table[k].decoded);
1034 at_start_name = 0;
1035 i += op_len;
1036 j += strlen (ada_opname_table[k].decoded);
1037 break;
1040 if (ada_opname_table[k].encoded != NULL)
1041 continue;
1043 at_start_name = 0;
1045 /* Replace "TK__" with "__", which will eventually be translated
1046 into "." (just below). */
1048 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1049 i += 2;
1051 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1052 be translated into "." (just below). These are internal names
1053 generated for anonymous blocks inside which our symbol is nested. */
1055 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1056 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1057 && isdigit (encoded [i+4]))
1059 int k = i + 5;
1061 while (k < len0 && isdigit (encoded[k]))
1062 k++; /* Skip any extra digit. */
1064 /* Double-check that the "__B_{DIGITS}+" sequence we found
1065 is indeed followed by "__". */
1066 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1067 i = k;
1070 /* Remove _E{DIGITS}+[sb] */
1072 /* Just as for protected object subprograms, there are 2 categories
1073 of subprograms created by the compiler for each entry. The first
1074 one implements the actual entry code, and has a suffix following
1075 the convention above; the second one implements the barrier and
1076 uses the same convention as above, except that the 'E' is replaced
1077 by a 'B'.
1079 Just as above, we do not decode the name of barrier functions
1080 to give the user a clue that the code he is debugging has been
1081 internally generated. */
1083 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1084 && isdigit (encoded[i+2]))
1086 int k = i + 3;
1088 while (k < len0 && isdigit (encoded[k]))
1089 k++;
1091 if (k < len0
1092 && (encoded[k] == 'b' || encoded[k] == 's'))
1094 k++;
1095 /* Just as an extra precaution, make sure that if this
1096 suffix is followed by anything else, it is a '_'.
1097 Otherwise, we matched this sequence by accident. */
1098 if (k == len0
1099 || (k < len0 && encoded[k] == '_'))
1100 i = k;
1104 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1105 the GNAT front-end in protected object subprograms. */
1107 if (i < len0 + 3
1108 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1110 /* Backtrack a bit up until we reach either the begining of
1111 the encoded name, or "__". Make sure that we only find
1112 digits or lowercase characters. */
1113 const char *ptr = encoded + i - 1;
1115 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1116 ptr--;
1117 if (ptr < encoded
1118 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1119 i++;
1122 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1124 /* This is a X[bn]* sequence not separated from the previous
1125 part of the name with a non-alpha-numeric character (in other
1126 words, immediately following an alpha-numeric character), then
1127 verify that it is placed at the end of the encoded name. If
1128 not, then the encoding is not valid and we should abort the
1129 decoding. Otherwise, just skip it, it is used in body-nested
1130 package names. */
1132 i += 1;
1133 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1134 if (i < len0)
1135 goto Suppress;
1137 else if (!ADA_RETAIN_DOTS
1138 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1140 /* Replace '__' by '.'. */
1141 decoded[j] = '.';
1142 at_start_name = 1;
1143 i += 2;
1144 j += 1;
1146 else
1148 /* It's a character part of the decoded name, so just copy it
1149 over. */
1150 decoded[j] = encoded[i];
1151 i += 1;
1152 j += 1;
1155 decoded[j] = '\000';
1157 /* Decoded names should never contain any uppercase character.
1158 Double-check this, and abort the decoding if we find one. */
1160 for (i = 0; decoded[i] != '\0'; i += 1)
1161 if (isupper (decoded[i]) || decoded[i] == ' ')
1162 goto Suppress;
1164 if (strcmp (decoded, encoded) == 0)
1165 return encoded;
1166 else
1167 return decoded;
1169 Suppress:
1170 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1171 decoded = decoding_buffer;
1172 if (encoded[0] == '<')
1173 strcpy (decoded, encoded);
1174 else
1175 sprintf (decoded, "<%s>", encoded);
1176 return decoded;
1180 /* Table for keeping permanent unique copies of decoded names. Once
1181 allocated, names in this table are never released. While this is a
1182 storage leak, it should not be significant unless there are massive
1183 changes in the set of decoded names in successive versions of a
1184 symbol table loaded during a single session. */
1185 static struct htab *decoded_names_store;
1187 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1188 in the language-specific part of GSYMBOL, if it has not been
1189 previously computed. Tries to save the decoded name in the same
1190 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1191 in any case, the decoded symbol has a lifetime at least that of
1192 GSYMBOL).
1193 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1194 const, but nevertheless modified to a semantically equivalent form
1195 when a decoded name is cached in it.
1198 char *
1199 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1201 char **resultp =
1202 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1203 if (*resultp == NULL)
1205 const char *decoded = ada_decode (gsymbol->name);
1206 if (gsymbol->bfd_section != NULL)
1208 bfd *obfd = gsymbol->bfd_section->owner;
1209 if (obfd != NULL)
1211 struct objfile *objf;
1212 ALL_OBJFILES (objf)
1214 if (obfd == objf->obfd)
1216 *resultp = obsavestring (decoded, strlen (decoded),
1217 &objf->objfile_obstack);
1218 break;
1223 /* Sometimes, we can't find a corresponding objfile, in which
1224 case, we put the result on the heap. Since we only decode
1225 when needed, we hope this usually does not cause a
1226 significant memory leak (FIXME). */
1227 if (*resultp == NULL)
1229 char **slot = (char **) htab_find_slot (decoded_names_store,
1230 decoded, INSERT);
1231 if (*slot == NULL)
1232 *slot = xstrdup (decoded);
1233 *resultp = *slot;
1237 return *resultp;
1240 char *
1241 ada_la_decode (const char *encoded, int options)
1243 return xstrdup (ada_decode (encoded));
1246 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1247 suffixes that encode debugging information or leading _ada_ on
1248 SYM_NAME (see is_name_suffix commentary for the debugging
1249 information that is ignored). If WILD, then NAME need only match a
1250 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1251 either argument is NULL. */
1254 ada_match_name (const char *sym_name, const char *name, int wild)
1256 if (sym_name == NULL || name == NULL)
1257 return 0;
1258 else if (wild)
1259 return wild_match (name, strlen (name), sym_name);
1260 else
1262 int len_name = strlen (name);
1263 return (strncmp (sym_name, name, len_name) == 0
1264 && is_name_suffix (sym_name + len_name))
1265 || (strncmp (sym_name, "_ada_", 5) == 0
1266 && strncmp (sym_name + 5, name, len_name) == 0
1267 && is_name_suffix (sym_name + len_name + 5));
1271 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1272 suppressed in info listings. */
1275 ada_suppress_symbol_printing (struct symbol *sym)
1277 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1278 return 1;
1279 else
1280 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1284 /* Arrays */
1286 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1288 static char *bound_name[] = {
1289 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1290 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1293 /* Maximum number of array dimensions we are prepared to handle. */
1295 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1297 /* Like modify_field, but allows bitpos > wordlength. */
1299 static void
1300 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1302 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1306 /* The desc_* routines return primitive portions of array descriptors
1307 (fat pointers). */
1309 /* The descriptor or array type, if any, indicated by TYPE; removes
1310 level of indirection, if needed. */
1312 static struct type *
1313 desc_base_type (struct type *type)
1315 if (type == NULL)
1316 return NULL;
1317 type = ada_check_typedef (type);
1318 if (type != NULL
1319 && (TYPE_CODE (type) == TYPE_CODE_PTR
1320 || TYPE_CODE (type) == TYPE_CODE_REF))
1321 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1322 else
1323 return type;
1326 /* True iff TYPE indicates a "thin" array pointer type. */
1328 static int
1329 is_thin_pntr (struct type *type)
1331 return
1332 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1333 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1336 /* The descriptor type for thin pointer type TYPE. */
1338 static struct type *
1339 thin_descriptor_type (struct type *type)
1341 struct type *base_type = desc_base_type (type);
1342 if (base_type == NULL)
1343 return NULL;
1344 if (is_suffix (ada_type_name (base_type), "___XVE"))
1345 return base_type;
1346 else
1348 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1349 if (alt_type == NULL)
1350 return base_type;
1351 else
1352 return alt_type;
1356 /* A pointer to the array data for thin-pointer value VAL. */
1358 static struct value *
1359 thin_data_pntr (struct value *val)
1361 struct type *type = value_type (val);
1362 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1363 return value_cast (desc_data_type (thin_descriptor_type (type)),
1364 value_copy (val));
1365 else
1366 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1367 VALUE_ADDRESS (val) + value_offset (val));
1370 /* True iff TYPE indicates a "thick" array pointer type. */
1372 static int
1373 is_thick_pntr (struct type *type)
1375 type = desc_base_type (type);
1376 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1377 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1380 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1381 pointer to one, the type of its bounds data; otherwise, NULL. */
1383 static struct type *
1384 desc_bounds_type (struct type *type)
1386 struct type *r;
1388 type = desc_base_type (type);
1390 if (type == NULL)
1391 return NULL;
1392 else if (is_thin_pntr (type))
1394 type = thin_descriptor_type (type);
1395 if (type == NULL)
1396 return NULL;
1397 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1398 if (r != NULL)
1399 return ada_check_typedef (r);
1401 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1403 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1404 if (r != NULL)
1405 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1407 return NULL;
1410 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1411 one, a pointer to its bounds data. Otherwise NULL. */
1413 static struct value *
1414 desc_bounds (struct value *arr)
1416 struct type *type = ada_check_typedef (value_type (arr));
1417 if (is_thin_pntr (type))
1419 struct type *bounds_type =
1420 desc_bounds_type (thin_descriptor_type (type));
1421 LONGEST addr;
1423 if (bounds_type == NULL)
1424 error (_("Bad GNAT array descriptor"));
1426 /* NOTE: The following calculation is not really kosher, but
1427 since desc_type is an XVE-encoded type (and shouldn't be),
1428 the correct calculation is a real pain. FIXME (and fix GCC). */
1429 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1430 addr = value_as_long (arr);
1431 else
1432 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1434 return
1435 value_from_longest (lookup_pointer_type (bounds_type),
1436 addr - TYPE_LENGTH (bounds_type));
1439 else if (is_thick_pntr (type))
1440 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1441 _("Bad GNAT array descriptor"));
1442 else
1443 return NULL;
1446 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1447 position of the field containing the address of the bounds data. */
1449 static int
1450 fat_pntr_bounds_bitpos (struct type *type)
1452 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1455 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1456 size of the field containing the address of the bounds data. */
1458 static int
1459 fat_pntr_bounds_bitsize (struct type *type)
1461 type = desc_base_type (type);
1463 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1464 return TYPE_FIELD_BITSIZE (type, 1);
1465 else
1466 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1469 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1470 pointer to one, the type of its array data (a
1471 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1472 ada_type_of_array to get an array type with bounds data. */
1474 static struct type *
1475 desc_data_type (struct type *type)
1477 type = desc_base_type (type);
1479 /* NOTE: The following is bogus; see comment in desc_bounds. */
1480 if (is_thin_pntr (type))
1481 return lookup_pointer_type
1482 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1483 else if (is_thick_pntr (type))
1484 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1485 else
1486 return NULL;
1489 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1490 its array data. */
1492 static struct value *
1493 desc_data (struct value *arr)
1495 struct type *type = value_type (arr);
1496 if (is_thin_pntr (type))
1497 return thin_data_pntr (arr);
1498 else if (is_thick_pntr (type))
1499 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1500 _("Bad GNAT array descriptor"));
1501 else
1502 return NULL;
1506 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1507 position of the field containing the address of the data. */
1509 static int
1510 fat_pntr_data_bitpos (struct type *type)
1512 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1515 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1516 size of the field containing the address of the data. */
1518 static int
1519 fat_pntr_data_bitsize (struct type *type)
1521 type = desc_base_type (type);
1523 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1524 return TYPE_FIELD_BITSIZE (type, 0);
1525 else
1526 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1529 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1530 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1531 bound, if WHICH is 1. The first bound is I=1. */
1533 static struct value *
1534 desc_one_bound (struct value *bounds, int i, int which)
1536 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1537 _("Bad GNAT array descriptor bounds"));
1540 /* If BOUNDS is an array-bounds structure type, return the bit position
1541 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1542 bound, if WHICH is 1. The first bound is I=1. */
1544 static int
1545 desc_bound_bitpos (struct type *type, int i, int which)
1547 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1550 /* If BOUNDS is an array-bounds structure type, return the bit field size
1551 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1552 bound, if WHICH is 1. The first bound is I=1. */
1554 static int
1555 desc_bound_bitsize (struct type *type, int i, int which)
1557 type = desc_base_type (type);
1559 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1560 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1561 else
1562 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1565 /* If TYPE is the type of an array-bounds structure, the type of its
1566 Ith bound (numbering from 1). Otherwise, NULL. */
1568 static struct type *
1569 desc_index_type (struct type *type, int i)
1571 type = desc_base_type (type);
1573 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1574 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1575 else
1576 return NULL;
1579 /* The number of index positions in the array-bounds type TYPE.
1580 Return 0 if TYPE is NULL. */
1582 static int
1583 desc_arity (struct type *type)
1585 type = desc_base_type (type);
1587 if (type != NULL)
1588 return TYPE_NFIELDS (type) / 2;
1589 return 0;
1592 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1593 an array descriptor type (representing an unconstrained array
1594 type). */
1596 static int
1597 ada_is_direct_array_type (struct type *type)
1599 if (type == NULL)
1600 return 0;
1601 type = ada_check_typedef (type);
1602 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1603 || ada_is_array_descriptor_type (type));
1606 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1607 * to one. */
1610 ada_is_array_type (struct type *type)
1612 while (type != NULL
1613 && (TYPE_CODE (type) == TYPE_CODE_PTR
1614 || TYPE_CODE (type) == TYPE_CODE_REF))
1615 type = TYPE_TARGET_TYPE (type);
1616 return ada_is_direct_array_type (type);
1619 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1622 ada_is_simple_array_type (struct type *type)
1624 if (type == NULL)
1625 return 0;
1626 type = ada_check_typedef (type);
1627 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1628 || (TYPE_CODE (type) == TYPE_CODE_PTR
1629 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1632 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1635 ada_is_array_descriptor_type (struct type *type)
1637 struct type *data_type = desc_data_type (type);
1639 if (type == NULL)
1640 return 0;
1641 type = ada_check_typedef (type);
1642 return
1643 data_type != NULL
1644 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1645 && TYPE_TARGET_TYPE (data_type) != NULL
1646 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1647 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1648 && desc_arity (desc_bounds_type (type)) > 0;
1651 /* Non-zero iff type is a partially mal-formed GNAT array
1652 descriptor. FIXME: This is to compensate for some problems with
1653 debugging output from GNAT. Re-examine periodically to see if it
1654 is still needed. */
1657 ada_is_bogus_array_descriptor (struct type *type)
1659 return
1660 type != NULL
1661 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1662 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1663 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1664 && !ada_is_array_descriptor_type (type);
1668 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1669 (fat pointer) returns the type of the array data described---specifically,
1670 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1671 in from the descriptor; otherwise, they are left unspecified. If
1672 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1673 returns NULL. The result is simply the type of ARR if ARR is not
1674 a descriptor. */
1675 struct type *
1676 ada_type_of_array (struct value *arr, int bounds)
1678 if (ada_is_packed_array_type (value_type (arr)))
1679 return decode_packed_array_type (value_type (arr));
1681 if (!ada_is_array_descriptor_type (value_type (arr)))
1682 return value_type (arr);
1684 if (!bounds)
1685 return
1686 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1687 else
1689 struct type *elt_type;
1690 int arity;
1691 struct value *descriptor;
1692 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1694 elt_type = ada_array_element_type (value_type (arr), -1);
1695 arity = ada_array_arity (value_type (arr));
1697 if (elt_type == NULL || arity == 0)
1698 return ada_check_typedef (value_type (arr));
1700 descriptor = desc_bounds (arr);
1701 if (value_as_long (descriptor) == 0)
1702 return NULL;
1703 while (arity > 0)
1705 struct type *range_type = alloc_type (objf);
1706 struct type *array_type = alloc_type (objf);
1707 struct value *low = desc_one_bound (descriptor, arity, 0);
1708 struct value *high = desc_one_bound (descriptor, arity, 1);
1709 arity -= 1;
1711 create_range_type (range_type, value_type (low),
1712 longest_to_int (value_as_long (low)),
1713 longest_to_int (value_as_long (high)));
1714 elt_type = create_array_type (array_type, elt_type, range_type);
1717 return lookup_pointer_type (elt_type);
1721 /* If ARR does not represent an array, returns ARR unchanged.
1722 Otherwise, returns either a standard GDB array with bounds set
1723 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1724 GDB array. Returns NULL if ARR is a null fat pointer. */
1726 struct value *
1727 ada_coerce_to_simple_array_ptr (struct value *arr)
1729 if (ada_is_array_descriptor_type (value_type (arr)))
1731 struct type *arrType = ada_type_of_array (arr, 1);
1732 if (arrType == NULL)
1733 return NULL;
1734 return value_cast (arrType, value_copy (desc_data (arr)));
1736 else if (ada_is_packed_array_type (value_type (arr)))
1737 return decode_packed_array (arr);
1738 else
1739 return arr;
1742 /* If ARR does not represent an array, returns ARR unchanged.
1743 Otherwise, returns a standard GDB array describing ARR (which may
1744 be ARR itself if it already is in the proper form). */
1746 static struct value *
1747 ada_coerce_to_simple_array (struct value *arr)
1749 if (ada_is_array_descriptor_type (value_type (arr)))
1751 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1752 if (arrVal == NULL)
1753 error (_("Bounds unavailable for null array pointer."));
1754 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1755 return value_ind (arrVal);
1757 else if (ada_is_packed_array_type (value_type (arr)))
1758 return decode_packed_array (arr);
1759 else
1760 return arr;
1763 /* If TYPE represents a GNAT array type, return it translated to an
1764 ordinary GDB array type (possibly with BITSIZE fields indicating
1765 packing). For other types, is the identity. */
1767 struct type *
1768 ada_coerce_to_simple_array_type (struct type *type)
1770 struct value *mark = value_mark ();
1771 struct value *dummy = value_from_longest (builtin_type_long, 0);
1772 struct type *result;
1773 deprecated_set_value_type (dummy, type);
1774 result = ada_type_of_array (dummy, 0);
1775 value_free_to_mark (mark);
1776 return result;
1779 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1782 ada_is_packed_array_type (struct type *type)
1784 if (type == NULL)
1785 return 0;
1786 type = desc_base_type (type);
1787 type = ada_check_typedef (type);
1788 return
1789 ada_type_name (type) != NULL
1790 && strstr (ada_type_name (type), "___XP") != NULL;
1793 /* Given that TYPE is a standard GDB array type with all bounds filled
1794 in, and that the element size of its ultimate scalar constituents
1795 (that is, either its elements, or, if it is an array of arrays, its
1796 elements' elements, etc.) is *ELT_BITS, return an identical type,
1797 but with the bit sizes of its elements (and those of any
1798 constituent arrays) recorded in the BITSIZE components of its
1799 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1800 in bits. */
1802 static struct type *
1803 packed_array_type (struct type *type, long *elt_bits)
1805 struct type *new_elt_type;
1806 struct type *new_type;
1807 LONGEST low_bound, high_bound;
1809 type = ada_check_typedef (type);
1810 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1811 return type;
1813 new_type = alloc_type (TYPE_OBJFILE (type));
1814 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1815 elt_bits);
1816 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1817 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1818 TYPE_NAME (new_type) = ada_type_name (type);
1820 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1821 &low_bound, &high_bound) < 0)
1822 low_bound = high_bound = 0;
1823 if (high_bound < low_bound)
1824 *elt_bits = TYPE_LENGTH (new_type) = 0;
1825 else
1827 *elt_bits *= (high_bound - low_bound + 1);
1828 TYPE_LENGTH (new_type) =
1829 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1832 TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE;
1833 return new_type;
1836 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1838 static struct type *
1839 decode_packed_array_type (struct type *type)
1841 struct symbol *sym;
1842 struct block **blocks;
1843 char *raw_name = ada_type_name (ada_check_typedef (type));
1844 char *name;
1845 char *tail;
1846 struct type *shadow_type;
1847 long bits;
1848 int i, n;
1850 if (!raw_name)
1851 raw_name = ada_type_name (desc_base_type (type));
1853 if (!raw_name)
1854 return NULL;
1856 name = (char *) alloca (strlen (raw_name) + 1);
1857 tail = strstr (raw_name, "___XP");
1858 type = desc_base_type (type);
1860 memcpy (name, raw_name, tail - raw_name);
1861 name[tail - raw_name] = '\000';
1863 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1864 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1866 lim_warning (_("could not find bounds information on packed array"));
1867 return NULL;
1869 shadow_type = SYMBOL_TYPE (sym);
1871 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1873 lim_warning (_("could not understand bounds information on packed array"));
1874 return NULL;
1877 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1879 lim_warning
1880 (_("could not understand bit size information on packed array"));
1881 return NULL;
1884 return packed_array_type (shadow_type, &bits);
1887 /* Given that ARR is a struct value *indicating a GNAT packed array,
1888 returns a simple array that denotes that array. Its type is a
1889 standard GDB array type except that the BITSIZEs of the array
1890 target types are set to the number of bits in each element, and the
1891 type length is set appropriately. */
1893 static struct value *
1894 decode_packed_array (struct value *arr)
1896 struct type *type;
1898 arr = ada_coerce_ref (arr);
1899 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1900 arr = ada_value_ind (arr);
1902 type = decode_packed_array_type (value_type (arr));
1903 if (type == NULL)
1905 error (_("can't unpack array"));
1906 return NULL;
1909 if (gdbarch_bits_big_endian (current_gdbarch)
1910 && ada_is_modular_type (value_type (arr)))
1912 /* This is a (right-justified) modular type representing a packed
1913 array with no wrapper. In order to interpret the value through
1914 the (left-justified) packed array type we just built, we must
1915 first left-justify it. */
1916 int bit_size, bit_pos;
1917 ULONGEST mod;
1919 mod = ada_modulus (value_type (arr)) - 1;
1920 bit_size = 0;
1921 while (mod > 0)
1923 bit_size += 1;
1924 mod >>= 1;
1926 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1927 arr = ada_value_primitive_packed_val (arr, NULL,
1928 bit_pos / HOST_CHAR_BIT,
1929 bit_pos % HOST_CHAR_BIT,
1930 bit_size,
1931 type);
1934 return coerce_unspec_val_to_type (arr, type);
1938 /* The value of the element of packed array ARR at the ARITY indices
1939 given in IND. ARR must be a simple array. */
1941 static struct value *
1942 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1944 int i;
1945 int bits, elt_off, bit_off;
1946 long elt_total_bit_offset;
1947 struct type *elt_type;
1948 struct value *v;
1950 bits = 0;
1951 elt_total_bit_offset = 0;
1952 elt_type = ada_check_typedef (value_type (arr));
1953 for (i = 0; i < arity; i += 1)
1955 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1956 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1957 error
1958 (_("attempt to do packed indexing of something other than a packed array"));
1959 else
1961 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1962 LONGEST lowerbound, upperbound;
1963 LONGEST idx;
1965 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1967 lim_warning (_("don't know bounds of array"));
1968 lowerbound = upperbound = 0;
1971 idx = value_as_long (value_pos_atr (ind[i]));
1972 if (idx < lowerbound || idx > upperbound)
1973 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1974 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1975 elt_total_bit_offset += (idx - lowerbound) * bits;
1976 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1979 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1980 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1982 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1983 bits, elt_type);
1984 return v;
1987 /* Non-zero iff TYPE includes negative integer values. */
1989 static int
1990 has_negatives (struct type *type)
1992 switch (TYPE_CODE (type))
1994 default:
1995 return 0;
1996 case TYPE_CODE_INT:
1997 return !TYPE_UNSIGNED (type);
1998 case TYPE_CODE_RANGE:
1999 return TYPE_LOW_BOUND (type) < 0;
2004 /* Create a new value of type TYPE from the contents of OBJ starting
2005 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2006 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2007 assigning through the result will set the field fetched from.
2008 VALADDR is ignored unless OBJ is NULL, in which case,
2009 VALADDR+OFFSET must address the start of storage containing the
2010 packed value. The value returned in this case is never an lval.
2011 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2013 struct value *
2014 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2015 long offset, int bit_offset, int bit_size,
2016 struct type *type)
2018 struct value *v;
2019 int src, /* Index into the source area */
2020 targ, /* Index into the target area */
2021 srcBitsLeft, /* Number of source bits left to move */
2022 nsrc, ntarg, /* Number of source and target bytes */
2023 unusedLS, /* Number of bits in next significant
2024 byte of source that are unused */
2025 accumSize; /* Number of meaningful bits in accum */
2026 unsigned char *bytes; /* First byte containing data to unpack */
2027 unsigned char *unpacked;
2028 unsigned long accum; /* Staging area for bits being transferred */
2029 unsigned char sign;
2030 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2031 /* Transmit bytes from least to most significant; delta is the direction
2032 the indices move. */
2033 int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1;
2035 type = ada_check_typedef (type);
2037 if (obj == NULL)
2039 v = allocate_value (type);
2040 bytes = (unsigned char *) (valaddr + offset);
2042 else if (value_lazy (obj))
2044 v = value_at (type,
2045 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
2046 bytes = (unsigned char *) alloca (len);
2047 read_memory (VALUE_ADDRESS (v), bytes, len);
2049 else
2051 v = allocate_value (type);
2052 bytes = (unsigned char *) value_contents (obj) + offset;
2055 if (obj != NULL)
2057 VALUE_LVAL (v) = VALUE_LVAL (obj);
2058 if (VALUE_LVAL (obj) == lval_internalvar)
2059 VALUE_LVAL (v) = lval_internalvar_component;
2060 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
2061 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2062 set_value_bitsize (v, bit_size);
2063 if (value_bitpos (v) >= HOST_CHAR_BIT)
2065 VALUE_ADDRESS (v) += 1;
2066 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2069 else
2070 set_value_bitsize (v, bit_size);
2071 unpacked = (unsigned char *) value_contents (v);
2073 srcBitsLeft = bit_size;
2074 nsrc = len;
2075 ntarg = TYPE_LENGTH (type);
2076 sign = 0;
2077 if (bit_size == 0)
2079 memset (unpacked, 0, TYPE_LENGTH (type));
2080 return v;
2082 else if (gdbarch_bits_big_endian (current_gdbarch))
2084 src = len - 1;
2085 if (has_negatives (type)
2086 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2087 sign = ~0;
2089 unusedLS =
2090 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2091 % HOST_CHAR_BIT;
2093 switch (TYPE_CODE (type))
2095 case TYPE_CODE_ARRAY:
2096 case TYPE_CODE_UNION:
2097 case TYPE_CODE_STRUCT:
2098 /* Non-scalar values must be aligned at a byte boundary... */
2099 accumSize =
2100 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2101 /* ... And are placed at the beginning (most-significant) bytes
2102 of the target. */
2103 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2104 break;
2105 default:
2106 accumSize = 0;
2107 targ = TYPE_LENGTH (type) - 1;
2108 break;
2111 else
2113 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2115 src = targ = 0;
2116 unusedLS = bit_offset;
2117 accumSize = 0;
2119 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2120 sign = ~0;
2123 accum = 0;
2124 while (nsrc > 0)
2126 /* Mask for removing bits of the next source byte that are not
2127 part of the value. */
2128 unsigned int unusedMSMask =
2129 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2131 /* Sign-extend bits for this byte. */
2132 unsigned int signMask = sign & ~unusedMSMask;
2133 accum |=
2134 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2135 accumSize += HOST_CHAR_BIT - unusedLS;
2136 if (accumSize >= HOST_CHAR_BIT)
2138 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2139 accumSize -= HOST_CHAR_BIT;
2140 accum >>= HOST_CHAR_BIT;
2141 ntarg -= 1;
2142 targ += delta;
2144 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2145 unusedLS = 0;
2146 nsrc -= 1;
2147 src += delta;
2149 while (ntarg > 0)
2151 accum |= sign << accumSize;
2152 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2153 accumSize -= HOST_CHAR_BIT;
2154 accum >>= HOST_CHAR_BIT;
2155 ntarg -= 1;
2156 targ += delta;
2159 return v;
2162 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2163 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2164 not overlap. */
2165 static void
2166 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2167 int src_offset, int n)
2169 unsigned int accum, mask;
2170 int accum_bits, chunk_size;
2172 target += targ_offset / HOST_CHAR_BIT;
2173 targ_offset %= HOST_CHAR_BIT;
2174 source += src_offset / HOST_CHAR_BIT;
2175 src_offset %= HOST_CHAR_BIT;
2176 if (gdbarch_bits_big_endian (current_gdbarch))
2178 accum = (unsigned char) *source;
2179 source += 1;
2180 accum_bits = HOST_CHAR_BIT - src_offset;
2182 while (n > 0)
2184 int unused_right;
2185 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2186 accum_bits += HOST_CHAR_BIT;
2187 source += 1;
2188 chunk_size = HOST_CHAR_BIT - targ_offset;
2189 if (chunk_size > n)
2190 chunk_size = n;
2191 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2192 mask = ((1 << chunk_size) - 1) << unused_right;
2193 *target =
2194 (*target & ~mask)
2195 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2196 n -= chunk_size;
2197 accum_bits -= chunk_size;
2198 target += 1;
2199 targ_offset = 0;
2202 else
2204 accum = (unsigned char) *source >> src_offset;
2205 source += 1;
2206 accum_bits = HOST_CHAR_BIT - src_offset;
2208 while (n > 0)
2210 accum = accum + ((unsigned char) *source << accum_bits);
2211 accum_bits += HOST_CHAR_BIT;
2212 source += 1;
2213 chunk_size = HOST_CHAR_BIT - targ_offset;
2214 if (chunk_size > n)
2215 chunk_size = n;
2216 mask = ((1 << chunk_size) - 1) << targ_offset;
2217 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2218 n -= chunk_size;
2219 accum_bits -= chunk_size;
2220 accum >>= chunk_size;
2221 target += 1;
2222 targ_offset = 0;
2227 /* Store the contents of FROMVAL into the location of TOVAL.
2228 Return a new value with the location of TOVAL and contents of
2229 FROMVAL. Handles assignment into packed fields that have
2230 floating-point or non-scalar types. */
2232 static struct value *
2233 ada_value_assign (struct value *toval, struct value *fromval)
2235 struct type *type = value_type (toval);
2236 int bits = value_bitsize (toval);
2238 toval = ada_coerce_ref (toval);
2239 fromval = ada_coerce_ref (fromval);
2241 if (ada_is_direct_array_type (value_type (toval)))
2242 toval = ada_coerce_to_simple_array (toval);
2243 if (ada_is_direct_array_type (value_type (fromval)))
2244 fromval = ada_coerce_to_simple_array (fromval);
2246 if (!deprecated_value_modifiable (toval))
2247 error (_("Left operand of assignment is not a modifiable lvalue."));
2249 if (VALUE_LVAL (toval) == lval_memory
2250 && bits > 0
2251 && (TYPE_CODE (type) == TYPE_CODE_FLT
2252 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2254 int len = (value_bitpos (toval)
2255 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2256 char *buffer = (char *) alloca (len);
2257 struct value *val;
2258 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2260 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2261 fromval = value_cast (type, fromval);
2263 read_memory (to_addr, buffer, len);
2264 if (gdbarch_bits_big_endian (current_gdbarch))
2265 move_bits (buffer, value_bitpos (toval),
2266 value_contents (fromval),
2267 TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT -
2268 bits, bits);
2269 else
2270 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2271 0, bits);
2272 write_memory (to_addr, buffer, len);
2273 if (deprecated_memory_changed_hook)
2274 deprecated_memory_changed_hook (to_addr, len);
2276 val = value_copy (toval);
2277 memcpy (value_contents_raw (val), value_contents (fromval),
2278 TYPE_LENGTH (type));
2279 deprecated_set_value_type (val, type);
2281 return val;
2284 return value_assign (toval, fromval);
2288 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2289 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2290 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2291 * COMPONENT, and not the inferior's memory. The current contents
2292 * of COMPONENT are ignored. */
2293 static void
2294 value_assign_to_component (struct value *container, struct value *component,
2295 struct value *val)
2297 LONGEST offset_in_container =
2298 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2299 - VALUE_ADDRESS (container) - value_offset (container));
2300 int bit_offset_in_container =
2301 value_bitpos (component) - value_bitpos (container);
2302 int bits;
2304 val = value_cast (value_type (component), val);
2306 if (value_bitsize (component) == 0)
2307 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2308 else
2309 bits = value_bitsize (component);
2311 if (gdbarch_bits_big_endian (current_gdbarch))
2312 move_bits (value_contents_writeable (container) + offset_in_container,
2313 value_bitpos (container) + bit_offset_in_container,
2314 value_contents (val),
2315 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2316 bits);
2317 else
2318 move_bits (value_contents_writeable (container) + offset_in_container,
2319 value_bitpos (container) + bit_offset_in_container,
2320 value_contents (val), 0, bits);
2323 /* The value of the element of array ARR at the ARITY indices given in IND.
