Update
[gdb.git] / gdb / ppc-linux-nat.c
blob53bc4ae15092baa68f180c4d4ec1eeec6a4ee201
1 /* PPC GNU/Linux native support.
3 Copyright (C) 1988, 1989, 1991, 1992, 1994, 1996, 2000, 2001, 2002, 2003,
4 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include "frame.h"
24 #include "inferior.h"
25 #include "gdbcore.h"
26 #include "regcache.h"
27 #include "gdb_assert.h"
28 #include "target.h"
29 #include "linux-nat.h"
31 #include <stdint.h>
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <signal.h>
35 #include <sys/user.h>
36 #include <sys/ioctl.h>
37 #include "gdb_wait.h"
38 #include <fcntl.h>
39 #include <sys/procfs.h>
40 #include <sys/ptrace.h>
42 /* Prototypes for supply_gregset etc. */
43 #include "gregset.h"
44 #include "ppc-tdep.h"
46 /* Glibc's headers don't define PTRACE_GETVRREGS so we cannot use a
47 configure time check. Some older glibc's (for instance 2.2.1)
48 don't have a specific powerpc version of ptrace.h, and fall back on
49 a generic one. In such cases, sys/ptrace.h defines
50 PTRACE_GETFPXREGS and PTRACE_SETFPXREGS to the same numbers that
51 ppc kernel's asm/ptrace.h defines PTRACE_GETVRREGS and
52 PTRACE_SETVRREGS to be. This also makes a configury check pretty
53 much useless. */
55 /* These definitions should really come from the glibc header files,
56 but Glibc doesn't know about the vrregs yet. */
57 #ifndef PTRACE_GETVRREGS
58 #define PTRACE_GETVRREGS 18
59 #define PTRACE_SETVRREGS 19
60 #endif
63 /* Similarly for the ptrace requests for getting / setting the SPE
64 registers (ev0 -- ev31, acc, and spefscr). See the description of
65 gdb_evrregset_t for details. */
66 #ifndef PTRACE_GETEVRREGS
67 #define PTRACE_GETEVRREGS 20
68 #define PTRACE_SETEVRREGS 21
69 #endif
71 /* Similarly for the hardware watchpoint support. */
72 #ifndef PTRACE_GET_DEBUGREG
73 #define PTRACE_GET_DEBUGREG 25
74 #endif
75 #ifndef PTRACE_SET_DEBUGREG
76 #define PTRACE_SET_DEBUGREG 26
77 #endif
78 #ifndef PTRACE_GETSIGINFO
79 #define PTRACE_GETSIGINFO 0x4202
80 #endif
82 /* This oddity is because the Linux kernel defines elf_vrregset_t as
83 an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
84 However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
85 the vrsave as an extra 4 bytes at the end. I opted for creating a
86 flat array of chars, so that it is easier to manipulate for gdb.
88 There are 32 vector registers 16 bytes longs, plus a VSCR register
89 which is only 4 bytes long, but is fetched as a 16 bytes
90 quantity. Up to here we have the elf_vrregset_t structure.
91 Appended to this there is space for the VRSAVE register: 4 bytes.
92 Even though this vrsave register is not included in the regset
93 typedef, it is handled by the ptrace requests.
95 Note that GNU/Linux doesn't support little endian PPC hardware,
96 therefore the offset at which the real value of the VSCR register
97 is located will be always 12 bytes.
99 The layout is like this (where x is the actual value of the vscr reg): */
101 /* *INDENT-OFF* */
103 |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
104 <-------> <-------><-------><->
105 VR0 VR31 VSCR VRSAVE
107 /* *INDENT-ON* */
109 #define SIZEOF_VRREGS 33*16+4
111 typedef char gdb_vrregset_t[SIZEOF_VRREGS];
114 /* On PPC processors that support the the Signal Processing Extension
115 (SPE) APU, the general-purpose registers are 64 bits long.
116 However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER
117 ptrace calls only access the lower half of each register, to allow
118 them to behave the same way they do on non-SPE systems. There's a
119 separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that
120 read and write the top halves of all the general-purpose registers
121 at once, along with some SPE-specific registers.
