Initial import
[gdb.git] / gdb / solib-frv.c
blob34da05eae45b18d636c74982fc21651ef724b8ac
1 /* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger.
2 Copyright (C) 2004, 2007 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "defs.h"
21 #include "gdb_string.h"
22 #include "inferior.h"
23 #include "gdbcore.h"
24 #include "solib.h"
25 #include "solist.h"
26 #include "frv-tdep.h"
27 #include "objfiles.h"
28 #include "symtab.h"
29 #include "language.h"
30 #include "command.h"
31 #include "gdbcmd.h"
32 #include "elf/frv.h"
34 /* Flag which indicates whether internal debug messages should be printed. */
35 static int solib_frv_debug;
37 /* FR-V pointers are four bytes wide. */
38 enum { FRV_PTR_SIZE = 4 };
40 /* Representation of loadmap and related structs for the FR-V FDPIC ABI. */
42 /* External versions; the size and alignment of the fields should be
43 the same as those on the target. When loaded, the placement of
44 the bits in each field will be the same as on the target. */
45 typedef gdb_byte ext_Elf32_Half[2];
46 typedef gdb_byte ext_Elf32_Addr[4];
47 typedef gdb_byte ext_Elf32_Word[4];
49 struct ext_elf32_fdpic_loadseg
51 /* Core address to which the segment is mapped. */
52 ext_Elf32_Addr addr;
53 /* VMA recorded in the program header. */
54 ext_Elf32_Addr p_vaddr;
55 /* Size of this segment in memory. */
56 ext_Elf32_Word p_memsz;
59 struct ext_elf32_fdpic_loadmap {
60 /* Protocol version number, must be zero. */
61 ext_Elf32_Half version;
62 /* Number of segments in this map. */
63 ext_Elf32_Half nsegs;
64 /* The actual memory map. */
65 struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
68 /* Internal versions; the types are GDB types and the data in each
69 of the fields is (or will be) decoded from the external struct
70 for ease of consumption. */
71 struct int_elf32_fdpic_loadseg
73 /* Core address to which the segment is mapped. */
74 CORE_ADDR addr;
75 /* VMA recorded in the program header. */
76 CORE_ADDR p_vaddr;
77 /* Size of this segment in memory. */
78 long p_memsz;
81 struct int_elf32_fdpic_loadmap {
82 /* Protocol version number, must be zero. */
83 int version;
84 /* Number of segments in this map. */
85 int nsegs;
86 /* The actual memory map. */
87 struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
90 /* Given address LDMADDR, fetch and decode the loadmap at that address.
91 Return NULL if there is a problem reading the target memory or if
92 there doesn't appear to be a loadmap at the given address. The
93 allocated space (representing the loadmap) returned by this
94 function may be freed via a single call to xfree(). */
96 static struct int_elf32_fdpic_loadmap *
97 fetch_loadmap (CORE_ADDR ldmaddr)
99 struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial;
100 struct ext_elf32_fdpic_loadmap *ext_ldmbuf;
101 struct int_elf32_fdpic_loadmap *int_ldmbuf;
102 int ext_ldmbuf_size, int_ldmbuf_size;
103 int version, seg, nsegs;
105 /* Fetch initial portion of the loadmap. */
106 if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial,
107 sizeof ext_ldmbuf_partial))
109 /* Problem reading the target's memory. */
110 return NULL;
113 /* Extract the version. */
114 version = extract_unsigned_integer (ext_ldmbuf_partial.version,
115 sizeof ext_ldmbuf_partial.version);
116 if (version != 0)
118 /* We only handle version 0. */
119 return NULL;
122 /* Extract the number of segments. */
123 nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs,
124 sizeof ext_ldmbuf_partial.nsegs);
126 /* Allocate space for the complete (external) loadmap. */
127 ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap)
128 + (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg);
129 ext_ldmbuf = xmalloc (ext_ldmbuf_size);
131 /* Copy over the portion of the loadmap that's already been read. */
132 memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial);
134 /* Read the rest of the loadmap from the target. */
135 if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial,
136 (gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial,
137 ext_ldmbuf_size - sizeof ext_ldmbuf_partial))
139 /* Couldn't read rest of the loadmap. */
140 xfree (ext_ldmbuf);
141 return NULL;
144 /* Allocate space into which to put information extract from the
145 external loadsegs. I.e, allocate the internal loadsegs. */
146 int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap)
147 + (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg);
148 int_ldmbuf = xmalloc (int_ldmbuf_size);
150 /* Place extracted information in internal structs. */
151 int_ldmbuf->version = version;
152 int_ldmbuf->nsegs = nsegs;
153 for (seg = 0; seg < nsegs; seg++)
155 int_ldmbuf->segs[seg].addr
156 = extract_unsigned_integer (ext_ldmbuf->segs[seg].addr,
157 sizeof (ext_ldmbuf->segs[seg].addr));
158 int_ldmbuf->segs[seg].p_vaddr
159 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr,
160 sizeof (ext_ldmbuf->segs[seg].p_vaddr));
161 int_ldmbuf->segs[seg].p_memsz
162 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz,
163 sizeof (ext_ldmbuf->segs[seg].p_memsz));
166 xfree (ext_ldmbuf);
167 return int_ldmbuf;
170 /* External link_map and elf32_fdpic_loadaddr struct definitions. */
172 typedef gdb_byte ext_ptr[4];
174 struct ext_elf32_fdpic_loadaddr
176 ext_ptr map; /* struct elf32_fdpic_loadmap *map; */
177 ext_ptr got_value; /* void *got_value; */
180 struct ext_link_map
182 struct ext_elf32_fdpic_loadaddr l_addr;
184 /* Absolute file name object was found in. */
185 ext_ptr l_name; /* char *l_name; */
187 /* Dynamic section of the shared object. */
188 ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */
190 /* Chain of loaded objects. */
191 ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */
194 /* Link map info to include in an allocated so_list entry */
196 struct lm_info
198 /* The loadmap, digested into an easier to use form. */
199 struct int_elf32_fdpic_loadmap *map;
200 /* The GOT address for this link map entry. */
201 CORE_ADDR got_value;
202 /* The link map address, needed for frv_fetch_objfile_link_map(). */
203 CORE_ADDR lm_addr;
205 /* Cached dynamic symbol table and dynamic relocs initialized and
206 used only by find_canonical_descriptor_in_load_object().