2324 ARR may be either a simple array, GNAT array descriptor, or pointer
2325 thereto. */
2327 struct value *
2328 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2330 int k;
2331 struct value *elt;
2332 struct type *elt_type;
2334 elt = ada_coerce_to_simple_array (arr);
2336 elt_type = ada_check_typedef (value_type (elt));
2337 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2338 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2339 return value_subscript_packed (elt, arity, ind);
2341 for (k = 0; k < arity; k += 1)
2343 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2344 error (_("too many subscripts (%d expected)"), k);
2345 elt = value_subscript (elt, value_pos_atr (ind[k]));
2347 return elt;
2350 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2351 value of the element of *ARR at the ARITY indices given in
2352 IND. Does not read the entire array into memory. */
2354 struct value *
2355 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2356 struct value **ind)
2358 int k;
2360 for (k = 0; k < arity; k += 1)
2362 LONGEST lwb, upb;
2363 struct value *idx;
2365 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2366 error (_("too many subscripts (%d expected)"), k);
2367 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2368 value_copy (arr));
2369 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2370 idx = value_pos_atr (ind[k]);
2371 if (lwb != 0)
2372 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
2373 arr = value_add (arr, idx);
2374 type = TYPE_TARGET_TYPE (type);
2377 return value_ind (arr);
2380 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2381 actual type of ARRAY_PTR is ignored), returns a reference to
2382 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2383 bound of this array is LOW, as per Ada rules. */
2384 static struct value *
2385 ada_value_slice_ptr (struct value *array_ptr, struct type *type,
2386 int low, int high)
2388 CORE_ADDR base = value_as_address (array_ptr)
2389 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2390 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2391 struct type *index_type =
2392 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2393 low, high);
2394 struct type *slice_type =
2395 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2396 return value_from_pointer (lookup_reference_type (slice_type), base);
2400 static struct value *
2401 ada_value_slice (struct value *array, int low, int high)
2403 struct type *type = value_type (array);
2404 struct type *index_type =
2405 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2406 struct type *slice_type =
2407 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2408 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2411 /* If type is a record type in the form of a standard GNAT array
2412 descriptor, returns the number of dimensions for type. If arr is a
2413 simple array, returns the number of "array of"s that prefix its
2414 type designation. Otherwise, returns 0. */
2417 ada_array_arity (struct type *type)
2419 int arity;
2421 if (type == NULL)
2422 return 0;
2424 type = desc_base_type (type);
2426 arity = 0;
2427 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2428 return desc_arity (desc_bounds_type (type));
2429 else
2430 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2432 arity += 1;
2433 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2436 return arity;
2439 /* If TYPE is a record type in the form of a standard GNAT array
2440 descriptor or a simple array type, returns the element type for
2441 TYPE after indexing by NINDICES indices, or by all indices if
2442 NINDICES is -1. Otherwise, returns NULL. */
2444 struct type *
2445 ada_array_element_type (struct type *type, int nindices)
2447 type = desc_base_type (type);
2449 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2451 int k;
2452 struct type *p_array_type;
2454 p_array_type = desc_data_type (type);
2456 k = ada_array_arity (type);
2457 if (k == 0)
2458 return NULL;
2460 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2461 if (nindices >= 0 && k > nindices)
2462 k = nindices;
2463 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2464 while (k > 0 && p_array_type != NULL)
2466 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2467 k -= 1;
2469 return p_array_type;
2471 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2473 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2475 type = TYPE_TARGET_TYPE (type);
2476 nindices -= 1;
2478 return type;
2481 return NULL;
2484 /* The type of nth index in arrays of given type (n numbering from 1).
2485 Does not examine memory. */
2487 struct type *
2488 ada_index_type (struct type *type, int n)
2490 struct type *result_type;
2492 type = desc_base_type (type);
2494 if (n > ada_array_arity (type))
2495 return NULL;
2497 if (ada_is_simple_array_type (type))
2499 int i;
2501 for (i = 1; i < n; i += 1)
2502 type = TYPE_TARGET_TYPE (type);
2503 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2504 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2505 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2506 perhaps stabsread.c would make more sense. */
2507 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2508 result_type = builtin_type_int;
2510 return result_type;
2512 else
2513 return desc_index_type (desc_bounds_type (type), n);
2516 /* Given that arr is an array type, returns the lower bound of the
2517 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2518 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2519 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2520 bounds type. It works for other arrays with bounds supplied by
2521 run-time quantities other than discriminants. */
2523 static LONGEST
2524 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2525 struct type ** typep)
2527 struct type *type;
2528 struct type *index_type_desc;
2530 if (ada_is_packed_array_type (arr_type))
2531 arr_type = decode_packed_array_type (arr_type);
2533 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2535 if (typep != NULL)
2536 *typep = builtin_type_int;
2537 return (LONGEST) - which;
2540 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2541 type = TYPE_TARGET_TYPE (arr_type);
2542 else
2543 type = arr_type;
2545 index_type_desc = ada_find_parallel_type (type, "___XA");
2546 if (index_type_desc == NULL)
2548 struct type *index_type;
2550 while (n > 1)
2552 type = TYPE_TARGET_TYPE (type);
2553 n -= 1;
2556 index_type = TYPE_INDEX_TYPE (type);
2557 if (typep != NULL)
2558 *typep = index_type;
2560 /* The index type is either a range type or an enumerated type.
2561 For the range type, we have some macros that allow us to
2562 extract the value of the low and high bounds. But they
2563 do now work for enumerated types. The expressions used
2564 below work for both range and enum types. */
2565 return
2566 (LONGEST) (which == 0
2567 ? TYPE_FIELD_BITPOS (index_type, 0)
2568 : TYPE_FIELD_BITPOS (index_type,
2569 TYPE_NFIELDS (index_type) - 1));
2571 else
2573 struct type *index_type =
2574 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2575 NULL, TYPE_OBJFILE (arr_type));
2577 if (typep != NULL)
2578 *typep = index_type;
2580 return
2581 (LONGEST) (which == 0
2582 ? TYPE_LOW_BOUND (index_type)
2583 : TYPE_HIGH_BOUND (index_type));
2587 /* Given that arr is an array value, returns the lower bound of the
2588 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2589 WHICH is 1. This routine will also work for arrays with bounds
2590 supplied by run-time quantities other than discriminants. */
2592 struct value *
2593 ada_array_bound (struct value *arr, int n, int which)
2595 struct type *arr_type = value_type (arr);
2597 if (ada_is_packed_array_type (arr_type))
2598 return ada_array_bound (decode_packed_array (arr), n, which);
2599 else if (ada_is_simple_array_type (arr_type))
2601 struct type *type;
2602 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2603 return value_from_longest (type, v);
2605 else
2606 return desc_one_bound (desc_bounds (arr), n, which);
2609 /* Given that arr is an array value, returns the length of the
2610 nth index. This routine will also work for arrays with bounds
2611 supplied by run-time quantities other than discriminants.
2612 Does not work for arrays indexed by enumeration types with representation
2613 clauses at the moment. */
2615 struct value *
2616 ada_array_length (struct value *arr, int n)
2618 struct type *arr_type = ada_check_typedef (value_type (arr));
2620 if (ada_is_packed_array_type (arr_type))
2621 return ada_array_length (decode_packed_array (arr), n);
2623 if (ada_is_simple_array_type (arr_type))
2625 struct type *type;
2626 LONGEST v =
2627 ada_array_bound_from_type (arr_type, n, 1, &type) -
2628 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2629 return value_from_longest (type, v);
2631 else
2632 return
2633 value_from_longest (builtin_type_int,
2634 value_as_long (desc_one_bound (desc_bounds (arr),
2635 n, 1))
2636 - value_as_long (desc_one_bound (desc_bounds (arr),
2637 n, 0)) + 1);
2640 /* An empty array whose type is that of ARR_TYPE (an array type),
2641 with bounds LOW to LOW-1. */
2643 static struct value *
2644 empty_array (struct type *arr_type, int low)
2646 struct type *index_type =
2647 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2648 low, low - 1);
2649 struct type *elt_type = ada_array_element_type (arr_type, 1);
2650 return allocate_value (create_array_type (NULL, elt_type, index_type));
2654 /* Name resolution */
2656 /* The "decoded" name for the user-definable Ada operator corresponding
2657 to OP. */
2659 static const char *
2660 ada_decoded_op_name (enum exp_opcode op)
2662 int i;
2664 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2666 if (ada_opname_table[i].op == op)
2667 return ada_opname_table[i].decoded;
2669 error (_("Could not find operator name for opcode"));
2673 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2674 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2675 undefined namespace) and converts operators that are
2676 user-defined into appropriate function calls. If CONTEXT_TYPE is
2677 non-null, it provides a preferred result type [at the moment, only
2678 type void has any effect---causing procedures to be preferred over
2679 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2680 return type is preferred. May change (expand) *EXP. */
2682 static void
2683 resolve (struct expression **expp, int void_context_p)
2685 int pc;
2686 pc = 0;
2687 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2690 /* Resolve the operator of the subexpression beginning at
2691 position *POS of *EXPP. "Resolving" consists of replacing
2692 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2693 with their resolutions, replacing built-in operators with
2694 function calls to user-defined operators, where appropriate, and,
2695 when DEPROCEDURE_P is non-zero, converting function-valued variables
2696 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2697 are as in ada_resolve, above. */
2699 static struct value *
2700 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2701 struct type *context_type)
2703 int pc = *pos;
2704 int i;
2705 struct expression *exp; /* Convenience: == *expp. */
2706 enum exp_opcode op = (*expp)->elts[pc].opcode;
2707 struct value **argvec; /* Vector of operand types (alloca'ed). */
2708 int nargs; /* Number of operands. */
2709 int oplen;
2711 argvec = NULL;
2712 nargs = 0;
2713 exp = *expp;
2715 /* Pass one: resolve operands, saving their types and updating *pos,
2716 if needed. */
2717 switch (op)
2719 case OP_FUNCALL:
2720 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2721 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2722 *pos += 7;
2723 else
2725 *pos += 3;
2726 resolve_subexp (expp, pos, 0, NULL);
2728 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2729 break;
2731 case UNOP_ADDR:
2732 *pos += 1;
2733 resolve_subexp (expp, pos, 0, NULL);
2734 break;
2736 case UNOP_QUAL:
2737 *pos += 3;
2738 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2739 break;
2741 case OP_ATR_MODULUS:
2742 case OP_ATR_SIZE:
2743 case OP_ATR_TAG:
2744 case OP_ATR_FIRST:
2745 case OP_ATR_LAST:
2746 case OP_ATR_LENGTH:
2747 case OP_ATR_POS:
2748 case OP_ATR_VAL:
2749 case OP_ATR_MIN:
2750 case OP_ATR_MAX:
2751 case TERNOP_IN_RANGE:
2752 case BINOP_IN_BOUNDS:
2753 case UNOP_IN_RANGE:
2754 case OP_AGGREGATE:
2755 case OP_OTHERS:
2756 case OP_CHOICES:
2757 case OP_POSITIONAL:
2758 case OP_DISCRETE_RANGE:
2759 case OP_NAME:
2760 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2761 *pos += oplen;
2762 break;
2764 case BINOP_ASSIGN:
2766 struct value *arg1;
2768 *pos += 1;
2769 arg1 = resolve_subexp (expp, pos, 0, NULL);
2770 if (arg1 == NULL)
2771 resolve_subexp (expp, pos, 1, NULL);
2772 else
2773 resolve_subexp (expp, pos, 1, value_type (arg1));
2774 break;
2777 case UNOP_CAST:
2778 *pos += 3;
2779 nargs = 1;
2780 break;
2782 case BINOP_ADD:
2783 case BINOP_SUB:
2784 case BINOP_MUL:
2785 case BINOP_DIV:
2786 case BINOP_REM:
2787 case BINOP_MOD:
2788 case BINOP_EXP:
2789 case BINOP_CONCAT:
2790 case BINOP_LOGICAL_AND:
2791 case BINOP_LOGICAL_OR:
2792 case BINOP_BITWISE_AND:
2793 case BINOP_BITWISE_IOR:
2794 case BINOP_BITWISE_XOR:
2796 case BINOP_EQUAL:
2797 case BINOP_NOTEQUAL:
2798 case BINOP_LESS:
2799 case BINOP_GTR:
2800 case BINOP_LEQ:
2801 case BINOP_GEQ:
2803 case BINOP_REPEAT:
2804 case BINOP_SUBSCRIPT:
2805 case BINOP_COMMA:
2806 *pos += 1;
2807 nargs = 2;
2808 break;
2810 case UNOP_NEG:
2811 case UNOP_PLUS:
2812 case UNOP_LOGICAL_NOT:
2813 case UNOP_ABS:
2814 case UNOP_IND:
2815 *pos += 1;
2816 nargs = 1;
2817 break;
2819 case OP_LONG:
2820 case OP_DOUBLE:
2821 case OP_VAR_VALUE:
2822 *pos += 4;
2823 break;
2825 case OP_TYPE:
2826 case OP_BOOL:
2827 case OP_LAST:
2828 case OP_INTERNALVAR:
2829 *pos += 3;
2830 break;
2832 case UNOP_MEMVAL:
2833 *pos += 3;
2834 nargs = 1;
2835 break;
2837 case OP_REGISTER:
2838 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2839 break;
2841 case STRUCTOP_STRUCT:
2842 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2843 nargs = 1;
2844 break;
2846 case TERNOP_SLICE:
2847 *pos += 1;
2848 nargs = 3;
2849 break;
2851 case OP_STRING:
2852 break;
2854 default:
2855 error (_("Unexpected operator during name resolution"));
2858 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2859 for (i = 0; i < nargs; i += 1)
2860 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2861 argvec[i] = NULL;
2862 exp = *expp;
2864 /* Pass two: perform any resolution on principal operator. */
2865 switch (op)
2867 default:
2868 break;
2870 case OP_VAR_VALUE:
2871 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2873 struct ada_symbol_info *candidates;
2874 int n_candidates;
2876 n_candidates =
2877 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2878 (exp->elts[pc + 2].symbol),
2879 exp->elts[pc + 1].block, VAR_DOMAIN,
2880 &candidates);
2882 if (n_candidates > 1)
2884 /* Types tend to get re-introduced locally, so if there
2885 are any local symbols that are not types, first filter
2886 out all types. */
2887 int j;
2888 for (j = 0; j < n_candidates; j += 1)
2889 switch (SYMBOL_CLASS (candidates[j].sym))
2891 case LOC_REGISTER:
2892 case LOC_ARG:
2893 case LOC_REF_ARG:
2894 case LOC_REGPARM:
2895 case LOC_REGPARM_ADDR:
2896 case LOC_LOCAL:
2897 case LOC_LOCAL_ARG:
2898 case LOC_BASEREG:
2899 case LOC_BASEREG_ARG:
2900 case LOC_COMPUTED:
2901 case LOC_COMPUTED_ARG:
2902 goto FoundNonType;
2903 default:
2904 break;
2906 FoundNonType:
2907 if (j < n_candidates)
2909 j = 0;
2910 while (j < n_candidates)
2912 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2914 candidates[j] = candidates[n_candidates - 1];
2915 n_candidates -= 1;
2917 else
2918 j += 1;
2923 if (n_candidates == 0)
2924 error (_("No definition found for %s"),
2925 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2926 else if (n_candidates == 1)
2927 i = 0;
2928 else if (deprocedure_p
2929 && !is_nonfunction (candidates, n_candidates))
2931 i = ada_resolve_function
2932 (candidates, n_candidates, NULL, 0,
2933 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2934 context_type);
2935 if (i < 0)
2936 error (_("Could not find a match for %s"),
2937 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2939 else
2941 printf_filtered (_("Multiple matches for %s\n"),
2942 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2943 user_select_syms (candidates, n_candidates, 1);
2944 i = 0;
2947 exp->elts[pc + 1].block = candidates[i].block;
2948 exp->elts[pc + 2].symbol = candidates[i].sym;
2949 if (innermost_block == NULL
2950 || contained_in (candidates[i].block, innermost_block))
2951 innermost_block = candidates[i].block;
2954 if (deprocedure_p
2955 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2956 == TYPE_CODE_FUNC))
2958 replace_operator_with_call (expp, pc, 0, 0,
2959 exp->elts[pc + 2].symbol,
2960 exp->elts[pc + 1].block);
2961 exp = *expp;
2963 break;
2965 case OP_FUNCALL:
2967 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2968 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2970 struct ada_symbol_info *candidates;
2971 int n_candidates;
2973 n_candidates =
2974 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2975 (exp->elts[pc + 5].symbol),
2976 exp->elts[pc + 4].block, VAR_DOMAIN,
2977 &candidates);
2978 if (n_candidates == 1)
2979 i = 0;
2980 else
2982 i = ada_resolve_function
2983 (candidates, n_candidates,
2984 argvec, nargs,
2985 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2986 context_type);
2987 if (i < 0)
2988 error (_("Could not find a match for %s"),
2989 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2992 exp->elts[pc + 4].block = candidates[i].block;
2993 exp->elts[pc + 5].symbol = candidates[i].sym;
2994 if (innermost_block == NULL
2995 || contained_in (candidates[i].block, innermost_block))
2996 innermost_block = candidates[i].block;
2999 break;
3000 case BINOP_ADD:
3001 case BINOP_SUB:
3002 case BINOP_MUL:
3003 case BINOP_DIV:
3004 case BINOP_REM:
3005 case BINOP_MOD:
3006 case BINOP_CONCAT:
3007 case BINOP_BITWISE_AND:
3008 case BINOP_BITWISE_IOR:
3009 case BINOP_BITWISE_XOR:
3010 case BINOP_EQUAL:
3011 case BINOP_NOTEQUAL:
3012 case BINOP_LESS:
3013 case BINOP_GTR:
3014 case BINOP_LEQ:
3015 case BINOP_GEQ:
3016 case BINOP_EXP:
3017 case UNOP_NEG:
3018 case UNOP_PLUS:
3019 case UNOP_LOGICAL_NOT:
3020 case UNOP_ABS:
3021 if (possible_user_operator_p (op, argvec))
3023 struct ada_symbol_info *candidates;
3024 int n_candidates;
3026 n_candidates =
3027 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3028 (struct block *) NULL, VAR_DOMAIN,
3029 &candidates);
3030 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3031 ada_decoded_op_name (op), NULL);
3032 if (i < 0)
3033 break;
3035 replace_operator_with_call (expp, pc, nargs, 1,
3036 candidates[i].sym, candidates[i].block);
3037 exp = *expp;
3039 break;
3041 case OP_TYPE:
3042 case OP_REGISTER:
3043 return NULL;
3046 *pos = pc;
3047 return evaluate_subexp_type (exp, pos);
3050 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3051 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3052 a non-pointer. A type of 'void' (which is never a valid expression type)
3053 by convention matches anything. */
3054 /* The term "match" here is rather loose. The match is heuristic and
3055 liberal. FIXME: TOO liberal, in fact. */
3057 static int
3058 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3060 ftype = ada_check_typedef (ftype);
3061 atype = ada_check_typedef (atype);
3063 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3064 ftype = TYPE_TARGET_TYPE (ftype);
3065 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3066 atype = TYPE_TARGET_TYPE (atype);
3068 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
3069 || TYPE_CODE (atype) == TYPE_CODE_VOID)
3070 return 1;
3072 switch (TYPE_CODE (ftype))
3074 default:
3075 return 1;
3076 case TYPE_CODE_PTR:
3077 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3078 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3079 TYPE_TARGET_TYPE (atype), 0);
3080 else
3081 return (may_deref
3082 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3083 case TYPE_CODE_INT:
3084 case TYPE_CODE_ENUM:
3085 case TYPE_CODE_RANGE:
3086 switch (TYPE_CODE (atype))
3088 case TYPE_CODE_INT:
3089 case TYPE_CODE_ENUM:
3090 case TYPE_CODE_RANGE:
3091 return 1;
3092 default:
3093 return 0;
3096 case TYPE_CODE_ARRAY:
3097 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3098 || ada_is_array_descriptor_type (atype));
3100 case TYPE_CODE_STRUCT:
3101 if (ada_is_array_descriptor_type (ftype))
3102 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3103 || ada_is_array_descriptor_type (atype));
3104 else
3105 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3106 && !ada_is_array_descriptor_type (atype));
3108 case TYPE_CODE_UNION:
3109 case TYPE_CODE_FLT:
3110 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3114 /* Return non-zero if the formals of FUNC "sufficiently match" the
3115 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3116 may also be an enumeral, in which case it is treated as a 0-
3117 argument function. */
3119 static int
3120 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3122 int i;
3123 struct type *func_type = SYMBOL_TYPE (func);
3125 if (SYMBOL_CLASS (func) == LOC_CONST
3126 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3127 return (n_actuals == 0);
3128 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3129 return 0;
3131 if (TYPE_NFIELDS (func_type) != n_actuals)
3132 return 0;
3134 for (i = 0; i < n_actuals; i += 1)
3136 if (actuals[i] == NULL)
3137 return 0;
3138 else
3140 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3141 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3143 if (!ada_type_match (ftype, atype, 1))
3144 return 0;
3147 return 1;
3150 /* False iff function type FUNC_TYPE definitely does not produce a value
3151 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3152 FUNC_TYPE is not a valid function type with a non-null return type
3153 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3155 static int
3156 return_match (struct type *func_type, struct type *context_type)
3158 struct type *return_type;
3160 if (func_type == NULL)
3161 return 1;
3163 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3164 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3165 else
3166 return_type = base_type (func_type);
3167 if (return_type == NULL)
3168 return 1;
3170 context_type = base_type (context_type);
3172 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3173 return context_type == NULL || return_type == context_type;
3174 else if (context_type == NULL)
3175 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3176 else
3177 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3181 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3182 function (if any) that matches the types of the NARGS arguments in
3183 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3184 that returns that type, then eliminate matches that don't. If
3185 CONTEXT_TYPE is void and there is at least one match that does not
3186 return void, eliminate all matches that do.
3188 Asks the user if there is more than one match remaining. Returns -1
3189 if there is no such symbol or none is selected. NAME is used
3190 solely for messages. May re-arrange and modify SYMS in
3191 the process; the index returned is for the modified vector. */
3193 static int
3194 ada_resolve_function (struct ada_symbol_info syms[],
3195 int nsyms, struct value **args, int nargs,
3196 const char *name, struct type *context_type)
3198 int k;
3199 int m; /* Number of hits */
3200 struct type *fallback;
3201 struct type *return_type;
3203 return_type = context_type;
3204 if (context_type == NULL)
3205 fallback = builtin_type_void;
3206 else
3207 fallback = NULL;
3209 m = 0;
3210 while (1)
3212 for (k = 0; k < nsyms; k += 1)
3214 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3216 if (ada_args_match (syms[k].sym, args, nargs)
3217 && return_match (type, return_type))
3219 syms[m] = syms[k];
3220 m += 1;
3223 if (m > 0 || return_type == fallback)
3224 break;
3225 else
3226 return_type = fallback;
3229 if (m == 0)
3230 return -1;
3231 else if (m > 1)
3233 printf_filtered (_("Multiple matches for %s\n"), name);
3234 user_select_syms (syms, m, 1);
3235 return 0;
3237 return 0;
3240 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3241 in a listing of choices during disambiguation (see sort_choices, below).
3242 The idea is that overloadings of a subprogram name from the
3243 same package should sort in their source order. We settle for ordering
3244 such symbols by their trailing number (__N or $N). */
3246 static int
3247 encoded_ordered_before (char *N0, char *N1)
3249 if (N1 == NULL)
3250 return 0;
3251 else if (N0 == NULL)
3252 return 1;
3253 else
3255 int k0, k1;
3256 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3258 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3260 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3261 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3263 int n0, n1;
3264 n0 = k0;
3265 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3266 n0 -= 1;
3267 n1 = k1;
3268 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3269 n1 -= 1;
3270 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3271 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3273 return (strcmp (N0, N1) < 0);
3277 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3278 encoded names. */
3280 static void
3281 sort_choices (struct ada_symbol_info syms[], int nsyms)
3283 int i;
3284 for (i = 1; i < nsyms; i += 1)
3286 struct ada_symbol_info sym = syms[i];
3287 int j;
3289 for (j = i - 1; j >= 0; j -= 1)
3291 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3292 SYMBOL_LINKAGE_NAME (sym.sym)))
3293 break;
3294 syms[j + 1] = syms[j];
3296 syms[j + 1] = sym;
3300 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3301 by asking the user (if necessary), returning the number selected,
3302 and setting the first elements of SYMS items. Error if no symbols
3303 selected. */
3305 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3306 to be re-integrated one of these days. */
3309 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3311 int i;
3312 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3313 int n_chosen;
3314 int first_choice = (max_results == 1) ? 1 : 2;
3316 if (max_results < 1)
3317 error (_("Request to select 0 symbols!"));
3318 if (nsyms <= 1)
3319 return nsyms;
3321 printf_unfiltered (_("[0] cancel\n"));
3322 if (max_results > 1)
3323 printf_unfiltered (_("[1] all\n"));
3325 sort_choices (syms, nsyms);
3327 for (i = 0; i < nsyms; i += 1)
3329 if (syms[i].sym == NULL)
3330 continue;
3332 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3334 struct symtab_and_line sal =
3335 find_function_start_sal (syms[i].sym, 1);
3336 if (sal.symtab == NULL)
3337 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3338 i + first_choice,
3339 SYMBOL_PRINT_NAME (syms[i].sym),
3340 sal.line);
3341 else
3342 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3343 SYMBOL_PRINT_NAME (syms[i].sym),
3344 sal.symtab->filename, sal.line);
3345 continue;
3347 else
3349 int is_enumeral =
3350 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3351 && SYMBOL_TYPE (syms[i].sym) != NULL
3352 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3353 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3355 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3356 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3357 i + first_choice,
3358 SYMBOL_PRINT_NAME (syms[i].sym),
3359 symtab->filename, SYMBOL_LINE (syms[i].sym));
3360 else if (is_enumeral
3361 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3363 printf_unfiltered (("[%d] "), i + first_choice);
3364 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3365 gdb_stdout, -1, 0);
3366 printf_unfiltered (_("'(%s) (enumeral)\n"),
3367 SYMBOL_PRINT_NAME (syms[i].sym));
3369 else if (symtab != NULL)
3370 printf_unfiltered (is_enumeral
3371 ? _("[%d] %s in %s (enumeral)\n")
3372 : _("[%d] %s at %s:?\n"),
3373 i + first_choice,
3374 SYMBOL_PRINT_NAME (syms[i].sym),
3375 symtab->filename);
3376 else
3377 printf_unfiltered (is_enumeral
3378 ? _("[%d] %s (enumeral)\n")
3379 : _("[%d] %s at ?\n"),
3380 i + first_choice,
3381 SYMBOL_PRINT_NAME (syms[i].sym));
3385 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3386 "overload-choice");
3388 for (i = 0; i < n_chosen; i += 1)
3389 syms[i] = syms[chosen[i]];
3391 return n_chosen;
3394 /* Read and validate a set of numeric choices from the user in the
3395 range 0 .. N_CHOICES-1. Place the results in increasing
3396 order in CHOICES[0 .. N-1], and return N.
3398 The user types choices as a sequence of numbers on one line
3399 separated by blanks, encoding them as follows:
3401 + A choice of 0 means to cancel the selection, throwing an error.
3402 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3403 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3405 The user is not allowed to choose more than MAX_RESULTS values.
3407 ANNOTATION_SUFFIX, if present, is used to annotate the input
3408 prompts (for use with the -f switch). */
3411 get_selections (int *choices, int n_choices, int max_results,
3412 int is_all_choice, char *annotation_suffix)
3414 char *args;
3415 const char *prompt;
3416 int n_chosen;
3417 int first_choice = is_all_choice ? 2 : 1;
3419 prompt = getenv ("PS2");
3420 if (prompt == NULL)
3421 prompt = ">";
3423 printf_unfiltered (("%s "), prompt);
3424 gdb_flush (gdb_stdout);
3426 args = command_line_input ((char *) NULL, 0, annotation_suffix);
3428 if (args == NULL)
3429 error_no_arg (_("one or more choice numbers"));
3431 n_chosen = 0;
3433 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3434 order, as given in args. Choices are validated. */
3435 while (1)
3437 char *args2;
3438 int choice, j;
3440 while (isspace (*args))
3441 args += 1;
3442 if (*args == '\0' && n_chosen == 0)
3443 error_no_arg (_("one or more choice numbers"));
3444 else if (*args == '\0')
3445 break;
3447 choice = strtol (args, &args2, 10);
3448 if (args == args2 || choice < 0
3449 || choice > n_choices + first_choice - 1)
3450 error (_("Argument must be choice number"));
3451 args = args2;
3453 if (choice == 0)
3454 error (_("cancelled"));
3456 if (choice < first_choice)
3458 n_chosen = n_choices;
3459 for (j = 0; j < n_choices; j += 1)
3460 choices[j] = j;
3461 break;
3463 choice -= first_choice;
3465 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3469 if (j < 0 || choice != choices[j])
3471 int k;
3472 for (k = n_chosen - 1; k > j; k -= 1)
3473 choices[k + 1] = choices[k];
3474 choices[j + 1] = choice;
3475 n_chosen += 1;
3479 if (n_chosen > max_results)
3480 error (_("Select no more than %d of the above"), max_results);
3482 return n_chosen;
3485 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3486 on the function identified by SYM and BLOCK, and taking NARGS
3487 arguments. Update *EXPP as needed to hold more space. */
3489 static void
3490 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3491 int oplen, struct symbol *sym,
3492 struct block *block)
3494 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3495 symbol, -oplen for operator being replaced). */
3496 struct expression *newexp = (struct expression *)
3497 xmalloc (sizeof (struct expression)
3498 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3499 struct expression *exp = *expp;
3501 newexp->nelts = exp->nelts + 7 - oplen;
3502 newexp->language_defn = exp->language_defn;
3503 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3504 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3505 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3507 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3508 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3510 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3511 newexp->elts[pc + 4].block = block;
3512 newexp->elts[pc + 5].symbol = sym;
3514 *expp = newexp;
3515 xfree (exp);
3518 /* Type-class predicates */
3520 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3521 or FLOAT). */
3523 static int
3524 numeric_type_p (struct type *type)
3526 if (type == NULL)
3527 return 0;
3528 else
3530 switch (TYPE_CODE (type))
3532 case TYPE_CODE_INT:
3533 case TYPE_CODE_FLT:
3534 return 1;
3535 case TYPE_CODE_RANGE:
3536 return (type == TYPE_TARGET_TYPE (type)
3537 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3538 default:
3539 return 0;
3544 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3546 static int
3547 integer_type_p (struct type *type)
3549 if (type == NULL)
3550 return 0;
3551 else
3553 switch (TYPE_CODE (type))
3555 case TYPE_CODE_INT:
3556 return 1;
3557 case TYPE_CODE_RANGE:
3558 return (type == TYPE_TARGET_TYPE (type)
3559 || integer_type_p (TYPE_TARGET_TYPE (type)));
3560 default:
3561 return 0;
3566 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3568 static int
3569 scalar_type_p (struct type *type)
3571 if (type == NULL)
3572 return 0;
3573 else
3575 switch (TYPE_CODE (type))
3577 case TYPE_CODE_INT:
3578 case TYPE_CODE_RANGE:
3579 case TYPE_CODE_ENUM:
3580 case TYPE_CODE_FLT:
3581 return 1;
3582 default:
3583 return 0;
3588 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3590 static int
3591 discrete_type_p (struct type *type)
3593 if (type == NULL)
3594 return 0;
3595 else
3597 switch (TYPE_CODE (type))
3599 case TYPE_CODE_INT:
3600 case TYPE_CODE_RANGE:
3601 case TYPE_CODE_ENUM:
3602 return 1;
3603 default:
3604 return 0;
3609 /* Returns non-zero if OP with operands in the vector ARGS could be
3610 a user-defined function. Errs on the side of pre-defined operators
3611 (i.e., result 0). */
3613 static int
3614 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3616 struct type *type0 =
3617 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3618 struct type *type1 =
3619 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3621 if (type0 == NULL)
3622 return 0;
3624 switch (op)
3626 default:
3627 return 0;
3629 case BINOP_ADD:
3630 case BINOP_SUB:
3631 case BINOP_MUL:
3632 case BINOP_DIV:
3633 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3635 case BINOP_REM:
3636 case BINOP_MOD:
3637 case BINOP_BITWISE_AND:
3638 case BINOP_BITWISE_IOR:
3639 case BINOP_BITWISE_XOR:
3640 return (!(integer_type_p (type0) && integer_type_p (type1)));
3642 case BINOP_EQUAL:
3643 case BINOP_NOTEQUAL:
3644 case BINOP_LESS:
3645 case BINOP_GTR:
3646 case BINOP_LEQ:
3647 case BINOP_GEQ:
3648 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3650 case BINOP_CONCAT:
3651 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3653 case BINOP_EXP:
3654 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3656 case UNOP_NEG:
3657 case UNOP_PLUS:
3658 case UNOP_LOGICAL_NOT:
3659 case UNOP_ABS:
3660 return (!numeric_type_p (type0));
3665 /* Renaming */
3667 /* NOTES:
3669 1. In the following, we assume that a renaming type's name may
3670 have an ___XD suffix. It would be nice if this went away at some
3671 point.