123 GDB itself continues to claim the general-purpose registers are 32
124 bits long. It has unnamed raw registers that hold the upper halves
125 of the gprs, and the the full 64-bit SIMD views of the registers,
126 'ev0' -- 'ev31', are pseudo-registers that splice the top and
127 bottom halves together.
129 This is the structure filled in by PTRACE_GETEVRREGS and written to
130 the inferior's registers by PTRACE_SETEVRREGS. */
131 struct gdb_evrregset_t
133 unsigned long evr[32];
134 unsigned long long acc;
135 unsigned long spefscr;
139 /* Non-zero if our kernel may support the PTRACE_GETVRREGS and
140 PTRACE_SETVRREGS requests, for reading and writing the Altivec
141 registers. Zero if we've tried one of them and gotten an
142 error. */
143 int have_ptrace_getvrregs = 1;
145 /* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
146 PTRACE_SETEVRREGS requests, for reading and writing the SPE
147 registers. Zero if we've tried one of them and gotten an
148 error. */
149 int have_ptrace_getsetevrregs = 1;
151 /* *INDENT-OFF* */
152 /* registers layout, as presented by the ptrace interface:
153 PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
154 PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
155 PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
156 PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
157 PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6, PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
158 PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22, PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
159 PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38, PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
160 PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54, PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
161 PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
162 /* *INDENT_ON * */
164 static int
165 ppc_register_u_addr (struct gdbarch *gdbarch, int regno)
167 int u_addr = -1;
168 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
169 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
170 interface, and not the wordsize of the program's ABI. */
171 int wordsize = sizeof (long);
173 /* General purpose registers occupy 1 slot each in the buffer */
174 if (regno >= tdep->ppc_gp0_regnum
175 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
176 u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
178 /* Floating point regs: eight bytes each in both 32- and 64-bit
179 ptrace interfaces. Thus, two slots each in 32-bit interface, one
180 slot each in 64-bit interface. */
181 if (tdep->ppc_fp0_regnum >= 0
182 && regno >= tdep->ppc_fp0_regnum
183 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
184 u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
186 /* UISA special purpose registers: 1 slot each */
187 if (regno == gdbarch_pc_regnum (gdbarch))
188 u_addr = PT_NIP * wordsize;
189 if (regno == tdep->ppc_lr_regnum)
190 u_addr = PT_LNK * wordsize;
191 if (regno == tdep->ppc_cr_regnum)
192 u_addr = PT_CCR * wordsize;
193 if (regno == tdep->ppc_xer_regnum)
194 u_addr = PT_XER * wordsize;
195 if (regno == tdep->ppc_ctr_regnum)
196 u_addr = PT_CTR * wordsize;
197 #ifdef PT_MQ
198 if (regno == tdep->ppc_mq_regnum)
199 u_addr = PT_MQ * wordsize;
200 #endif
201 if (regno == tdep->ppc_ps_regnum)
202 u_addr = PT_MSR * wordsize;
203 if (tdep->ppc_fpscr_regnum >= 0
204 && regno == tdep->ppc_fpscr_regnum)
206 /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the
207 kernel headers incorrectly contained the 32-bit definition of
208 PT_FPSCR. For the 32-bit definition, floating-point
209 registers occupy two 32-bit "slots", and the FPSCR lives in
210 the secondhalf of such a slot-pair (hence +1). For 64-bit,
211 the FPSCR instead occupies the full 64-bit 2-word-slot and
212 hence no adjustment is necessary. Hack around this. */
213 if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1))
214 u_addr = (48 + 32) * wordsize;
215 else
216 u_addr = PT_FPSCR * wordsize;
218 return u_addr;
221 /* The Linux kernel ptrace interface for AltiVec registers uses the
222 registers set mechanism, as opposed to the interface for all the
223 other registers, that stores/fetches each register individually. */
224 static void
225 fetch_altivec_register (struct regcache *regcache, int tid, int regno)
227 int ret;
228 int offset = 0;
229 gdb_vrregset_t regs;
230 struct gdbarch *gdbarch = get_regcache_arch (regcache);
231 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
232 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
234 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
235 if (ret < 0)
237 if (errno == EIO)
239 have_ptrace_getvrregs = 0;
240 return;
242 perror_with_name (_("Unable to fetch AltiVec register"));
245 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
246 long on the hardware. We deal only with the lower 4 bytes of the
247 vector. VRSAVE is at the end of the array in a 4 bytes slot, so
248 there is no need to define an offset for it. */
249 if (regno == (tdep->ppc_vrsave_regnum - 1))
250 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
252 regcache_raw_supply (regcache, regno,
253 regs + (regno - tdep->ppc_vr0_regnum) * vrregsize + offset);
256 /* Fetch the top 32 bits of TID's general-purpose registers and the
257 SPE-specific registers, and place the results in EVRREGSET. If we
258 don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
259 zeros.