208 Note: kevinb/2004-02-26: It appears that calls to
209 bfd_canonicalize_dynamic_reloc() will use the same symbols as
210 those supplied to the first call to this function. Therefore,
211 it's important to NOT free the asymbol ** data structure
212 supplied to the first call. Thus the caching of the dynamic
213 symbols (dyn_syms) is critical for correct operation. The
214 caching of the dynamic relocations could be dispensed with. */
215 asymbol **dyn_syms;
216 arelent **dyn_relocs;
217 int dyn_reloc_count; /* number of dynamic relocs. */
221 /* The load map, got value, etc. are not available from the chain
222 of loaded shared objects. ``main_executable_lm_info'' provides
223 a way to get at this information so that it doesn't need to be
224 frequently recomputed. Initialized by frv_relocate_main_executable(). */
225 static struct lm_info *main_executable_lm_info;
227 static void frv_relocate_main_executable (void);
228 static CORE_ADDR main_got (void);
229 static int enable_break2 (void);
233 LOCAL FUNCTION
235 bfd_lookup_symbol -- lookup the value for a specific symbol
237 SYNOPSIS
239 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
241 DESCRIPTION
243 An expensive way to lookup the value of a single symbol for
244 bfd's that are only temporary anyway. This is used by the
245 shared library support to find the address of the debugger
246 interface structures in the shared library.
248 Note that 0 is specifically allowed as an error return (no
249 such symbol).
252 static CORE_ADDR
253 bfd_lookup_symbol (bfd *abfd, char *symname)
255 long storage_needed;
256 asymbol *sym;
257 asymbol **symbol_table;
258 unsigned int number_of_symbols;
259 unsigned int i;
260 struct cleanup *back_to;
261 CORE_ADDR symaddr = 0;
263 storage_needed = bfd_get_symtab_upper_bound (abfd);
265 if (storage_needed > 0)
267 symbol_table = (asymbol **) xmalloc (storage_needed);
268 back_to = make_cleanup (xfree, symbol_table);
269 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
271 for (i = 0; i < number_of_symbols; i++)
273 sym = *symbol_table++;
274 if (strcmp (sym->name, symname) == 0)
276 /* Bfd symbols are section relative. */
277 symaddr = sym->value + sym->section->vma;
278 break;
281 do_cleanups (back_to);
284 if (symaddr)
285 return symaddr;
287 /* Look for the symbol in the dynamic string table too. */
289 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
291 if (storage_needed > 0)
293 symbol_table = (asymbol **) xmalloc (storage_needed);
294 back_to = make_cleanup (xfree, symbol_table);
295 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
297 for (i = 0; i < number_of_symbols; i++)
299 sym = *symbol_table++;
300 if (strcmp (sym->name, symname) == 0)
302 /* Bfd symbols are section relative. */
303 symaddr = sym->value + sym->section->vma;
304 break;
307 do_cleanups (back_to);
310 return symaddr;
316 LOCAL FUNCTION
318 open_symbol_file_object
320 SYNOPSIS
322 void open_symbol_file_object (void *from_tty)
324 DESCRIPTION
326 If no open symbol file, attempt to locate and open the main symbol
327 file.