3672 2. We handle both the (old) purely type-based representation of
3673 renamings and the (new) variable-based encoding. At some point,
3674 it is devoutly to be hoped that the former goes away
3675 (FIXME: hilfinger-2007-07-09).
3676 3. Subprogram renamings are not implemented, although the XRS
3677 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3679 /* If SYM encodes a renaming,
3681 <renaming> renames <renamed entity>,
3683 sets *LEN to the length of the renamed entity's name,
3684 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3685 the string describing the subcomponent selected from the renamed
3686 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3687 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3688 are undefined). Otherwise, returns a value indicating the category
3689 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3690 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3691 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3692 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3693 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3694 may be NULL, in which case they are not assigned.
3696 [Currently, however, GCC does not generate subprogram renamings.] */
3698 enum ada_renaming_category
3699 ada_parse_renaming (struct symbol *sym,
3700 const char **renamed_entity, int *len,
3701 const char **renaming_expr)
3703 enum ada_renaming_category kind;
3704 const char *info;
3705 const char *suffix;
3707 if (sym == NULL)
3708 return ADA_NOT_RENAMING;
3709 switch (SYMBOL_CLASS (sym))
3711 default:
3712 return ADA_NOT_RENAMING;
3713 case LOC_TYPEDEF:
3714 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3715 renamed_entity, len, renaming_expr);
3716 case LOC_LOCAL:
3717 case LOC_STATIC:
3718 case LOC_COMPUTED:
3719 case LOC_OPTIMIZED_OUT:
3720 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3721 if (info == NULL)
3722 return ADA_NOT_RENAMING;
3723 switch (info[5])
3725 case '_':
3726 kind = ADA_OBJECT_RENAMING;
3727 info += 6;
3728 break;
3729 case 'E':
3730 kind = ADA_EXCEPTION_RENAMING;
3731 info += 7;
3732 break;
3733 case 'P':
3734 kind = ADA_PACKAGE_RENAMING;
3735 info += 7;
3736 break;
3737 case 'S':
3738 kind = ADA_SUBPROGRAM_RENAMING;
3739 info += 7;
3740 break;
3741 default:
3742 return ADA_NOT_RENAMING;
3746 if (renamed_entity != NULL)
3747 *renamed_entity = info;
3748 suffix = strstr (info, "___XE");
3749 if (suffix == NULL || suffix == info)
3750 return ADA_NOT_RENAMING;
3751 if (len != NULL)
3752 *len = strlen (info) - strlen (suffix);
3753 suffix += 5;
3754 if (renaming_expr != NULL)
3755 *renaming_expr = suffix;
3756 return kind;
3759 /* Assuming TYPE encodes a renaming according to the old encoding in
3760 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3761 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3762 ADA_NOT_RENAMING otherwise. */
3763 static enum ada_renaming_category
3764 parse_old_style_renaming (struct type *type,
3765 const char **renamed_entity, int *len,
3766 const char **renaming_expr)
3768 enum ada_renaming_category kind;
3769 const char *name;
3770 const char *info;
3771 const char *suffix;
3773 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3774 || TYPE_NFIELDS (type) != 1)
3775 return ADA_NOT_RENAMING;
3777 name = type_name_no_tag (type);
3778 if (name == NULL)
3779 return ADA_NOT_RENAMING;
3781 name = strstr (name, "___XR");
3782 if (name == NULL)
3783 return ADA_NOT_RENAMING;
3784 switch (name[5])
3786 case '\0':
3787 case '_':
3788 kind = ADA_OBJECT_RENAMING;
3789 break;
3790 case 'E':
3791 kind = ADA_EXCEPTION_RENAMING;
3792 break;
3793 case 'P':
3794 kind = ADA_PACKAGE_RENAMING;
3795 break;
3796 case 'S':
3797 kind = ADA_SUBPROGRAM_RENAMING;
3798 break;
3799 default:
3800 return ADA_NOT_RENAMING;
3803 info = TYPE_FIELD_NAME (type, 0);
3804 if (info == NULL)
3805 return ADA_NOT_RENAMING;
3806 if (renamed_entity != NULL)
3807 *renamed_entity = info;
3808 suffix = strstr (info, "___XE");
3809 if (renaming_expr != NULL)
3810 *renaming_expr = suffix + 5;
3811 if (suffix == NULL || suffix == info)
3812 return ADA_NOT_RENAMING;
3813 if (len != NULL)
3814 *len = suffix - info;
3815 return kind;
3820 /* Evaluation: Function Calls */
3822 /* Return an lvalue containing the value VAL. This is the identity on
3823 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3824 on the stack, using and updating *SP as the stack pointer, and
3825 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3827 static struct value *
3828 ensure_lval (struct value *val, CORE_ADDR *sp)
3830 if (! VALUE_LVAL (val))
3832 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3834 /* The following is taken from the structure-return code in
3835 call_function_by_hand. FIXME: Therefore, some refactoring seems
3836 indicated. */
3837 if (gdbarch_inner_than (current_gdbarch, 1, 2))
3839 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3840 reserving sufficient space. */
3841 *sp -= len;
3842 if (gdbarch_frame_align_p (current_gdbarch))
3843 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3844 VALUE_ADDRESS (val) = *sp;
3846 else
3848 /* Stack grows upward. Align the frame, allocate space, and
3849 then again, re-align the frame. */
3850 if (gdbarch_frame_align_p (current_gdbarch))
3851 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3852 VALUE_ADDRESS (val) = *sp;
3853 *sp += len;
3854 if (gdbarch_frame_align_p (current_gdbarch))
3855 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3857 VALUE_LVAL (val) = lval_memory;
3859 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3862 return val;
3865 /* Return the value ACTUAL, converted to be an appropriate value for a
3866 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3867 allocating any necessary descriptors (fat pointers), or copies of
3868 values not residing in memory, updating it as needed. */
3870 struct value *
3871 ada_convert_actual (struct value *actual, struct type *formal_type0,
3872 CORE_ADDR *sp)
3874 struct type *actual_type = ada_check_typedef (value_type (actual));
3875 struct type *formal_type = ada_check_typedef (formal_type0);
3876 struct type *formal_target =
3877 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3878 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3879 struct type *actual_target =
3880 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3881 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3883 if (ada_is_array_descriptor_type (formal_target)
3884 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3885 return make_array_descriptor (formal_type, actual, sp);
3886 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3887 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3889 struct value *result;
3890 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3891 && ada_is_array_descriptor_type (actual_target))
3892 result = desc_data (actual);
3893 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3895 if (VALUE_LVAL (actual) != lval_memory)
3897 struct value *val;
3898 actual_type = ada_check_typedef (value_type (actual));
3899 val = allocate_value (actual_type);
3900 memcpy ((char *) value_contents_raw (val),
3901 (char *) value_contents (actual),
3902 TYPE_LENGTH (actual_type));
3903 actual = ensure_lval (val, sp);
3905 result = value_addr (actual);
3907 else
3908 return actual;
3909 return value_cast_pointers (formal_type, result);
3911 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3912 return ada_value_ind (actual);
3914 return actual;
3918 /* Push a descriptor of type TYPE for array value ARR on the stack at
3919 *SP, updating *SP to reflect the new descriptor. Return either
3920 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3921 to-descriptor type rather than a descriptor type), a struct value *
3922 representing a pointer to this descriptor. */
3924 static struct value *
3925 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3927 struct type *bounds_type = desc_bounds_type (type);
3928 struct type *desc_type = desc_base_type (type);
3929 struct value *descriptor = allocate_value (desc_type);
3930 struct value *bounds = allocate_value (bounds_type);
3931 int i;
3933 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3935 modify_general_field (value_contents_writeable (bounds),
3936 value_as_long (ada_array_bound (arr, i, 0)),
3937 desc_bound_bitpos (bounds_type, i, 0),
3938 desc_bound_bitsize (bounds_type, i, 0));
3939 modify_general_field (value_contents_writeable (bounds),
3940 value_as_long (ada_array_bound (arr, i, 1)),
3941 desc_bound_bitpos (bounds_type, i, 1),
3942 desc_bound_bitsize (bounds_type, i, 1));
3945 bounds = ensure_lval (bounds, sp);
3947 modify_general_field (value_contents_writeable (descriptor),
3948 VALUE_ADDRESS (ensure_lval (arr, sp)),
3949 fat_pntr_data_bitpos (desc_type),
3950 fat_pntr_data_bitsize (desc_type));
3952 modify_general_field (value_contents_writeable (descriptor),
3953 VALUE_ADDRESS (bounds),
3954 fat_pntr_bounds_bitpos (desc_type),
3955 fat_pntr_bounds_bitsize (desc_type));
3957 descriptor = ensure_lval (descriptor, sp);
3959 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3960 return value_addr (descriptor);
3961 else
3962 return descriptor;
3965 /* Dummy definitions for an experimental caching module that is not
3966 * used in the public sources. */
3968 static int
3969 lookup_cached_symbol (const char *name, domain_enum namespace,
3970 struct symbol **sym, struct block **block,
3971 struct symtab **symtab)
3973 return 0;
3976 static void
3977 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3978 struct block *block, struct symtab *symtab)
3982 /* Symbol Lookup */
3984 /* Return the result of a standard (literal, C-like) lookup of NAME in
3985 given DOMAIN, visible from lexical block BLOCK. */
3987 static struct symbol *
3988 standard_lookup (const char *name, const struct block *block,
3989 domain_enum domain)
3991 struct symbol *sym;
3992 struct symtab *symtab;
3994 if (lookup_cached_symbol (name, domain, &sym, NULL, NULL))
3995 return sym;
3996 sym =
3997 lookup_symbol_in_language (name, block, domain, language_c, 0, &symtab);
3998 cache_symbol (name, domain, sym, block_found, symtab);
3999 return sym;
4003 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4004 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4005 since they contend in overloading in the same way. */
4006 static int
4007 is_nonfunction (struct ada_symbol_info syms[], int n)
4009 int i;
4011 for (i = 0; i < n; i += 1)
4012 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4013 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4014 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4015 return 1;
4017 return 0;
4020 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4021 struct types. Otherwise, they may not. */
4023 static int
4024 equiv_types (struct type *type0, struct type *type1)
4026 if (type0 == type1)
4027 return 1;
4028 if (type0 == NULL || type1 == NULL
4029 || TYPE_CODE (type0) != TYPE_CODE (type1))
4030 return 0;
4031 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4032 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4033 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4034 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4035 return 1;
4037 return 0;
4040 /* True iff SYM0 represents the same entity as SYM1, or one that is
4041 no more defined than that of SYM1. */
4043 static int
4044 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4046 if (sym0 == sym1)
4047 return 1;
4048 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4049 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4050 return 0;
4052 switch (SYMBOL_CLASS (sym0))
4054 case LOC_UNDEF:
4055 return 1;
4056 case LOC_TYPEDEF:
4058 struct type *type0 = SYMBOL_TYPE (sym0);
4059 struct type *type1 = SYMBOL_TYPE (sym1);
4060 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4061 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4062 int len0 = strlen (name0);
4063 return
4064 TYPE_CODE (type0) == TYPE_CODE (type1)
4065 && (equiv_types (type0, type1)
4066 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4067 && strncmp (name1 + len0, "___XV", 5) == 0));
4069 case LOC_CONST:
4070 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4071 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4072 default:
4073 return 0;
4077 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4078 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4080 static void
4081 add_defn_to_vec (struct obstack *obstackp,
4082 struct symbol *sym,
4083 struct block *block, struct symtab *symtab)
4085 int i;
4086 size_t tmp;
4087 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4089 /* Do not try to complete stub types, as the debugger is probably
4090 already scanning all symbols matching a certain name at the
4091 time when this function is called. Trying to replace the stub
4092 type by its associated full type will cause us to restart a scan
4093 which may lead to an infinite recursion. Instead, the client
4094 collecting the matching symbols will end up collecting several
4095 matches, with at least one of them complete. It can then filter
4096 out the stub ones if needed. */
4098 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4100 if (lesseq_defined_than (sym, prevDefns[i].sym))
4101 return;
4102 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4104 prevDefns[i].sym = sym;
4105 prevDefns[i].block = block;
4106 prevDefns[i].symtab = symtab;
4107 return;
4112 struct ada_symbol_info info;
4114 info.sym = sym;
4115 info.block = block;
4116 info.symtab = symtab;
4117 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4121 /* Number of ada_symbol_info structures currently collected in
4122 current vector in *OBSTACKP. */
4124 static int
4125 num_defns_collected (struct obstack *obstackp)
4127 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4130 /* Vector of ada_symbol_info structures currently collected in current
4131 vector in *OBSTACKP. If FINISH, close off the vector and return
4132 its final address. */
4134 static struct ada_symbol_info *
4135 defns_collected (struct obstack *obstackp, int finish)
4137 if (finish)
4138 return obstack_finish (obstackp);
4139 else
4140 return (struct ada_symbol_info *) obstack_base (obstackp);
4143 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4144 Check the global symbols if GLOBAL, the static symbols if not.
4145 Do wild-card match if WILD. */
4147 static struct partial_symbol *
4148 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4149 int global, domain_enum namespace, int wild)
4151 struct partial_symbol **start;
4152 int name_len = strlen (name);
4153 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4154 int i;
4156 if (length == 0)
4158 return (NULL);
4161 start = (global ?
4162 pst->objfile->global_psymbols.list + pst->globals_offset :
4163 pst->objfile->static_psymbols.list + pst->statics_offset);
4165 if (wild)
4167 for (i = 0; i < length; i += 1)
4169 struct partial_symbol *psym = start[i];
4171 if (SYMBOL_DOMAIN (psym) == namespace
4172 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4173 return psym;
4175 return NULL;
4177 else
4179 if (global)
4181 int U;
4182 i = 0;
4183 U = length - 1;
4184 while (U - i > 4)
4186 int M = (U + i) >> 1;
4187 struct partial_symbol *psym = start[M];
4188 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4189 i = M + 1;
4190 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4191 U = M - 1;
4192 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4193 i = M + 1;
4194 else
4195 U = M;
4198 else
4199 i = 0;
4201 while (i < length)
4203 struct partial_symbol *psym = start[i];
4205 if (SYMBOL_DOMAIN (psym) == namespace)
4207 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4209 if (cmp < 0)
4211 if (global)
4212 break;
4214 else if (cmp == 0
4215 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4216 + name_len))
4217 return psym;
4219 i += 1;
4222 if (global)
4224 int U;
4225 i = 0;
4226 U = length - 1;
4227 while (U - i > 4)
4229 int M = (U + i) >> 1;
4230 struct partial_symbol *psym = start[M];
4231 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4232 i = M + 1;
4233 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4234 U = M - 1;
4235 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4236 i = M + 1;
4237 else
4238 U = M;
4241 else
4242 i = 0;
4244 while (i < length)
4246 struct partial_symbol *psym = start[i];
4248 if (SYMBOL_DOMAIN (psym) == namespace)
4250 int cmp;
4252 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4253 if (cmp == 0)
4255 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4256 if (cmp == 0)
4257 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4258 name_len);
4261 if (cmp < 0)
4263 if (global)
4264 break;
4266 else if (cmp == 0
4267 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4268 + name_len + 5))
4269 return psym;
4271 i += 1;
4274 return NULL;
4277 /* Find a symbol table containing symbol SYM or NULL if none. */
4279 static struct symtab *
4280 symtab_for_sym (struct symbol *sym)
4282 struct symtab *s;
4283 struct objfile *objfile;
4284 struct block *b;
4285 struct symbol *tmp_sym;
4286 struct dict_iterator iter;
4287 int j;
4289 ALL_PRIMARY_SYMTABS (objfile, s)
4291 switch (SYMBOL_CLASS (sym))
4293 case LOC_CONST:
4294 case LOC_STATIC:
4295 case LOC_TYPEDEF:
4296 case LOC_REGISTER:
4297 case LOC_LABEL:
4298 case LOC_BLOCK:
4299 case LOC_CONST_BYTES:
4300 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4301 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4302 return s;
4303 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4304 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4305 return s;
4306 break;
4307 default:
4308 break;
4310 switch (SYMBOL_CLASS (sym))
4312 case LOC_REGISTER:
4313 case LOC_ARG:
4314 case LOC_REF_ARG:
4315 case LOC_REGPARM:
4316 case LOC_REGPARM_ADDR:
4317 case LOC_LOCAL:
4318 case LOC_TYPEDEF:
4319 case LOC_LOCAL_ARG:
4320 case LOC_BASEREG:
4321 case LOC_BASEREG_ARG:
4322 case LOC_COMPUTED:
4323 case LOC_COMPUTED_ARG:
4324 for (j = FIRST_LOCAL_BLOCK;
4325 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4327 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4328 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4329 return s;
4331 break;
4332 default:
4333 break;
4336 return NULL;
4339 /* Return a minimal symbol matching NAME according to Ada decoding
4340 rules. Returns NULL if there is no such minimal symbol. Names
4341 prefixed with "standard__" are handled specially: "standard__" is
4342 first stripped off, and only static and global symbols are searched. */
4344 struct minimal_symbol *
4345 ada_lookup_simple_minsym (const char *name)
4347 struct objfile *objfile;
4348 struct minimal_symbol *msymbol;
4349 int wild_match;
4351 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4353 name += sizeof ("standard__") - 1;
4354 wild_match = 0;
4356 else
4357 wild_match = (strstr (name, "__") == NULL);
4359 ALL_MSYMBOLS (objfile, msymbol)
4361 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4362 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4363 return msymbol;
4366 return NULL;
4369 /* For all subprograms that statically enclose the subprogram of the
4370 selected frame, add symbols matching identifier NAME in DOMAIN
4371 and their blocks to the list of data in OBSTACKP, as for
4372 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4373 wildcard prefix. */
4375 static void
4376 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4377 const char *name, domain_enum namespace,
4378 int wild_match)
4382 /* True if TYPE is definitely an artificial type supplied to a symbol
4383 for which no debugging information was given in the symbol file. */
4385 static int
4386 is_nondebugging_type (struct type *type)
4388 char *name = ada_type_name (type);
4389 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4392 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4393 duplicate other symbols in the list (The only case I know of where
4394 this happens is when object files containing stabs-in-ecoff are
4395 linked with files containing ordinary ecoff debugging symbols (or no
4396 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4397 Returns the number of items in the modified list. */
4399 static int
4400 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4402 int i, j;
4404 i = 0;
4405 while (i < nsyms)
4407 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4408 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4409 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4411 for (j = 0; j < nsyms; j += 1)
4413 if (i != j
4414 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4415 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4416 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4417 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4418 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4419 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4421 int k;
4422 for (k = i + 1; k < nsyms; k += 1)
4423 syms[k - 1] = syms[k];
4424 nsyms -= 1;
4425 goto NextSymbol;
4429 i += 1;
4430 NextSymbol:
4433 return nsyms;
4436 /* Given a type that corresponds to a renaming entity, use the type name
4437 to extract the scope (package name or function name, fully qualified,
4438 and following the GNAT encoding convention) where this renaming has been
4439 defined. The string returned needs to be deallocated after use. */
4441 static char *
4442 xget_renaming_scope (struct type *renaming_type)
4444 /* The renaming types adhere to the following convention:
4445 <scope>__<rename>___<XR extension>.
4446 So, to extract the scope, we search for the "___XR" extension,
4447 and then backtrack until we find the first "__". */
4449 const char *name = type_name_no_tag (renaming_type);
4450 char *suffix = strstr (name, "___XR");
4451 char *last;
4452 int scope_len;
4453 char *scope;
4455 /* Now, backtrack a bit until we find the first "__". Start looking
4456 at suffix - 3, as the <rename> part is at least one character long. */
4458 for (last = suffix - 3; last > name; last--)
4459 if (last[0] == '_' && last[1] == '_')
4460 break;
4462 /* Make a copy of scope and return it. */
4464 scope_len = last - name;
4465 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4467 strncpy (scope, name, scope_len);
4468 scope[scope_len] = '\0';
4470 return scope;
4473 /* Return nonzero if NAME corresponds to a package name. */
4475 static int
4476 is_package_name (const char *name)
4478 /* Here, We take advantage of the fact that no symbols are generated
4479 for packages, while symbols are generated for each function.
4480 So the condition for NAME represent a package becomes equivalent
4481 to NAME not existing in our list of symbols. There is only one
4482 small complication with library-level functions (see below). */
4484 char *fun_name;
4486 /* If it is a function that has not been defined at library level,
4487 then we should be able to look it up in the symbols. */
4488 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4489 return 0;
4491 /* Library-level function names start with "_ada_". See if function
4492 "_ada_" followed by NAME can be found. */
4494 /* Do a quick check that NAME does not contain "__", since library-level
4495 functions names cannot contain "__" in them. */
4496 if (strstr (name, "__") != NULL)
4497 return 0;
4499 fun_name = xstrprintf ("_ada_%s", name);
4501 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4504 /* Return nonzero if SYM corresponds to a renaming entity that is
4505 not visible from FUNCTION_NAME. */
4507 static int
4508 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4510 char *scope;
4512 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4513 return 0;
4515 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4517 make_cleanup (xfree, scope);
4519 /* If the rename has been defined in a package, then it is visible. */
4520 if (is_package_name (scope))
4521 return 0;
4523 /* Check that the rename is in the current function scope by checking
4524 that its name starts with SCOPE. */
4526 /* If the function name starts with "_ada_", it means that it is
4527 a library-level function. Strip this prefix before doing the
4528 comparison, as the encoding for the renaming does not contain
4529 this prefix. */
4530 if (strncmp (function_name, "_ada_", 5) == 0)
4531 function_name += 5;
4533 return (strncmp (function_name, scope, strlen (scope)) != 0);
4536 /* Remove entries from SYMS that corresponds to a renaming entity that
4537 is not visible from the function associated with CURRENT_BLOCK or
4538 that is superfluous due to the presence of more specific renaming
4539 information. Places surviving symbols in the initial entries of
4540 SYMS and returns the number of surviving symbols.
4542 Rationale:
4543 First, in cases where an object renaming is implemented as a
4544 reference variable, GNAT may produce both the actual reference
4545 variable and the renaming encoding. In this case, we discard the
4546 latter.
4548 Second, GNAT emits a type following a specified encoding for each renaming
4549 entity. Unfortunately, STABS currently does not support the definition
4550 of types that are local to a given lexical block, so all renamings types
4551 are emitted at library level. As a consequence, if an application
4552 contains two renaming entities using the same name, and a user tries to
4553 print the value of one of these entities, the result of the ada symbol
4554 lookup will also contain the wrong renaming type.
4556 This function partially covers for this limitation by attempting to
4557 remove from the SYMS list renaming symbols that should be visible
4558 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4559 method with the current information available. The implementation
4560 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4562 - When the user tries to print a rename in a function while there
4563 is another rename entity defined in a package: Normally, the
4564 rename in the function has precedence over the rename in the
4565 package, so the latter should be removed from the list. This is
4566 currently not the case.
4568 - This function will incorrectly remove valid renames if
4569 the CURRENT_BLOCK corresponds to a function which symbol name
4570 has been changed by an "Export" pragma. As a consequence,
4571 the user will be unable to print such rename entities. */
4573 static int
4574 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4575 int nsyms, const struct block *current_block)
4577 struct symbol *current_function;
4578 char *current_function_name;
4579 int i;
4580 int is_new_style_renaming;
4582 /* If there is both a renaming foo___XR... encoded as a variable and
4583 a simple variable foo in the same block, discard the latter.
4584 First, zero out such symbols, then compress. */
4585 is_new_style_renaming = 0;
4586 for (i = 0; i < nsyms; i += 1)
4588 struct symbol *sym = syms[i].sym;
4589 struct block *block = syms[i].block;
4590 const char *name;
4591 const char *suffix;
4593 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4594 continue;
4595 name = SYMBOL_LINKAGE_NAME (sym);
4596 suffix = strstr (name, "___XR");
4598 if (suffix != NULL)
4600 int name_len = suffix - name;
4601 int j;
4602 is_new_style_renaming = 1;
4603 for (j = 0; j < nsyms; j += 1)
4604 if (i != j && syms[j].sym != NULL
4605 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4606 name_len) == 0
4607 && block == syms[j].block)
4608 syms[j].sym = NULL;
4611 if (is_new_style_renaming)
4613 int j, k;
4615 for (j = k = 0; j < nsyms; j += 1)
4616 if (syms[j].sym != NULL)
4618 syms[k] = syms[j];
4619 k += 1;
4621 return k;
4624 /* Extract the function name associated to CURRENT_BLOCK.
4625 Abort if unable to do so. */
4627 if (current_block == NULL)
4628 return nsyms;
4630 current_function = block_function (current_block);
4631 if (current_function == NULL)
4632 return nsyms;
4634 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4635 if (current_function_name == NULL)
4636 return nsyms;
4638 /* Check each of the symbols, and remove it from the list if it is
4639 a type corresponding to a renaming that is out of the scope of
4640 the current block. */
4642 i = 0;
4643 while (i < nsyms)
4645 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4646 == ADA_OBJECT_RENAMING
4647 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4649 int j;
4650 for (j = i + 1; j < nsyms; j += 1)
4651 syms[j - 1] = syms[j];
4652 nsyms -= 1;
4654 else
4655 i += 1;
4658 return nsyms;
4661 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4662 scope and in global scopes, returning the number of matches. Sets
4663 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4664 indicating the symbols found and the blocks and symbol tables (if
4665 any) in which they were found. This vector are transient---good only to
4666 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4667 symbol match within the nest of blocks whose innermost member is BLOCK0,
4668 is the one match returned (no other matches in that or
4669 enclosing blocks is returned). If there are any matches in or
4670 surrounding BLOCK0, then these alone are returned. Otherwise, the
4671 search extends to global and file-scope (static) symbol tables.
4672 Names prefixed with "standard__" are handled specially: "standard__"
4673 is first stripped off, and only static and global symbols are searched. */
4676 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4677 domain_enum namespace,
4678 struct ada_symbol_info **results)
4680 struct symbol *sym;
4681 struct symtab *s;
4682 struct partial_symtab *ps;
4683 struct blockvector *bv;
4684 struct objfile *objfile;
4685 struct block *block;
4686 const char *name;
4687 struct minimal_symbol *msymbol;
4688 int wild_match;
4689 int cacheIfUnique;
4690 int block_depth;
4691 int ndefns;
4693 obstack_free (&symbol_list_obstack, NULL);
4694 obstack_init (&symbol_list_obstack);
4696 cacheIfUnique = 0;
4698 /* Search specified block and its superiors. */
4700 wild_match = (strstr (name0, "__") == NULL);
4701 name = name0;
4702 block = (struct block *) block0; /* FIXME: No cast ought to be
4703 needed, but adding const will
4704 have a cascade effect. */
4705 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4707 wild_match = 0;
4708 block = NULL;
4709 name = name0 + sizeof ("standard__") - 1;
4712 block_depth = 0;
4713 while (block != NULL)
4715 block_depth += 1;
4716 ada_add_block_symbols (&symbol_list_obstack, block, name,
4717 namespace, NULL, NULL, wild_match);
4719 /* If we found a non-function match, assume that's the one. */
4720 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4721 num_defns_collected (&symbol_list_obstack)))
4722 goto done;
4724 block = BLOCK_SUPERBLOCK (block);
4727 /* If no luck so far, try to find NAME as a local symbol in some lexically
4728 enclosing subprogram. */
4729 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4730 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4731 name, namespace, wild_match);
4733 /* If we found ANY matches among non-global symbols, we're done. */
4735 if (num_defns_collected (&symbol_list_obstack) > 0)
4736 goto done;
4738 cacheIfUnique = 1;
4739 if (lookup_cached_symbol (name0, namespace, &sym, &block, &s))
4741 if (sym != NULL)
4742 add_defn_to_vec (&symbol_list_obstack, sym, block, s);
4743 goto done;
4746 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4747 tables, and psymtab's. */
4749 ALL_PRIMARY_SYMTABS (objfile, s)
4751 QUIT;
4752 bv = BLOCKVECTOR (s);
4753 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4754 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4755 objfile, s, wild_match);
4758 if (namespace == VAR_DOMAIN)
4760 ALL_MSYMBOLS (objfile, msymbol)
4762 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4764 switch (MSYMBOL_TYPE (msymbol))
4766 case mst_solib_trampoline:
4767 break;
4768 default:
4769 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4770 if (s != NULL)
4772 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4773 QUIT;
4774 bv = BLOCKVECTOR (s);
4775 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4776 ada_add_block_symbols (&symbol_list_obstack, block,
4777 SYMBOL_LINKAGE_NAME (msymbol),
4778 namespace, objfile, s, wild_match);
4780 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4782 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4783 ada_add_block_symbols (&symbol_list_obstack, block,
4784 SYMBOL_LINKAGE_NAME (msymbol),
4785 namespace, objfile, s,
4786 wild_match);
4794 ALL_PSYMTABS (objfile, ps)
4796 QUIT;
4797 if (!ps->readin
4798 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4800 s = PSYMTAB_TO_SYMTAB (ps);
4801 if (!s->primary)
4802 continue;
4803 bv = BLOCKVECTOR (s);
4804 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4805 ada_add_block_symbols (&symbol_list_obstack, block, name,
4806 namespace, objfile, s, wild_match);
4810 /* Now add symbols from all per-file blocks if we've gotten no hits
4811 (Not strictly correct, but perhaps better than an error).
4812 Do the symtabs first, then check the psymtabs. */
4814 if (num_defns_collected (&symbol_list_obstack) == 0)
4817 ALL_PRIMARY_SYMTABS (objfile, s)
4819 QUIT;
4820 bv = BLOCKVECTOR (s);
4821 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4822 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4823 objfile, s, wild_match);
4826 ALL_PSYMTABS (objfile, ps)
4828 QUIT;
4829 if (!ps->readin
4830 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4832 s = PSYMTAB_TO_SYMTAB (ps);
4833 bv = BLOCKVECTOR (s);
4834 if (!s->primary)
4835 continue;
4836 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4837 ada_add_block_symbols (&symbol_list_obstack, block, name,
4838 namespace, objfile, s, wild_match);
4843 done:
4844 ndefns = num_defns_collected (&symbol_list_obstack);
4845 *results = defns_collected (&symbol_list_obstack, 1);
4847 ndefns = remove_extra_symbols (*results, ndefns);
4849 if (ndefns == 0)
4850 cache_symbol (name0, namespace, NULL, NULL, NULL);
4852 if (ndefns == 1 && cacheIfUnique)
4853 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block,
4854 (*results)[0].symtab);
4856 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4858 return ndefns;
4861 struct symbol *
4862 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4863 domain_enum namespace,
4864 struct block **block_found, struct symtab **symtab)
4866 struct ada_symbol_info *candidates;
4867 int n_candidates;
4869 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4871 if (n_candidates == 0)
4872 return NULL;
4874 if (block_found != NULL)
4875 *block_found = candidates[0].block;
4877 if (symtab != NULL)
4879 *symtab = candidates[0].symtab;
4880 if (*symtab == NULL && candidates[0].block != NULL)
4882 struct objfile *objfile;
4883 struct symtab *s;
4884 struct block *b;
4885 struct blockvector *bv;
4887 /* Search the list of symtabs for one which contains the
4888 address of the start of this block. */
4889 ALL_PRIMARY_SYMTABS (objfile, s)
4891 bv = BLOCKVECTOR (s);
4892 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4893 if (BLOCK_START (b) <= BLOCK_START (candidates[0].block)
4894 && BLOCK_END (b) > BLOCK_START (candidates[0].block))
4896 *symtab = s;
4897 return fixup_symbol_section (candidates[0].sym, objfile);
4900 /* FIXME: brobecker/2004-11-12: I think that we should never
4901 reach this point. I don't see a reason why we would not
4902 find a symtab for a given block, so I suggest raising an
4903 internal_error exception here. Otherwise, we end up
4904 returning a symbol but no symtab, which certain parts of
4905 the code that rely (indirectly) on this function do not
4906 expect, eventually causing a SEGV. */
4907 return fixup_symbol_section (candidates[0].sym, NULL);
4910 return candidates[0].sym;
4913 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4914 scope and in global scopes, or NULL if none. NAME is folded and
4915 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4916 choosing the first symbol if there are multiple choices.
