Update
[gdb.git] / gdb / f-exp.y
blob6a422b5354f127f1f52652a861b97ba96bcca724
1 /* YACC parser for Fortran expressions, for GDB.
2 Copyright (C) 1986, 1989, 1990, 1991, 1993, 1994, 1995, 1996, 2000, 2001,
3 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
5 Contributed by Motorola. Adapted from the C parser by Farooq Butt
6 (fmbutt@engage.sps.mot.com).
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
25 /* This was blantantly ripped off the C expression parser, please
26 be aware of that as you look at its basic structure -FMB */
28 /* Parse a F77 expression from text in a string,
29 and return the result as a struct expression pointer.
30 That structure contains arithmetic operations in reverse polish,
31 with constants represented by operations that are followed by special data.
32 See expression.h for the details of the format.
33 What is important here is that it can be built up sequentially
34 during the process of parsing; the lower levels of the tree always
35 come first in the result.
37 Note that malloc's and realloc's in this file are transformed to
38 xmalloc and xrealloc respectively by the same sed command in the
39 makefile that remaps any other malloc/realloc inserted by the parser
40 generator. Doing this with #defines and trying to control the interaction
41 with include files (<malloc.h> and <stdlib.h> for example) just became
42 too messy, particularly when such includes can be inserted at random
43 times by the parser generator. */
47 #include "defs.h"
48 #include "gdb_string.h"
49 #include "expression.h"
50 #include "value.h"
51 #include "parser-defs.h"
52 #include "language.h"
53 #include "f-lang.h"
54 #include "bfd.h" /* Required by objfiles.h. */
55 #include "symfile.h" /* Required by objfiles.h. */
56 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
57 #include "block.h"
58 #include <ctype.h>
60 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
61 as well as gratuitiously global symbol names, so we can have multiple
62 yacc generated parsers in gdb. Note that these are only the variables
63 produced by yacc. If other parser generators (bison, byacc, etc) produce
64 additional global names that conflict at link time, then those parser
65 generators need to be fixed instead of adding those names to this list. */
67 #define yymaxdepth f_maxdepth
68 #define yyparse f_parse
69 #define yylex f_lex
70 #define yyerror f_error
71 #define yylval f_lval
72 #define yychar f_char
73 #define yydebug f_debug
74 #define yypact f_pact
75 #define yyr1 f_r1
76 #define yyr2 f_r2
77 #define yydef f_def
78 #define yychk f_chk
79 #define yypgo f_pgo
80 #define yyact f_act
81 #define yyexca f_exca
82 #define yyerrflag f_errflag
83 #define yynerrs f_nerrs
84 #define yyps f_ps
85 #define yypv f_pv
86 #define yys f_s
87 #define yy_yys f_yys
88 #define yystate f_state
89 #define yytmp f_tmp
90 #define yyv f_v
91 #define yy_yyv f_yyv
92 #define yyval f_val
93 #define yylloc f_lloc
94 #define yyreds f_reds /* With YYDEBUG defined */
95 #define yytoks f_toks /* With YYDEBUG defined */
96 #define yyname f_name /* With YYDEBUG defined */
97 #define yyrule f_rule /* With YYDEBUG defined */
98 #define yylhs f_yylhs
99 #define yylen f_yylen
100 #define yydefred f_yydefred
101 #define yydgoto f_yydgoto
102 #define yysindex f_yysindex
103 #define yyrindex f_yyrindex
104 #define yygindex f_yygindex
105 #define yytable f_yytable
106 #define yycheck f_yycheck
108 #ifndef YYDEBUG
109 #define YYDEBUG 1 /* Default to yydebug support */
110 #endif
112 #define YYFPRINTF parser_fprintf
114 int yyparse (void);
116 static int yylex (void);
118 void yyerror (char *);
120 static void growbuf_by_size (int);
122 static int match_string_literal (void);
126 /* Although the yacc "value" of an expression is not used,
127 since the result is stored in the structure being created,
128 other node types do have values. */
130 %union
132 LONGEST lval;
133 struct {
134 LONGEST val;
135 struct type *type;
136 } typed_val;
137 DOUBLEST dval;
138 struct symbol *sym;
139 struct type *tval;
140 struct stoken sval;
141 struct ttype tsym;
142 struct symtoken ssym;
143 int voidval;
144 struct block *bval;
145 enum exp_opcode opcode;
146 struct internalvar *ivar;
148 struct type **tvec;
149 int *ivec;
153 /* YYSTYPE gets defined by %union */
154 static int parse_number (char *, int, int, YYSTYPE *);
157 %type <voidval> exp type_exp start variable
158 %type <tval> type typebase
159 %type <tvec> nonempty_typelist
160 /* %type <bval> block */
162 /* Fancy type parsing. */
163 %type <voidval> func_mod direct_abs_decl abs_decl
164 %type <tval> ptype
166 %token <typed_val> INT
167 %token <dval> FLOAT
169 /* Both NAME and TYPENAME tokens represent symbols in the input,
170 and both convey their data as strings.