261 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
262 PTRACE_SETEVRREGS requests are supported is isolated here, and in
263 set_spe_registers. */
264 static void
265 get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
267 if (have_ptrace_getsetevrregs)
269 if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
270 return;
271 else
273 /* EIO means that the PTRACE_GETEVRREGS request isn't supported;
274 we just return zeros. */
275 if (errno == EIO)
276 have_ptrace_getsetevrregs = 0;
277 else
278 /* Anything else needs to be reported. */
279 perror_with_name (_("Unable to fetch SPE registers"));
283 memset (evrregset, 0, sizeof (*evrregset));
286 /* Supply values from TID for SPE-specific raw registers: the upper
287 halves of the GPRs, the accumulator, and the spefscr. REGNO must
288 be the number of an upper half register, acc, spefscr, or -1 to
289 supply the values of all registers. */
290 static void
291 fetch_spe_register (struct regcache *regcache, int tid, int regno)
293 struct gdbarch *gdbarch = get_regcache_arch (regcache);
294 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
295 struct gdb_evrregset_t evrregs;
297 gdb_assert (sizeof (evrregs.evr[0])
298 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
299 gdb_assert (sizeof (evrregs.acc)
300 == register_size (gdbarch, tdep->ppc_acc_regnum));
301 gdb_assert (sizeof (evrregs.spefscr)
302 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
304 get_spe_registers (tid, &evrregs);
306 if (regno == -1)
308 int i;
310 for (i = 0; i < ppc_num_gprs; i++)
311 regcache_raw_supply (regcache, tdep->ppc_ev0_upper_regnum + i,
312 &evrregs.evr[i]);
314 else if (tdep->ppc_ev0_upper_regnum <= regno
315 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
316 regcache_raw_supply (regcache, regno,
317 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
319 if (regno == -1
320 || regno == tdep->ppc_acc_regnum)
321 regcache_raw_supply (regcache, tdep->ppc_acc_regnum, &evrregs.acc);
323 if (regno == -1
324 || regno == tdep->ppc_spefscr_regnum)
325 regcache_raw_supply (regcache, tdep->ppc_spefscr_regnum,
326 &evrregs.spefscr);
329 static void
330 fetch_register (struct regcache *regcache, int tid, int regno)
332 struct gdbarch *gdbarch = get_regcache_arch (regcache);
333 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
334 /* This isn't really an address. But ptrace thinks of it as one. */
335 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
336 int bytes_transferred;
337 unsigned int offset; /* Offset of registers within the u area. */
338 char buf[MAX_REGISTER_SIZE];
340 if (altivec_register_p (gdbarch, regno))
342 /* If this is the first time through, or if it is not the first
343 time through, and we have comfirmed that there is kernel
344 support for such a ptrace request, then go and fetch the
345 register. */
346 if (have_ptrace_getvrregs)
348 fetch_altivec_register (regcache, tid, regno);
349 return;
351 /* If we have discovered that there is no ptrace support for
352 AltiVec registers, fall through and return zeroes, because
353 regaddr will be -1 in this case. */
355 else if (spe_register_p (gdbarch, regno))
357 fetch_spe_register (regcache, tid, regno);
358 return;
361 if (regaddr == -1)
363 memset (buf, '\0', register_size (gdbarch, regno)); /* Supply zeroes */
364 regcache_raw_supply (regcache, regno, buf);
365 return;
368 /* Read the raw register using sizeof(long) sized chunks. On a
369 32-bit platform, 64-bit floating-point registers will require two
370 transfers. */
371 for (bytes_transferred = 0;
372 bytes_transferred < register_size (gdbarch, regno);
373 bytes_transferred += sizeof (long))
375 errno = 0;
376 *(long *) &buf[bytes_transferred]