4917 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4918 table in which the symbol was found (in both cases, these
4919 assignments occur only if the pointers are non-null). */
4920 struct symbol *
4921 ada_lookup_symbol (const char *name, const struct block *block0,
4922 domain_enum namespace, int *is_a_field_of_this,
4923 struct symtab **symtab)
4925 if (is_a_field_of_this != NULL)
4926 *is_a_field_of_this = 0;
4928 return
4929 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4930 block0, namespace, NULL, symtab);
4933 static struct symbol *
4934 ada_lookup_symbol_nonlocal (const char *name,
4935 const char *linkage_name,
4936 const struct block *block,
4937 const domain_enum domain, struct symtab **symtab)
4939 if (linkage_name == NULL)
4940 linkage_name = name;
4941 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4942 NULL, symtab);
4946 /* True iff STR is a possible encoded suffix of a normal Ada name
4947 that is to be ignored for matching purposes. Suffixes of parallel
4948 names (e.g., XVE) are not included here. Currently, the possible suffixes
4949 are given by either of the regular expression:
4951 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4952 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4953 _E[0-9]+[bs]$ [protected object entry suffixes]
4954 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4956 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4957 match is performed. This sequence is used to differentiate homonyms,
4958 is an optional part of a valid name suffix. */
4960 static int
4961 is_name_suffix (const char *str)
4963 int k;
4964 const char *matching;
4965 const int len = strlen (str);
4967 /* Skip optional leading __[0-9]+. */
4969 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4971 str += 3;
4972 while (isdigit (str[0]))
4973 str += 1;
4976 /* [.$][0-9]+ */
4978 if (str[0] == '.' || str[0] == '$')
4980 matching = str + 1;
4981 while (isdigit (matching[0]))
4982 matching += 1;
4983 if (matching[0] == '\0')
4984 return 1;
4987 /* ___[0-9]+ */
4989 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4991 matching = str + 3;
4992 while (isdigit (matching[0]))
4993 matching += 1;
4994 if (matching[0] == '\0')
4995 return 1;
4998 #if 0
4999 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5000 with a N at the end. Unfortunately, the compiler uses the same
5001 convention for other internal types it creates. So treating
5002 all entity names that end with an "N" as a name suffix causes
5003 some regressions. For instance, consider the case of an enumerated
5004 type. To support the 'Image attribute, it creates an array whose
5005 name ends with N.
5006 Having a single character like this as a suffix carrying some
5007 information is a bit risky. Perhaps we should change the encoding
5008 to be something like "_N" instead. In the meantime, do not do
5009 the following check. */
5010 /* Protected Object Subprograms */
5011 if (len == 1 && str [0] == 'N')
5012 return 1;
5013 #endif
5015 /* _E[0-9]+[bs]$ */
5016 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5018 matching = str + 3;
5019 while (isdigit (matching[0]))
5020 matching += 1;
5021 if ((matching[0] == 'b' || matching[0] == 's')
5022 && matching [1] == '\0')
5023 return 1;
5026 /* ??? We should not modify STR directly, as we are doing below. This
5027 is fine in this case, but may become problematic later if we find
5028 that this alternative did not work, and want to try matching
5029 another one from the begining of STR. Since we modified it, we
5030 won't be able to find the begining of the string anymore! */
5031 if (str[0] == 'X')
5033 str += 1;
5034 while (str[0] != '_' && str[0] != '\0')
5036 if (str[0] != 'n' && str[0] != 'b')
5037 return 0;
5038 str += 1;
5042 if (str[0] == '\000')
5043 return 1;
5045 if (str[0] == '_')
5047 if (str[1] != '_' || str[2] == '\000')
5048 return 0;
5049 if (str[2] == '_')
5051 if (strcmp (str + 3, "JM") == 0)
5052 return 1;
5053 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5054 the LJM suffix in favor of the JM one. But we will
5055 still accept LJM as a valid suffix for a reasonable
5056 amount of time, just to allow ourselves to debug programs
5057 compiled using an older version of GNAT. */
5058 if (strcmp (str + 3, "LJM") == 0)
5059 return 1;
5060 if (str[3] != 'X')
5061 return 0;
5062 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5063 || str[4] == 'U' || str[4] == 'P')
5064 return 1;
5065 if (str[4] == 'R' && str[5] != 'T')
5066 return 1;
5067 return 0;
5069 if (!isdigit (str[2]))
5070 return 0;
5071 for (k = 3; str[k] != '\0'; k += 1)
5072 if (!isdigit (str[k]) && str[k] != '_')
5073 return 0;
5074 return 1;
5076 if (str[0] == '$' && isdigit (str[1]))
5078 for (k = 2; str[k] != '\0'; k += 1)
5079 if (!isdigit (str[k]) && str[k] != '_')
5080 return 0;
5081 return 1;
5083 return 0;
5086 /* Return nonzero if the given string starts with a dot ('.')
5087 followed by zero or more digits.
5089 Note: brobecker/2003-11-10: A forward declaration has not been
5090 added at the begining of this file yet, because this function
5091 is only used to work around a problem found during wild matching
5092 when trying to match minimal symbol names against symbol names
5093 obtained from dwarf-2 data. This function is therefore currently
5094 only used in wild_match() and is likely to be deleted when the
5095 problem in dwarf-2 is fixed. */
5097 static int
5098 is_dot_digits_suffix (const char *str)
5100 if (str[0] != '.')
5101 return 0;
5103 str++;
5104 while (isdigit (str[0]))
5105 str++;
5106 return (str[0] == '\0');
5109 /* Return non-zero if the string starting at NAME and ending before
5110 NAME_END contains no capital letters. */
5112 static int
5113 is_valid_name_for_wild_match (const char *name0)
5115 const char *decoded_name = ada_decode (name0);
5116 int i;
5118 for (i=0; decoded_name[i] != '\0'; i++)
5119 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5120 return 0;
5122 return 1;
5125 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
5126 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
5127 informational suffixes of NAME (i.e., for which is_name_suffix is
5128 true). */
5130 static int
5131 wild_match (const char *patn0, int patn_len, const char *name0)
5133 int name_len;
5134 char *name;
5135 char *name_start;
5136 char *patn;
5138 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
5139 stored in the symbol table for nested function names is sometimes
5140 different from the name of the associated entity stored in
5141 the dwarf-2 data: This is the case for nested subprograms, where
5142 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
5143 while the symbol name from the dwarf-2 data does not.
5145 Although the DWARF-2 standard documents that entity names stored
5146 in the dwarf-2 data should be identical to the name as seen in
5147 the source code, GNAT takes a different approach as we already use
5148 a special encoding mechanism to convey the information so that
5149 a C debugger can still use the information generated to debug
5150 Ada programs. A corollary is that the symbol names in the dwarf-2
5151 data should match the names found in the symbol table. I therefore
5152 consider this issue as a compiler defect.
5154 Until the compiler is properly fixed, we work-around the problem
5155 by ignoring such suffixes during the match. We do so by making
5156 a copy of PATN0 and NAME0, and then by stripping such a suffix
5157 if present. We then perform the match on the resulting strings. */
5159 char *dot;
5160 name_len = strlen (name0);
5162 name = name_start = (char *) alloca ((name_len + 1) * sizeof (char));
5163 strcpy (name, name0);
5164 dot = strrchr (name, '.');
5165 if (dot != NULL && is_dot_digits_suffix (dot))
5166 *dot = '\0';
5168 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
5169 strncpy (patn, patn0, patn_len);
5170 patn[patn_len] = '\0';
5171 dot = strrchr (patn, '.');
5172 if (dot != NULL && is_dot_digits_suffix (dot))
5174 *dot = '\0';
5175 patn_len = dot - patn;
5179 /* Now perform the wild match. */
5181 name_len = strlen (name);
5182 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
5183 && strncmp (patn, name + 5, patn_len) == 0
5184 && is_name_suffix (name + patn_len + 5))
5185 return 1;
5187 while (name_len >= patn_len)
5189 if (strncmp (patn, name, patn_len) == 0
5190 && is_name_suffix (name + patn_len))
5191 return (name == name_start || is_valid_name_for_wild_match (name0));
5194 name += 1;
5195 name_len -= 1;
5197 while (name_len > 0
5198 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
5199 if (name_len <= 0)
5200 return 0;
5201 if (name[0] == '_')
5203 if (!islower (name[2]))
5204 return 0;
5205 name += 2;
5206 name_len -= 2;
5208 else
5210 if (!islower (name[1]))
5211 return 0;
5212 name += 1;
5213 name_len -= 1;
5217 return 0;
5221 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5222 vector *defn_symbols, updating the list of symbols in OBSTACKP
5223 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5224 OBJFILE is the section containing BLOCK.
5225 SYMTAB is recorded with each symbol added. */
5227 static void
5228 ada_add_block_symbols (struct obstack *obstackp,
5229 struct block *block, const char *name,
5230 domain_enum domain, struct objfile *objfile,
5231 struct symtab *symtab, int wild)
5233 struct dict_iterator iter;
5234 int name_len = strlen (name);
5235 /* A matching argument symbol, if any. */
5236 struct symbol *arg_sym;
5237 /* Set true when we find a matching non-argument symbol. */
5238 int found_sym;
5239 struct symbol *sym;
5241 arg_sym = NULL;
5242 found_sym = 0;
5243 if (wild)
5245 struct symbol *sym;
5246 ALL_BLOCK_SYMBOLS (block, iter, sym)
5248 if (SYMBOL_DOMAIN (sym) == domain
5249 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5251 switch (SYMBOL_CLASS (sym))
5253 case LOC_ARG:
5254 case LOC_LOCAL_ARG:
5255 case LOC_REF_ARG:
5256 case LOC_REGPARM:
5257 case LOC_REGPARM_ADDR:
5258 case LOC_BASEREG_ARG:
5259 case LOC_COMPUTED_ARG:
5260 arg_sym = sym;
5261 break;
5262 case LOC_UNRESOLVED:
5263 continue;
5264 default:
5265 found_sym = 1;
5266 add_defn_to_vec (obstackp,
5267 fixup_symbol_section (sym, objfile),
5268 block, symtab);
5269 break;
5274 else
5276 ALL_BLOCK_SYMBOLS (block, iter, sym)
5278 if (SYMBOL_DOMAIN (sym) == domain)
5280 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5281 if (cmp == 0
5282 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5284 switch (SYMBOL_CLASS (sym))
5286 case LOC_ARG:
5287 case LOC_LOCAL_ARG:
5288 case LOC_REF_ARG:
5289 case LOC_REGPARM:
5290 case LOC_REGPARM_ADDR:
5291 case LOC_BASEREG_ARG:
5292 case LOC_COMPUTED_ARG:
5293 arg_sym = sym;
5294 break;
5295 case LOC_UNRESOLVED:
5296 break;
5297 default:
5298 found_sym = 1;
5299 add_defn_to_vec (obstackp,
5300 fixup_symbol_section (sym, objfile),
5301 block, symtab);
5302 break;
5309 if (!found_sym && arg_sym != NULL)
5311 add_defn_to_vec (obstackp,
5312 fixup_symbol_section (arg_sym, objfile),
5313 block, symtab);
5316 if (!wild)
5318 arg_sym = NULL;
5319 found_sym = 0;
5321 ALL_BLOCK_SYMBOLS (block, iter, sym)
5323 if (SYMBOL_DOMAIN (sym) == domain)
5325 int cmp;
5327 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5328 if (cmp == 0)
5330 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5331 if (cmp == 0)
5332 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5333 name_len);
5336 if (cmp == 0
5337 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5339 switch (SYMBOL_CLASS (sym))
5341 case LOC_ARG:
5342 case LOC_LOCAL_ARG:
5343 case LOC_REF_ARG:
5344 case LOC_REGPARM:
5345 case LOC_REGPARM_ADDR:
5346 case LOC_BASEREG_ARG:
5347 case LOC_COMPUTED_ARG:
5348 arg_sym = sym;
5349 break;
5350 case LOC_UNRESOLVED:
5351 break;
5352 default:
5353 found_sym = 1;
5354 add_defn_to_vec (obstackp,
5355 fixup_symbol_section (sym, objfile),
5356 block, symtab);
5357 break;
5363 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5364 They aren't parameters, right? */
5365 if (!found_sym && arg_sym != NULL)
5367 add_defn_to_vec (obstackp,
5368 fixup_symbol_section (arg_sym, objfile),
5369 block, symtab);
5375 /* Symbol Completion */
5377 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5378 name in a form that's appropriate for the completion. The result
5379 does not need to be deallocated, but is only good until the next call.
5381 TEXT_LEN is equal to the length of TEXT.
5382 Perform a wild match if WILD_MATCH is set.
5383 ENCODED should be set if TEXT represents the start of a symbol name
5384 in its encoded form. */
5386 static const char *
5387 symbol_completion_match (const char *sym_name,
5388 const char *text, int text_len,
5389 int wild_match, int encoded)
5391 char *result;
5392 const int verbatim_match = (text[0] == '<');
5393 int match = 0;
5395 if (verbatim_match)
5397 /* Strip the leading angle bracket. */
5398 text = text + 1;
5399 text_len--;
5402 /* First, test against the fully qualified name of the symbol. */
5404 if (strncmp (sym_name, text, text_len) == 0)
5405 match = 1;
5407 if (match && !encoded)
5409 /* One needed check before declaring a positive match is to verify
5410 that iff we are doing a verbatim match, the decoded version
5411 of the symbol name starts with '<'. Otherwise, this symbol name
5412 is not a suitable completion. */
5413 const char *sym_name_copy = sym_name;
5414 int has_angle_bracket;
5416 sym_name = ada_decode (sym_name);
5417 has_angle_bracket = (sym_name[0] == '<');
5418 match = (has_angle_bracket == verbatim_match);
5419 sym_name = sym_name_copy;
5422 if (match && !verbatim_match)
5424 /* When doing non-verbatim match, another check that needs to
5425 be done is to verify that the potentially matching symbol name
5426 does not include capital letters, because the ada-mode would
5427 not be able to understand these symbol names without the
5428 angle bracket notation. */
5429 const char *tmp;
5431 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5432 if (*tmp != '\0')
5433 match = 0;
5436 /* Second: Try wild matching... */
5438 if (!match && wild_match)
5440 /* Since we are doing wild matching, this means that TEXT
5441 may represent an unqualified symbol name. We therefore must
5442 also compare TEXT against the unqualified name of the symbol. */
5443 sym_name = ada_unqualified_name (ada_decode (sym_name));
5445 if (strncmp (sym_name, text, text_len) == 0)
5446 match = 1;
5449 /* Finally: If we found a mach, prepare the result to return. */
5451 if (!match)
5452 return NULL;
5454 if (verbatim_match)
5455 sym_name = add_angle_brackets (sym_name);
5457 if (!encoded)
5458 sym_name = ada_decode (sym_name);
5460 return sym_name;
5463 typedef char *char_ptr;
5464 DEF_VEC_P (char_ptr);
5466 /* A companion function to ada_make_symbol_completion_list().
5467 Check if SYM_NAME represents a symbol which name would be suitable
5468 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5469 it is appended at the end of the given string vector SV.
5471 ORIG_TEXT is the string original string from the user command
5472 that needs to be completed. WORD is the entire command on which
5473 completion should be performed. These two parameters are used to
5474 determine which part of the symbol name should be added to the
5475 completion vector.
5476 if WILD_MATCH is set, then wild matching is performed.
5477 ENCODED should be set if TEXT represents a symbol name in its
5478 encoded formed (in which case the completion should also be
5479 encoded). */
5481 static void
5482 symbol_completion_add (VEC(char_ptr) **sv,
5483 const char *sym_name,
5484 const char *text, int text_len,
5485 const char *orig_text, const char *word,
5486 int wild_match, int encoded)
5488 const char *match = symbol_completion_match (sym_name, text, text_len,
5489 wild_match, encoded);
5490 char *completion;
5492 if (match == NULL)
5493 return;
5495 /* We found a match, so add the appropriate completion to the given
5496 string vector. */
5498 if (word == orig_text)
5500 completion = xmalloc (strlen (match) + 5);
5501 strcpy (completion, match);
5503 else if (word > orig_text)
5505 /* Return some portion of sym_name. */
5506 completion = xmalloc (strlen (match) + 5);
5507 strcpy (completion, match + (word - orig_text));
5509 else
5511 /* Return some of ORIG_TEXT plus sym_name. */
5512 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5513 strncpy (completion, word, orig_text - word);
5514 completion[orig_text - word] = '\0';
5515 strcat (completion, match);
5518 VEC_safe_push (char_ptr, *sv, completion);
5521 /* Return a list of possible symbol names completing TEXT0. The list
5522 is NULL terminated. WORD is the entire command on which completion
5523 is made. */
5525 static char **
5526 ada_make_symbol_completion_list (char *text0, char *word)
5528 char *text;
5529 int text_len;
5530 int wild_match;
5531 int encoded;
5532 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5533 struct symbol *sym;
5534 struct symtab *s;
5535 struct partial_symtab *ps;
5536 struct minimal_symbol *msymbol;
5537 struct objfile *objfile;
5538 struct block *b, *surrounding_static_block = 0;
5539 int i;
5540 struct dict_iterator iter;
5542 if (text0[0] == '<')
5544 text = xstrdup (text0);
5545 make_cleanup (xfree, text);
5546 text_len = strlen (text);
5547 wild_match = 0;
5548 encoded = 1;
5550 else
5552 text = xstrdup (ada_encode (text0));
5553 make_cleanup (xfree, text);
5554 text_len = strlen (text);
5555 for (i = 0; i < text_len; i++)
5556 text[i] = tolower (text[i]);
5558 encoded = (strstr (text0, "__") != NULL);
5559 /* If the name contains a ".", then the user is entering a fully
5560 qualified entity name, and the match must not be done in wild
5561 mode. Similarly, if the user wants to complete what looks like
5562 an encoded name, the match must not be done in wild mode. */
5563 wild_match = (strchr (text0, '.') == NULL && !encoded);
5566 /* First, look at the partial symtab symbols. */
5567 ALL_PSYMTABS (objfile, ps)
5569 struct partial_symbol **psym;
5571 /* If the psymtab's been read in we'll get it when we search
5572 through the blockvector. */
5573 if (ps->readin)
5574 continue;
5576 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5577 psym < (objfile->global_psymbols.list + ps->globals_offset
5578 + ps->n_global_syms); psym++)
5580 QUIT;
5581 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5582 text, text_len, text0, word,
5583 wild_match, encoded);
5586 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5587 psym < (objfile->static_psymbols.list + ps->statics_offset
5588 + ps->n_static_syms); psym++)
5590 QUIT;
5591 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5592 text, text_len, text0, word,
5593 wild_match, encoded);
5597 /* At this point scan through the misc symbol vectors and add each
5598 symbol you find to the list. Eventually we want to ignore
5599 anything that isn't a text symbol (everything else will be
5600 handled by the psymtab code above). */
5602 ALL_MSYMBOLS (objfile, msymbol)
5604 QUIT;
5605 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5606 text, text_len, text0, word, wild_match, encoded);
5609 /* Search upwards from currently selected frame (so that we can
5610 complete on local vars. */
5612 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5614 if (!BLOCK_SUPERBLOCK (b))
5615 surrounding_static_block = b; /* For elmin of dups */
5617 ALL_BLOCK_SYMBOLS (b, iter, sym)
5619 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5620 text, text_len, text0, word,
5621 wild_match, encoded);
5625 /* Go through the symtabs and check the externs and statics for
5626 symbols which match. */
5628 ALL_SYMTABS (objfile, s)
5630 QUIT;
5631 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5632 ALL_BLOCK_SYMBOLS (b, iter, sym)
5634 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5635 text, text_len, text0, word,
5636 wild_match, encoded);
5640 ALL_SYMTABS (objfile, s)
5642 QUIT;
5643 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5644 /* Don't do this block twice. */
5645 if (b == surrounding_static_block)
5646 continue;
5647 ALL_BLOCK_SYMBOLS (b, iter, sym)
5649 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5650 text, text_len, text0, word,
5651 wild_match, encoded);
5655 /* Append the closing NULL entry. */
5656 VEC_safe_push (char_ptr, completions, NULL);
5658 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5659 return the copy. It's unfortunate that we have to make a copy
5660 of an array that we're about to destroy, but there is nothing much
5661 we can do about it. Fortunately, it's typically not a very large
5662 array. */
5664 const size_t completions_size =
5665 VEC_length (char_ptr, completions) * sizeof (char *);
5666 char **result = malloc (completions_size);
5668 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5670 VEC_free (char_ptr, completions);
5671 return result;
5675 /* Field Access */
5677 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5678 for tagged types. */
5680 static int
5681 ada_is_dispatch_table_ptr_type (struct type *type)
5683 char *name;
5685 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5686 return 0;
5688 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5689 if (name == NULL)
5690 return 0;
5692 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5695 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5696 to be invisible to users. */
5699 ada_is_ignored_field (struct type *type, int field_num)
5701 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5702 return 1;
5704 /* Check the name of that field. */
5706 const char *name = TYPE_FIELD_NAME (type, field_num);
5708 /* Anonymous field names should not be printed.
5709 brobecker/2007-02-20: I don't think this can actually happen
5710 but we don't want to print the value of annonymous fields anyway. */
5711 if (name == NULL)
5712 return 1;
5714 /* A field named "_parent" is internally generated by GNAT for
5715 tagged types, and should not be printed either. */
5716 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5717 return 1;
5720 /* If this is the dispatch table of a tagged type, then ignore. */
5721 if (ada_is_tagged_type (type, 1)
5722 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5723 return 1;
5725 /* Not a special field, so it should not be ignored. */
5726 return 0;
5729 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5730 pointer or reference type whose ultimate target has a tag field. */
5733 ada_is_tagged_type (struct type *type, int refok)
5735 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5738 /* True iff TYPE represents the type of X'Tag */
5741 ada_is_tag_type (struct type *type)
5743 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5744 return 0;
5745 else
5747 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5748 return (name != NULL
5749 && strcmp (name, "ada__tags__dispatch_table") == 0);
5753 /* The type of the tag on VAL. */
5755 struct type *
5756 ada_tag_type (struct value *val)
5758 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5761 /* The value of the tag on VAL. */
5763 struct value *
5764 ada_value_tag (struct value *val)
5766 return ada_value_struct_elt (val, "_tag", 0);
5769 /* The value of the tag on the object of type TYPE whose contents are
5770 saved at VALADDR, if it is non-null, or is at memory address
5771 ADDRESS. */
5773 static struct value *
5774 value_tag_from_contents_and_address (struct type *type,
5775 const gdb_byte *valaddr,
5776 CORE_ADDR address)
5778 int tag_byte_offset, dummy1, dummy2;
5779 struct type *tag_type;
5780 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5781 NULL, NULL, NULL))
5783 const gdb_byte *valaddr1 = ((valaddr == NULL)
5784 ? NULL
5785 : valaddr + tag_byte_offset);
5786 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5788 return value_from_contents_and_address (tag_type, valaddr1, address1);
5790 return NULL;
5793 static struct type *
5794 type_from_tag (struct value *tag)
5796 const char *type_name = ada_tag_name (tag);
5797 if (type_name != NULL)
5798 return ada_find_any_type (ada_encode (type_name));
5799 return NULL;
5802 struct tag_args
5804 struct value *tag;
5805 char *name;
5809 static int ada_tag_name_1 (void *);
5810 static int ada_tag_name_2 (struct tag_args *);
5812 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5813 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5814 The value stored in ARGS->name is valid until the next call to
5815 ada_tag_name_1. */
5817 static int
5818 ada_tag_name_1 (void *args0)
5820 struct tag_args *args = (struct tag_args *) args0;
5821 static char name[1024];
5822 char *p;
5823 struct value *val;
5824 args->name = NULL;
5825 val = ada_value_struct_elt (args->tag, "tsd", 1);
5826 if (val == NULL)
5827 return ada_tag_name_2 (args);
5828 val = ada_value_struct_elt (val, "expanded_name", 1);
5829 if (val == NULL)
5830 return 0;
5831 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5832 for (p = name; *p != '\0'; p += 1)
5833 if (isalpha (*p))
5834 *p = tolower (*p);
5835 args->name = name;
5836 return 0;
5839 /* Utility function for ada_tag_name_1 that tries the second
5840 representation for the dispatch table (in which there is no
5841 explicit 'tsd' field in the referent of the tag pointer, and instead
5842 the tsd pointer is stored just before the dispatch table. */
5844 static int
5845 ada_tag_name_2 (struct tag_args *args)
5847 struct type *info_type;
5848 static char name[1024];
5849 char *p;
5850 struct value *val, *valp;
5852 args->name = NULL;
5853 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5854 if (info_type == NULL)
5855 return 0;
5856 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5857 valp = value_cast (info_type, args->tag);
5858 if (valp == NULL)
5859 return 0;
5860 val = value_ind (value_add (valp, value_from_longest (builtin_type_int, -1)));
5861 if (val == NULL)
5862 return 0;
5863 val = ada_value_struct_elt (val, "expanded_name", 1);
5864 if (val == NULL)
5865 return 0;
5866 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5867 for (p = name; *p != '\0'; p += 1)
5868 if (isalpha (*p))
5869 *p = tolower (*p);
5870 args->name = name;
5871 return 0;
5874 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5875 * a C string. */
5877 const char *
5878 ada_tag_name (struct value *tag)
5880 struct tag_args args;
5881 if (!ada_is_tag_type (value_type (tag)))
5882 return NULL;
5883 args.tag = tag;
5884 args.name = NULL;
5885 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5886 return args.name;
5889 /* The parent type of TYPE, or NULL if none. */
5891 struct type *
5892 ada_parent_type (struct type *type)
5894 int i;
5896 type = ada_check_typedef (type);
5898 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5899 return NULL;
5901 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5902 if (ada_is_parent_field (type, i))
5903 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5905 return NULL;
5908 /* True iff field number FIELD_NUM of structure type TYPE contains the
5909 parent-type (inherited) fields of a derived type. Assumes TYPE is
5910 a structure type with at least FIELD_NUM+1 fields. */
5913 ada_is_parent_field (struct type *type, int field_num)
5915 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5916 return (name != NULL
5917 && (strncmp (name, "PARENT", 6) == 0
5918 || strncmp (name, "_parent", 7) == 0));
5921 /* True iff field number FIELD_NUM of structure type TYPE is a
5922 transparent wrapper field (which should be silently traversed when doing
5923 field selection and flattened when printing). Assumes TYPE is a
5924 structure type with at least FIELD_NUM+1 fields. Such fields are always
5925 structures. */
5928 ada_is_wrapper_field (struct type *type, int field_num)
5930 const char *name = TYPE_FIELD_NAME (type, field_num);
5931 return (name != NULL
5932 && (strncmp (name, "PARENT", 6) == 0
5933 || strcmp (name, "REP") == 0
5934 || strncmp (name, "_parent", 7) == 0
5935 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5938 /* True iff field number FIELD_NUM of structure or union type TYPE
5939 is a variant wrapper. Assumes TYPE is a structure type with at least
5940 FIELD_NUM+1 fields. */
5943 ada_is_variant_part (struct type *type, int field_num)
5945 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5946 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5947 || (is_dynamic_field (type, field_num)
5948 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5949 == TYPE_CODE_UNION)));
5952 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5953 whose discriminants are contained in the record type OUTER_TYPE,
5954 returns the type of the controlling discriminant for the variant. */
5956 struct type *
5957 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5959 char *name = ada_variant_discrim_name (var_type);
5960 struct type *type =
5961 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5962 if (type == NULL)
5963 return builtin_type_int;
5964 else
5965 return type;
5968 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5969 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5970 represents a 'when others' clause; otherwise 0. */
5973 ada_is_others_clause (struct type *type, int field_num)
5975 const char *name = TYPE_FIELD_NAME (type, field_num);
5976 return (name != NULL && name[0] == 'O');
5979 /* Assuming that TYPE0 is the type of the variant part of a record,
5980 returns the name of the discriminant controlling the variant.
5981 The value is valid until the next call to ada_variant_discrim_name. */
5983 char *
5984 ada_variant_discrim_name (struct type *type0)
5986 static char *result = NULL;
5987 static size_t result_len = 0;
5988 struct type *type;
5989 const char *name;
5990 const char *discrim_end;
5991 const char *discrim_start;
5993 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5994 type = TYPE_TARGET_TYPE (type0);
5995 else
5996 type = type0;
5998 name = ada_type_name (type);
6000 if (name == NULL || name[0] == '\000')
6001 return "";
6003 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6004 discrim_end -= 1)
6006 if (strncmp (discrim_end, "___XVN", 6) == 0)
6007 break;
6009 if (discrim_end == name)
6010 return "";
6012 for (discrim_start = discrim_end; discrim_start != name + 3;
6013 discrim_start -= 1)
6015 if (discrim_start == name + 1)
6016 return "";
6017 if ((discrim_start > name + 3
6018 && strncmp (discrim_start - 3, "___", 3) == 0)
6019 || discrim_start[-1] == '.')
6020 break;
6023 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6024 strncpy (result, discrim_start, discrim_end - discrim_start);
6025 result[discrim_end - discrim_start] = '\0';
6026 return result;
6029 /* Scan STR for a subtype-encoded number, beginning at position K.
6030 Put the position of the character just past the number scanned in
6031 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6032 Return 1 if there was a valid number at the given position, and 0
6033 otherwise. A "subtype-encoded" number consists of the absolute value
6034 in decimal, followed by the letter 'm' to indicate a negative number.
6035 Assumes 0m does not occur. */
6038 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6040 ULONGEST RU;
6042 if (!isdigit (str[k]))
6043 return 0;
6045 /* Do it the hard way so as not to make any assumption about
6046 the relationship of unsigned long (%lu scan format code) and
6047 LONGEST. */
6048 RU = 0;
6049 while (isdigit (str[k]))
6051 RU = RU * 10 + (str[k] - '0');
6052 k += 1;
6055 if (str[k] == 'm')
6057 if (R != NULL)
6058 *R = (-(LONGEST) (RU - 1)) - 1;
6059 k += 1;
6061 else if (R != NULL)
6062 *R = (LONGEST) RU;
6064 /* NOTE on the above: Technically, C does not say what the results of
6065 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6066 number representable as a LONGEST (although either would probably work
6067 in most implementations). When RU>0, the locution in the then branch
6068 above is always equivalent to the negative of RU. */
6070 if (new_k != NULL)
6071 *new_k = k;
6072 return 1;
6075 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6076 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6077 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6080 ada_in_variant (LONGEST val, struct type *type, int field_num)
6082 const char *name = TYPE_FIELD_NAME (type, field_num);
6083 int p;
6085 p = 0;
6086 while (1)
6088 switch (name[p])
6090 case '\0':
6091 return 0;
6092 case 'S':
6094 LONGEST W;
6095 if (!ada_scan_number (name, p + 1, &W, &p))
6096 return 0;
6097 if (val == W)
6098 return 1;
6099 break;
6101 case 'R':
6103 LONGEST L, U;
6104 if (!ada_scan_number (name, p + 1, &L, &p)
6105 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6106 return 0;
6107 if (val >= L && val <= U)
6108 return 1;
6109 break;
6111 case 'O':
6112 return 1;
6113 default:
6114 return 0;
6119 /* FIXME: Lots of redundancy below. Try to consolidate. */
6121 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6122 ARG_TYPE, extract and return the value of one of its (non-static)
6123 fields. FIELDNO says which field. Differs from value_primitive_field
6124 only in that it can handle packed values of arbitrary type. */
6126 static struct value *
6127 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6128 struct type *arg_type)
6130 struct type *type;
6132 arg_type = ada_check_typedef (arg_type);
6133 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6135 /* Handle packed fields. */
6137 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6139 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6140 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6142 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6143 offset + bit_pos / 8,
6144 bit_pos % 8, bit_size, type);
6146 else
6147 return value_primitive_field (arg1, offset, fieldno, arg_type);
6150 /* Find field with name NAME in object of type TYPE. If found,
6151 set the following for each argument that is non-null:
6152 - *FIELD_TYPE_P to the field's type;
6153 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6154 an object of that type;
6155 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6156 - *BIT_SIZE_P to its size in bits if the field is packed, and
6157 0 otherwise;
6158 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6159 fields up to but not including the desired field, or by the total
6160 number of fields if not found. A NULL value of NAME never
6161 matches; the function just counts visible fields in this case.