171 But a TYPENAME is a string that happens to be defined as a typedef
172 or builtin type name (such as int or char)
173 and a NAME is any other symbol.
174 Contexts where this distinction is not important can use the
175 nonterminal "name", which matches either NAME or TYPENAME. */
177 %token <sval> STRING_LITERAL
178 %token <lval> BOOLEAN_LITERAL
179 %token <ssym> NAME
180 %token <tsym> TYPENAME
181 %type <sval> name
182 %type <ssym> name_not_typename
184 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
185 but which would parse as a valid number in the current input radix.
186 E.g. "c" when input_radix==16. Depending on the parse, it will be
187 turned into a name or into a number. */
189 %token <ssym> NAME_OR_INT
191 %token SIZEOF
192 %token ERROR
194 /* Special type cases, put in to allow the parser to distinguish different
195 legal basetypes. */
196 %token INT_KEYWORD INT_S2_KEYWORD LOGICAL_S1_KEYWORD LOGICAL_S2_KEYWORD
197 %token LOGICAL_KEYWORD REAL_KEYWORD REAL_S8_KEYWORD REAL_S16_KEYWORD
198 %token COMPLEX_S8_KEYWORD COMPLEX_S16_KEYWORD COMPLEX_S32_KEYWORD
199 %token BOOL_AND BOOL_OR BOOL_NOT
200 %token <lval> CHARACTER
202 %token <voidval> VARIABLE
204 %token <opcode> ASSIGN_MODIFY
206 %left ','
207 %left ABOVE_COMMA
208 %right '=' ASSIGN_MODIFY
209 %right '?'
210 %left BOOL_OR
211 %right BOOL_NOT
212 %left BOOL_AND
213 %left '|'
214 %left '^'
215 %left '&'
216 %left EQUAL NOTEQUAL
217 %left LESSTHAN GREATERTHAN LEQ GEQ
218 %left LSH RSH
219 %left '@'
220 %left '+' '-'
221 %left '*' '/'
222 %right STARSTAR
223 %right '%'
224 %right UNARY
225 %right '('
230 start : exp
231 | type_exp
234 type_exp: type
235 { write_exp_elt_opcode(OP_TYPE);
236 write_exp_elt_type($1);
237 write_exp_elt_opcode(OP_TYPE); }
240 exp : '(' exp ')'
244 /* Expressions, not including the comma operator. */
245 exp : '*' exp %prec UNARY
246 { write_exp_elt_opcode (UNOP_IND); }
249 exp : '&' exp %prec UNARY
250 { write_exp_elt_opcode (UNOP_ADDR); }
253 exp : '-' exp %prec UNARY
254 { write_exp_elt_opcode (UNOP_NEG); }
257 exp : BOOL_NOT exp %prec UNARY
258 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
261 exp : '~' exp %prec UNARY
262 { write_exp_elt_opcode (UNOP_COMPLEMENT); }
265 exp : SIZEOF exp %prec UNARY
266 { write_exp_elt_opcode (UNOP_SIZEOF); }
269 /* No more explicit array operators, we treat everything in F77 as
270 a function call. The disambiguation as to whether we are
271 doing a subscript operation or a function call is done
272 later in eval.c. */
274 exp : exp '('
275 { start_arglist (); }
276 arglist ')'
277 { write_exp_elt_opcode (OP_F77_UNDETERMINED_ARGLIST);
278 write_exp_elt_longcst ((LONGEST) end_arglist ());
279 write_exp_elt_opcode (OP_F77_UNDETERMINED_ARGLIST); }
282 arglist :
285 arglist : exp
286 { arglist_len = 1; }
289 arglist : subrange
290 { arglist_len = 1; }
293 arglist : arglist ',' exp %prec ABOVE_COMMA
294 { arglist_len++; }
297 /* There are four sorts of subrange types in F90. */
299 subrange: exp ':' exp %prec ABOVE_COMMA
300 { write_exp_elt_opcode (OP_F90_RANGE);
301 write_exp_elt_longcst (NONE_BOUND_DEFAULT);