377 = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0);
378 regaddr += sizeof (long);
379 if (errno != 0)
381 char message[128];
382 sprintf (message, "reading register %s (#%d)",
383 gdbarch_register_name (gdbarch, regno), regno);
384 perror_with_name (message);
388 /* Now supply the register. Keep in mind that the regcache's idea
389 of the register's size may not be a multiple of sizeof
390 (long). */
391 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
393 /* Little-endian values are always found at the left end of the
394 bytes transferred. */
395 regcache_raw_supply (regcache, regno, buf);
397 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
399 /* Big-endian values are found at the right end of the bytes
400 transferred. */
401 size_t padding = (bytes_transferred - register_size (gdbarch, regno));
402 regcache_raw_supply (regcache, regno, buf + padding);
404 else
405 internal_error (__FILE__, __LINE__,
406 _("fetch_register: unexpected byte order: %d"),
407 gdbarch_byte_order (gdbarch));
410 static void
411 supply_vrregset (struct regcache *regcache, gdb_vrregset_t *vrregsetp)
413 int i;
414 struct gdbarch *gdbarch = get_regcache_arch (regcache);
415 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
416 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
417 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
418 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
420 for (i = 0; i < num_of_vrregs; i++)
422 /* The last 2 registers of this set are only 32 bit long, not
423 128. However an offset is necessary only for VSCR because it
424 occupies a whole vector, while VRSAVE occupies a full 4 bytes
425 slot. */
426 if (i == (num_of_vrregs - 2))
427 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
428 *vrregsetp + i * vrregsize + offset);
429 else
430 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
431 *vrregsetp + i * vrregsize);
435 static void
436 fetch_altivec_registers (struct regcache *regcache, int tid)
438 int ret;
439 gdb_vrregset_t regs;
441 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
442 if (ret < 0)
444 if (errno == EIO)
446 have_ptrace_getvrregs = 0;
447 return;
449 perror_with_name (_("Unable to fetch AltiVec registers"));
451 supply_vrregset (regcache, &regs);
454 static void
455 fetch_ppc_registers (struct regcache *regcache, int tid)
457 int i;
458 struct gdbarch *gdbarch = get_regcache_arch (regcache);
459 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
461 for (i = 0; i < ppc_num_gprs; i++)
462 fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i);
463 if (tdep->ppc_fp0_regnum >= 0)
464 for (i = 0; i < ppc_num_fprs; i++)
465 fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i);
466 fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
467 if (tdep->ppc_ps_regnum != -1)
468 fetch_register (regcache, tid, tdep->ppc_ps_regnum);
469 if (tdep->ppc_cr_regnum != -1)
470 fetch_register (regcache, tid, tdep->ppc_cr_regnum);
471 if (tdep->ppc_lr_regnum != -1)
472 fetch_register (regcache, tid, tdep->ppc_lr_regnum);
473 if (tdep->ppc_ctr_regnum != -1)
474 fetch_register (regcache, tid, tdep->ppc_ctr_regnum);
475 if (tdep->ppc_xer_regnum != -1)
476 fetch_register (regcache, tid, tdep->ppc_xer_regnum);
477 if (tdep->ppc_mq_regnum != -1)
478 fetch_register (regcache, tid, tdep->ppc_mq_regnum);
479 if (tdep->ppc_fpscr_regnum != -1)
480 fetch_register (regcache, tid, tdep->ppc_fpscr_regnum);
481 if (have_ptrace_getvrregs)
482 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
483 fetch_altivec_registers (regcache, tid);
484 if (tdep->ppc_ev0_upper_regnum >= 0)
485 fetch_spe_register (regcache, tid, -1);
488 /* Fetch registers from the child process. Fetch all registers if