329 If FROM_TTYP dereferences to a non-zero integer, allow messages to
330 be printed. This parameter is a pointer rather than an int because
331 open_symbol_file_object() is called via catch_errors() and
332 catch_errors() requires a pointer argument. */
334 static int
335 open_symbol_file_object (void *from_ttyp)
337 /* Unimplemented. */
338 return 0;
341 /* Cached value for lm_base(), below. */
342 static CORE_ADDR lm_base_cache = 0;
344 /* Link map address for main module. */
345 static CORE_ADDR main_lm_addr = 0;
347 /* Return the address from which the link map chain may be found. On
348 the FR-V, this may be found in a number of ways. Assuming that the
349 main executable has already been relocated, the easiest way to find
350 this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A
351 pointer to the start of the link map will be located at the word found
352 at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker
353 reserve area mandated by the ABI.) */
355 static CORE_ADDR
356 lm_base (void)
358 struct minimal_symbol *got_sym;
359 CORE_ADDR addr;
360 gdb_byte buf[FRV_PTR_SIZE];
362 /* One of our assumptions is that the main executable has been relocated.
363 Bail out if this has not happened. (Note that post_create_inferior()
364 in infcmd.c will call solib_add prior to solib_create_inferior_hook().
365 If we allow this to happen, lm_base_cache will be initialized with
366 a bogus value. */
367 if (main_executable_lm_info == 0)
368 return 0;
370 /* If we already have a cached value, return it. */
371 if (lm_base_cache)
372 return lm_base_cache;
374 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL,
375 symfile_objfile);
376 if (got_sym == 0)
378 if (solib_frv_debug)
379 fprintf_unfiltered (gdb_stdlog,
380 "lm_base: _GLOBAL_OFFSET_TABLE_ not found.\n");
381 return 0;
384 addr = SYMBOL_VALUE_ADDRESS (got_sym) + 8;
386 if (solib_frv_debug)
387 fprintf_unfiltered (gdb_stdlog,
388 "lm_base: _GLOBAL_OFFSET_TABLE_ + 8 = %s\n",
389 hex_string_custom (addr, 8));
391 if (target_read_memory (addr, buf, sizeof buf) != 0)
392 return 0;
393 lm_base_cache = extract_unsigned_integer (buf, sizeof buf);
395 if (solib_frv_debug)
396 fprintf_unfiltered (gdb_stdlog,
397 "lm_base: lm_base_cache = %s\n",
398 hex_string_custom (lm_base_cache, 8));
400 return lm_base_cache;
404 /* LOCAL FUNCTION
406 frv_current_sos -- build a list of currently loaded shared objects
408 SYNOPSIS
410 struct so_list *frv_current_sos ()
412 DESCRIPTION
414 Build a list of `struct so_list' objects describing the shared
415 objects currently loaded in the inferior. This list does not
416 include an entry for the main executable file.
418 Note that we only gather information directly available from the
419 inferior --- we don't examine any of the shared library files
420 themselves. The declaration of `struct so_list' says which fields
421 we provide values for. */
423 static struct so_list *
424 frv_current_sos (void)
426 CORE_ADDR lm_addr, mgot;
427 struct so_list *sos_head = NULL;
428 struct so_list **sos_next_ptr = &sos_head;
430 /* Make sure that the main executable has been relocated. This is
431 required in order to find the address of the global offset table,
432 which in turn is used to find the link map info. (See lm_base()
433 for details.)
435 Note that the relocation of the main executable is also performed
436 by SOLIB_CREATE_INFERIOR_HOOK(), however, in the case of core
437 files, this hook is called too late in order to be of benefit to
438 SOLIB_ADD. SOLIB_ADD eventually calls this this function,
439 frv_current_sos, and also precedes the call to
440 SOLIB_CREATE_INFERIOR_HOOK(). (See post_create_inferior() in
441 infcmd.c.) */
442 if (main_executable_lm_info == 0 && core_bfd != NULL)
443 frv_relocate_main_executable ();
445 /* Fetch the GOT corresponding to the main executable. */
446 mgot = main_got ();
448 /* Locate the address of the first link map struct. */
449 lm_addr = lm_base ();
451 /* We have at least one link map entry. Fetch the the lot of them,
452 building the solist chain. */
453 while (lm_addr)
455 struct ext_link_map lm_buf;
456 CORE_ADDR got_addr;
458 if (solib_frv_debug)
459 fprintf_unfiltered (gdb_stdlog,
460 "current_sos: reading link_map entry at %s\n",
461 hex_string_custom (lm_addr, 8));
463 if (target_read_memory (lm_addr, (gdb_byte *) &lm_buf, sizeof (lm_buf)) != 0)
465 warning (_("frv_current_sos: Unable to read link map entry. Shared object chain may be incomplete."));
466 break;
469 got_addr
470 = extract_unsigned_integer (lm_buf.l_addr.got_value,
471 sizeof (lm_buf.l_addr.got_value));
472 /* If the got_addr is the same as mgotr, then we're looking at the
473 entry for the main executable. By convention, we don't include
474 this in the list of shared objects. */
475 if (got_addr != mgot)
477 int errcode;
478 char *name_buf;
479 struct int_elf32_fdpic_loadmap *loadmap;
480 struct so_list *sop;
481 CORE_ADDR addr;
483 /* Fetch the load map address. */
484 addr = extract_unsigned_integer (lm_buf.l_addr.map,
485 sizeof lm_buf.l_addr.map);
486 loadmap = fetch_loadmap (addr);