302 write_exp_elt_opcode (OP_F90_RANGE); }
305 subrange: exp ':' %prec ABOVE_COMMA
306 { write_exp_elt_opcode (OP_F90_RANGE);
307 write_exp_elt_longcst (HIGH_BOUND_DEFAULT);
308 write_exp_elt_opcode (OP_F90_RANGE); }
311 subrange: ':' exp %prec ABOVE_COMMA
312 { write_exp_elt_opcode (OP_F90_RANGE);
313 write_exp_elt_longcst (LOW_BOUND_DEFAULT);
314 write_exp_elt_opcode (OP_F90_RANGE); }
317 subrange: ':' %prec ABOVE_COMMA
318 { write_exp_elt_opcode (OP_F90_RANGE);
319 write_exp_elt_longcst (BOTH_BOUND_DEFAULT);
320 write_exp_elt_opcode (OP_F90_RANGE); }
323 complexnum: exp ',' exp
324 { }
327 exp : '(' complexnum ')'
328 { write_exp_elt_opcode(OP_COMPLEX); }
331 exp : '(' type ')' exp %prec UNARY
332 { write_exp_elt_opcode (UNOP_CAST);
333 write_exp_elt_type ($2);
334 write_exp_elt_opcode (UNOP_CAST); }
337 exp : exp '%' name
338 { write_exp_elt_opcode (STRUCTOP_STRUCT);
339 write_exp_string ($3);
340 write_exp_elt_opcode (STRUCTOP_STRUCT); }
343 /* Binary operators in order of decreasing precedence. */
345 exp : exp '@' exp
346 { write_exp_elt_opcode (BINOP_REPEAT); }
349 exp : exp STARSTAR exp
350 { write_exp_elt_opcode (BINOP_EXP); }
353 exp : exp '*' exp
354 { write_exp_elt_opcode (BINOP_MUL); }
357 exp : exp '/' exp
358 { write_exp_elt_opcode (BINOP_DIV); }
361 exp : exp '+' exp
362 { write_exp_elt_opcode (BINOP_ADD); }
365 exp : exp '-' exp
366 { write_exp_elt_opcode (BINOP_SUB); }
369 exp : exp LSH exp
370 { write_exp_elt_opcode (BINOP_LSH); }
373 exp : exp RSH exp
374 { write_exp_elt_opcode (BINOP_RSH); }
377 exp : exp EQUAL exp
378 { write_exp_elt_opcode (BINOP_EQUAL); }
381 exp : exp NOTEQUAL exp
382 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
385 exp : exp LEQ exp
386 { write_exp_elt_opcode (BINOP_LEQ); }
389 exp : exp GEQ exp
390 { write_exp_elt_opcode (BINOP_GEQ); }
393 exp : exp LESSTHAN exp
394 { write_exp_elt_opcode (BINOP_LESS); }
397 exp : exp GREATERTHAN exp
398 { write_exp_elt_opcode (BINOP_GTR); }
401 exp : exp '&' exp
402 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
405 exp : exp '^' exp
406 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
409 exp : exp '|' exp
410 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
413 exp : exp BOOL_AND exp
414 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
418 exp : exp BOOL_OR exp
419 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
422 exp : exp '=' exp
423 { write_exp_elt_opcode (BINOP_ASSIGN); }
426 exp : exp ASSIGN_MODIFY exp
427 { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
428 write_exp_elt_opcode ($2);
429 write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
432 exp : INT
433 { write_exp_elt_opcode (OP_LONG);
434 write_exp_elt_type ($1.type);
435 write_exp_elt_longcst ((LONGEST)($1.val));
436 write_exp_elt_opcode (OP_LONG); }
439 exp : NAME_OR_INT
440 { YYSTYPE val;
441 parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
442 write_exp_elt_opcode (OP_LONG);
443 write_exp_elt_type (val.typed_val.type);
444 write_exp_elt_longcst ((LONGEST)val.typed_val.val);
445 write_exp_elt_opcode (OP_LONG); }