6163 Returns 1 if found, 0 otherwise. */
6165 static int
6166 find_struct_field (char *name, struct type *type, int offset,
6167 struct type **field_type_p,
6168 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6169 int *index_p)
6171 int i;
6173 type = ada_check_typedef (type);
6175 if (field_type_p != NULL)
6176 *field_type_p = NULL;
6177 if (byte_offset_p != NULL)
6178 *byte_offset_p = 0;
6179 if (bit_offset_p != NULL)
6180 *bit_offset_p = 0;
6181 if (bit_size_p != NULL)
6182 *bit_size_p = 0;
6184 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6186 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6187 int fld_offset = offset + bit_pos / 8;
6188 char *t_field_name = TYPE_FIELD_NAME (type, i);
6190 if (t_field_name == NULL)
6191 continue;
6193 else if (name != NULL && field_name_match (t_field_name, name))
6195 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6196 if (field_type_p != NULL)
6197 *field_type_p = TYPE_FIELD_TYPE (type, i);
6198 if (byte_offset_p != NULL)
6199 *byte_offset_p = fld_offset;
6200 if (bit_offset_p != NULL)
6201 *bit_offset_p = bit_pos % 8;
6202 if (bit_size_p != NULL)
6203 *bit_size_p = bit_size;
6204 return 1;
6206 else if (ada_is_wrapper_field (type, i))
6208 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6209 field_type_p, byte_offset_p, bit_offset_p,
6210 bit_size_p, index_p))
6211 return 1;
6213 else if (ada_is_variant_part (type, i))
6215 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6216 fixed type?? */
6217 int j;
6218 struct type *field_type
6219 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6221 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6223 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6224 fld_offset
6225 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6226 field_type_p, byte_offset_p,
6227 bit_offset_p, bit_size_p, index_p))
6228 return 1;
6231 else if (index_p != NULL)
6232 *index_p += 1;
6234 return 0;
6237 /* Number of user-visible fields in record type TYPE. */
6239 static int
6240 num_visible_fields (struct type *type)
6242 int n;
6243 n = 0;
6244 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6245 return n;
6248 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6249 and search in it assuming it has (class) type TYPE.
6250 If found, return value, else return NULL.
6252 Searches recursively through wrapper fields (e.g., '_parent'). */
6254 static struct value *
6255 ada_search_struct_field (char *name, struct value *arg, int offset,
6256 struct type *type)
6258 int i;
6259 type = ada_check_typedef (type);
6261 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6263 char *t_field_name = TYPE_FIELD_NAME (type, i);
6265 if (t_field_name == NULL)
6266 continue;
6268 else if (field_name_match (t_field_name, name))
6269 return ada_value_primitive_field (arg, offset, i, type);
6271 else if (ada_is_wrapper_field (type, i))
6273 struct value *v = /* Do not let indent join lines here. */
6274 ada_search_struct_field (name, arg,
6275 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6276 TYPE_FIELD_TYPE (type, i));
6277 if (v != NULL)
6278 return v;
6281 else if (ada_is_variant_part (type, i))
6283 /* PNH: Do we ever get here? See find_struct_field. */
6284 int j;
6285 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6286 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6288 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6290 struct value *v = ada_search_struct_field /* Force line break. */
6291 (name, arg,
6292 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6293 TYPE_FIELD_TYPE (field_type, j));
6294 if (v != NULL)
6295 return v;
6299 return NULL;
6302 static struct value *ada_index_struct_field_1 (int *, struct value *,
6303 int, struct type *);
6306 /* Return field #INDEX in ARG, where the index is that returned by
6307 * find_struct_field through its INDEX_P argument. Adjust the address
6308 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6309 * If found, return value, else return NULL. */
6311 static struct value *
6312 ada_index_struct_field (int index, struct value *arg, int offset,
6313 struct type *type)
6315 return ada_index_struct_field_1 (&index, arg, offset, type);
6319 /* Auxiliary function for ada_index_struct_field. Like
6320 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6321 * *INDEX_P. */
6323 static struct value *
6324 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6325 struct type *type)
6327 int i;
6328 type = ada_check_typedef (type);
6330 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6332 if (TYPE_FIELD_NAME (type, i) == NULL)
6333 continue;
6334 else if (ada_is_wrapper_field (type, i))
6336 struct value *v = /* Do not let indent join lines here. */
6337 ada_index_struct_field_1 (index_p, arg,
6338 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6339 TYPE_FIELD_TYPE (type, i));
6340 if (v != NULL)
6341 return v;
6344 else if (ada_is_variant_part (type, i))
6346 /* PNH: Do we ever get here? See ada_search_struct_field,
6347 find_struct_field. */
6348 error (_("Cannot assign this kind of variant record"));
6350 else if (*index_p == 0)
6351 return ada_value_primitive_field (arg, offset, i, type);
6352 else
6353 *index_p -= 1;
6355 return NULL;
6358 /* Given ARG, a value of type (pointer or reference to a)*
6359 structure/union, extract the component named NAME from the ultimate
6360 target structure/union and return it as a value with its
6361 appropriate type. If ARG is a pointer or reference and the field
6362 is not packed, returns a reference to the field, otherwise the
6363 value of the field (an lvalue if ARG is an lvalue).
6365 The routine searches for NAME among all members of the structure itself
6366 and (recursively) among all members of any wrapper members
6367 (e.g., '_parent').
6369 If NO_ERR, then simply return NULL in case of error, rather than
6370 calling error. */
6372 struct value *
6373 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6375 struct type *t, *t1;
6376 struct value *v;
6378 v = NULL;
6379 t1 = t = ada_check_typedef (value_type (arg));
6380 if (TYPE_CODE (t) == TYPE_CODE_REF)
6382 t1 = TYPE_TARGET_TYPE (t);
6383 if (t1 == NULL)
6384 goto BadValue;
6385 t1 = ada_check_typedef (t1);
6386 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6388 arg = coerce_ref (arg);
6389 t = t1;
6393 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6395 t1 = TYPE_TARGET_TYPE (t);
6396 if (t1 == NULL)
6397 goto BadValue;
6398 t1 = ada_check_typedef (t1);
6399 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6401 arg = value_ind (arg);
6402 t = t1;
6404 else
6405 break;
6408 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6409 goto BadValue;
6411 if (t1 == t)
6412 v = ada_search_struct_field (name, arg, 0, t);
6413 else
6415 int bit_offset, bit_size, byte_offset;
6416 struct type *field_type;
6417 CORE_ADDR address;
6419 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6420 address = value_as_address (arg);
6421 else
6422 address = unpack_pointer (t, value_contents (arg));
6424 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6425 if (find_struct_field (name, t1, 0,
6426 &field_type, &byte_offset, &bit_offset,
6427 &bit_size, NULL))
6429 if (bit_size != 0)
6431 if (TYPE_CODE (t) == TYPE_CODE_REF)
6432 arg = ada_coerce_ref (arg);
6433 else
6434 arg = ada_value_ind (arg);
6435 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6436 bit_offset, bit_size,
6437 field_type);
6439 else
6440 v = value_from_pointer (lookup_reference_type (field_type),
6441 address + byte_offset);
6445 if (v != NULL || no_err)
6446 return v;
6447 else
6448 error (_("There is no member named %s."), name);
6450 BadValue:
6451 if (no_err)
6452 return NULL;
6453 else
6454 error (_("Attempt to extract a component of a value that is not a record."));
6457 /* Given a type TYPE, look up the type of the component of type named NAME.
6458 If DISPP is non-null, add its byte displacement from the beginning of a
6459 structure (pointed to by a value) of type TYPE to *DISPP (does not
6460 work for packed fields).
6462 Matches any field whose name has NAME as a prefix, possibly
6463 followed by "___".
6465 TYPE can be either a struct or union. If REFOK, TYPE may also
6466 be a (pointer or reference)+ to a struct or union, and the
6467 ultimate target type will be searched.
6469 Looks recursively into variant clauses and parent types.
6471 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6472 TYPE is not a type of the right kind. */
6474 static struct type *
6475 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6476 int noerr, int *dispp)
6478 int i;
6480 if (name == NULL)
6481 goto BadName;
6483 if (refok && type != NULL)
6484 while (1)
6486 type = ada_check_typedef (type);
6487 if (TYPE_CODE (type) != TYPE_CODE_PTR
6488 && TYPE_CODE (type) != TYPE_CODE_REF)
6489 break;
6490 type = TYPE_TARGET_TYPE (type);
6493 if (type == NULL
6494 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6495 && TYPE_CODE (type) != TYPE_CODE_UNION))
6497 if (noerr)
6498 return NULL;
6499 else
6501 target_terminal_ours ();
6502 gdb_flush (gdb_stdout);
6503 if (type == NULL)
6504 error (_("Type (null) is not a structure or union type"));
6505 else
6507 /* XXX: type_sprint */
6508 fprintf_unfiltered (gdb_stderr, _("Type "));
6509 type_print (type, "", gdb_stderr, -1);
6510 error (_(" is not a structure or union type"));
6515 type = to_static_fixed_type (type);
6517 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6519 char *t_field_name = TYPE_FIELD_NAME (type, i);
6520 struct type *t;
6521 int disp;
6523 if (t_field_name == NULL)
6524 continue;
6526 else if (field_name_match (t_field_name, name))
6528 if (dispp != NULL)
6529 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6530 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6533 else if (ada_is_wrapper_field (type, i))
6535 disp = 0;
6536 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6537 0, 1, &disp);
6538 if (t != NULL)
6540 if (dispp != NULL)
6541 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6542 return t;
6546 else if (ada_is_variant_part (type, i))
6548 int j;
6549 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6551 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6553 disp = 0;
6554 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6555 name, 0, 1, &disp);
6556 if (t != NULL)
6558 if (dispp != NULL)
6559 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6560 return t;
6567 BadName:
6568 if (!noerr)
6570 target_terminal_ours ();
6571 gdb_flush (gdb_stdout);
6572 if (name == NULL)
6574 /* XXX: type_sprint */
6575 fprintf_unfiltered (gdb_stderr, _("Type "));
6576 type_print (type, "", gdb_stderr, -1);
6577 error (_(" has no component named <null>"));
6579 else
6581 /* XXX: type_sprint */
6582 fprintf_unfiltered (gdb_stderr, _("Type "));
6583 type_print (type, "", gdb_stderr, -1);
6584 error (_(" has no component named %s"), name);
6588 return NULL;
6591 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6592 within a value of type OUTER_TYPE that is stored in GDB at
6593 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6594 numbering from 0) is applicable. Returns -1 if none are. */
6597 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6598 const gdb_byte *outer_valaddr)
6600 int others_clause;
6601 int i;
6602 char *discrim_name = ada_variant_discrim_name (var_type);
6603 struct value *outer;
6604 struct value *discrim;
6605 LONGEST discrim_val;
6607 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6608 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6609 if (discrim == NULL)
6610 return -1;
6611 discrim_val = value_as_long (discrim);
6613 others_clause = -1;
6614 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6616 if (ada_is_others_clause (var_type, i))
6617 others_clause = i;
6618 else if (ada_in_variant (discrim_val, var_type, i))
6619 return i;
6622 return others_clause;
6627 /* Dynamic-Sized Records */
6629 /* Strategy: The type ostensibly attached to a value with dynamic size
6630 (i.e., a size that is not statically recorded in the debugging
6631 data) does not accurately reflect the size or layout of the value.
6632 Our strategy is to convert these values to values with accurate,
6633 conventional types that are constructed on the fly. */
6635 /* There is a subtle and tricky problem here. In general, we cannot
6636 determine the size of dynamic records without its data. However,
6637 the 'struct value' data structure, which GDB uses to represent
6638 quantities in the inferior process (the target), requires the size
6639 of the type at the time of its allocation in order to reserve space
6640 for GDB's internal copy of the data. That's why the
6641 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6642 rather than struct value*s.
6644 However, GDB's internal history variables ($1, $2, etc.) are
6645 struct value*s containing internal copies of the data that are not, in
6646 general, the same as the data at their corresponding addresses in
6647 the target. Fortunately, the types we give to these values are all
6648 conventional, fixed-size types (as per the strategy described
6649 above), so that we don't usually have to perform the
6650 'to_fixed_xxx_type' conversions to look at their values.
6651 Unfortunately, there is one exception: if one of the internal
6652 history variables is an array whose elements are unconstrained
6653 records, then we will need to create distinct fixed types for each
6654 element selected. */
6656 /* The upshot of all of this is that many routines take a (type, host
6657 address, target address) triple as arguments to represent a value.
6658 The host address, if non-null, is supposed to contain an internal
6659 copy of the relevant data; otherwise, the program is to consult the
6660 target at the target address. */
6662 /* Assuming that VAL0 represents a pointer value, the result of
6663 dereferencing it. Differs from value_ind in its treatment of
6664 dynamic-sized types. */
6666 struct value *
6667 ada_value_ind (struct value *val0)
6669 struct value *val = unwrap_value (value_ind (val0));
6670 return ada_to_fixed_value (val);
6673 /* The value resulting from dereferencing any "reference to"
6674 qualifiers on VAL0. */
6676 static struct value *
6677 ada_coerce_ref (struct value *val0)
6679 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6681 struct value *val = val0;
6682 val = coerce_ref (val);
6683 val = unwrap_value (val);
6684 return ada_to_fixed_value (val);
6686 else
6687 return val0;
6690 /* Return OFF rounded upward if necessary to a multiple of
6691 ALIGNMENT (a power of 2). */
6693 static unsigned int
6694 align_value (unsigned int off, unsigned int alignment)
6696 return (off + alignment - 1) & ~(alignment - 1);
6699 /* Return the bit alignment required for field #F of template type TYPE. */
6701 static unsigned int
6702 field_alignment (struct type *type, int f)
6704 const char *name = TYPE_FIELD_NAME (type, f);
6705 int len;
6706 int align_offset;
6708 /* The field name should never be null, unless the debugging information
6709 is somehow malformed. In this case, we assume the field does not
6710 require any alignment. */
6711 if (name == NULL)
6712 return 1;
6714 len = strlen (name);
6716 if (!isdigit (name[len - 1]))
6717 return 1;
6719 if (isdigit (name[len - 2]))
6720 align_offset = len - 2;
6721 else
6722 align_offset = len - 1;
6724 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6725 return TARGET_CHAR_BIT;
6727 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6730 /* Find a symbol named NAME. Ignores ambiguity. */
6732 struct symbol *
6733 ada_find_any_symbol (const char *name)
6735 struct symbol *sym;
6737 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6738 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6739 return sym;
6741 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6742 return sym;
6745 /* Find a type named NAME. Ignores ambiguity. */
6747 struct type *
6748 ada_find_any_type (const char *name)
6750 struct symbol *sym = ada_find_any_symbol (name);
6752 if (sym != NULL)
6753 return SYMBOL_TYPE (sym);
6755 return NULL;
6758 /* Given NAME and an associated BLOCK, search all symbols for
6759 NAME suffixed with "___XR", which is the ``renaming'' symbol
6760 associated to NAME. Return this symbol if found, return
6761 NULL otherwise. */
6763 struct symbol *
6764 ada_find_renaming_symbol (const char *name, struct block *block)
6766 struct symbol *sym;
6768 sym = find_old_style_renaming_symbol (name, block);
6770 if (sym != NULL)
6771 return sym;
6773 /* Not right yet. FIXME pnh 7/20/2007. */
6774 sym = ada_find_any_symbol (name);
6775 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6776 return sym;
6777 else
6778 return NULL;
6781 static struct symbol *
6782 find_old_style_renaming_symbol (const char *name, struct block *block)
6784 const struct symbol *function_sym = block_function (block);
6785 char *rename;
6787 if (function_sym != NULL)
6789 /* If the symbol is defined inside a function, NAME is not fully
6790 qualified. This means we need to prepend the function name
6791 as well as adding the ``___XR'' suffix to build the name of
6792 the associated renaming symbol. */
6793 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6794 /* Function names sometimes contain suffixes used
6795 for instance to qualify nested subprograms. When building
6796 the XR type name, we need to make sure that this suffix is
6797 not included. So do not include any suffix in the function
6798 name length below. */
6799 const int function_name_len = ada_name_prefix_len (function_name);
6800 const int rename_len = function_name_len + 2 /* "__" */
6801 + strlen (name) + 6 /* "___XR\0" */ ;
6803 /* Strip the suffix if necessary. */
6804 function_name[function_name_len] = '\0';
6806 /* Library-level functions are a special case, as GNAT adds
6807 a ``_ada_'' prefix to the function name to avoid namespace
6808 pollution. However, the renaming symbols themselves do not
6809 have this prefix, so we need to skip this prefix if present. */
6810 if (function_name_len > 5 /* "_ada_" */
6811 && strstr (function_name, "_ada_") == function_name)
6812 function_name = function_name + 5;
6814 rename = (char *) alloca (rename_len * sizeof (char));
6815 sprintf (rename, "%s__%s___XR", function_name, name);
6817 else
6819 const int rename_len = strlen (name) + 6;
6820 rename = (char *) alloca (rename_len * sizeof (char));
6821 sprintf (rename, "%s___XR", name);
6824 return ada_find_any_symbol (rename);
6827 /* Because of GNAT encoding conventions, several GDB symbols may match a
6828 given type name. If the type denoted by TYPE0 is to be preferred to
6829 that of TYPE1 for purposes of type printing, return non-zero;
6830 otherwise return 0. */
6833 ada_prefer_type (struct type *type0, struct type *type1)
6835 if (type1 == NULL)
6836 return 1;
6837 else if (type0 == NULL)
6838 return 0;
6839 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6840 return 1;
6841 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6842 return 0;
6843 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6844 return 1;
6845 else if (ada_is_packed_array_type (type0))
6846 return 1;
6847 else if (ada_is_array_descriptor_type (type0)
6848 && !ada_is_array_descriptor_type (type1))
6849 return 1;
6850 else
6852 const char *type0_name = type_name_no_tag (type0);
6853 const char *type1_name = type_name_no_tag (type1);
6855 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6856 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6857 return 1;
6859 return 0;
6862 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6863 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6865 char *
6866 ada_type_name (struct type *type)
6868 if (type == NULL)
6869 return NULL;
6870 else if (TYPE_NAME (type) != NULL)
6871 return TYPE_NAME (type);
6872 else
6873 return TYPE_TAG_NAME (type);
6876 /* Find a parallel type to TYPE whose name is formed by appending
6877 SUFFIX to the name of TYPE. */
6879 struct type *
6880 ada_find_parallel_type (struct type *type, const char *suffix)
6882 static char *name;
6883 static size_t name_len = 0;
6884 int len;
6885 char *typename = ada_type_name (type);
6887 if (typename == NULL)
6888 return NULL;
6890 len = strlen (typename);
6892 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6894 strcpy (name, typename);
6895 strcpy (name + len, suffix);
6897 return ada_find_any_type (name);
6901 /* If TYPE is a variable-size record type, return the corresponding template
6902 type describing its fields. Otherwise, return NULL. */
6904 static struct type *
6905 dynamic_template_type (struct type *type)
6907 type = ada_check_typedef (type);
6909 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6910 || ada_type_name (type) == NULL)
6911 return NULL;
6912 else
6914 int len = strlen (ada_type_name (type));
6915 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6916 return type;
6917 else
6918 return ada_find_parallel_type (type, "___XVE");
6922 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6923 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6925 static int
6926 is_dynamic_field (struct type *templ_type, int field_num)
6928 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6929 return name != NULL
6930 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6931 && strstr (name, "___XVL") != NULL;
6934 /* The index of the variant field of TYPE, or -1 if TYPE does not
6935 represent a variant record type. */
6937 static int
6938 variant_field_index (struct type *type)
6940 int f;
6942 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6943 return -1;
6945 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6947 if (ada_is_variant_part (type, f))
6948 return f;
6950 return -1;
6953 /* A record type with no fields. */
6955 static struct type *
6956 empty_record (struct objfile *objfile)
6958 struct type *type = alloc_type (objfile);
6959 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6960 TYPE_NFIELDS (type) = 0;
6961 TYPE_FIELDS (type) = NULL;
6962 TYPE_NAME (type) = "<empty>";
6963 TYPE_TAG_NAME (type) = NULL;
6964 TYPE_FLAGS (type) = 0;
6965 TYPE_LENGTH (type) = 0;
6966 return type;
6969 /* An ordinary record type (with fixed-length fields) that describes
6970 the value of type TYPE at VALADDR or ADDRESS (see comments at
6971 the beginning of this section) VAL according to GNAT conventions.
6972 DVAL0 should describe the (portion of a) record that contains any
6973 necessary discriminants. It should be NULL if value_type (VAL) is
6974 an outer-level type (i.e., as opposed to a branch of a variant.) A
6975 variant field (unless unchecked) is replaced by a particular branch
6976 of the variant.
6978 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6979 length are not statically known are discarded. As a consequence,
6980 VALADDR, ADDRESS and DVAL0 are ignored.
6982 NOTE: Limitations: For now, we assume that dynamic fields and
6983 variants occupy whole numbers of bytes. However, they need not be
6984 byte-aligned. */
6986 struct type *
6987 ada_template_to_fixed_record_type_1 (struct type *type,
6988 const gdb_byte *valaddr,
6989 CORE_ADDR address, struct value *dval0,
6990 int keep_dynamic_fields)
6992 struct value *mark = value_mark ();
6993 struct value *dval;
6994 struct type *rtype;
6995 int nfields, bit_len;
6996 int variant_field;
6997 long off;
6998 int fld_bit_len, bit_incr;
6999 int f;
7001 /* Compute the number of fields in this record type that are going
7002 to be processed: unless keep_dynamic_fields, this includes only
7003 fields whose position and length are static will be processed. */
7004 if (keep_dynamic_fields)
7005 nfields = TYPE_NFIELDS (type);
7006 else
7008 nfields = 0;
7009 while (nfields < TYPE_NFIELDS (type)
7010 && !ada_is_variant_part (type, nfields)
7011 && !is_dynamic_field (type, nfields))
7012 nfields++;
7015 rtype = alloc_type (TYPE_OBJFILE (type));
7016 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7017 INIT_CPLUS_SPECIFIC (rtype);
7018 TYPE_NFIELDS (rtype) = nfields;
7019 TYPE_FIELDS (rtype) = (struct field *)
7020 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7021 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7022 TYPE_NAME (rtype) = ada_type_name (type);
7023 TYPE_TAG_NAME (rtype) = NULL;
7024 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
7026 off = 0;
7027 bit_len = 0;
7028 variant_field = -1;
7030 for (f = 0; f < nfields; f += 1)
7032 off = align_value (off, field_alignment (type, f))
7033 + TYPE_FIELD_BITPOS (type, f);
7034 TYPE_FIELD_BITPOS (rtype, f) = off;
7035 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7037 if (ada_is_variant_part (type, f))
7039 variant_field = f;
7040 fld_bit_len = bit_incr = 0;
7042 else if (is_dynamic_field (type, f))
7044 if (dval0 == NULL)
7045 dval = value_from_contents_and_address (rtype, valaddr, address);
7046 else
7047 dval = dval0;
7049 /* Get the fixed type of the field. Note that, in this case, we
7050 do not want to get the real type out of the tag: if the current
7051 field is the parent part of a tagged record, we will get the
7052 tag of the object. Clearly wrong: the real type of the parent
7053 is not the real type of the child. We would end up in an infinite
7054 loop. */
7055 TYPE_FIELD_TYPE (rtype, f) =
7056 ada_to_fixed_type
7057 (ada_get_base_type
7058 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
7059 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7060 cond_offset_target (address, off / TARGET_CHAR_BIT), dval, 0);
7061 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7062 bit_incr = fld_bit_len =
7063 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7065 else
7067 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7068 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7069 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7070 bit_incr = fld_bit_len =
7071 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7072 else
7073 bit_incr = fld_bit_len =
7074 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
7076 if (off + fld_bit_len > bit_len)
7077 bit_len = off + fld_bit_len;
7078 off += bit_incr;
7079 TYPE_LENGTH (rtype) =
7080 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7083 /* We handle the variant part, if any, at the end because of certain
7084 odd cases in which it is re-ordered so as NOT the last field of
7085 the record. This can happen in the presence of representation
7086 clauses. */
7087 if (variant_field >= 0)
7089 struct type *branch_type;
7091 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7093 if (dval0 == NULL)
7094 dval = value_from_contents_and_address (rtype, valaddr, address);
7095 else
7096 dval = dval0;
7098 branch_type =
7099 to_fixed_variant_branch_type
7100 (TYPE_FIELD_TYPE (type, variant_field),
7101 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7102 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7103 if (branch_type == NULL)
7105 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7106 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7107 TYPE_NFIELDS (rtype) -= 1;
7109 else
7111 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7112 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7113 fld_bit_len =
7114 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7115 TARGET_CHAR_BIT;
7116 if (off + fld_bit_len > bit_len)
7117 bit_len = off + fld_bit_len;
7118 TYPE_LENGTH (rtype) =
7119 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7123 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7124 should contain the alignment of that record, which should be a strictly
7125 positive value. If null or negative, then something is wrong, most
7126 probably in the debug info. In that case, we don't round up the size
7127 of the resulting type. If this record is not part of another structure,
7128 the current RTYPE length might be good enough for our purposes. */
7129 if (TYPE_LENGTH (type) <= 0)
7131 if (TYPE_NAME (rtype))
7132 warning (_("Invalid type size for `%s' detected: %d."),
7133 TYPE_NAME (rtype), TYPE_LENGTH (type));
7134 else
7135 warning (_("Invalid type size for <unnamed> detected: %d."),
7136 TYPE_LENGTH (type));
7138 else
7140 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7141 TYPE_LENGTH (type));
7144 value_free_to_mark (mark);
7145 if (TYPE_LENGTH (rtype) > varsize_limit)
7146 error (_("record type with dynamic size is larger than varsize-limit"));
7147 return rtype;
7150 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7151 of 1. */
7153 static struct type *
7154 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7155 CORE_ADDR address, struct value *dval0)
7157 return ada_template_to_fixed_record_type_1 (type, valaddr,
7158 address, dval0, 1);
7161 /* An ordinary record type in which ___XVL-convention fields and
7162 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7163 static approximations, containing all possible fields. Uses
7164 no runtime values. Useless for use in values, but that's OK,
7165 since the results are used only for type determinations. Works on both
7166 structs and unions. Representation note: to save space, we memorize
7167 the result of this function in the TYPE_TARGET_TYPE of the
7168 template type. */
7170 static struct type *
7171 template_to_static_fixed_type (struct type *type0)
7173 struct type *type;
7174 int nfields;
7175 int f;
7177 if (TYPE_TARGET_TYPE (type0) != NULL)
7178 return TYPE_TARGET_TYPE (type0);
7180 nfields = TYPE_NFIELDS (type0);
7181 type = type0;
7183 for (f = 0; f < nfields; f += 1)
7185 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7186 struct type *new_type;
7188 if (is_dynamic_field (type0, f))
7189 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7190 else
7191 new_type = static_unwrap_type (field_type);
7192 if (type == type0 && new_type != field_type)
7194 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
7195 TYPE_CODE (type) = TYPE_CODE (type0);
7196 INIT_CPLUS_SPECIFIC (type);
7197 TYPE_NFIELDS (type) = nfields;
7198 TYPE_FIELDS (type) = (struct field *)
7199 TYPE_ALLOC (type, nfields * sizeof (struct field));
7200 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7201 sizeof (struct field) * nfields);
7202 TYPE_NAME (type) = ada_type_name (type0);
7203 TYPE_TAG_NAME (type) = NULL;
7204 TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE;
7205 TYPE_LENGTH (type) = 0;
7207 TYPE_FIELD_TYPE (type, f) = new_type;
7208 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7210 return type;
7213 /* Given an object of type TYPE whose contents are at VALADDR and
7214 whose address in memory is ADDRESS, returns a revision of TYPE --
7215 a non-dynamic-sized record with a variant part -- in which
7216 the variant part is replaced with the appropriate branch. Looks
7217 for discriminant values in DVAL0, which can be NULL if the record
7218 contains the necessary discriminant values. */
7220 static struct type *
7221 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7222 CORE_ADDR address, struct value *dval0)
7224 struct value *mark = value_mark ();
7225 struct value *dval;
7226 struct type *rtype;
7227 struct type *branch_type;
7228 int nfields = TYPE_NFIELDS (type);
7229 int variant_field = variant_field_index (type);
7231 if (variant_field == -1)
7232 return type;
7234 if (dval0 == NULL)
7235 dval = value_from_contents_and_address (type, valaddr, address);
7236 else
7237 dval = dval0;
7239 rtype = alloc_type (TYPE_OBJFILE (type));
7240 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7241 INIT_CPLUS_SPECIFIC (rtype);
7242 TYPE_NFIELDS (rtype) = nfields;
7243 TYPE_FIELDS (rtype) =
7244 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7245 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7246 sizeof (struct field) * nfields);
7247 TYPE_NAME (rtype) = ada_type_name (type);
7248 TYPE_TAG_NAME (rtype) = NULL;
7249 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
7250 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7252 branch_type = to_fixed_variant_branch_type
7253 (TYPE_FIELD_TYPE (type, variant_field),
7254 cond_offset_host (valaddr,
7255 TYPE_FIELD_BITPOS (type, variant_field)
7256 / TARGET_CHAR_BIT),
7257 cond_offset_target (address,
7258 TYPE_FIELD_BITPOS (type, variant_field)
7259 / TARGET_CHAR_BIT), dval);
7260 if (branch_type == NULL)
7262 int f;
7263 for (f = variant_field + 1; f < nfields; f += 1)
7264 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7265 TYPE_NFIELDS (rtype) -= 1;
7267 else
7269 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7270 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7271 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7272 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7274 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7276 value_free_to_mark (mark);
7277 return rtype;
7280 /* An ordinary record type (with fixed-length fields) that describes
7281 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7282 beginning of this section]. Any necessary discriminants' values
7283 should be in DVAL, a record value; it may be NULL if the object
7284 at ADDR itself contains any necessary discriminant values.
7285 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7286 values from the record are needed. Except in the case that DVAL,
7287 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7288 unchecked) is replaced by a particular branch of the variant.
7290 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7291 is questionable and may be removed. It can arise during the
7292 processing of an unconstrained-array-of-record type where all the
7293 variant branches have exactly the same size. This is because in
7294 such cases, the compiler does not bother to use the XVS convention
7295 when encoding the record. I am currently dubious of this
7296 shortcut and suspect the compiler should be altered. FIXME. */
7298 static struct type *
7299 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7300 CORE_ADDR address, struct value *dval)
7302 struct type *templ_type;
7304 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
7305 return type0;
7307 templ_type = dynamic_template_type (type0);
7309 if (templ_type != NULL)
7310 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7311 else if (variant_field_index (type0) >= 0)
7313 if (dval == NULL && valaddr == NULL && address == 0)
7314 return type0;
7315 return to_record_with_fixed_variant_part (type0, valaddr, address,
7316 dval);
7318 else
7320 TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE;
7321 return type0;
7326 /* An ordinary record type (with fixed-length fields) that describes
7327 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7328 union type. Any necessary discriminants' values should be in DVAL,
7329 a record value. That is, this routine selects the appropriate
7330 branch of the union at ADDR according to the discriminant value
7331 indicated in the union's type name. */
7333 static struct type *
7334 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7335 CORE_ADDR address, struct value *dval)
7337 int which;
7338 struct type *templ_type;
7339 struct type *var_type;
7341 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7342 var_type = TYPE_TARGET_TYPE (var_type0);
7343 else
7344 var_type = var_type0;
7346 templ_type = ada_find_parallel_type (var_type, "___XVU");
7348 if (templ_type != NULL)
7349 var_type = templ_type;
7351 which =
7352 ada_which_variant_applies (var_type,
7353 value_type (dval), value_contents (dval));
7355 if (which < 0)
7356 return empty_record (TYPE_OBJFILE (var_type));
7357 else if (is_dynamic_field (var_type, which))
7358 return to_fixed_record_type
7359 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7360 valaddr, address, dval);
7361 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7362 return
7363 to_fixed_record_type
7364 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7365 else
7366 return TYPE_FIELD_TYPE (var_type, which);
7369 /* Assuming that TYPE0 is an array type describing the type of a value
7370 at ADDR, and that DVAL describes a record containing any
7371 discriminants used in TYPE0, returns a type for the value that
7372 contains no dynamic components (that is, no components whose sizes
7373 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7374 true, gives an error message if the resulting type's size is over
7375 varsize_limit. */
7377 static struct type *
7378 to_fixed_array_type (struct type *type0, struct value *dval,
7379 int ignore_too_big)
7381 struct type *index_type_desc;
7382 struct type *result;
7384 if (ada_is_packed_array_type (type0) /* revisit? */
7385 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
7386 return type0;
7388 index_type_desc = ada_find_parallel_type (type0, "___XA");
7389 if (index_type_desc == NULL)
7391 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7392 /* NOTE: elt_type---the fixed version of elt_type0---should never
7393 depend on the contents of the array in properly constructed
7394 debugging data. */
7395 /* Create a fixed version of the array element type.