487 if (loadmap == NULL)
489 warning (_("frv_current_sos: Unable to fetch load map. Shared object chain may be incomplete."));
490 break;
493 sop = xcalloc (1, sizeof (struct so_list));
494 sop->lm_info = xcalloc (1, sizeof (struct lm_info));
495 sop->lm_info->map = loadmap;
496 sop->lm_info->got_value = got_addr;
497 sop->lm_info->lm_addr = lm_addr;
498 /* Fetch the name. */
499 addr = extract_unsigned_integer (lm_buf.l_name,
500 sizeof (lm_buf.l_name));
501 target_read_string (addr, &name_buf, SO_NAME_MAX_PATH_SIZE - 1,
502 &errcode);
504 if (solib_frv_debug)
505 fprintf_unfiltered (gdb_stdlog, "current_sos: name = %s\n",
506 name_buf);
508 if (errcode != 0)
509 warning (_("Can't read pathname for link map entry: %s."),
510 safe_strerror (errcode));
511 else
513 strncpy (sop->so_name, name_buf, SO_NAME_MAX_PATH_SIZE - 1);
514 sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
515 xfree (name_buf);
516 strcpy (sop->so_original_name, sop->so_name);
519 *sos_next_ptr = sop;
520 sos_next_ptr = &sop->next;
522 else
524 main_lm_addr = lm_addr;
527 lm_addr = extract_unsigned_integer (lm_buf.l_next, sizeof (lm_buf.l_next));
530 enable_break2 ();
532 return sos_head;
536 /* Return 1 if PC lies in the dynamic symbol resolution code of the
537 run time loader. */
539 static CORE_ADDR interp_text_sect_low;
540 static CORE_ADDR interp_text_sect_high;
541 static CORE_ADDR interp_plt_sect_low;
542 static CORE_ADDR interp_plt_sect_high;
544 static int
545 frv_in_dynsym_resolve_code (CORE_ADDR pc)
547 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
548 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
549 || in_plt_section (pc, NULL));
552 /* Given a loadmap and an address, return the displacement needed
553 to relocate the address. */
555 CORE_ADDR
556 displacement_from_map (struct int_elf32_fdpic_loadmap *map,
557 CORE_ADDR addr)
559 int seg;
561 for (seg = 0; seg < map->nsegs; seg++)
563 if (map->segs[seg].p_vaddr <= addr
564 && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
566 return map->segs[seg].addr - map->segs[seg].p_vaddr;
570 return 0;
573 /* Print a warning about being unable to set the dynamic linker
574 breakpoint. */
576 static void
577 enable_break_failure_warning (void)
579 warning (_("Unable to find dynamic linker breakpoint function.\n"
580 "GDB will be unable to debug shared library initializers\n"
581 "and track explicitly loaded dynamic code."));
586 LOCAL FUNCTION
588 enable_break -- arrange for dynamic linker to hit breakpoint
590 SYNOPSIS
592 int enable_break (void)
594 DESCRIPTION
596 The dynamic linkers has, as part of its debugger interface, support
597 for arranging for the inferior to hit a breakpoint after mapping in
598 the shared libraries. This function enables that breakpoint.
600 On the FR-V, using the shared library (FDPIC) ABI, the symbol
601 _dl_debug_addr points to the r_debug struct which contains
602 a field called r_brk. r_brk is the address of the function
603 descriptor upon which a breakpoint must be placed. Being a
604 function descriptor, we must extract the entry point in order
605 to set the breakpoint.
607 Our strategy will be to get the .interp section from the
608 executable. This section will provide us with the name of the
609 interpreter. We'll open the interpreter and then look up
610 the address of _dl_debug_addr. We then relocate this address
611 using the interpreter's loadmap. Once the relocated address
612 is known, we fetch the value (address) corresponding to r_brk
613 and then use that value to fetch the entry point of the function
614 we're interested in.
618 static int enable_break1_done = 0;
619 static int enable_break2_done = 0;
621 static int
622 enable_break2 (void)
624 int success = 0;
625 char **bkpt_namep;
626 asection *interp_sect;
628 if (!enable_break1_done || enable_break2_done)
629 return 1;
631 enable_break2_done = 1;
633 /* First, remove all the solib event breakpoints. Their addresses
634 may have changed since the last time we ran the program. */
635 remove_solib_event_breakpoints ();
637 interp_text_sect_low = interp_text_sect_high = 0;
638 interp_plt_sect_low = interp_plt_sect_high = 0;
640 /* Find the .interp section; if not found, warn the user and drop
641 into the old breakpoint at symbol code. */
642 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
643 if (interp_sect)
645 unsigned int interp_sect_size;
646 gdb_byte *buf;
647 bfd *tmp_bfd = NULL;
648 int tmp_fd = -1;
649 char *tmp_pathname = NULL;
650 int status;
651 CORE_ADDR addr, interp_loadmap_addr;
652 gdb_byte addr_buf[FRV_PTR_SIZE];
653 struct int_elf32_fdpic_loadmap *ldm;
655 /* Read the contents of the .interp section into a local buffer;
656 the contents specify the dynamic linker this program uses. */
657 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
658 buf = alloca (interp_sect_size);
659 bfd_get_section_contents (exec_bfd, interp_sect,
660 buf, 0, interp_sect_size);
662 /* Now we need to figure out where the dynamic linker was
663 loaded so that we can load its symbols and place a breakpoint
664 in the dynamic linker itself.