448 exp : FLOAT
449 { write_exp_elt_opcode (OP_DOUBLE);
450 write_exp_elt_type (builtin_type_f_real_s8);
451 write_exp_elt_dblcst ($1);
452 write_exp_elt_opcode (OP_DOUBLE); }
455 exp : variable
458 exp : VARIABLE
461 exp : SIZEOF '(' type ')' %prec UNARY
462 { write_exp_elt_opcode (OP_LONG);
463 write_exp_elt_type (builtin_type_f_integer);
464 CHECK_TYPEDEF ($3);
465 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
466 write_exp_elt_opcode (OP_LONG); }
469 exp : BOOLEAN_LITERAL
470 { write_exp_elt_opcode (OP_BOOL);
471 write_exp_elt_longcst ((LONGEST) $1);
472 write_exp_elt_opcode (OP_BOOL);
476 exp : STRING_LITERAL
478 write_exp_elt_opcode (OP_STRING);
479 write_exp_string ($1);
480 write_exp_elt_opcode (OP_STRING);
484 variable: name_not_typename
485 { struct symbol *sym = $1.sym;
487 if (sym)
489 if (symbol_read_needs_frame (sym))
491 if (innermost_block == 0 ||
492 contained_in (block_found,
493 innermost_block))
494 innermost_block = block_found;
496 write_exp_elt_opcode (OP_VAR_VALUE);
497 /* We want to use the selected frame, not
498 another more inner frame which happens to
499 be in the same block. */
500 write_exp_elt_block (NULL);
501 write_exp_elt_sym (sym);
502 write_exp_elt_opcode (OP_VAR_VALUE);
503 break;
505 else
507 struct minimal_symbol *msymbol;
508 char *arg = copy_name ($1.stoken);
510 msymbol =
511 lookup_minimal_symbol (arg, NULL, NULL);
512 if (msymbol != NULL)
514 write_exp_msymbol (msymbol,
515 lookup_function_type (builtin_type_int),
516 builtin_type_int);
518 else if (!have_full_symbols () && !have_partial_symbols ())
519 error ("No symbol table is loaded. Use the \"file\" command.");
520 else
521 error ("No symbol \"%s\" in current context.",
522 copy_name ($1.stoken));
528 type : ptype
531 ptype : typebase
532 | typebase abs_decl
534 /* This is where the interesting stuff happens. */
535 int done = 0;
536 int array_size;
537 struct type *follow_type = $1;
538 struct type *range_type;
540 while (!done)
541 switch (pop_type ())
543 case tp_end:
544 done = 1;
545 break;
546 case tp_pointer:
547 follow_type = lookup_pointer_type (follow_type);
548 break;
549 case tp_reference:
550 follow_type = lookup_reference_type (follow_type);
551 break;
552 case tp_array:
553 array_size = pop_type_int ();
554 if (array_size != -1)
556 range_type =
557 create_range_type ((struct type *) NULL,
558 builtin_type_f_integer, 0,
559 array_size - 1);
560 follow_type =
561 create_array_type ((struct type *) NULL,
562 follow_type, range_type);
564 else
565 follow_type = lookup_pointer_type (follow_type);
566 break;
567 case tp_function:
568 follow_type = lookup_function_type (follow_type);
569 break;
571 $$ = follow_type;
575 abs_decl: '*'
576 { push_type (tp_pointer); $$ = 0; }
577 | '*' abs_decl
578 { push_type (tp_pointer); $$ = $2; }
579 | '&'
580 { push_type (tp_reference); $$ = 0; }
581 | '&' abs_decl
582 { push_type (tp_reference); $$ = $2; }
583 | direct_abs_decl
586 direct_abs_decl: '(' abs_decl ')'
587 { $$ = $2; }
588 | direct_abs_decl func_mod
589 { push_type (tp_function); }
590 | func_mod