489 regno == -1, otherwise fetch all general registers or all floating
490 point registers depending upon the value of regno. */
491 static void
492 ppc_linux_fetch_inferior_registers (struct regcache *regcache, int regno)
494 /* Overload thread id onto process id */
495 int tid = TIDGET (inferior_ptid);
497 /* No thread id, just use process id */
498 if (tid == 0)
499 tid = PIDGET (inferior_ptid);
501 if (regno == -1)
502 fetch_ppc_registers (regcache, tid);
503 else
504 fetch_register (regcache, tid, regno);
507 /* Store one register. */
508 static void
509 store_altivec_register (const struct regcache *regcache, int tid, int regno)
511 int ret;
512 int offset = 0;
513 gdb_vrregset_t regs;
514 struct gdbarch *gdbarch = get_regcache_arch (regcache);
515 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
516 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
518 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
519 if (ret < 0)
521 if (errno == EIO)
523 have_ptrace_getvrregs = 0;
524 return;
526 perror_with_name (_("Unable to fetch AltiVec register"));
529 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
530 long on the hardware. */
531 if (regno == (tdep->ppc_vrsave_regnum - 1))
532 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
534 regcache_raw_collect (regcache, regno,
535 regs + (regno - tdep->ppc_vr0_regnum) * vrregsize + offset);
537 ret = ptrace (PTRACE_SETVRREGS, tid, 0, &regs);
538 if (ret < 0)
539 perror_with_name (_("Unable to store AltiVec register"));
542 /* Assuming TID referrs to an SPE process, set the top halves of TID's
543 general-purpose registers and its SPE-specific registers to the
544 values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do
545 nothing.
547 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
548 PTRACE_SETEVRREGS requests are supported is isolated here, and in
549 get_spe_registers. */
550 static void
551 set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
553 if (have_ptrace_getsetevrregs)
555 if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
556 return;
557 else
559 /* EIO means that the PTRACE_SETEVRREGS request isn't
560 supported; we fail silently, and don't try the call
561 again. */
562 if (errno == EIO)
563 have_ptrace_getsetevrregs = 0;
564 else
565 /* Anything else needs to be reported. */
566 perror_with_name (_("Unable to set SPE registers"));
571 /* Write GDB's value for the SPE-specific raw register REGNO to TID.
572 If REGNO is -1, write the values of all the SPE-specific
573 registers. */
574 static void
575 store_spe_register (const struct regcache *regcache, int tid, int regno)
577 struct gdbarch *gdbarch = get_regcache_arch (regcache);
578 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
579 struct gdb_evrregset_t evrregs;
581 gdb_assert (sizeof (evrregs.evr[0])
582 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
583 gdb_assert (sizeof (evrregs.acc)
584 == register_size (gdbarch, tdep->ppc_acc_regnum));
585 gdb_assert (sizeof (evrregs.spefscr)
586 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
588 if (regno == -1)
589 /* Since we're going to write out every register, the code below
590 should store to every field of evrregs; if that doesn't happen,
591 make it obvious by initializing it with suspicious values. */
592 memset (&evrregs, 42, sizeof (evrregs));
593 else
594 /* We can only read and write the entire EVR register set at a
595 time, so to write just a single register, we do a
596 read-modify-write maneuver. */
597 get_spe_registers (tid, &evrregs);
599 if (regno == -1)
601 int i;
603 for (i = 0; i < ppc_num_gprs; i++)
604 regcache_raw_collect (regcache,
605 tdep->ppc_ev0_upper_regnum + i,