666 This address is stored on the stack. However, I've been unable
667 to find any magic formula to find it for Solaris (appears to
668 be trivial on GNU/Linux). Therefore, we have to try an alternate
669 mechanism to find the dynamic linker's base address. */
671 tmp_fd = solib_open (buf, &tmp_pathname);
672 if (tmp_fd >= 0)
673 tmp_bfd = bfd_fopen (tmp_pathname, gnutarget, FOPEN_RB, tmp_fd);
675 if (tmp_bfd == NULL)
677 enable_break_failure_warning ();
678 return 0;
681 /* Make sure the dynamic linker is really a useful object. */
682 if (!bfd_check_format (tmp_bfd, bfd_object))
684 warning (_("Unable to grok dynamic linker %s as an object file"), buf);
685 enable_break_failure_warning ();
686 bfd_close (tmp_bfd);
687 return 0;
690 status = frv_fdpic_loadmap_addresses (current_gdbarch,
691 &interp_loadmap_addr, 0);
692 if (status < 0)
694 warning (_("Unable to determine dynamic linker loadmap address."));
695 enable_break_failure_warning ();
696 bfd_close (tmp_bfd);
697 return 0;
700 if (solib_frv_debug)
701 fprintf_unfiltered (gdb_stdlog,
702 "enable_break: interp_loadmap_addr = %s\n",
703 hex_string_custom (interp_loadmap_addr, 8));
705 ldm = fetch_loadmap (interp_loadmap_addr);
706 if (ldm == NULL)
708 warning (_("Unable to load dynamic linker loadmap at address %s."),
709 hex_string_custom (interp_loadmap_addr, 8));
710 enable_break_failure_warning ();
711 bfd_close (tmp_bfd);
712 return 0;
715 /* Record the relocated start and end address of the dynamic linker
716 text and plt section for svr4_in_dynsym_resolve_code. */
717 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
718 if (interp_sect)
720 interp_text_sect_low
721 = bfd_section_vma (tmp_bfd, interp_sect);
722 interp_text_sect_low
723 += displacement_from_map (ldm, interp_text_sect_low);
724 interp_text_sect_high
725 = interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
727 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
728 if (interp_sect)
730 interp_plt_sect_low =
731 bfd_section_vma (tmp_bfd, interp_sect);
732 interp_plt_sect_low
733 += displacement_from_map (ldm, interp_plt_sect_low);
734 interp_plt_sect_high =
735 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
738 addr = bfd_lookup_symbol (tmp_bfd, "_dl_debug_addr");
739 if (addr == 0)
741 warning (_("Could not find symbol _dl_debug_addr in dynamic linker"));
742 enable_break_failure_warning ();
743 bfd_close (tmp_bfd);
744 return 0;
747 if (solib_frv_debug)
748 fprintf_unfiltered (gdb_stdlog,
749 "enable_break: _dl_debug_addr (prior to relocation) = %s\n",
750 hex_string_custom (addr, 8));
752 addr += displacement_from_map (ldm, addr);
754 if (solib_frv_debug)
755 fprintf_unfiltered (gdb_stdlog,
756 "enable_break: _dl_debug_addr (after relocation) = %s\n",
757 hex_string_custom (addr, 8));
759 /* Fetch the address of the r_debug struct. */
760 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
762 warning (_("Unable to fetch contents of _dl_debug_addr (at address %s) from dynamic linker"),
763 hex_string_custom (addr, 8));
765 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf);
767 /* Fetch the r_brk field. It's 8 bytes from the start of
768 _dl_debug_addr. */
769 if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0)
771 warning (_("Unable to fetch _dl_debug_addr->r_brk (at address %s) from dynamic linker"),
772 hex_string_custom (addr + 8, 8));
773 enable_break_failure_warning ();
774 bfd_close (tmp_bfd);
775 return 0;
777 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf);
779 /* Now fetch the function entry point. */
780 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
782 warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point (at address %s) from dynamic linker"),
783 hex_string_custom (addr, 8));
784 enable_break_failure_warning ();
785 bfd_close (tmp_bfd);
786 return 0;
788 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf);
790 /* We're done with the temporary bfd. */
791 bfd_close (tmp_bfd);
793 /* We're also done with the loadmap. */
794 xfree (ldm);
796 /* Now (finally!) create the solib breakpoint. */
797 create_solib_event_breakpoint (addr);
799 return 1;
802 /* Tell the user we couldn't set a dynamic linker breakpoint. */
803 enable_break_failure_warning ();
805 /* Failure return. */
806 return 0;
809 static int
810 enable_break (void)
812 asection *interp_sect;
814 /* Remove all the solib event breakpoints. Their addresses
815 may have changed since the last time we ran the program. */
816 remove_solib_event_breakpoints ();
818 /* Check for the presence of a .interp section. If there is no
819 such section, the executable is statically linked. */
821 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
823 if (interp_sect)
825 enable_break1_done = 1;
826 create_solib_event_breakpoint (symfile_objfile->ei.entry_point);
828 if (solib_frv_debug)
829 fprintf_unfiltered (gdb_stdlog,
830 "enable_break: solib event breakpoint placed at entry point: %s\n",
831 hex_string_custom
832 (symfile_objfile->ei.entry_point, 8));
834 else
836 if (solib_frv_debug)
837 fprintf_unfiltered (gdb_stdlog,
838 "enable_break: No .interp section found.\n");
841 return 1;
846 LOCAL FUNCTION
848 special_symbol_handling -- additional shared library symbol handling
850 SYNOPSIS
852 void special_symbol_handling ()
854 DESCRIPTION
856 Once the symbols from a shared object have been loaded in the usual
857 way, we are called to do any system specific symbol handling that
858 is needed.