7396 We're not providing the address of an element here,
7397 and thus the actual object value cannot be inspected to do
7398 the conversion. This should not be a problem, since arrays of
7399 unconstrained objects are not allowed. In particular, all
7400 the elements of an array of a tagged type should all be of
7401 the same type specified in the debugging info. No need to
7402 consult the object tag. */
7403 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7405 if (elt_type0 == elt_type)
7406 result = type0;
7407 else
7408 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7409 elt_type, TYPE_INDEX_TYPE (type0));
7411 else
7413 int i;
7414 struct type *elt_type0;
7416 elt_type0 = type0;
7417 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7418 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7420 /* NOTE: result---the fixed version of elt_type0---should never
7421 depend on the contents of the array in properly constructed
7422 debugging data. */
7423 /* Create a fixed version of the array element type.
7424 We're not providing the address of an element here,
7425 and thus the actual object value cannot be inspected to do
7426 the conversion. This should not be a problem, since arrays of
7427 unconstrained objects are not allowed. In particular, all
7428 the elements of an array of a tagged type should all be of
7429 the same type specified in the debugging info. No need to
7430 consult the object tag. */
7431 result =
7432 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7433 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7435 struct type *range_type =
7436 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7437 dval, TYPE_OBJFILE (type0));
7438 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7439 result, range_type);
7441 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7442 error (_("array type with dynamic size is larger than varsize-limit"));
7445 TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE;
7446 return result;
7450 /* A standard type (containing no dynamically sized components)
7451 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7452 DVAL describes a record containing any discriminants used in TYPE0,
7453 and may be NULL if there are none, or if the object of type TYPE at
7454 ADDRESS or in VALADDR contains these discriminants.
7456 If CHECK_TAG is not null, in the case of tagged types, this function
7457 attempts to locate the object's tag and use it to compute the actual
7458 type. However, when ADDRESS is null, we cannot use it to determine the
7459 location of the tag, and therefore compute the tagged type's actual type.
7460 So we return the tagged type without consulting the tag. */
7462 static struct type *
7463 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7464 CORE_ADDR address, struct value *dval, int check_tag)
7466 type = ada_check_typedef (type);
7467 switch (TYPE_CODE (type))
7469 default:
7470 return type;
7471 case TYPE_CODE_STRUCT:
7473 struct type *static_type = to_static_fixed_type (type);
7474 struct type *fixed_record_type =
7475 to_fixed_record_type (type, valaddr, address, NULL);
7476 /* If STATIC_TYPE is a tagged type and we know the object's address,
7477 then we can determine its tag, and compute the object's actual
7478 type from there. Note that we have to use the fixed record
7479 type (the parent part of the record may have dynamic fields
7480 and the way the location of _tag is expressed may depend on
7481 them). */
7483 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7485 struct type *real_type =
7486 type_from_tag (value_tag_from_contents_and_address
7487 (fixed_record_type,
7488 valaddr,
7489 address));
7490 if (real_type != NULL)
7491 return to_fixed_record_type (real_type, valaddr, address, NULL);
7493 return fixed_record_type;
7495 case TYPE_CODE_ARRAY:
7496 return to_fixed_array_type (type, dval, 1);
7497 case TYPE_CODE_UNION:
7498 if (dval == NULL)
7499 return type;
7500 else
7501 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7505 /* The same as ada_to_fixed_type_1, except that it preserves the type
7506 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7507 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7509 struct type *
7510 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7511 CORE_ADDR address, struct value *dval, int check_tag)
7514 struct type *fixed_type =
7515 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7517 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7518 && TYPE_TARGET_TYPE (type) == fixed_type)
7519 return type;
7521 return fixed_type;
7524 /* A standard (static-sized) type corresponding as well as possible to
7525 TYPE0, but based on no runtime data. */
7527 static struct type *
7528 to_static_fixed_type (struct type *type0)
7530 struct type *type;
7532 if (type0 == NULL)
7533 return NULL;
7535 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
7536 return type0;
7538 type0 = ada_check_typedef (type0);
7540 switch (TYPE_CODE (type0))
7542 default:
7543 return type0;
7544 case TYPE_CODE_STRUCT:
7545 type = dynamic_template_type (type0);
7546 if (type != NULL)
7547 return template_to_static_fixed_type (type);
7548 else
7549 return template_to_static_fixed_type (type0);
7550 case TYPE_CODE_UNION:
7551 type = ada_find_parallel_type (type0, "___XVU");
7552 if (type != NULL)
7553 return template_to_static_fixed_type (type);
7554 else
7555 return template_to_static_fixed_type (type0);
7559 /* A static approximation of TYPE with all type wrappers removed. */
7561 static struct type *
7562 static_unwrap_type (struct type *type)
7564 if (ada_is_aligner_type (type))
7566 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7567 if (ada_type_name (type1) == NULL)
7568 TYPE_NAME (type1) = ada_type_name (type);
7570 return static_unwrap_type (type1);
7572 else
7574 struct type *raw_real_type = ada_get_base_type (type);
7575 if (raw_real_type == type)
7576 return type;
7577 else
7578 return to_static_fixed_type (raw_real_type);
7582 /* In some cases, incomplete and private types require
7583 cross-references that are not resolved as records (for example,
7584 type Foo;
7585 type FooP is access Foo;
7586 V: FooP;
7587 type Foo is array ...;
7588 ). In these cases, since there is no mechanism for producing
7589 cross-references to such types, we instead substitute for FooP a
7590 stub enumeration type that is nowhere resolved, and whose tag is
7591 the name of the actual type. Call these types "non-record stubs". */
7593 /* A type equivalent to TYPE that is not a non-record stub, if one
7594 exists, otherwise TYPE. */
7596 struct type *
7597 ada_check_typedef (struct type *type)
7599 if (type == NULL)
7600 return NULL;
7602 CHECK_TYPEDEF (type);
7603 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7604 || !TYPE_STUB (type)
7605 || TYPE_TAG_NAME (type) == NULL)
7606 return type;
7607 else
7609 char *name = TYPE_TAG_NAME (type);
7610 struct type *type1 = ada_find_any_type (name);
7611 return (type1 == NULL) ? type : type1;
7615 /* A value representing the data at VALADDR/ADDRESS as described by
7616 type TYPE0, but with a standard (static-sized) type that correctly
7617 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7618 type, then return VAL0 [this feature is simply to avoid redundant
7619 creation of struct values]. */
7621 static struct value *
7622 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7623 struct value *val0)
7625 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7626 if (type == type0 && val0 != NULL)
7627 return val0;
7628 else
7629 return value_from_contents_and_address (type, 0, address);
7632 /* A value representing VAL, but with a standard (static-sized) type
7633 that correctly describes it. Does not necessarily create a new
7634 value. */
7636 static struct value *
7637 ada_to_fixed_value (struct value *val)
7639 return ada_to_fixed_value_create (value_type (val),
7640 VALUE_ADDRESS (val) + value_offset (val),
7641 val);
7644 /* A value representing VAL, but with a standard (static-sized) type
7645 chosen to approximate the real type of VAL as well as possible, but
7646 without consulting any runtime values. For Ada dynamic-sized
7647 types, therefore, the type of the result is likely to be inaccurate. */
7649 struct value *
7650 ada_to_static_fixed_value (struct value *val)
7652 struct type *type =
7653 to_static_fixed_type (static_unwrap_type (value_type (val)));
7654 if (type == value_type (val))
7655 return val;
7656 else
7657 return coerce_unspec_val_to_type (val, type);
7661 /* Attributes */
7663 /* Table mapping attribute numbers to names.
7664 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7666 static const char *attribute_names[] = {
7667 "<?>",
7669 "first",
7670 "last",
7671 "length",
7672 "image",
7673 "max",
7674 "min",
7675 "modulus",
7676 "pos",
7677 "size",
7678 "tag",
7679 "val",
7683 const char *
7684 ada_attribute_name (enum exp_opcode n)
7686 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7687 return attribute_names[n - OP_ATR_FIRST + 1];
7688 else
7689 return attribute_names[0];
7692 /* Evaluate the 'POS attribute applied to ARG. */
7694 static LONGEST
7695 pos_atr (struct value *arg)
7697 struct type *type = value_type (arg);
7699 if (!discrete_type_p (type))
7700 error (_("'POS only defined on discrete types"));
7702 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7704 int i;
7705 LONGEST v = value_as_long (arg);
7707 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7709 if (v == TYPE_FIELD_BITPOS (type, i))
7710 return i;
7712 error (_("enumeration value is invalid: can't find 'POS"));
7714 else
7715 return value_as_long (arg);
7718 static struct value *
7719 value_pos_atr (struct value *arg)
7721 return value_from_longest (builtin_type_int, pos_atr (arg));
7724 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7726 static struct value *
7727 value_val_atr (struct type *type, struct value *arg)
7729 if (!discrete_type_p (type))
7730 error (_("'VAL only defined on discrete types"));
7731 if (!integer_type_p (value_type (arg)))
7732 error (_("'VAL requires integral argument"));
7734 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7736 long pos = value_as_long (arg);
7737 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7738 error (_("argument to 'VAL out of range"));
7739 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7741 else
7742 return value_from_longest (type, value_as_long (arg));
7746 /* Evaluation */
7748 /* True if TYPE appears to be an Ada character type.
7749 [At the moment, this is true only for Character and Wide_Character;
7750 It is a heuristic test that could stand improvement]. */
7753 ada_is_character_type (struct type *type)
7755 const char *name;
7757 /* If the type code says it's a character, then assume it really is,
7758 and don't check any further. */
7759 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7760 return 1;
7762 /* Otherwise, assume it's a character type iff it is a discrete type
7763 with a known character type name. */
7764 name = ada_type_name (type);
7765 return (name != NULL
7766 && (TYPE_CODE (type) == TYPE_CODE_INT
7767 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7768 && (strcmp (name, "character") == 0
7769 || strcmp (name, "wide_character") == 0
7770 || strcmp (name, "wide_wide_character") == 0
7771 || strcmp (name, "unsigned char") == 0));
7774 /* True if TYPE appears to be an Ada string type. */
7777 ada_is_string_type (struct type *type)
7779 type = ada_check_typedef (type);
7780 if (type != NULL
7781 && TYPE_CODE (type) != TYPE_CODE_PTR
7782 && (ada_is_simple_array_type (type)
7783 || ada_is_array_descriptor_type (type))
7784 && ada_array_arity (type) == 1)
7786 struct type *elttype = ada_array_element_type (type, 1);
7788 return ada_is_character_type (elttype);
7790 else
7791 return 0;
7795 /* True if TYPE is a struct type introduced by the compiler to force the
7796 alignment of a value. Such types have a single field with a
7797 distinctive name. */
7800 ada_is_aligner_type (struct type *type)
7802 type = ada_check_typedef (type);
7804 /* If we can find a parallel XVS type, then the XVS type should
7805 be used instead of this type. And hence, this is not an aligner
7806 type. */
7807 if (ada_find_parallel_type (type, "___XVS") != NULL)
7808 return 0;
7810 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7811 && TYPE_NFIELDS (type) == 1
7812 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7815 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7816 the parallel type. */
7818 struct type *
7819 ada_get_base_type (struct type *raw_type)
7821 struct type *real_type_namer;
7822 struct type *raw_real_type;
7824 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7825 return raw_type;
7827 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7828 if (real_type_namer == NULL
7829 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7830 || TYPE_NFIELDS (real_type_namer) != 1)
7831 return raw_type;
7833 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7834 if (raw_real_type == NULL)
7835 return raw_type;
7836 else
7837 return raw_real_type;
7840 /* The type of value designated by TYPE, with all aligners removed. */
7842 struct type *
7843 ada_aligned_type (struct type *type)
7845 if (ada_is_aligner_type (type))
7846 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7847 else
7848 return ada_get_base_type (type);
7852 /* The address of the aligned value in an object at address VALADDR
7853 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7855 const gdb_byte *
7856 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7858 if (ada_is_aligner_type (type))
7859 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7860 valaddr +
7861 TYPE_FIELD_BITPOS (type,
7862 0) / TARGET_CHAR_BIT);
7863 else
7864 return valaddr;
7869 /* The printed representation of an enumeration literal with encoded
7870 name NAME. The value is good to the next call of ada_enum_name. */
7871 const char *
7872 ada_enum_name (const char *name)
7874 static char *result;
7875 static size_t result_len = 0;
7876 char *tmp;
7878 /* First, unqualify the enumeration name:
7879 1. Search for the last '.' character. If we find one, then skip
7880 all the preceeding characters, the unqualified name starts
7881 right after that dot.
7882 2. Otherwise, we may be debugging on a target where the compiler
7883 translates dots into "__". Search forward for double underscores,
7884 but stop searching when we hit an overloading suffix, which is
7885 of the form "__" followed by digits. */
7887 tmp = strrchr (name, '.');
7888 if (tmp != NULL)
7889 name = tmp + 1;
7890 else
7892 while ((tmp = strstr (name, "__")) != NULL)
7894 if (isdigit (tmp[2]))
7895 break;
7896 else
7897 name = tmp + 2;
7901 if (name[0] == 'Q')
7903 int v;
7904 if (name[1] == 'U' || name[1] == 'W')
7906 if (sscanf (name + 2, "%x", &v) != 1)
7907 return name;
7909 else
7910 return name;
7912 GROW_VECT (result, result_len, 16);
7913 if (isascii (v) && isprint (v))
7914 sprintf (result, "'%c'", v);
7915 else if (name[1] == 'U')
7916 sprintf (result, "[\"%02x\"]", v);
7917 else
7918 sprintf (result, "[\"%04x\"]", v);
7920 return result;
7922 else
7924 tmp = strstr (name, "__");
7925 if (tmp == NULL)
7926 tmp = strstr (name, "$");
7927 if (tmp != NULL)
7929 GROW_VECT (result, result_len, tmp - name + 1);
7930 strncpy (result, name, tmp - name);
7931 result[tmp - name] = '\0';
7932 return result;
7935 return name;
7939 static struct value *
7940 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7941 enum noside noside)
7943 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7944 (expect_type, exp, pos, noside);
7947 /* Evaluate the subexpression of EXP starting at *POS as for
7948 evaluate_type, updating *POS to point just past the evaluated
7949 expression. */
7951 static struct value *
7952 evaluate_subexp_type (struct expression *exp, int *pos)
7954 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7955 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7958 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7959 value it wraps. */
7961 static struct value *
7962 unwrap_value (struct value *val)
7964 struct type *type = ada_check_typedef (value_type (val));
7965 if (ada_is_aligner_type (type))
7967 struct value *v = value_struct_elt (&val, NULL, "F",
7968 NULL, "internal structure");
7969 struct type *val_type = ada_check_typedef (value_type (v));
7970 if (ada_type_name (val_type) == NULL)
7971 TYPE_NAME (val_type) = ada_type_name (type);
7973 return unwrap_value (v);
7975 else
7977 struct type *raw_real_type =
7978 ada_check_typedef (ada_get_base_type (type));
7980 if (type == raw_real_type)
7981 return val;
7983 return
7984 coerce_unspec_val_to_type
7985 (val, ada_to_fixed_type (raw_real_type, 0,
7986 VALUE_ADDRESS (val) + value_offset (val),
7987 NULL, 1));
7991 static struct value *
7992 cast_to_fixed (struct type *type, struct value *arg)
7994 LONGEST val;
7996 if (type == value_type (arg))
7997 return arg;
7998 else if (ada_is_fixed_point_type (value_type (arg)))
7999 val = ada_float_to_fixed (type,
8000 ada_fixed_to_float (value_type (arg),
8001 value_as_long (arg)));
8002 else
8004 DOUBLEST argd =
8005 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
8006 val = ada_float_to_fixed (type, argd);
8009 return value_from_longest (type, val);
8012 static struct value *
8013 cast_from_fixed_to_double (struct value *arg)
8015 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8016 value_as_long (arg));
8017 return value_from_double (builtin_type_double, val);
8020 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8021 return the converted value. */
8023 static struct value *
8024 coerce_for_assign (struct type *type, struct value *val)
8026 struct type *type2 = value_type (val);
8027 if (type == type2)
8028 return val;
8030 type2 = ada_check_typedef (type2);
8031 type = ada_check_typedef (type);
8033 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8034 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8036 val = ada_value_ind (val);
8037 type2 = value_type (val);
8040 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8041 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8043 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8044 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8045 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8046 error (_("Incompatible types in assignment"));
8047 deprecated_set_value_type (val, type);
8049 return val;
8052 static struct value *
8053 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8055 struct value *val;
8056 struct type *type1, *type2;
8057 LONGEST v, v1, v2;
8059 arg1 = coerce_ref (arg1);
8060 arg2 = coerce_ref (arg2);
8061 type1 = base_type (ada_check_typedef (value_type (arg1)));
8062 type2 = base_type (ada_check_typedef (value_type (arg2)));
8064 if (TYPE_CODE (type1) != TYPE_CODE_INT
8065 || TYPE_CODE (type2) != TYPE_CODE_INT)
8066 return value_binop (arg1, arg2, op);
8068 switch (op)
8070 case BINOP_MOD:
8071 case BINOP_DIV:
8072 case BINOP_REM:
8073 break;
8074 default:
8075 return value_binop (arg1, arg2, op);
8078 v2 = value_as_long (arg2);
8079 if (v2 == 0)
8080 error (_("second operand of %s must not be zero."), op_string (op));
8082 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8083 return value_binop (arg1, arg2, op);
8085 v1 = value_as_long (arg1);
8086 switch (op)
8088 case BINOP_DIV:
8089 v = v1 / v2;
8090 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8091 v += v > 0 ? -1 : 1;
8092 break;
8093 case BINOP_REM:
8094 v = v1 % v2;
8095 if (v * v1 < 0)
8096 v -= v2;
8097 break;
8098 default:
8099 /* Should not reach this point. */
8100 v = 0;
8103 val = allocate_value (type1);
8104 store_unsigned_integer (value_contents_raw (val),
8105 TYPE_LENGTH (value_type (val)), v);
8106 return val;
8109 static int
8110 ada_value_equal (struct value *arg1, struct value *arg2)
8112 if (ada_is_direct_array_type (value_type (arg1))
8113 || ada_is_direct_array_type (value_type (arg2)))
8115 /* Automatically dereference any array reference before
8116 we attempt to perform the comparison. */
8117 arg1 = ada_coerce_ref (arg1);
8118 arg2 = ada_coerce_ref (arg2);
8120 arg1 = ada_coerce_to_simple_array (arg1);
8121 arg2 = ada_coerce_to_simple_array (arg2);
8122 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8123 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8124 error (_("Attempt to compare array with non-array"));
8125 /* FIXME: The following works only for types whose
8126 representations use all bits (no padding or undefined bits)
8127 and do not have user-defined equality. */
8128 return
8129 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8130 && memcmp (value_contents (arg1), value_contents (arg2),
8131 TYPE_LENGTH (value_type (arg1))) == 0;
8133 return value_equal (arg1, arg2);
8136 /* Total number of component associations in the aggregate starting at
8137 index PC in EXP. Assumes that index PC is the start of an
8138 OP_AGGREGATE. */
8140 static int
8141 num_component_specs (struct expression *exp, int pc)
8143 int n, m, i;
8144 m = exp->elts[pc + 1].longconst;
8145 pc += 3;
8146 n = 0;
8147 for (i = 0; i < m; i += 1)
8149 switch (exp->elts[pc].opcode)
8151 default:
8152 n += 1;
8153 break;
8154 case OP_CHOICES:
8155 n += exp->elts[pc + 1].longconst;
8156 break;
8158 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8160 return n;
8163 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8164 component of LHS (a simple array or a record), updating *POS past
8165 the expression, assuming that LHS is contained in CONTAINER. Does
8166 not modify the inferior's memory, nor does it modify LHS (unless
8167 LHS == CONTAINER). */
8169 static void
8170 assign_component (struct value *container, struct value *lhs, LONGEST index,
8171 struct expression *exp, int *pos)
8173 struct value *mark = value_mark ();
8174 struct value *elt;
8175 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8177 struct value *index_val = value_from_longest (builtin_type_int, index);
8178 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8180 else
8182 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8183 elt = ada_to_fixed_value (unwrap_value (elt));
8186 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8187 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8188 else
8189 value_assign_to_component (container, elt,
8190 ada_evaluate_subexp (NULL, exp, pos,
8191 EVAL_NORMAL));
8193 value_free_to_mark (mark);
8196 /* Assuming that LHS represents an lvalue having a record or array
8197 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8198 of that aggregate's value to LHS, advancing *POS past the
8199 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8200 lvalue containing LHS (possibly LHS itself). Does not modify
8201 the inferior's memory, nor does it modify the contents of
8202 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8204 static struct value *
8205 assign_aggregate (struct value *container,
8206 struct value *lhs, struct expression *exp,
8207 int *pos, enum noside noside)
8209 struct type *lhs_type;
8210 int n = exp->elts[*pos+1].longconst;
8211 LONGEST low_index, high_index;
8212 int num_specs;
8213 LONGEST *indices;
8214 int max_indices, num_indices;
8215 int is_array_aggregate;
8216 int i;
8217 struct value *mark = value_mark ();
8219 *pos += 3;
8220 if (noside != EVAL_NORMAL)
8222 int i;
8223 for (i = 0; i < n; i += 1)
8224 ada_evaluate_subexp (NULL, exp, pos, noside);
8225 return container;
8228 container = ada_coerce_ref (container);
8229 if (ada_is_direct_array_type (value_type (container)))
8230 container = ada_coerce_to_simple_array (container);
8231 lhs = ada_coerce_ref (lhs);
8232 if (!deprecated_value_modifiable (lhs))
8233 error (_("Left operand of assignment is not a modifiable lvalue."));
8235 lhs_type = value_type (lhs);
8236 if (ada_is_direct_array_type (lhs_type))
8238 lhs = ada_coerce_to_simple_array (lhs);
8239 lhs_type = value_type (lhs);
8240 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8241 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8242 is_array_aggregate = 1;
8244 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8246 low_index = 0;
8247 high_index = num_visible_fields (lhs_type) - 1;
8248 is_array_aggregate = 0;
8250 else
8251 error (_("Left-hand side must be array or record."));
8253 num_specs = num_component_specs (exp, *pos - 3);
8254 max_indices = 4 * num_specs + 4;
8255 indices = alloca (max_indices * sizeof (indices[0]));
8256 indices[0] = indices[1] = low_index - 1;
8257 indices[2] = indices[3] = high_index + 1;
8258 num_indices = 4;
8260 for (i = 0; i < n; i += 1)
8262 switch (exp->elts[*pos].opcode)
8264 case OP_CHOICES:
8265 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8266 &num_indices, max_indices,
8267 low_index, high_index);
8268 break;
8269 case OP_POSITIONAL:
8270 aggregate_assign_positional (container, lhs, exp, pos, indices,
8271 &num_indices, max_indices,
8272 low_index, high_index);
8273 break;
8274 case OP_OTHERS:
8275 if (i != n-1)
8276 error (_("Misplaced 'others' clause"));
8277 aggregate_assign_others (container, lhs, exp, pos, indices,
8278 num_indices, low_index, high_index);
8279 break;
8280 default:
8281 error (_("Internal error: bad aggregate clause"));
8285 return container;
8288 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8289 construct at *POS, updating *POS past the construct, given that
8290 the positions are relative to lower bound LOW, where HIGH is the
8291 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8292 updating *NUM_INDICES as needed. CONTAINER is as for
8293 assign_aggregate. */
8294 static void
8295 aggregate_assign_positional (struct value *container,
8296 struct value *lhs, struct expression *exp,
8297 int *pos, LONGEST *indices, int *num_indices,
8298 int max_indices, LONGEST low, LONGEST high)
8300 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8302 if (ind - 1 == high)
8303 warning (_("Extra components in aggregate ignored."));
8304 if (ind <= high)
8306 add_component_interval (ind, ind, indices, num_indices, max_indices);
8307 *pos += 3;
8308 assign_component (container, lhs, ind, exp, pos);
8310 else
8311 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8314 /* Assign into the components of LHS indexed by the OP_CHOICES
8315 construct at *POS, updating *POS past the construct, given that
8316 the allowable indices are LOW..HIGH. Record the indices assigned
8317 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8318 needed. CONTAINER is as for assign_aggregate. */
8319 static void
8320 aggregate_assign_from_choices (struct value *container,
8321 struct value *lhs, struct expression *exp,
8322 int *pos, LONGEST *indices, int *num_indices,
8323 int max_indices, LONGEST low, LONGEST high)
8325 int j;
8326 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8327 int choice_pos, expr_pc;
8328 int is_array = ada_is_direct_array_type (value_type (lhs));
8330 choice_pos = *pos += 3;
8332 for (j = 0; j < n_choices; j += 1)
8333 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8334 expr_pc = *pos;
8335 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8337 for (j = 0; j < n_choices; j += 1)
8339 LONGEST lower, upper;
8340 enum exp_opcode op = exp->elts[choice_pos].opcode;
8341 if (op == OP_DISCRETE_RANGE)
8343 choice_pos += 1;
8344 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8345 EVAL_NORMAL));
8346 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8347 EVAL_NORMAL));
8349 else if (is_array)
8351 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8352 EVAL_NORMAL));
8353 upper = lower;
8355 else
8357 int ind;
8358 char *name;
8359 switch (op)
8361 case OP_NAME:
8362 name = &exp->elts[choice_pos + 2].string;
8363 break;
8364 case OP_VAR_VALUE:
8365 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8366 break;
8367 default:
8368 error (_("Invalid record component association."));
8370 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8371 ind = 0;
8372 if (! find_struct_field (name, value_type (lhs), 0,
8373 NULL, NULL, NULL, NULL, &ind))
8374 error (_("Unknown component name: %s."), name);
8375 lower = upper = ind;
8378 if (lower <= upper && (lower < low || upper > high))
8379 error (_("Index in component association out of bounds."));
8381 add_component_interval (lower, upper, indices, num_indices,
8382 max_indices);
8383 while (lower <= upper)
8385 int pos1;
8386 pos1 = expr_pc;
8387 assign_component (container, lhs, lower, exp, &pos1);
8388 lower += 1;
8393 /* Assign the value of the expression in the OP_OTHERS construct in
8394 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8395 have not been previously assigned. The index intervals already assigned
8396 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8397 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8398 static void
8399 aggregate_assign_others (struct value *container,
8400 struct value *lhs, struct expression *exp,
8401 int *pos, LONGEST *indices, int num_indices,
8402 LONGEST low, LONGEST high)
8404 int i;
8405 int expr_pc = *pos+1;
8407 for (i = 0; i < num_indices - 2; i += 2)
8409 LONGEST ind;
8410 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8412 int pos;
8413 pos = expr_pc;
8414 assign_component (container, lhs, ind, exp, &pos);
8417 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8420 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8421 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8422 modifying *SIZE as needed. It is an error if *SIZE exceeds
8423 MAX_SIZE. The resulting intervals do not overlap. */
8424 static void
8425 add_component_interval (LONGEST low, LONGEST high,
8426 LONGEST* indices, int *size, int max_size)
8428 int i, j;
8429 for (i = 0; i < *size; i += 2) {
8430 if (high >= indices[i] && low <= indices[i + 1])
8432 int kh;
8433 for (kh = i + 2; kh < *size; kh += 2)
8434 if (high < indices[kh])
8435 break;
8436 if (low < indices[i])
8437 indices[i] = low;
8438 indices[i + 1] = indices[kh - 1];
8439 if (high > indices[i + 1])
8440 indices[i + 1] = high;
8441 memcpy (indices + i + 2, indices + kh, *size - kh);
8442 *size -= kh - i - 2;
8443 return;
8445 else if (high < indices[i])
8446 break;
8449 if (*size == max_size)
8450 error (_("Internal error: miscounted aggregate components."));
8451 *size += 2;
8452 for (j = *size-1; j >= i+2; j -= 1)
8453 indices[j] = indices[j - 2];
8454 indices[i] = low;
8455 indices[i + 1] = high;
8458 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8459 is different. */
8461 static struct value *
8462 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8464 if (type == ada_check_typedef (value_type (arg2)))
8465 return arg2;
8467 if (ada_is_fixed_point_type (type))
8468 return (cast_to_fixed (type, arg2));
8470 if (ada_is_fixed_point_type (value_type (arg2)))
8471 return value_cast (type, cast_from_fixed_to_double (arg2));
8473 return value_cast (type, arg2);
8476 static struct value *
8477 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8478 int *pos, enum noside noside)
8480 enum exp_opcode op;
8481 int tem, tem2, tem3;
8482 int pc;
8483 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8484 struct type *type;
8485 int nargs, oplen;
8486 struct value **argvec;
8488 pc = *pos;
8489 *pos += 1;
8490 op = exp->elts[pc].opcode;
8492 switch (op)
8494 default:
8495 *pos -= 1;
8496 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8497 arg1 = unwrap_value (arg1);
8499 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8500 then we need to perform the conversion manually, because
8501 evaluate_subexp_standard doesn't do it. This conversion is
8502 necessary in Ada because the different kinds of float/fixed
8503 types in Ada have different representations.