606 &evrregs.evr[i]);
608 else if (tdep->ppc_ev0_upper_regnum <= regno
609 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
610 regcache_raw_collect (regcache, regno,
611 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
613 if (regno == -1
614 || regno == tdep->ppc_acc_regnum)
615 regcache_raw_collect (regcache,
616 tdep->ppc_acc_regnum,
617 &evrregs.acc);
619 if (regno == -1
620 || regno == tdep->ppc_spefscr_regnum)
621 regcache_raw_collect (regcache,
622 tdep->ppc_spefscr_regnum,
623 &evrregs.spefscr);
625 /* Write back the modified register set. */
626 set_spe_registers (tid, &evrregs);
629 static void
630 store_register (const struct regcache *regcache, int tid, int regno)
632 struct gdbarch *gdbarch = get_regcache_arch (regcache);
633 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
634 /* This isn't really an address. But ptrace thinks of it as one. */
635 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
636 int i;
637 size_t bytes_to_transfer;
638 char buf[MAX_REGISTER_SIZE];
640 if (altivec_register_p (gdbarch, regno))
642 store_altivec_register (regcache, tid, regno);
643 return;
645 else if (spe_register_p (gdbarch, regno))
647 store_spe_register (regcache, tid, regno);
648 return;
651 if (regaddr == -1)
652 return;
654 /* First collect the register. Keep in mind that the regcache's
655 idea of the register's size may not be a multiple of sizeof
656 (long). */
657 memset (buf, 0, sizeof buf);
658 bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long));
659 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
661 /* Little-endian values always sit at the left end of the buffer. */
662 regcache_raw_collect (regcache, regno, buf);
664 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
666 /* Big-endian values sit at the right end of the buffer. */
667 size_t padding = (bytes_to_transfer - register_size (gdbarch, regno));
668 regcache_raw_collect (regcache, regno, buf + padding);
671 for (i = 0; i < bytes_to_transfer; i += sizeof (long))
673 errno = 0;
674 ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr,
675 *(long *) &buf[i]);
676 regaddr += sizeof (long);
678 if (errno == EIO
679 && regno == tdep->ppc_fpscr_regnum)
681 /* Some older kernel versions don't allow fpscr to be written. */
682 continue;
685 if (errno != 0)
687 char message[128];
688 sprintf (message, "writing register %s (#%d)",
689 gdbarch_register_name (gdbarch, regno), regno);
690 perror_with_name (message);
695 static void
696 fill_vrregset (const struct regcache *regcache, gdb_vrregset_t *vrregsetp)
698 int i;
699 struct gdbarch *gdbarch = get_regcache_arch (regcache);
700 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
701 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
702 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
703 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
705 for (i = 0; i < num_of_vrregs; i++)
707 /* The last 2 registers of this set are only 32 bit long, not
708 128, but only VSCR is fetched as a 16 bytes quantity. */
709 if (i == (num_of_vrregs - 2))
710 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
711 *vrregsetp + i * vrregsize + offset);
712 else
713 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
714 *vrregsetp + i * vrregsize);
718 static void
719 store_altivec_registers (const struct regcache *regcache, int tid)
721 int ret;
722 gdb_vrregset_t regs;
724 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
725 if (ret < 0)
727 if (errno == EIO)
729 have_ptrace_getvrregs = 0;
730 return;
732 perror_with_name (_("Couldn't get AltiVec registers"));
735 fill_vrregset (regcache, &regs);
737 if (ptrace (PTRACE_SETVRREGS, tid, 0, &regs) < 0)