862 static void
863 frv_special_symbol_handling (void)
865 /* Nothing needed (yet) for FRV. */
868 static void
869 frv_relocate_main_executable (void)
871 int status;
872 CORE_ADDR exec_addr;
873 struct int_elf32_fdpic_loadmap *ldm;
874 struct cleanup *old_chain;
875 struct section_offsets *new_offsets;
876 int changed;
877 struct obj_section *osect;
879 status = frv_fdpic_loadmap_addresses (current_gdbarch, 0, &exec_addr);
881 if (status < 0)
883 /* Not using FDPIC ABI, so do nothing. */
884 return;
887 /* Fetch the loadmap located at ``exec_addr''. */
888 ldm = fetch_loadmap (exec_addr);
889 if (ldm == NULL)
890 error (_("Unable to load the executable's loadmap."));
892 if (main_executable_lm_info)
893 xfree (main_executable_lm_info);
894 main_executable_lm_info = xcalloc (1, sizeof (struct lm_info));
895 main_executable_lm_info->map = ldm;
897 new_offsets = xcalloc (symfile_objfile->num_sections,
898 sizeof (struct section_offsets));
899 old_chain = make_cleanup (xfree, new_offsets);
900 changed = 0;
902 ALL_OBJFILE_OSECTIONS (symfile_objfile, osect)
904 CORE_ADDR orig_addr, addr, offset;
905 int osect_idx;
906 int seg;
908 osect_idx = osect->the_bfd_section->index;
910 /* Current address of section. */
911 addr = osect->addr;
912 /* Offset from where this section started. */
913 offset = ANOFFSET (symfile_objfile->section_offsets, osect_idx);
914 /* Original address prior to any past relocations. */
915 orig_addr = addr - offset;
917 for (seg = 0; seg < ldm->nsegs; seg++)
919 if (ldm->segs[seg].p_vaddr <= orig_addr
920 && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz)
922 new_offsets->offsets[osect_idx]
923 = ldm->segs[seg].addr - ldm->segs[seg].p_vaddr;
925 if (new_offsets->offsets[osect_idx] != offset)
926 changed = 1;
927 break;
932 if (changed)
933 objfile_relocate (symfile_objfile, new_offsets);
935 do_cleanups (old_chain);
937 /* Now that symfile_objfile has been relocated, we can compute the
938 GOT value and stash it away. */
939 main_executable_lm_info->got_value = main_got ();
944 GLOBAL FUNCTION
946 frv_solib_create_inferior_hook -- shared library startup support
948 SYNOPSIS
950 void frv_solib_create_inferior_hook ()
952 DESCRIPTION
954 When gdb starts up the inferior, it nurses it along (through the
955 shell) until it is ready to execute it's first instruction. At this
956 point, this function gets called via expansion of the macro
957 SOLIB_CREATE_INFERIOR_HOOK.
959 For the FR-V shared library ABI (FDPIC), the main executable
960 needs to be relocated. The shared library breakpoints also need
961 to be enabled.