8505 Similarly, we need to perform the conversion from OP_LONG
8506 ourselves. */
8507 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8508 arg1 = ada_value_cast (expect_type, arg1, noside);
8510 return arg1;
8512 case OP_STRING:
8514 struct value *result;
8515 *pos -= 1;
8516 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8517 /* The result type will have code OP_STRING, bashed there from
8518 OP_ARRAY. Bash it back. */
8519 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8520 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8521 return result;
8524 case UNOP_CAST:
8525 (*pos) += 2;
8526 type = exp->elts[pc + 1].type;
8527 arg1 = evaluate_subexp (type, exp, pos, noside);
8528 if (noside == EVAL_SKIP)
8529 goto nosideret;
8530 arg1 = ada_value_cast (type, arg1, noside);
8531 return arg1;
8533 case UNOP_QUAL:
8534 (*pos) += 2;
8535 type = exp->elts[pc + 1].type;
8536 return ada_evaluate_subexp (type, exp, pos, noside);
8538 case BINOP_ASSIGN:
8539 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8540 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8542 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8543 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8544 return arg1;
8545 return ada_value_assign (arg1, arg1);
8547 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8548 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8549 return arg1;
8550 if (ada_is_fixed_point_type (value_type (arg1)))
8551 arg2 = cast_to_fixed (value_type (arg1), arg2);
8552 else if (ada_is_fixed_point_type (value_type (arg2)))
8553 error
8554 (_("Fixed-point values must be assigned to fixed-point variables"));
8555 else
8556 arg2 = coerce_for_assign (value_type (arg1), arg2);
8557 return ada_value_assign (arg1, arg2);
8559 case BINOP_ADD:
8560 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8561 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8562 if (noside == EVAL_SKIP)
8563 goto nosideret;
8564 if ((ada_is_fixed_point_type (value_type (arg1))
8565 || ada_is_fixed_point_type (value_type (arg2)))
8566 && value_type (arg1) != value_type (arg2))
8567 error (_("Operands of fixed-point addition must have the same type"));
8568 /* Do the addition, and cast the result to the type of the first
8569 argument. We cannot cast the result to a reference type, so if
8570 ARG1 is a reference type, find its underlying type. */
8571 type = value_type (arg1);
8572 while (TYPE_CODE (type) == TYPE_CODE_REF)
8573 type = TYPE_TARGET_TYPE (type);
8574 return value_cast (type, value_add (arg1, arg2));
8576 case BINOP_SUB:
8577 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8578 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8579 if (noside == EVAL_SKIP)
8580 goto nosideret;
8581 if ((ada_is_fixed_point_type (value_type (arg1))
8582 || ada_is_fixed_point_type (value_type (arg2)))
8583 && value_type (arg1) != value_type (arg2))
8584 error (_("Operands of fixed-point subtraction must have the same type"));
8585 /* Do the substraction, and cast the result to the type of the first
8586 argument. We cannot cast the result to a reference type, so if
8587 ARG1 is a reference type, find its underlying type. */
8588 type = value_type (arg1);
8589 while (TYPE_CODE (type) == TYPE_CODE_REF)
8590 type = TYPE_TARGET_TYPE (type);
8591 return value_cast (type, value_sub (arg1, arg2));
8593 case BINOP_MUL:
8594 case BINOP_DIV:
8595 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8596 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8597 if (noside == EVAL_SKIP)
8598 goto nosideret;
8599 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8600 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8601 return value_zero (value_type (arg1), not_lval);
8602 else
8604 if (ada_is_fixed_point_type (value_type (arg1)))
8605 arg1 = cast_from_fixed_to_double (arg1);
8606 if (ada_is_fixed_point_type (value_type (arg2)))
8607 arg2 = cast_from_fixed_to_double (arg2);
8608 return ada_value_binop (arg1, arg2, op);
8611 case BINOP_REM:
8612 case BINOP_MOD:
8613 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8614 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8615 if (noside == EVAL_SKIP)
8616 goto nosideret;
8617 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8618 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8619 return value_zero (value_type (arg1), not_lval);
8620 else
8621 return ada_value_binop (arg1, arg2, op);
8623 case BINOP_EQUAL:
8624 case BINOP_NOTEQUAL:
8625 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8626 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8627 if (noside == EVAL_SKIP)
8628 goto nosideret;
8629 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8630 tem = 0;
8631 else
8632 tem = ada_value_equal (arg1, arg2);
8633 if (op == BINOP_NOTEQUAL)
8634 tem = !tem;
8635 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
8637 case UNOP_NEG:
8638 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8639 if (noside == EVAL_SKIP)
8640 goto nosideret;
8641 else if (ada_is_fixed_point_type (value_type (arg1)))
8642 return value_cast (value_type (arg1), value_neg (arg1));
8643 else
8644 return value_neg (arg1);
8646 case BINOP_LOGICAL_AND:
8647 case BINOP_LOGICAL_OR:
8648 case UNOP_LOGICAL_NOT:
8650 struct value *val;
8652 *pos -= 1;
8653 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8654 return value_cast (LA_BOOL_TYPE, val);
8657 case BINOP_BITWISE_AND:
8658 case BINOP_BITWISE_IOR:
8659 case BINOP_BITWISE_XOR:
8661 struct value *val;
8663 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8664 *pos = pc;
8665 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8667 return value_cast (value_type (arg1), val);
8670 case OP_VAR_VALUE:
8671 *pos -= 1;
8673 /* Tagged types are a little special in the fact that the real type
8674 is dynamic and can only be determined by inspecting the object
8675 value. So even if we're support to do an EVAL_AVOID_SIDE_EFFECTS
8676 evaluation, we force an EVAL_NORMAL evaluation for tagged types. */
8677 if (noside == EVAL_AVOID_SIDE_EFFECTS
8678 && ada_is_tagged_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol), 1))
8679 noside = EVAL_NORMAL;
8681 if (noside == EVAL_SKIP)
8683 *pos += 4;
8684 goto nosideret;
8686 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8687 /* Only encountered when an unresolved symbol occurs in a
8688 context other than a function call, in which case, it is
8689 invalid. */
8690 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8691 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8692 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8694 *pos += 4;
8695 return value_zero
8696 (to_static_fixed_type
8697 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8698 not_lval);
8700 else
8702 arg1 =
8703 unwrap_value (evaluate_subexp_standard
8704 (expect_type, exp, pos, noside));
8705 return ada_to_fixed_value (arg1);
8708 case OP_FUNCALL:
8709 (*pos) += 2;
8711 /* Allocate arg vector, including space for the function to be
8712 called in argvec[0] and a terminating NULL. */
8713 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8714 argvec =
8715 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8717 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8718 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8719 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8720 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8721 else
8723 for (tem = 0; tem <= nargs; tem += 1)
8724 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8725 argvec[tem] = 0;
8727 if (noside == EVAL_SKIP)
8728 goto nosideret;
8731 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8732 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8733 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8734 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8735 && VALUE_LVAL (argvec[0]) == lval_memory))
8736 argvec[0] = value_addr (argvec[0]);
8738 type = ada_check_typedef (value_type (argvec[0]));
8739 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8741 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8743 case TYPE_CODE_FUNC:
8744 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8745 break;
8746 case TYPE_CODE_ARRAY:
8747 break;
8748 case TYPE_CODE_STRUCT:
8749 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8750 argvec[0] = ada_value_ind (argvec[0]);
8751 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8752 break;
8753 default:
8754 error (_("cannot subscript or call something of type `%s'"),
8755 ada_type_name (value_type (argvec[0])));
8756 break;
8760 switch (TYPE_CODE (type))
8762 case TYPE_CODE_FUNC:
8763 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8764 return allocate_value (TYPE_TARGET_TYPE (type));
8765 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8766 case TYPE_CODE_STRUCT:
8768 int arity;
8770 arity = ada_array_arity (type);
8771 type = ada_array_element_type (type, nargs);
8772 if (type == NULL)
8773 error (_("cannot subscript or call a record"));
8774 if (arity != nargs)
8775 error (_("wrong number of subscripts; expecting %d"), arity);
8776 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8777 return value_zero (ada_aligned_type (type), lval_memory);
8778 return
8779 unwrap_value (ada_value_subscript
8780 (argvec[0], nargs, argvec + 1));
8782 case TYPE_CODE_ARRAY:
8783 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8785 type = ada_array_element_type (type, nargs);
8786 if (type == NULL)
8787 error (_("element type of array unknown"));
8788 else
8789 return value_zero (ada_aligned_type (type), lval_memory);
8791 return
8792 unwrap_value (ada_value_subscript
8793 (ada_coerce_to_simple_array (argvec[0]),
8794 nargs, argvec + 1));
8795 case TYPE_CODE_PTR: /* Pointer to array */
8796 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8797 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8799 type = ada_array_element_type (type, nargs);
8800 if (type == NULL)
8801 error (_("element type of array unknown"));
8802 else
8803 return value_zero (ada_aligned_type (type), lval_memory);
8805 return
8806 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8807 nargs, argvec + 1));
8809 default:
8810 error (_("Attempt to index or call something other than an "
8811 "array or function"));
8814 case TERNOP_SLICE:
8816 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8817 struct value *low_bound_val =
8818 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8819 struct value *high_bound_val =
8820 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8821 LONGEST low_bound;
8822 LONGEST high_bound;
8823 low_bound_val = coerce_ref (low_bound_val);
8824 high_bound_val = coerce_ref (high_bound_val);
8825 low_bound = pos_atr (low_bound_val);
8826 high_bound = pos_atr (high_bound_val);
8828 if (noside == EVAL_SKIP)
8829 goto nosideret;
8831 /* If this is a reference to an aligner type, then remove all
8832 the aligners. */
8833 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8834 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8835 TYPE_TARGET_TYPE (value_type (array)) =
8836 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8838 if (ada_is_packed_array_type (value_type (array)))
8839 error (_("cannot slice a packed array"));
8841 /* If this is a reference to an array or an array lvalue,
8842 convert to a pointer. */
8843 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8844 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8845 && VALUE_LVAL (array) == lval_memory))
8846 array = value_addr (array);
8848 if (noside == EVAL_AVOID_SIDE_EFFECTS
8849 && ada_is_array_descriptor_type (ada_check_typedef
8850 (value_type (array))))
8851 return empty_array (ada_type_of_array (array, 0), low_bound);
8853 array = ada_coerce_to_simple_array_ptr (array);
8855 /* If we have more than one level of pointer indirection,
8856 dereference the value until we get only one level. */
8857 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8858 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8859 == TYPE_CODE_PTR))
8860 array = value_ind (array);
8862 /* Make sure we really do have an array type before going further,
8863 to avoid a SEGV when trying to get the index type or the target
8864 type later down the road if the debug info generated by
8865 the compiler is incorrect or incomplete. */
8866 if (!ada_is_simple_array_type (value_type (array)))
8867 error (_("cannot take slice of non-array"));
8869 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8871 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8872 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8873 low_bound);
8874 else
8876 struct type *arr_type0 =
8877 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8878 NULL, 1);
8879 return ada_value_slice_ptr (array, arr_type0,
8880 longest_to_int (low_bound),
8881 longest_to_int (high_bound));
8884 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8885 return array;
8886 else if (high_bound < low_bound)
8887 return empty_array (value_type (array), low_bound);
8888 else
8889 return ada_value_slice (array, longest_to_int (low_bound),
8890 longest_to_int (high_bound));
8893 case UNOP_IN_RANGE:
8894 (*pos) += 2;
8895 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8896 type = exp->elts[pc + 1].type;
8898 if (noside == EVAL_SKIP)
8899 goto nosideret;
8901 switch (TYPE_CODE (type))
8903 default:
8904 lim_warning (_("Membership test incompletely implemented; "
8905 "always returns true"));
8906 return value_from_longest (builtin_type_int, (LONGEST) 1);
8908 case TYPE_CODE_RANGE:
8909 arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type));
8910 arg3 = value_from_longest (builtin_type_int,
8911 TYPE_HIGH_BOUND (type));
8912 return
8913 value_from_longest (builtin_type_int,
8914 (value_less (arg1, arg3)
8915 || value_equal (arg1, arg3))
8916 && (value_less (arg2, arg1)
8917 || value_equal (arg2, arg1)));
8920 case BINOP_IN_BOUNDS:
8921 (*pos) += 2;
8922 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8923 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8925 if (noside == EVAL_SKIP)
8926 goto nosideret;
8928 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8929 return value_zero (builtin_type_int, not_lval);
8931 tem = longest_to_int (exp->elts[pc + 1].longconst);
8933 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8934 error (_("invalid dimension number to 'range"));
8936 arg3 = ada_array_bound (arg2, tem, 1);
8937 arg2 = ada_array_bound (arg2, tem, 0);
8939 return
8940 value_from_longest (builtin_type_int,
8941 (value_less (arg1, arg3)
8942 || value_equal (arg1, arg3))
8943 && (value_less (arg2, arg1)
8944 || value_equal (arg2, arg1)));
8946 case TERNOP_IN_RANGE:
8947 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8948 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8949 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8951 if (noside == EVAL_SKIP)
8952 goto nosideret;
8954 return
8955 value_from_longest (builtin_type_int,
8956 (value_less (arg1, arg3)
8957 || value_equal (arg1, arg3))
8958 && (value_less (arg2, arg1)
8959 || value_equal (arg2, arg1)));
8961 case OP_ATR_FIRST:
8962 case OP_ATR_LAST:
8963 case OP_ATR_LENGTH:
8965 struct type *type_arg;
8966 if (exp->elts[*pos].opcode == OP_TYPE)
8968 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8969 arg1 = NULL;
8970 type_arg = exp->elts[pc + 2].type;
8972 else
8974 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8975 type_arg = NULL;
8978 if (exp->elts[*pos].opcode != OP_LONG)
8979 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8980 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8981 *pos += 4;
8983 if (noside == EVAL_SKIP)
8984 goto nosideret;
8986 if (type_arg == NULL)
8988 arg1 = ada_coerce_ref (arg1);
8990 if (ada_is_packed_array_type (value_type (arg1)))
8991 arg1 = ada_coerce_to_simple_array (arg1);
8993 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
8994 error (_("invalid dimension number to '%s"),
8995 ada_attribute_name (op));
8997 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8999 type = ada_index_type (value_type (arg1), tem);
9000 if (type == NULL)
9001 error
9002 (_("attempt to take bound of something that is not an array"));
9003 return allocate_value (type);
9006 switch (op)
9008 default: /* Should never happen. */
9009 error (_("unexpected attribute encountered"));
9010 case OP_ATR_FIRST:
9011 return ada_array_bound (arg1, tem, 0);
9012 case OP_ATR_LAST:
9013 return ada_array_bound (arg1, tem, 1);
9014 case OP_ATR_LENGTH:
9015 return ada_array_length (arg1, tem);
9018 else if (discrete_type_p (type_arg))
9020 struct type *range_type;
9021 char *name = ada_type_name (type_arg);
9022 range_type = NULL;
9023 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9024 range_type =
9025 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
9026 if (range_type == NULL)
9027 range_type = type_arg;
9028 switch (op)
9030 default:
9031 error (_("unexpected attribute encountered"));
9032 case OP_ATR_FIRST:
9033 return discrete_type_low_bound (range_type);
9034 case OP_ATR_LAST:
9035 return discrete_type_high_bound (range_type);
9036 case OP_ATR_LENGTH:
9037 error (_("the 'length attribute applies only to array types"));
9040 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9041 error (_("unimplemented type attribute"));
9042 else
9044 LONGEST low, high;
9046 if (ada_is_packed_array_type (type_arg))
9047 type_arg = decode_packed_array_type (type_arg);
9049 if (tem < 1 || tem > ada_array_arity (type_arg))
9050 error (_("invalid dimension number to '%s"),
9051 ada_attribute_name (op));
9053 type = ada_index_type (type_arg, tem);
9054 if (type == NULL)
9055 error
9056 (_("attempt to take bound of something that is not an array"));
9057 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9058 return allocate_value (type);
9060 switch (op)
9062 default:
9063 error (_("unexpected attribute encountered"));
9064 case OP_ATR_FIRST:
9065 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
9066 return value_from_longest (type, low);
9067 case OP_ATR_LAST:
9068 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
9069 return value_from_longest (type, high);
9070 case OP_ATR_LENGTH:
9071 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
9072 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
9073 return value_from_longest (type, high - low + 1);
9078 case OP_ATR_TAG:
9079 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9080 if (noside == EVAL_SKIP)
9081 goto nosideret;
9083 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9084 return value_zero (ada_tag_type (arg1), not_lval);
9086 return ada_value_tag (arg1);
9088 case OP_ATR_MIN:
9089 case OP_ATR_MAX:
9090 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9091 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9092 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9093 if (noside == EVAL_SKIP)
9094 goto nosideret;
9095 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9096 return value_zero (value_type (arg1), not_lval);
9097 else
9098 return value_binop (arg1, arg2,
9099 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9101 case OP_ATR_MODULUS:
9103 struct type *type_arg = exp->elts[pc + 2].type;
9104 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9106 if (noside == EVAL_SKIP)
9107 goto nosideret;
9109 if (!ada_is_modular_type (type_arg))
9110 error (_("'modulus must be applied to modular type"));
9112 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9113 ada_modulus (type_arg));
9117 case OP_ATR_POS:
9118 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9119 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9120 if (noside == EVAL_SKIP)
9121 goto nosideret;
9122 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9123 return value_zero (builtin_type_int, not_lval);
9124 else
9125 return value_pos_atr (arg1);
9127 case OP_ATR_SIZE:
9128 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9129 if (noside == EVAL_SKIP)
9130 goto nosideret;
9131 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9132 return value_zero (builtin_type_int, not_lval);
9133 else
9134 return value_from_longest (builtin_type_int,
9135 TARGET_CHAR_BIT
9136 * TYPE_LENGTH (value_type (arg1)));
9138 case OP_ATR_VAL:
9139 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9140 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9141 type = exp->elts[pc + 2].type;
9142 if (noside == EVAL_SKIP)
9143 goto nosideret;
9144 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9145 return value_zero (type, not_lval);
9146 else
9147 return value_val_atr (type, arg1);
9149 case BINOP_EXP:
9150 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9151 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9152 if (noside == EVAL_SKIP)
9153 goto nosideret;
9154 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9155 return value_zero (value_type (arg1), not_lval);
9156 else
9157 return value_binop (arg1, arg2, op);
9159 case UNOP_PLUS:
9160 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9161 if (noside == EVAL_SKIP)
9162 goto nosideret;
9163 else
9164 return arg1;
9166 case UNOP_ABS:
9167 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9168 if (noside == EVAL_SKIP)
9169 goto nosideret;
9170 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9171 return value_neg (arg1);
9172 else
9173 return arg1;
9175 case UNOP_IND:
9176 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
9177 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
9178 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
9179 if (noside == EVAL_SKIP)
9180 goto nosideret;
9181 type = ada_check_typedef (value_type (arg1));
9182 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9184 if (ada_is_array_descriptor_type (type))
9185 /* GDB allows dereferencing GNAT array descriptors. */
9187 struct type *arrType = ada_type_of_array (arg1, 0);
9188 if (arrType == NULL)
9189 error (_("Attempt to dereference null array pointer."));
9190 return value_at_lazy (arrType, 0);
9192 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9193 || TYPE_CODE (type) == TYPE_CODE_REF
9194 /* In C you can dereference an array to get the 1st elt. */
9195 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9197 type = to_static_fixed_type
9198 (ada_aligned_type
9199 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9200 check_size (type);
9201 return value_zero (type, lval_memory);
9203 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9204 /* GDB allows dereferencing an int. */
9205 return value_zero (builtin_type_int, lval_memory);
9206 else
9207 error (_("Attempt to take contents of a non-pointer value."));
9209 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9210 type = ada_check_typedef (value_type (arg1));
9212 if (ada_is_array_descriptor_type (type))
9213 /* GDB allows dereferencing GNAT array descriptors. */
9214 return ada_coerce_to_simple_array (arg1);
9215 else
9216 return ada_value_ind (arg1);
9218 case STRUCTOP_STRUCT:
9219 tem = longest_to_int (exp->elts[pc + 1].longconst);
9220 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9221 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9222 if (noside == EVAL_SKIP)
9223 goto nosideret;
9224 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9226 struct type *type1 = value_type (arg1);
9227 if (ada_is_tagged_type (type1, 1))
9229 type = ada_lookup_struct_elt_type (type1,
9230 &exp->elts[pc + 2].string,
9231 1, 1, NULL);
9232 if (type == NULL)
9233 /* In this case, we assume that the field COULD exist
9234 in some extension of the type. Return an object of
9235 "type" void, which will match any formal
9236 (see ada_type_match). */
9237 return value_zero (builtin_type_void, lval_memory);
9239 else
9240 type =
9241 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9242 0, NULL);
9244 return value_zero (ada_aligned_type (type), lval_memory);
9246 else
9247 return
9248 ada_to_fixed_value (unwrap_value
9249 (ada_value_struct_elt
9250 (arg1, &exp->elts[pc + 2].string, 0)));
9251 case OP_TYPE:
9252 /* The value is not supposed to be used. This is here to make it
9253 easier to accommodate expressions that contain types. */
9254 (*pos) += 2;
9255 if (noside == EVAL_SKIP)
9256 goto nosideret;
9257 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9258 return allocate_value (exp->elts[pc + 1].type);
9259 else
9260 error (_("Attempt to use a type name as an expression"));
9262 case OP_AGGREGATE:
9263 case OP_CHOICES:
9264 case OP_OTHERS:
9265 case OP_DISCRETE_RANGE:
9266 case OP_POSITIONAL:
9267 case OP_NAME:
9268 if (noside == EVAL_NORMAL)
9269 switch (op)
9271 case OP_NAME:
9272 error (_("Undefined name, ambiguous name, or renaming used in "
9273 "component association: %s."), &exp->elts[pc+2].string);
9274 case OP_AGGREGATE:
9275 error (_("Aggregates only allowed on the right of an assignment"));
9276 default:
9277 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9280 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9281 *pos += oplen - 1;
9282 for (tem = 0; tem < nargs; tem += 1)
9283 ada_evaluate_subexp (NULL, exp, pos, noside);
9284 goto nosideret;
9287 nosideret:
9288 return value_from_longest (builtin_type_long, (LONGEST) 1);
9292 /* Fixed point */
9294 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9295 type name that encodes the 'small and 'delta information.
9296 Otherwise, return NULL. */
9298 static const char *
9299 fixed_type_info (struct type *type)
9301 const char *name = ada_type_name (type);
9302 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9304 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9306 const char *tail = strstr (name, "___XF_");
9307 if (tail == NULL)
9308 return NULL;
9309 else
9310 return tail + 5;
9312 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9313 return fixed_type_info (TYPE_TARGET_TYPE (type));
9314 else
9315 return NULL;
9318 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9321 ada_is_fixed_point_type (struct type *type)
9323 return fixed_type_info (type) != NULL;
9326 /* Return non-zero iff TYPE represents a System.Address type. */
9329 ada_is_system_address_type (struct type *type)
9331 return (TYPE_NAME (type)
9332 && strcmp (TYPE_NAME (type), "system__address") == 0);
9335 /* Assuming that TYPE is the representation of an Ada fixed-point
9336 type, return its delta, or -1 if the type is malformed and the
9337 delta cannot be determined. */
9339 DOUBLEST
9340 ada_delta (struct type *type)
9342 const char *encoding = fixed_type_info (type);
9343 long num, den;
9345 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
9346 return -1.0;
9347 else
9348 return (DOUBLEST) num / (DOUBLEST) den;
9351 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9352 factor ('SMALL value) associated with the type. */
9354 static DOUBLEST
9355 scaling_factor (struct type *type)
9357 const char *encoding = fixed_type_info (type);
9358 unsigned long num0, den0, num1, den1;
9359 int n;
9361 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
9363 if (n < 2)
9364 return 1.0;
9365 else if (n == 4)
9366 return (DOUBLEST) num1 / (DOUBLEST) den1;
9367 else
9368 return (DOUBLEST) num0 / (DOUBLEST) den0;
9372 /* Assuming that X is the representation of a value of fixed-point
9373 type TYPE, return its floating-point equivalent. */
9375 DOUBLEST
9376 ada_fixed_to_float (struct type *type, LONGEST x)
9378 return (DOUBLEST) x *scaling_factor (type);
9381 /* The representation of a fixed-point value of type TYPE
9382 corresponding to the value X. */
9384 LONGEST
9385 ada_float_to_fixed (struct type *type, DOUBLEST x)
9387 return (LONGEST) (x / scaling_factor (type) + 0.5);
9391 /* VAX floating formats */
9393 /* Non-zero iff TYPE represents one of the special VAX floating-point
9394 types. */
9397 ada_is_vax_floating_type (struct type *type)
9399 int name_len =
9400 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
9401 return
9402 name_len > 6
9403 && (TYPE_CODE (type) == TYPE_CODE_INT
9404 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9405 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
9408 /* The type of special VAX floating-point type this is, assuming
9409 ada_is_vax_floating_point. */
9412 ada_vax_float_type_suffix (struct type *type)
9414 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
9417 /* A value representing the special debugging function that outputs
9418 VAX floating-point values of the type represented by TYPE. Assumes
9419 ada_is_vax_floating_type (TYPE). */
9421 struct value *
9422 ada_vax_float_print_function (struct type *type)
9424 switch (ada_vax_float_type_suffix (type))
9426 case 'F':
9427 return get_var_value ("DEBUG_STRING_F", 0);
9428 case 'D':
9429 return get_var_value ("DEBUG_STRING_D", 0);
9430 case 'G':
9431 return get_var_value ("DEBUG_STRING_G", 0);
9432 default:
9433 error (_("invalid VAX floating-point type"));
9438 /* Range types */
9440 /* Scan STR beginning at position K for a discriminant name, and
9441 return the value of that discriminant field of DVAL in *PX. If
9442 PNEW_K is not null, put the position of the character beyond the
9443 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9444 not alter *PX and *PNEW_K if unsuccessful. */
9446 static int
9447 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9448 int *pnew_k)
9450 static char *bound_buffer = NULL;
9451 static size_t bound_buffer_len = 0;
9452 char *bound;
9453 char *pend;
9454 struct value *bound_val;
9456 if (dval == NULL || str == NULL || str[k] == '\0')
9457 return 0;
9459 pend = strstr (str + k, "__");
9460 if (pend == NULL)
9462 bound = str + k;
9463 k += strlen (bound);
9465 else
9467 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9468 bound = bound_buffer;
9469 strncpy (bound_buffer, str + k, pend - (str + k));
9470 bound[pend - (str + k)] = '\0';
9471 k = pend - str;
9474 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9475 if (bound_val == NULL)
9476 return 0;
9478 *px = value_as_long (bound_val);
9479 if (pnew_k != NULL)
9480 *pnew_k = k;
9481 return 1;
9484 /* Value of variable named NAME in the current environment. If
9485 no such variable found, then if ERR_MSG is null, returns 0, and
9486 otherwise causes an error with message ERR_MSG. */
9488 static struct value *
9489 get_var_value (char *name, char *err_msg)
9491 struct ada_symbol_info *syms;
9492 int nsyms;
9494 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9495 &syms);
9497 if (nsyms != 1)
9499 if (err_msg == NULL)
9500 return 0;
9501 else
9502 error (("%s"), err_msg);
9505 return value_of_variable (syms[0].sym, syms[0].block);
9508 /* Value of integer variable named NAME in the current environment. If
9509 no such variable found, returns 0, and sets *FLAG to 0. If
9510 successful, sets *FLAG to 1. */
9512 LONGEST
9513 get_int_var_value (char *name, int *flag)
9515 struct value *var_val = get_var_value (name, 0);
9517 if (var_val == 0)
9519 if (flag != NULL)
9520 *flag = 0;
9521 return 0;
9523 else
9525 if (flag != NULL)
9526 *flag = 1;
9527 return value_as_long (var_val);
9532 /* Return a range type whose base type is that of the range type named
9533 NAME in the current environment, and whose bounds are calculated
9534 from NAME according to the GNAT range encoding conventions.
9535 Extract discriminant values, if needed, from DVAL. If a new type
9536 must be created, allocate in OBJFILE's space. The bounds
9537 information, in general, is encoded in NAME, the base type given in
9538 the named range type. */
9540 static struct type *
9541 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
9543 struct type *raw_type = ada_find_any_type (name);
9544 struct type *base_type;
9545 char *subtype_info;
9547 if (raw_type == NULL)
9548 base_type = builtin_type_int;
9549 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9550 base_type = TYPE_TARGET_TYPE (raw_type);
9551 else
9552 base_type = raw_type;
9554 subtype_info = strstr (name, "___XD");
9555 if (subtype_info == NULL)
9556 return raw_type;
9557 else
9559 static char *name_buf = NULL;
9560 static size_t name_len = 0;
9561 int prefix_len = subtype_info - name;
9562 LONGEST L, U;
9563 struct type *type;
9564 char *bounds_str;
9565 int n;
9567 GROW_VECT (name_buf, name_len, prefix_len + 5);
9568 strncpy (name_buf, name, prefix_len);
9569 name_buf[prefix_len] = '\0';
9571 subtype_info += 5;
9572 bounds_str = strchr (subtype_info, '_');
9573 n = 1;
9575 if (*subtype_info == 'L')
9577 if (!ada_scan_number (bounds_str, n, &L, &n)
9578 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9579 return raw_type;
9580 if (bounds_str[n] == '_')
9581 n += 2;
9582 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9583 n += 1;
9584 subtype_info += 1;
9586 else
9588 int ok;
9589 strcpy (name_buf + prefix_len, "___L");
9590 L = get_int_var_value (name_buf, &ok);
9591 if (!ok)
9593 lim_warning (_("Unknown lower bound, using 1."));
9594 L = 1;
9598 if (*subtype_info == 'U')
9600 if (!ada_scan_number (bounds_str, n, &U, &n)
9601 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9602 return raw_type;
9604 else
9606 int ok;
9607 strcpy (name_buf + prefix_len, "___U");
9608 U = get_int_var_value (name_buf, &ok);
9609 if (!ok)
9611 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9612 U = L;
9616 if (objfile == NULL)
9617 objfile = TYPE_OBJFILE (base_type);
9618 type = create_range_type (alloc_type (objfile), base_type, L, U);
9619 TYPE_NAME (type) = name;
9620 return type;
9624 /* True iff NAME is the name of a range type. */
9627 ada_is_range_type_name (const char *name)
9629 return (name != NULL && strstr (name, "___XD"));
9633 /* Modular types */
9635 /* True iff TYPE is an Ada modular type. */
9638 ada_is_modular_type (struct type *type)
9640 struct type *subranged_type = base_type (type);
9642 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9643 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
9644 && TYPE_UNSIGNED (subranged_type));
9647 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9649 ULONGEST
9650 ada_modulus (struct type * type)
9652 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
9656 /* Ada exception catchpoint support:
9657 ---------------------------------
9659 We support 3 kinds of exception catchpoints:
9660 . catchpoints on Ada exceptions
9661 . catchpoints on unhandled Ada exceptions
9662 . catchpoints on failed assertions
9664 Exceptions raised during failed assertions, or unhandled exceptions
9665 could perfectly be caught with the general catchpoint on Ada exceptions.
9666 However, we can easily differentiate these two special cases, and having
9667 the option to distinguish these two cases from the rest can be useful
9668 to zero-in on certain situations.
9670 Exception catchpoints are a specialized form of breakpoint,
9671 since they rely on inserting breakpoints inside known routines
9672 of the GNAT runtime. The implementation therefore uses a standard
9673 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9674 of breakpoint_ops.
9676 Support in the runtime for exception catchpoints have been changed
9677 a few times already, and these changes affect the implementation
9678 of these catchpoints. In order to be able to support several
9679 variants of the runtime, we use a sniffer that will determine
9680 the runtime variant used by the program being debugged.
9682 At this time, we do not support the use of conditions on Ada exception
9683 catchpoints. The COND and COND_STRING fields are therefore set
9684 to NULL (most of the time, see below).
9686 Conditions where EXP_STRING, COND, and COND_STRING are used:
9688 When a user specifies the name of a specific exception in the case
9689 of catchpoints on Ada exceptions, we store the name of that exception
9690 in the EXP_STRING. We then translate this request into an actual
9691 condition stored in COND_STRING, and then parse it into an expression
9692 stored in COND. */
9694 /* The different types of catchpoints that we introduced for catching
9695 Ada exceptions. */
9697 enum exception_catchpoint_kind
9699 ex_catch_exception,
9700 ex_catch_exception_unhandled,
9701 ex_catch_assert
9704 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9706 /* A structure that describes how to support exception catchpoints
9707 for a given executable. */
9709 struct exception_support_info
9711 /* The name of the symbol to break on in order to insert
9712 a catchpoint on exceptions. */
9713 const char *catch_exception_sym;
9715 /* The name of the symbol to break on in order to insert
9716 a catchpoint on unhandled exceptions. */
9717 const char *catch_exception_unhandled_sym;
9719 /* The name of the symbol to break on in order to insert
9720 a catchpoint on failed assertions. */
9721 const char *catch_assert_sym;
9723 /* Assuming that the inferior just triggered an unhandled exception
9724 catchpoint, this function is responsible for returning the address
9725 in inferior memory where the name of that exception is stored.
9726 Return zero if the address could not be computed. */
9727 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9730 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9731 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9733 /* The following exception support info structure describes how to
9734 implement exception catchpoints with the latest version of the
9735 Ada runtime (as of 2007-03-06). */
9737 static const struct exception_support_info default_exception_support_info =
9739 "__gnat_debug_raise_exception", /* catch_exception_sym */
9740 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9741 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9742 ada_unhandled_exception_name_addr
9745 /* The following exception support info structure describes how to
9746 implement exception catchpoints with a slightly older version
9747 of the Ada runtime. */
9749 static const struct exception_support_info exception_support_info_fallback =
9751 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9752 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9753 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9754 ada_unhandled_exception_name_addr_from_raise
9757 /* For each executable, we sniff which exception info structure to use
9758 and cache it in the following global variable. */
9760 static const struct exception_support_info *exception_info = NULL;
9762 /* Inspect the Ada runtime and determine which exception info structure
9763 should be used to provide support for exception catchpoints.
9765 This function will always set exception_info, or raise an error. */
9767 static void
9768 ada_exception_support_info_sniffer (void)
9770 struct symbol *sym;
9772 /* If the exception info is already known, then no need to recompute it. */
9773 if (exception_info != NULL)
9774 return;
9776 /* Check the latest (default) exception support info. */
9777 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9778 NULL, VAR_DOMAIN);
9779 if (sym != NULL)
9781 exception_info = &default_exception_support_info;
9782 return;
9785 /* Try our fallback exception suport info. */
9786 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9787 NULL, VAR_DOMAIN);
9788 if (sym != NULL)
9790 exception_info = &exception_support_info_fallback;
9791 return;
9794 /* Sometimes, it is normal for us to not be able to find the routine
9795 we are looking for. This happens when the program is linked with
9796 the shared version of the GNAT runtime, and the program has not been
9797 started yet. Inform the user of these two possible causes if
9798 applicable. */
9800 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9801 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9803 /* If the symbol does not exist, then check that the program is
9804 already started, to make sure that shared libraries have been
9805 loaded. If it is not started, this may mean that the symbol is
9806 in a shared library. */
9808 if (ptid_get_pid (inferior_ptid) == 0)
9809 error (_("Unable to insert catchpoint. Try to start the program first."));
9811 /* At this point, we know that we are debugging an Ada program and
9812 that the inferior has been started, but we still are not able to
9813 find the run-time symbols. That can mean that we are in
9814 configurable run time mode, or that a-except as been optimized
9815 out by the linker... In any case, at this point it is not worth
9816 supporting this feature. */
9818 error (_("Cannot insert catchpoints in this configuration."));
9821 /* An observer of "executable_changed" events.