738 perror_with_name (_("Couldn't write AltiVec registers"));
741 static void
742 store_ppc_registers (const struct regcache *regcache, int tid)
744 int i;
745 struct gdbarch *gdbarch = get_regcache_arch (regcache);
746 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
748 for (i = 0; i < ppc_num_gprs; i++)
749 store_register (regcache, tid, tdep->ppc_gp0_regnum + i);
750 if (tdep->ppc_fp0_regnum >= 0)
751 for (i = 0; i < ppc_num_fprs; i++)
752 store_register (regcache, tid, tdep->ppc_fp0_regnum + i);
753 store_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
754 if (tdep->ppc_ps_regnum != -1)
755 store_register (regcache, tid, tdep->ppc_ps_regnum);
756 if (tdep->ppc_cr_regnum != -1)
757 store_register (regcache, tid, tdep->ppc_cr_regnum);
758 if (tdep->ppc_lr_regnum != -1)
759 store_register (regcache, tid, tdep->ppc_lr_regnum);
760 if (tdep->ppc_ctr_regnum != -1)
761 store_register (regcache, tid, tdep->ppc_ctr_regnum);
762 if (tdep->ppc_xer_regnum != -1)
763 store_register (regcache, tid, tdep->ppc_xer_regnum);
764 if (tdep->ppc_mq_regnum != -1)
765 store_register (regcache, tid, tdep->ppc_mq_regnum);
766 if (tdep->ppc_fpscr_regnum != -1)
767 store_register (regcache, tid, tdep->ppc_fpscr_regnum);
768 if (have_ptrace_getvrregs)
769 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
770 store_altivec_registers (regcache, tid);
771 if (tdep->ppc_ev0_upper_regnum >= 0)
772 store_spe_register (regcache, tid, -1);
775 static int
776 ppc_linux_check_watch_resources (int type, int cnt, int ot)
778 int tid;
779 ptid_t ptid = inferior_ptid;
781 /* DABR (data address breakpoint register) is optional for PPC variants.
782 Some variants have one DABR, others have none. So CNT can't be larger
783 than 1. */
784 if (cnt > 1)
785 return 0;
787 /* We need to know whether ptrace supports PTRACE_SET_DEBUGREG and whether
788 the target has DABR. If either answer is no, the ptrace call will
789 return -1. Fail in that case. */
790 tid = TIDGET (ptid);
791 if (tid == 0)
792 tid = PIDGET (ptid);
794 if (ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0) == -1)
795 return 0;
796 return 1;
799 static int
800 ppc_linux_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
802 /* Handle sub-8-byte quantities. */
803 if (len <= 0)
804 return 0;
806 /* addr+len must fall in the 8 byte watchable region. */
807 if ((addr + len) > (addr & ~7) + 8)
808 return 0;
810 return 1;
813 /* The cached DABR value, to install in new threads. */
814 static long saved_dabr_value;
816 /* Set a watchpoint of type TYPE at address ADDR. */
817 static int
818 ppc_linux_insert_watchpoint (CORE_ADDR addr, int len, int rw)
820 struct lwp_info *lp;
821 ptid_t ptid;
822 long dabr_value;
824 dabr_value = addr & ~7;
825 switch (rw)
827 case hw_read:
828 /* Set read and translate bits. */
829 dabr_value |= 5;
830 break;
831 case hw_write:
832 /* Set write and translate bits. */
833 dabr_value |= 6;
834 break;
835 case hw_access:
836 /* Set read, write and translate bits. */
837 dabr_value |= 7;
838 break;
841 saved_dabr_value = dabr_value;
843 ALL_LWPS (lp, ptid)
844 if (ptrace (PTRACE_SET_DEBUGREG, TIDGET (ptid), 0, saved_dabr_value) < 0)
845 return -1;
847 return 0;
850 static int
851 ppc_linux_remove_watchpoint (CORE_ADDR addr, int len, int rw)
853 struct lwp_info *lp;
854 ptid_t ptid;
855 long dabr_value = 0;
857 saved_dabr_value = 0;
858 ALL_LWPS (lp, ptid)
859 if (ptrace (PTRACE_SET_DEBUGREG, TIDGET (ptid), 0, saved_dabr_value) < 0)
860 return -1;
861 return 0;
864 static void
865 ppc_linux_new_thread (ptid_t ptid)
867 ptrace (PTRACE_SET_DEBUGREG, TIDGET (ptid), 0, saved_dabr_value);
870 static int
871 ppc_linux_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
873 struct siginfo *siginfo_p;