964 static void
965 frv_solib_create_inferior_hook (void)
967 /* Relocate main executable. */
968 frv_relocate_main_executable ();
970 /* Enable shared library breakpoints. */
971 if (!enable_break ())
973 warning (_("shared library handler failed to enable breakpoint"));
974 return;
978 static void
979 frv_clear_solib (void)
981 lm_base_cache = 0;
982 enable_break1_done = 0;
983 enable_break2_done = 0;
984 main_lm_addr = 0;
985 if (main_executable_lm_info != 0)
987 xfree (main_executable_lm_info->map);
988 xfree (main_executable_lm_info->dyn_syms);
989 xfree (main_executable_lm_info->dyn_relocs);
990 xfree (main_executable_lm_info);
991 main_executable_lm_info = 0;
995 static void
996 frv_free_so (struct so_list *so)
998 xfree (so->lm_info->map);
999 xfree (so->lm_info->dyn_syms);
1000 xfree (so->lm_info->dyn_relocs);
1001 xfree (so->lm_info);
1004 static void
1005 frv_relocate_section_addresses (struct so_list *so,
1006 struct section_table *sec)
1008 int seg;
1009 struct int_elf32_fdpic_loadmap *map;
1011 map = so->lm_info->map;
1013 for (seg = 0; seg < map->nsegs; seg++)
1015 if (map->segs[seg].p_vaddr <= sec->addr
1016 && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
1018 CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr;
1019 sec->addr += displ;
1020 sec->endaddr += displ;
1021 break;
1026 /* Return the GOT address associated with the main executable. Return
1027 0 if it can't be found. */
1029 static CORE_ADDR
1030 main_got (void)
1032 struct minimal_symbol *got_sym;
1034 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL, symfile_objfile);
1035 if (got_sym == 0)
1036 return 0;
1038 return SYMBOL_VALUE_ADDRESS (got_sym);
1041 /* Find the global pointer for the given function address ADDR. */
1043 CORE_ADDR
1044 frv_fdpic_find_global_pointer (CORE_ADDR addr)
1046 struct so_list *so;
1048 so = master_so_list ();
1049 while (so)
1051 int seg;
1052 struct int_elf32_fdpic_loadmap *map;
1054 map = so->lm_info->map;
1056 for (seg = 0; seg < map->nsegs; seg++)
1058 if (map->segs[seg].addr <= addr
1059 && addr < map->segs[seg].addr + map->segs[seg].p_memsz)
1060 return so->lm_info->got_value;
1063 so = so->next;
1066 /* Didn't find it it any of the shared objects. So assume it's in the
1067 main executable. */
1068 return main_got ();
1071 /* Forward declarations for frv_fdpic_find_canonical_descriptor(). */
1072 static CORE_ADDR find_canonical_descriptor_in_load_object
1073 (CORE_ADDR, CORE_ADDR, char *, bfd *, struct lm_info *);
1075 /* Given a function entry point, attempt to find the canonical descriptor
1076 associated with that entry point. Return 0 if no canonical descriptor
1077 could be found. */
1079 CORE_ADDR
1080 frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point)
1082 char *name;
1083 CORE_ADDR addr;
1084 CORE_ADDR got_value;
1085 struct int_elf32_fdpic_loadmap *ldm = 0;
1086 struct symbol *sym;
1087 int status;
1088 CORE_ADDR exec_loadmap_addr;
1090 /* Fetch the corresponding global pointer for the entry point. */
1091 got_value = frv_fdpic_find_global_pointer (entry_point);
1093 /* Attempt to find the name of the function. If the name is available,
1094 it'll be used as an aid in finding matching functions in the dynamic
1095 symbol table. */
1096 sym = find_pc_function (entry_point);
1097 if (sym == 0)
1098 name = 0;
1099 else
1100 name = SYMBOL_LINKAGE_NAME (sym);
1102 /* Check the main executable. */
1103 addr = find_canonical_descriptor_in_load_object
1104 (entry_point, got_value, name, symfile_objfile->obfd,
1105 main_executable_lm_info);
1107 /* If descriptor not found via main executable, check each load object
1108 in list of shared objects. */
1109 if (addr == 0)
1111 struct so_list *so;
1113 so = master_so_list ();
1114 while (so)
1116 addr = find_canonical_descriptor_in_load_object
1117 (entry_point, got_value, name, so->abfd, so->lm_info);
1119 if (addr != 0)
1120 break;
1122 so = so->next;
1126 return addr;
1129 static CORE_ADDR
1130 find_canonical_descriptor_in_load_object
1131 (CORE_ADDR entry_point, CORE_ADDR got_value, char *name, bfd *abfd,
1132 struct lm_info *lm)
1134 arelent *rel;
1135 unsigned int i;
1136 CORE_ADDR addr = 0;
1138 /* Nothing to do if no bfd. */
1139 if (abfd == 0)
1140 return 0;
1142 /* Nothing to do if no link map. */
1143 if (lm == 0)
1144 return 0;
1146 /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations.