591 { push_type (tp_function); }
594 func_mod: '(' ')'
595 { $$ = 0; }
596 | '(' nonempty_typelist ')'
597 { free ($2); $$ = 0; }
600 typebase /* Implements (approximately): (type-qualifier)* type-specifier */
601 : TYPENAME
602 { $$ = $1.type; }
603 | INT_KEYWORD
604 { $$ = builtin_type_f_integer; }
605 | INT_S2_KEYWORD
606 { $$ = builtin_type_f_integer_s2; }
607 | CHARACTER
608 { $$ = builtin_type_f_character; }
609 | LOGICAL_KEYWORD
610 { $$ = builtin_type_f_logical;}
611 | LOGICAL_S2_KEYWORD
612 { $$ = builtin_type_f_logical_s2;}
613 | LOGICAL_S1_KEYWORD
614 { $$ = builtin_type_f_logical_s1;}
615 | REAL_KEYWORD
616 { $$ = builtin_type_f_real;}
617 | REAL_S8_KEYWORD
618 { $$ = builtin_type_f_real_s8;}
619 | REAL_S16_KEYWORD
620 { $$ = builtin_type_f_real_s16;}
621 | COMPLEX_S8_KEYWORD
622 { $$ = builtin_type_f_complex_s8;}
623 | COMPLEX_S16_KEYWORD
624 { $$ = builtin_type_f_complex_s16;}
625 | COMPLEX_S32_KEYWORD
626 { $$ = builtin_type_f_complex_s32;}
629 nonempty_typelist
630 : type
631 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
632 $<ivec>$[0] = 1; /* Number of types in vector */
633 $$[1] = $1;
635 | nonempty_typelist ',' type
636 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
637 $$ = (struct type **) realloc ((char *) $1, len);
638 $$[$<ivec>$[0]] = $3;
642 name : NAME
643 { $$ = $1.stoken; }
646 name_not_typename : NAME
647 /* These would be useful if name_not_typename was useful, but it is just
648 a fake for "variable", so these cause reduce/reduce conflicts because
649 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
650 =exp) or just an exp. If name_not_typename was ever used in an lvalue
651 context where only a name could occur, this might be useful.
652 | NAME_OR_INT
658 /* Take care of parsing a number (anything that starts with a digit).
659 Set yylval and return the token type; update lexptr.
660 LEN is the number of characters in it. */
662 /*** Needs some error checking for the float case ***/
664 static int
665 parse_number (p, len, parsed_float, putithere)
666 char *p;
667 int len;
668 int parsed_float;
669 YYSTYPE *putithere;
671 LONGEST n = 0;
672 LONGEST prevn = 0;
673 int c;
674 int base = input_radix;
675 int unsigned_p = 0;
676 int long_p = 0;
677 ULONGEST high_bit;
678 struct type *signed_type;
679 struct type *unsigned_type;
681 if (parsed_float)
683 /* It's a float since it contains a point or an exponent. */
684 /* [dD] is not understood as an exponent by atof, change it to 'e'. */
685 char *tmp, *tmp2;
687 tmp = xstrdup (p);
688 for (tmp2 = tmp; *tmp2; ++tmp2)
689 if (*tmp2 == 'd' || *tmp2 == 'D')
690 *tmp2 = 'e';
691 putithere->dval = atof (tmp);
692 free (tmp);
693 return FLOAT;
696 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
697 if (p[0] == '0')
698 switch (p[1])
700 case 'x':
701 case 'X':
702 if (len >= 3)
704 p += 2;
705 base = 16;
706 len -= 2;
708 break;
710 case 't':
711 case 'T':
712 case 'd':
713 case 'D':
714 if (len >= 3)
716 p += 2;
717 base = 10;
718 len -= 2;
720 break;
722 default:
723 base = 8;
724 break;
727 while (len-- > 0)
729 c = *p++;
730 if (isupper (c))