875 siginfo_p = linux_nat_get_siginfo (inferior_ptid);
877 if (siginfo_p->si_signo != SIGTRAP
878 || (siginfo_p->si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
879 return 0;
881 *addr_p = (CORE_ADDR) (uintptr_t) siginfo_p->si_addr;
882 return 1;
885 static int
886 ppc_linux_stopped_by_watchpoint (void)
888 CORE_ADDR addr;
889 return ppc_linux_stopped_data_address (&current_target, &addr);
892 static void
893 ppc_linux_store_inferior_registers (struct regcache *regcache, int regno)
895 /* Overload thread id onto process id */
896 int tid = TIDGET (inferior_ptid);
898 /* No thread id, just use process id */
899 if (tid == 0)
900 tid = PIDGET (inferior_ptid);
902 if (regno >= 0)
903 store_register (regcache, tid, regno);
904 else
905 store_ppc_registers (regcache, tid);
908 /* Functions for transferring registers between a gregset_t or fpregset_t
909 (see sys/ucontext.h) and gdb's regcache. The word size is that used
910 by the ptrace interface, not the current program's ABI. eg. If a
911 powerpc64-linux gdb is being used to debug a powerpc32-linux app, we
912 read or write 64-bit gregsets. This is to suit the host libthread_db. */
914 void
915 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
917 const struct regset *regset = ppc_linux_gregset (sizeof (long));
919 ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp));
922 void
923 fill_gregset (const struct regcache *regcache,
924 gdb_gregset_t *gregsetp, int regno)
926 const struct regset *regset = ppc_linux_gregset (sizeof (long));
928 if (regno == -1)
929 memset (gregsetp, 0, sizeof (*gregsetp));
930 ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp));
933 void
934 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp)
936 const struct regset *regset = ppc_linux_fpregset ();
938 ppc_supply_fpregset (regset, regcache, -1,
939 fpregsetp, sizeof (*fpregsetp));
942 void
943 fill_fpregset (const struct regcache *regcache,
944 gdb_fpregset_t *fpregsetp, int regno)
946 const struct regset *regset = ppc_linux_fpregset ();
948 ppc_collect_fpregset (regset, regcache, regno,
949 fpregsetp, sizeof (*fpregsetp));
952 static const struct target_desc *
953 ppc_linux_read_description (struct target_ops *ops)
955 if (have_ptrace_getsetevrregs)
957 struct gdb_evrregset_t evrregset;
958 int tid = TIDGET (inferior_ptid);
960 if (tid == 0)
961 tid = PIDGET (inferior_ptid);
963 if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0)
964 return tdesc_powerpc_e500;
965 else
967 /* EIO means that the PTRACE_GETEVRREGS request isn't supported. */
968 if (errno == EIO)
969 return NULL;
970 else
971 /* Anything else needs to be reported. */
972 perror_with_name (_("Unable to fetch SPE registers"));
976 return NULL;
979 void _initialize_ppc_linux_nat (void);
981 void
982 _initialize_ppc_linux_nat (void)
984 struct target_ops *t;
986 /* Fill in the generic GNU/Linux methods. */
987 t = linux_target ();
989 /* Add our register access methods. */
990 t->to_fetch_registers = ppc_linux_fetch_inferior_registers;
991 t->to_store_registers = ppc_linux_store_inferior_registers;
993 /* Add our watchpoint methods. */
994 t->to_can_use_hw_breakpoint = ppc_linux_check_watch_resources;
995 t->to_region_ok_for_hw_watchpoint = ppc_linux_region_ok_for_hw_watchpoint;
996 t->to_insert_watchpoint = ppc_linux_insert_watchpoint;
997 t->to_remove_watchpoint = ppc_linux_remove_watchpoint;
998 t->to_stopped_by_watchpoint = ppc_linux_stopped_by_watchpoint;
999 t->to_stopped_data_address = ppc_linux_stopped_data_address;
1001 t->to_read_description = ppc_linux_read_description;
1003 /* Register the target. */
1004 linux_nat_add_target (t);
1005 linux_nat_set_new_thread (t, ppc_linux_new_thread);