9822 Its role is to clear certain cached values that need to be recomputed
9823 each time a new executable is loaded by GDB. */
9825 static void
9826 ada_executable_changed_observer (void *unused)
9828 /* If the executable changed, then it is possible that the Ada runtime
9829 is different. So we need to invalidate the exception support info
9830 cache. */
9831 exception_info = NULL;
9834 /* Return the name of the function at PC, NULL if could not find it.
9835 This function only checks the debugging information, not the symbol
9836 table. */
9838 static char *
9839 function_name_from_pc (CORE_ADDR pc)
9841 char *func_name;
9843 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9844 return NULL;
9846 return func_name;
9849 /* True iff FRAME is very likely to be that of a function that is
9850 part of the runtime system. This is all very heuristic, but is
9851 intended to be used as advice as to what frames are uninteresting
9852 to most users. */
9854 static int
9855 is_known_support_routine (struct frame_info *frame)
9857 struct symtab_and_line sal;
9858 char *func_name;
9859 int i;
9861 /* If this code does not have any debugging information (no symtab),
9862 This cannot be any user code. */
9864 find_frame_sal (frame, &sal);
9865 if (sal.symtab == NULL)
9866 return 1;
9868 /* If there is a symtab, but the associated source file cannot be
9869 located, then assume this is not user code: Selecting a frame
9870 for which we cannot display the code would not be very helpful
9871 for the user. This should also take care of case such as VxWorks
9872 where the kernel has some debugging info provided for a few units. */
9874 if (symtab_to_fullname (sal.symtab) == NULL)
9875 return 1;
9877 /* Check the unit filename againt the Ada runtime file naming.
9878 We also check the name of the objfile against the name of some
9879 known system libraries that sometimes come with debugging info
9880 too. */
9882 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9884 re_comp (known_runtime_file_name_patterns[i]);
9885 if (re_exec (sal.symtab->filename))
9886 return 1;
9887 if (sal.symtab->objfile != NULL
9888 && re_exec (sal.symtab->objfile->name))
9889 return 1;
9892 /* Check whether the function is a GNAT-generated entity. */
9894 func_name = function_name_from_pc (get_frame_address_in_block (frame));
9895 if (func_name == NULL)
9896 return 1;
9898 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9900 re_comp (known_auxiliary_function_name_patterns[i]);
9901 if (re_exec (func_name))
9902 return 1;
9905 return 0;
9908 /* Find the first frame that contains debugging information and that is not
9909 part of the Ada run-time, starting from FI and moving upward. */
9911 static void
9912 ada_find_printable_frame (struct frame_info *fi)
9914 for (; fi != NULL; fi = get_prev_frame (fi))
9916 if (!is_known_support_routine (fi))
9918 select_frame (fi);
9919 break;
9925 /* Assuming that the inferior just triggered an unhandled exception
9926 catchpoint, return the address in inferior memory where the name
9927 of the exception is stored.
9929 Return zero if the address could not be computed. */
9931 static CORE_ADDR
9932 ada_unhandled_exception_name_addr (void)
9934 return parse_and_eval_address ("e.full_name");
9937 /* Same as ada_unhandled_exception_name_addr, except that this function
9938 should be used when the inferior uses an older version of the runtime,
9939 where the exception name needs to be extracted from a specific frame
9940 several frames up in the callstack. */
9942 static CORE_ADDR
9943 ada_unhandled_exception_name_addr_from_raise (void)
9945 int frame_level;
9946 struct frame_info *fi;
9948 /* To determine the name of this exception, we need to select
9949 the frame corresponding to RAISE_SYM_NAME. This frame is
9950 at least 3 levels up, so we simply skip the first 3 frames
9951 without checking the name of their associated function. */
9952 fi = get_current_frame ();
9953 for (frame_level = 0; frame_level < 3; frame_level += 1)
9954 if (fi != NULL)
9955 fi = get_prev_frame (fi);
9957 while (fi != NULL)
9959 const char *func_name =
9960 function_name_from_pc (get_frame_address_in_block (fi));
9961 if (func_name != NULL
9962 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
9963 break; /* We found the frame we were looking for... */
9964 fi = get_prev_frame (fi);
9967 if (fi == NULL)
9968 return 0;
9970 select_frame (fi);
9971 return parse_and_eval_address ("id.full_name");
9974 /* Assuming the inferior just triggered an Ada exception catchpoint
9975 (of any type), return the address in inferior memory where the name
9976 of the exception is stored, if applicable.
9978 Return zero if the address could not be computed, or if not relevant. */
9980 static CORE_ADDR
9981 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9982 struct breakpoint *b)
9984 switch (ex)
9986 case ex_catch_exception:
9987 return (parse_and_eval_address ("e.full_name"));
9988 break;
9990 case ex_catch_exception_unhandled:
9991 return exception_info->unhandled_exception_name_addr ();
9992 break;
9994 case ex_catch_assert:
9995 return 0; /* Exception name is not relevant in this case. */
9996 break;
9998 default:
9999 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10000 break;
10003 return 0; /* Should never be reached. */
10006 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10007 any error that ada_exception_name_addr_1 might cause to be thrown.
10008 When an error is intercepted, a warning with the error message is printed,
10009 and zero is returned. */
10011 static CORE_ADDR
10012 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10013 struct breakpoint *b)
10015 struct gdb_exception e;
10016 CORE_ADDR result = 0;
10018 TRY_CATCH (e, RETURN_MASK_ERROR)
10020 result = ada_exception_name_addr_1 (ex, b);
10023 if (e.reason < 0)
10025 warning (_("failed to get exception name: %s"), e.message);
10026 return 0;
10029 return result;
10032 /* Implement the PRINT_IT method in the breakpoint_ops structure
10033 for all exception catchpoint kinds. */
10035 static enum print_stop_action
10036 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10038 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10039 char exception_name[256];
10041 if (addr != 0)
10043 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10044 exception_name [sizeof (exception_name) - 1] = '\0';
10047 ada_find_printable_frame (get_current_frame ());
10049 annotate_catchpoint (b->number);
10050 switch (ex)
10052 case ex_catch_exception:
10053 if (addr != 0)
10054 printf_filtered (_("\nCatchpoint %d, %s at "),
10055 b->number, exception_name);
10056 else
10057 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10058 break;
10059 case ex_catch_exception_unhandled:
10060 if (addr != 0)
10061 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10062 b->number, exception_name);
10063 else
10064 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10065 b->number);
10066 break;
10067 case ex_catch_assert:
10068 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10069 b->number);
10070 break;
10073 return PRINT_SRC_AND_LOC;
10076 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10077 for all exception catchpoint kinds. */
10079 static void
10080 print_one_exception (enum exception_catchpoint_kind ex,
10081 struct breakpoint *b, CORE_ADDR *last_addr)
10083 if (addressprint)
10085 annotate_field (4);
10086 ui_out_field_core_addr (uiout, "addr", b->loc->address);
10089 annotate_field (5);
10090 *last_addr = b->loc->address;
10091 switch (ex)
10093 case ex_catch_exception:
10094 if (b->exp_string != NULL)
10096 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10098 ui_out_field_string (uiout, "what", msg);
10099 xfree (msg);
10101 else
10102 ui_out_field_string (uiout, "what", "all Ada exceptions");
10104 break;
10106 case ex_catch_exception_unhandled:
10107 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10108 break;
10110 case ex_catch_assert:
10111 ui_out_field_string (uiout, "what", "failed Ada assertions");
10112 break;
10114 default:
10115 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10116 break;
10120 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10121 for all exception catchpoint kinds. */
10123 static void
10124 print_mention_exception (enum exception_catchpoint_kind ex,
10125 struct breakpoint *b)
10127 switch (ex)
10129 case ex_catch_exception:
10130 if (b->exp_string != NULL)
10131 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10132 b->number, b->exp_string);
10133 else
10134 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10136 break;
10138 case ex_catch_exception_unhandled:
10139 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10140 b->number);
10141 break;
10143 case ex_catch_assert:
10144 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10145 break;
10147 default:
10148 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10149 break;
10153 /* Virtual table for "catch exception" breakpoints. */
10155 static enum print_stop_action
10156 print_it_catch_exception (struct breakpoint *b)
10158 return print_it_exception (ex_catch_exception, b);
10161 static void
10162 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
10164 print_one_exception (ex_catch_exception, b, last_addr);
10167 static void
10168 print_mention_catch_exception (struct breakpoint *b)
10170 print_mention_exception (ex_catch_exception, b);
10173 static struct breakpoint_ops catch_exception_breakpoint_ops =
10175 print_it_catch_exception,
10176 print_one_catch_exception,
10177 print_mention_catch_exception
10180 /* Virtual table for "catch exception unhandled" breakpoints. */
10182 static enum print_stop_action
10183 print_it_catch_exception_unhandled (struct breakpoint *b)
10185 return print_it_exception (ex_catch_exception_unhandled, b);
10188 static void
10189 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
10191 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
10194 static void
10195 print_mention_catch_exception_unhandled (struct breakpoint *b)
10197 print_mention_exception (ex_catch_exception_unhandled, b);
10200 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10201 print_it_catch_exception_unhandled,
10202 print_one_catch_exception_unhandled,
10203 print_mention_catch_exception_unhandled
10206 /* Virtual table for "catch assert" breakpoints. */
10208 static enum print_stop_action
10209 print_it_catch_assert (struct breakpoint *b)
10211 return print_it_exception (ex_catch_assert, b);
10214 static void
10215 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
10217 print_one_exception (ex_catch_assert, b, last_addr);
10220 static void
10221 print_mention_catch_assert (struct breakpoint *b)
10223 print_mention_exception (ex_catch_assert, b);
10226 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10227 print_it_catch_assert,
10228 print_one_catch_assert,
10229 print_mention_catch_assert
10232 /* Return non-zero if B is an Ada exception catchpoint. */
10235 ada_exception_catchpoint_p (struct breakpoint *b)
10237 return (b->ops == &catch_exception_breakpoint_ops
10238 || b->ops == &catch_exception_unhandled_breakpoint_ops
10239 || b->ops == &catch_assert_breakpoint_ops);
10242 /* Return a newly allocated copy of the first space-separated token
10243 in ARGSP, and then adjust ARGSP to point immediately after that
10244 token.
10246 Return NULL if ARGPS does not contain any more tokens. */
10248 static char *
10249 ada_get_next_arg (char **argsp)
10251 char *args = *argsp;
10252 char *end;
10253 char *result;
10255 /* Skip any leading white space. */
10257 while (isspace (*args))
10258 args++;
10260 if (args[0] == '\0')
10261 return NULL; /* No more arguments. */
10263 /* Find the end of the current argument. */
10265 end = args;
10266 while (*end != '\0' && !isspace (*end))
10267 end++;
10269 /* Adjust ARGSP to point to the start of the next argument. */
10271 *argsp = end;
10273 /* Make a copy of the current argument and return it. */
10275 result = xmalloc (end - args + 1);
10276 strncpy (result, args, end - args);
10277 result[end - args] = '\0';
10279 return result;
10282 /* Split the arguments specified in a "catch exception" command.
10283 Set EX to the appropriate catchpoint type.
10284 Set EXP_STRING to the name of the specific exception if
10285 specified by the user. */
10287 static void
10288 catch_ada_exception_command_split (char *args,
10289 enum exception_catchpoint_kind *ex,
10290 char **exp_string)
10292 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10293 char *exception_name;
10295 exception_name = ada_get_next_arg (&args);
10296 make_cleanup (xfree, exception_name);
10298 /* Check that we do not have any more arguments. Anything else
10299 is unexpected. */
10301 while (isspace (*args))
10302 args++;
10304 if (args[0] != '\0')
10305 error (_("Junk at end of expression"));
10307 discard_cleanups (old_chain);
10309 if (exception_name == NULL)
10311 /* Catch all exceptions. */
10312 *ex = ex_catch_exception;
10313 *exp_string = NULL;
10315 else if (strcmp (exception_name, "unhandled") == 0)
10317 /* Catch unhandled exceptions. */
10318 *ex = ex_catch_exception_unhandled;
10319 *exp_string = NULL;
10321 else
10323 /* Catch a specific exception. */
10324 *ex = ex_catch_exception;
10325 *exp_string = exception_name;
10329 /* Return the name of the symbol on which we should break in order to
10330 implement a catchpoint of the EX kind. */
10332 static const char *
10333 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10335 gdb_assert (exception_info != NULL);
10337 switch (ex)
10339 case ex_catch_exception:
10340 return (exception_info->catch_exception_sym);
10341 break;
10342 case ex_catch_exception_unhandled:
10343 return (exception_info->catch_exception_unhandled_sym);
10344 break;
10345 case ex_catch_assert:
10346 return (exception_info->catch_assert_sym);
10347 break;
10348 default:
10349 internal_error (__FILE__, __LINE__,
10350 _("unexpected catchpoint kind (%d)"), ex);
10354 /* Return the breakpoint ops "virtual table" used for catchpoints
10355 of the EX kind. */
10357 static struct breakpoint_ops *
10358 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10360 switch (ex)
10362 case ex_catch_exception:
10363 return (&catch_exception_breakpoint_ops);
10364 break;
10365 case ex_catch_exception_unhandled:
10366 return (&catch_exception_unhandled_breakpoint_ops);
10367 break;
10368 case ex_catch_assert:
10369 return (&catch_assert_breakpoint_ops);
10370 break;
10371 default:
10372 internal_error (__FILE__, __LINE__,
10373 _("unexpected catchpoint kind (%d)"), ex);
10377 /* Return the condition that will be used to match the current exception
10378 being raised with the exception that the user wants to catch. This
10379 assumes that this condition is used when the inferior just triggered
10380 an exception catchpoint.
10382 The string returned is a newly allocated string that needs to be
10383 deallocated later. */
10385 static char *
10386 ada_exception_catchpoint_cond_string (const char *exp_string)
10388 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10391 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10393 static struct expression *
10394 ada_parse_catchpoint_condition (char *cond_string,
10395 struct symtab_and_line sal)
10397 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10400 /* Return the symtab_and_line that should be used to insert an exception
10401 catchpoint of the TYPE kind.
10403 EX_STRING should contain the name of a specific exception
10404 that the catchpoint should catch, or NULL otherwise.
10406 The idea behind all the remaining parameters is that their names match
10407 the name of certain fields in the breakpoint structure that are used to
10408 handle exception catchpoints. This function returns the value to which
10409 these fields should be set, depending on the type of catchpoint we need
10410 to create.
10412 If COND and COND_STRING are both non-NULL, any value they might
10413 hold will be free'ed, and then replaced by newly allocated ones.
10414 These parameters are left untouched otherwise. */
10416 static struct symtab_and_line
10417 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10418 char **addr_string, char **cond_string,
10419 struct expression **cond, struct breakpoint_ops **ops)
10421 const char *sym_name;
10422 struct symbol *sym;
10423 struct symtab_and_line sal;
10425 /* First, find out which exception support info to use. */
10426 ada_exception_support_info_sniffer ();
10428 /* Then lookup the function on which we will break in order to catch
10429 the Ada exceptions requested by the user. */
10431 sym_name = ada_exception_sym_name (ex);
10432 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10434 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10435 that should be compiled with debugging information. As a result, we
10436 expect to find that symbol in the symtabs. If we don't find it, then
10437 the target most likely does not support Ada exceptions, or we cannot
10438 insert exception breakpoints yet, because the GNAT runtime hasn't been
10439 loaded yet. */
10441 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10442 in such a way that no debugging information is produced for the symbol
10443 we are looking for. In this case, we could search the minimal symbols
10444 as a fall-back mechanism. This would still be operating in degraded
10445 mode, however, as we would still be missing the debugging information
10446 that is needed in order to extract the name of the exception being
10447 raised (this name is printed in the catchpoint message, and is also
10448 used when trying to catch a specific exception). We do not handle
10449 this case for now. */
10451 if (sym == NULL)
10452 error (_("Unable to break on '%s' in this configuration."), sym_name);
10454 /* Make sure that the symbol we found corresponds to a function. */
10455 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10456 error (_("Symbol \"%s\" is not a function (class = %d)"),
10457 sym_name, SYMBOL_CLASS (sym));
10459 sal = find_function_start_sal (sym, 1);
10461 /* Set ADDR_STRING. */
10463 *addr_string = xstrdup (sym_name);
10465 /* Set the COND and COND_STRING (if not NULL). */
10467 if (cond_string != NULL && cond != NULL)
10469 if (*cond_string != NULL)
10471 xfree (*cond_string);
10472 *cond_string = NULL;
10474 if (*cond != NULL)
10476 xfree (*cond);
10477 *cond = NULL;
10479 if (exp_string != NULL)
10481 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10482 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10486 /* Set OPS. */
10487 *ops = ada_exception_breakpoint_ops (ex);
10489 return sal;
10492 /* Parse the arguments (ARGS) of the "catch exception" command.
10494 Set TYPE to the appropriate exception catchpoint type.
10495 If the user asked the catchpoint to catch only a specific
10496 exception, then save the exception name in ADDR_STRING.
10498 See ada_exception_sal for a description of all the remaining
10499 function arguments of this function. */
10501 struct symtab_and_line
10502 ada_decode_exception_location (char *args, char **addr_string,
10503 char **exp_string, char **cond_string,
10504 struct expression **cond,
10505 struct breakpoint_ops **ops)
10507 enum exception_catchpoint_kind ex;
10509 catch_ada_exception_command_split (args, &ex, exp_string);
10510 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10511 cond, ops);
10514 struct symtab_and_line
10515 ada_decode_assert_location (char *args, char **addr_string,
10516 struct breakpoint_ops **ops)
10518 /* Check that no argument where provided at the end of the command. */
10520 if (args != NULL)
10522 while (isspace (*args))
10523 args++;
10524 if (*args != '\0')
10525 error (_("Junk at end of arguments."));
10528 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10529 ops);
10532 /* Operators */
10533 /* Information about operators given special treatment in functions
10534 below. */
10535 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10537 #define ADA_OPERATORS \
10538 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10539 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10540 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10541 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10542 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10543 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10544 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10545 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10546 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10547 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10548 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10549 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10550 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10551 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10552 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10553 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10554 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10555 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10556 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10558 static void
10559 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10561 switch (exp->elts[pc - 1].opcode)
10563 default:
10564 operator_length_standard (exp, pc, oplenp, argsp);
10565 break;
10567 #define OP_DEFN(op, len, args, binop) \
10568 case op: *oplenp = len; *argsp = args; break;
10569 ADA_OPERATORS;
10570 #undef OP_DEFN
10572 case OP_AGGREGATE:
10573 *oplenp = 3;
10574 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10575 break;
10577 case OP_CHOICES:
10578 *oplenp = 3;
10579 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10580 break;
10584 static char *
10585 ada_op_name (enum exp_opcode opcode)
10587 switch (opcode)
10589 default:
10590 return op_name_standard (opcode);
10592 #define OP_DEFN(op, len, args, binop) case op: return #op;
10593 ADA_OPERATORS;
10594 #undef OP_DEFN
10596 case OP_AGGREGATE:
10597 return "OP_AGGREGATE";
10598 case OP_CHOICES:
10599 return "OP_CHOICES";
10600 case OP_NAME:
10601 return "OP_NAME";
10605 /* As for operator_length, but assumes PC is pointing at the first
10606 element of the operator, and gives meaningful results only for the
10607 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10609 static void
10610 ada_forward_operator_length (struct expression *exp, int pc,
10611 int *oplenp, int *argsp)
10613 switch (exp->elts[pc].opcode)
10615 default:
10616 *oplenp = *argsp = 0;
10617 break;
10619 #define OP_DEFN(op, len, args, binop) \
10620 case op: *oplenp = len; *argsp = args; break;
10621 ADA_OPERATORS;
10622 #undef OP_DEFN
10624 case OP_AGGREGATE:
10625 *oplenp = 3;
10626 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10627 break;
10629 case OP_CHOICES:
10630 *oplenp = 3;
10631 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10632 break;
10634 case OP_STRING:
10635 case OP_NAME:
10637 int len = longest_to_int (exp->elts[pc + 1].longconst);
10638 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10639 *argsp = 0;
10640 break;
10645 static int
10646 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10648 enum exp_opcode op = exp->elts[elt].opcode;
10649 int oplen, nargs;
10650 int pc = elt;
10651 int i;
10653 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10655 switch (op)
10657 /* Ada attributes ('Foo). */
10658 case OP_ATR_FIRST:
10659 case OP_ATR_LAST:
10660 case OP_ATR_LENGTH:
10661 case OP_ATR_IMAGE:
10662 case OP_ATR_MAX:
10663 case OP_ATR_MIN:
10664 case OP_ATR_MODULUS:
10665 case OP_ATR_POS:
10666 case OP_ATR_SIZE:
10667 case OP_ATR_TAG:
10668 case OP_ATR_VAL:
10669 break;
10671 case UNOP_IN_RANGE:
10672 case UNOP_QUAL:
10673 /* XXX: gdb_sprint_host_address, type_sprint */
10674 fprintf_filtered (stream, _("Type @"));
10675 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10676 fprintf_filtered (stream, " (");
10677 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10678 fprintf_filtered (stream, ")");
10679 break;
10680 case BINOP_IN_BOUNDS:
10681 fprintf_filtered (stream, " (%d)",
10682 longest_to_int (exp->elts[pc + 2].longconst));
10683 break;
10684 case TERNOP_IN_RANGE:
10685 break;
10687 case OP_AGGREGATE:
10688 case OP_OTHERS:
10689 case OP_DISCRETE_RANGE:
10690 case OP_POSITIONAL:
10691 case OP_CHOICES:
10692 break;
10694 case OP_NAME:
10695 case OP_STRING:
10697 char *name = &exp->elts[elt + 2].string;
10698 int len = longest_to_int (exp->elts[elt + 1].longconst);
10699 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10700 break;
10703 default:
10704 return dump_subexp_body_standard (exp, stream, elt);
10707 elt += oplen;
10708 for (i = 0; i < nargs; i += 1)
10709 elt = dump_subexp (exp, stream, elt);
10711 return elt;
10714 /* The Ada extension of print_subexp (q.v.). */
10716 static void
10717 ada_print_subexp (struct expression *exp, int *pos,
10718 struct ui_file *stream, enum precedence prec)
10720 int oplen, nargs, i;
10721 int pc = *pos;
10722 enum exp_opcode op = exp->elts[pc].opcode;
10724 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10726 *pos += oplen;
10727 switch (op)
10729 default:
10730 *pos -= oplen;
10731 print_subexp_standard (exp, pos, stream, prec);
10732 return;
10734 case OP_VAR_VALUE:
10735 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10736 return;
10738 case BINOP_IN_BOUNDS:
10739 /* XXX: sprint_subexp */
10740 print_subexp (exp, pos, stream, PREC_SUFFIX);
10741 fputs_filtered (" in ", stream);
10742 print_subexp (exp, pos, stream, PREC_SUFFIX);
10743 fputs_filtered ("'range", stream);
10744 if (exp->elts[pc + 1].longconst > 1)
10745 fprintf_filtered (stream, "(%ld)",
10746 (long) exp->elts[pc + 1].longconst);
10747 return;
10749 case TERNOP_IN_RANGE:
10750 if (prec >= PREC_EQUAL)
10751 fputs_filtered ("(", stream);
10752 /* XXX: sprint_subexp */
10753 print_subexp (exp, pos, stream, PREC_SUFFIX);
10754 fputs_filtered (" in ", stream);
10755 print_subexp (exp, pos, stream, PREC_EQUAL);
10756 fputs_filtered (" .. ", stream);
10757 print_subexp (exp, pos, stream, PREC_EQUAL);
10758 if (prec >= PREC_EQUAL)
10759 fputs_filtered (")", stream);
10760 return;
10762 case OP_ATR_FIRST:
10763 case OP_ATR_LAST:
10764 case OP_ATR_LENGTH:
10765 case OP_ATR_IMAGE:
10766 case OP_ATR_MAX:
10767 case OP_ATR_MIN:
10768 case OP_ATR_MODULUS:
10769 case OP_ATR_POS:
10770 case OP_ATR_SIZE:
10771 case OP_ATR_TAG:
10772 case OP_ATR_VAL:
10773 if (exp->elts[*pos].opcode == OP_TYPE)
10775 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10776 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10777 *pos += 3;
10779 else
10780 print_subexp (exp, pos, stream, PREC_SUFFIX);
10781 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10782 if (nargs > 1)
10784 int tem;
10785 for (tem = 1; tem < nargs; tem += 1)
10787 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10788 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10790 fputs_filtered (")", stream);
10792 return;
10794 case UNOP_QUAL:
10795 type_print (exp->elts[pc + 1].type, "", stream, 0);
10796 fputs_filtered ("'(", stream);
10797 print_subexp (exp, pos, stream, PREC_PREFIX);
10798 fputs_filtered (")", stream);
10799 return;
10801 case UNOP_IN_RANGE:
10802 /* XXX: sprint_subexp */
10803 print_subexp (exp, pos, stream, PREC_SUFFIX);
10804 fputs_filtered (" in ", stream);
10805 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10806 return;
10808 case OP_DISCRETE_RANGE:
10809 print_subexp (exp, pos, stream, PREC_SUFFIX);
10810 fputs_filtered ("..", stream);
10811 print_subexp (exp, pos, stream, PREC_SUFFIX);
10812 return;
10814 case OP_OTHERS:
10815 fputs_filtered ("others => ", stream);
10816 print_subexp (exp, pos, stream, PREC_SUFFIX);
10817 return;
10819 case OP_CHOICES:
10820 for (i = 0; i < nargs-1; i += 1)
10822 if (i > 0)
10823 fputs_filtered ("|", stream);
10824 print_subexp (exp, pos, stream, PREC_SUFFIX);
10826 fputs_filtered (" => ", stream);
10827 print_subexp (exp, pos, stream, PREC_SUFFIX);
10828 return;
10830 case OP_POSITIONAL:
10831 print_subexp (exp, pos, stream, PREC_SUFFIX);
10832 return;
10834 case OP_AGGREGATE:
10835 fputs_filtered ("(", stream);
10836 for (i = 0; i < nargs; i += 1)
10838 if (i > 0)
10839 fputs_filtered (", ", stream);
10840 print_subexp (exp, pos, stream, PREC_SUFFIX);
10842 fputs_filtered (")", stream);
10843 return;
10847 /* Table mapping opcodes into strings for printing operators
10848 and precedences of the operators. */
10850 static const struct op_print ada_op_print_tab[] = {
10851 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10852 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10853 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10854 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10855 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10856 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10857 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10858 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10859 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10860 {">=", BINOP_GEQ, PREC_ORDER, 0},
10861 {">", BINOP_GTR, PREC_ORDER, 0},
10862 {"<", BINOP_LESS, PREC_ORDER, 0},
10863 {">>", BINOP_RSH, PREC_SHIFT, 0},
10864 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10865 {"+", BINOP_ADD, PREC_ADD, 0},
10866 {"-", BINOP_SUB, PREC_ADD, 0},
10867 {"&", BINOP_CONCAT, PREC_ADD, 0},
10868 {"*", BINOP_MUL, PREC_MUL, 0},
10869 {"/", BINOP_DIV, PREC_MUL, 0},
10870 {"rem", BINOP_REM, PREC_MUL, 0},
10871 {"mod", BINOP_MOD, PREC_MUL, 0},
10872 {"**", BINOP_EXP, PREC_REPEAT, 0},
10873 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10874 {"-", UNOP_NEG, PREC_PREFIX, 0},
10875 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10876 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10877 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10878 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10879 {".all", UNOP_IND, PREC_SUFFIX, 1},
10880 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10881 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10882 {NULL, 0, 0, 0}
10885 enum ada_primitive_types {
10886 ada_primitive_type_int,
10887 ada_primitive_type_long,
10888 ada_primitive_type_short,
10889 ada_primitive_type_char,
10890 ada_primitive_type_float,
10891 ada_primitive_type_double,
10892 ada_primitive_type_void,
10893 ada_primitive_type_long_long,
10894 ada_primitive_type_long_double,
10895 ada_primitive_type_natural,
10896 ada_primitive_type_positive,
10897 ada_primitive_type_system_address,
10898 nr_ada_primitive_types
10901 static void
10902 ada_language_arch_info (struct gdbarch *gdbarch,
10903 struct language_arch_info *lai)
10905 const struct builtin_type *builtin = builtin_type (gdbarch);
10906 lai->primitive_type_vector
10907 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
10908 struct type *);
10909 lai->primitive_type_vector [ada_primitive_type_int] =
10910 init_type (TYPE_CODE_INT,
10911 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10912 0, "integer", (struct objfile *) NULL);
10913 lai->primitive_type_vector [ada_primitive_type_long] =
10914 init_type (TYPE_CODE_INT,
10915 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
10916 0, "long_integer", (struct objfile *) NULL);
10917 lai->primitive_type_vector [ada_primitive_type_short] =
10918 init_type (TYPE_CODE_INT,
10919 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
10920 0, "short_integer", (struct objfile *) NULL);
10921 lai->string_char_type =
10922 lai->primitive_type_vector [ada_primitive_type_char] =
10923 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10924 0, "character", (struct objfile *) NULL);
10925 lai->primitive_type_vector [ada_primitive_type_float] =
10926 init_type (TYPE_CODE_FLT,
10927 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
10928 0, "float", (struct objfile *) NULL);
10929 lai->primitive_type_vector [ada_primitive_type_double] =
10930 init_type (TYPE_CODE_FLT,
10931 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10932 0, "long_float", (struct objfile *) NULL);
10933 lai->primitive_type_vector [ada_primitive_type_long_long] =
10934 init_type (TYPE_CODE_INT,
10935 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
10936 0, "long_long_integer", (struct objfile *) NULL);
10937 lai->primitive_type_vector [ada_primitive_type_long_double] =
10938 init_type (TYPE_CODE_FLT,
10939 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10940 0, "long_long_float", (struct objfile *) NULL);
10941 lai->primitive_type_vector [ada_primitive_type_natural] =
10942 init_type (TYPE_CODE_INT,
10943 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10944 0, "natural", (struct objfile *) NULL);
10945 lai->primitive_type_vector [ada_primitive_type_positive] =
10946 init_type (TYPE_CODE_INT,
10947 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10948 0, "positive", (struct objfile *) NULL);
10949 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10951 lai->primitive_type_vector [ada_primitive_type_system_address] =
10952 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10953 (struct objfile *) NULL));
10954 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10955 = "system__address";
10958 /* Language vector */
10960 /* Not really used, but needed in the ada_language_defn. */
10962 static void
10963 emit_char (int c, struct ui_file *stream, int quoter)
10965 ada_emit_char (c, stream, quoter, 1);
10968 static int
10969 parse (void)
10971 warnings_issued = 0;
10972 return ada_parse ();
10975 static const struct exp_descriptor ada_exp_descriptor = {
10976 ada_print_subexp,
10977 ada_operator_length,
10978 ada_op_name,
10979 ada_dump_subexp_body,
10980 ada_evaluate_subexp
10983 const struct language_defn ada_language_defn = {
10984 "ada", /* Language name */
10985 language_ada,
10986 range_check_off,
10987 type_check_off,
10988 case_sensitive_on, /* Yes, Ada is case-insensitive, but
10989 that's not quite what this means. */
10990 array_row_major,
10991 &ada_exp_descriptor,
10992 parse,
10993 ada_error,
10994 resolve,
10995 ada_printchar, /* Print a character constant */
10996 ada_printstr, /* Function to print string constant */
10997 emit_char, /* Function to print single char (not used) */
10998 ada_print_type, /* Print a type using appropriate syntax */
10999 ada_val_print, /* Print a value using appropriate syntax */
11000 ada_value_print, /* Print a top-level value */
11001 NULL, /* Language specific skip_trampoline */
11002 NULL, /* value_of_this */
11003 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11004 basic_lookup_transparent_type, /* lookup_transparent_type */
11005 ada_la_decode, /* Language specific symbol demangler */
11006 NULL, /* Language specific class_name_from_physname */
11007 ada_op_print_tab, /* expression operators for printing */
11008 0, /* c-style arrays */
11009 1, /* String lower bound */
11010 ada_get_gdb_completer_word_break_characters,
11011 ada_make_symbol_completion_list,
11012 ada_language_arch_info,
11013 ada_print_array_index,
11014 default_pass_by_reference,
11015 LANG_MAGIC
11018 void
11019 _initialize_ada_language (void)
11021 add_language (&ada_language_defn);
11023 varsize_limit = 65536;
11025 obstack_init (&symbol_list_obstack);
11027 decoded_names_store = htab_create_alloc
11028 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11029 NULL, xcalloc, xfree);
11031 observer_attach_executable_changed (ada_executable_changed_observer);