731 c = tolower (c);
732 if (len == 0 && c == 'l')
733 long_p = 1;
734 else if (len == 0 && c == 'u')
735 unsigned_p = 1;
736 else
738 int i;
739 if (c >= '0' && c <= '9')
740 i = c - '0';
741 else if (c >= 'a' && c <= 'f')
742 i = c - 'a' + 10;
743 else
744 return ERROR; /* Char not a digit */
745 if (i >= base)
746 return ERROR; /* Invalid digit in this base */
747 n *= base;
748 n += i;
750 /* Portably test for overflow (only works for nonzero values, so make
751 a second check for zero). */
752 if ((prevn >= n) && n != 0)
753 unsigned_p=1; /* Try something unsigned */
754 /* If range checking enabled, portably test for unsigned overflow. */
755 if (RANGE_CHECK && n != 0)
757 if ((unsigned_p && (unsigned)prevn >= (unsigned)n))
758 range_error("Overflow on numeric constant.");
760 prevn = n;
763 /* If the number is too big to be an int, or it's got an l suffix
764 then it's a long. Work out if this has to be a long by
765 shifting right and and seeing if anything remains, and the
766 target int size is different to the target long size.
768 In the expression below, we could have tested
769 (n >> gdbarch_int_bit (current_gdbarch))
770 to see if it was zero,
771 but too many compilers warn about that, when ints and longs
772 are the same size. So we shift it twice, with fewer bits
773 each time, for the same result. */
775 if ((gdbarch_int_bit (current_gdbarch) != gdbarch_long_bit (current_gdbarch)
776 && ((n >> 2)
777 >> (gdbarch_int_bit (current_gdbarch)-2))) /* Avoid shift warning */
778 || long_p)
780 high_bit = ((ULONGEST)1) << (gdbarch_long_bit (current_gdbarch)-1);
781 unsigned_type = builtin_type_unsigned_long;
782 signed_type = builtin_type_long;
784 else
786 high_bit = ((ULONGEST)1) << (gdbarch_int_bit (current_gdbarch)-1);
787 unsigned_type = builtin_type_unsigned_int;
788 signed_type = builtin_type_int;
791 putithere->typed_val.val = n;
793 /* If the high bit of the worked out type is set then this number
794 has to be unsigned. */
796 if (unsigned_p || (n & high_bit))
797 putithere->typed_val.type = unsigned_type;
798 else
799 putithere->typed_val.type = signed_type;
801 return INT;
804 struct token
806 char *operator;
807 int token;
808 enum exp_opcode opcode;
811 static const struct token dot_ops[] =
813 { ".and.", BOOL_AND, BINOP_END },
814 { ".AND.", BOOL_AND, BINOP_END },
815 { ".or.", BOOL_OR, BINOP_END },
816 { ".OR.", BOOL_OR, BINOP_END },
817 { ".not.", BOOL_NOT, BINOP_END },
818 { ".NOT.", BOOL_NOT, BINOP_END },
819 { ".eq.", EQUAL, BINOP_END },
820 { ".EQ.", EQUAL, BINOP_END },
821 { ".eqv.", EQUAL, BINOP_END },
822 { ".NEQV.", NOTEQUAL, BINOP_END },
823 { ".neqv.", NOTEQUAL, BINOP_END },
824 { ".EQV.", EQUAL, BINOP_END },
825 { ".ne.", NOTEQUAL, BINOP_END },
826 { ".NE.", NOTEQUAL, BINOP_END },
827 { ".le.", LEQ, BINOP_END },
828 { ".LE.", LEQ, BINOP_END },
829 { ".ge.", GEQ, BINOP_END },
830 { ".GE.", GEQ, BINOP_END },
831 { ".gt.", GREATERTHAN, BINOP_END },
832 { ".GT.", GREATERTHAN, BINOP_END },
833 { ".lt.", LESSTHAN, BINOP_END },
834 { ".LT.", LESSTHAN, BINOP_END },
835 { NULL, 0, 0 }