1147 (More about this later.) But in order to fetch the relocs, we
1148 need to first fetch the dynamic symbols. These symbols need to
1149 be cached due to the way that bfd_canonicalize_dynamic_reloc()
1150 works. (See the comments in the declaration of struct lm_info
1151 for more information.) */
1152 if (lm->dyn_syms == NULL)
1154 long storage_needed;
1155 unsigned int number_of_symbols;
1157 /* Determine amount of space needed to hold the dynamic symbol table. */
1158 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
1160 /* If there are no dynamic symbols, there's nothing to do. */
1161 if (storage_needed <= 0)
1162 return 0;
1164 /* Allocate space for the dynamic symbol table. */
1165 lm->dyn_syms = (asymbol **) xmalloc (storage_needed);
1167 /* Fetch the dynamic symbol table. */
1168 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms);
1170 if (number_of_symbols == 0)
1171 return 0;
1174 /* Fetch the dynamic relocations if not already cached. */
1175 if (lm->dyn_relocs == NULL)
1177 long storage_needed;
1179 /* Determine amount of space needed to hold the dynamic relocs. */
1180 storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd);
1182 /* Bail out if there are no dynamic relocs. */
1183 if (storage_needed <= 0)
1184 return 0;
1186 /* Allocate space for the relocs. */
1187 lm->dyn_relocs = (arelent **) xmalloc (storage_needed);
1189 /* Fetch the dynamic relocs. */
1190 lm->dyn_reloc_count
1191 = bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms);
1194 /* Search the dynamic relocs. */
1195 for (i = 0; i < lm->dyn_reloc_count; i++)
1197 rel = lm->dyn_relocs[i];
1199 /* Relocs of interest are those which meet the following
1200 criteria:
1202 - the names match (assuming the caller could provide
1203 a name which matches ``entry_point'').
1204 - the relocation type must be R_FRV_FUNCDESC. Relocs
1205 of this type are used (by the dynamic linker) to
1206 look up the address of a canonical descriptor (allocating
1207 it if need be) and initializing the GOT entry referred
1208 to by the offset to the address of the descriptor.
1210 These relocs of interest may be used to obtain a
1211 candidate descriptor by first adjusting the reloc's
1212 address according to the link map and then dereferencing
1213 this address (which is a GOT entry) to obtain a descriptor
1214 address. */
1215 if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0)
1216 && rel->howto->type == R_FRV_FUNCDESC)
1218 gdb_byte buf [FRV_PTR_SIZE];
1220 /* Compute address of address of candidate descriptor. */
1221 addr = rel->address + displacement_from_map (lm->map, rel->address);
1223 /* Fetch address of candidate descriptor. */
1224 if (target_read_memory (addr, buf, sizeof buf) != 0)
1225 continue;
1226 addr = extract_unsigned_integer (buf, sizeof buf);
1228 /* Check for matching entry point. */
1229 if (target_read_memory (addr, buf, sizeof buf) != 0)
1230 continue;
1231 if (extract_unsigned_integer (buf, sizeof buf) != entry_point)
1232 continue;
1234 /* Check for matching got value. */
1235 if (target_read_memory (addr + 4, buf, sizeof buf) != 0)
1236 continue;
1237 if (extract_unsigned_integer (buf, sizeof buf) != got_value)
1238 continue;
1240 /* Match was successful! Exit loop. */
1241 break;
1245 return addr;
1248 /* Given an objfile, return the address of its link map. This value is
1249 needed for TLS support. */
1250 CORE_ADDR
1251 frv_fetch_objfile_link_map (struct objfile *objfile)
1253 struct so_list *so;
1255 /* Cause frv_current_sos() to be run if it hasn't been already. */
1256 if (main_lm_addr == 0)
1257 solib_add (0, 0, 0, 1);
1259 /* frv_current_sos() will set main_lm_addr for the main executable. */
1260 if (objfile == symfile_objfile)
1261 return main_lm_addr;
1263 /* The other link map addresses may be found by examining the list
1264 of shared libraries. */
1265 for (so = master_so_list (); so; so = so->next)
1267 if (so->objfile == objfile)
1268 return so->lm_info->lm_addr;
1271 /* Not found! */
1272 return 0;
1275 struct target_so_ops frv_so_ops;
1277 void
1278 _initialize_frv_solib (void)
1280 frv_so_ops.relocate_section_addresses = frv_relocate_section_addresses;
1281 frv_so_ops.free_so = frv_free_so;
1282 frv_so_ops.clear_solib = frv_clear_solib;
1283 frv_so_ops.solib_create_inferior_hook = frv_solib_create_inferior_hook;
1284 frv_so_ops.special_symbol_handling = frv_special_symbol_handling;
1285 frv_so_ops.current_sos = frv_current_sos;
1286 frv_so_ops.open_symbol_file_object = open_symbol_file_object;
1287 frv_so_ops.in_dynsym_resolve_code = frv_in_dynsym_resolve_code;
1289 /* Debug this file's internals. */
1290 add_setshow_zinteger_cmd ("solib-frv", class_maintenance,
1291 &solib_frv_debug, _("\
1292 Set internal debugging of shared library code for FR-V."), _("\
1293 Show internal debugging of shared library code for FR-V."), _("\
1294 When non-zero, FR-V solib specific internal debugging is enabled."),
1295 NULL,
1296 NULL, /* FIXME: i18n: */
1297 &setdebuglist, &showdebuglist);