838 struct f77_boolean_val
840 char *name;
841 int value;
844 static const struct f77_boolean_val boolean_values[] =
846 { ".true.", 1 },
847 { ".TRUE.", 1 },
848 { ".false.", 0 },
849 { ".FALSE.", 0 },
850 { NULL, 0 }
853 static const struct token f77_keywords[] =
855 { "complex_16", COMPLEX_S16_KEYWORD, BINOP_END },
856 { "complex_32", COMPLEX_S32_KEYWORD, BINOP_END },
857 { "character", CHARACTER, BINOP_END },
858 { "integer_2", INT_S2_KEYWORD, BINOP_END },
859 { "logical_1", LOGICAL_S1_KEYWORD, BINOP_END },
860 { "logical_2", LOGICAL_S2_KEYWORD, BINOP_END },
861 { "complex_8", COMPLEX_S8_KEYWORD, BINOP_END },
862 { "integer", INT_KEYWORD, BINOP_END },
863 { "logical", LOGICAL_KEYWORD, BINOP_END },
864 { "real_16", REAL_S16_KEYWORD, BINOP_END },
865 { "complex", COMPLEX_S8_KEYWORD, BINOP_END },
866 { "sizeof", SIZEOF, BINOP_END },
867 { "real_8", REAL_S8_KEYWORD, BINOP_END },
868 { "real", REAL_KEYWORD, BINOP_END },
869 { NULL, 0, 0 }
872 /* Implementation of a dynamically expandable buffer for processing input
873 characters acquired through lexptr and building a value to return in
874 yylval. Ripped off from ch-exp.y */
876 static char *tempbuf; /* Current buffer contents */
877 static int tempbufsize; /* Size of allocated buffer */
878 static int tempbufindex; /* Current index into buffer */
880 #define GROWBY_MIN_SIZE 64 /* Minimum amount to grow buffer by */
882 #define CHECKBUF(size) \
883 do { \
884 if (tempbufindex + (size) >= tempbufsize) \
886 growbuf_by_size (size); \
888 } while (0);
891 /* Grow the static temp buffer if necessary, including allocating the first one
892 on demand. */
894 static void
895 growbuf_by_size (count)
896 int count;
898 int growby;
900 growby = max (count, GROWBY_MIN_SIZE);
901 tempbufsize += growby;
902 if (tempbuf == NULL)
903 tempbuf = (char *) malloc (tempbufsize);
904 else
905 tempbuf = (char *) realloc (tempbuf, tempbufsize);
908 /* Blatantly ripped off from ch-exp.y. This routine recognizes F77
909 string-literals.
911 Recognize a string literal. A string literal is a nonzero sequence
912 of characters enclosed in matching single quotes, except that
913 a single character inside single quotes is a character literal, which
914 we reject as a string literal. To embed the terminator character inside
915 a string, it is simply doubled (I.E. 'this''is''one''string') */
917 static int
918 match_string_literal ()
920 char *tokptr = lexptr;
922 for (tempbufindex = 0, tokptr++; *tokptr != '\0'; tokptr++)
924 CHECKBUF (1);
925 if (*tokptr == *lexptr)
927 if (*(tokptr + 1) == *lexptr)
928 tokptr++;
929 else
930 break;
932 tempbuf[tempbufindex++] = *tokptr;
934 if (*tokptr == '\0' /* no terminator */
935 || tempbufindex == 0) /* no string */
936 return 0;
937 else
939 tempbuf[tempbufindex] = '\0';
940 yylval.sval.ptr = tempbuf;
941 yylval.sval.length = tempbufindex;
942 lexptr = ++tokptr;
943 return STRING_LITERAL;
947 /* Read one token, getting characters through lexptr. */
949 static int
950 yylex ()
952 int c;
953 int namelen;
954 unsigned int i,token;
955 char *tokstart;
957 retry:
959 prev_lexptr = lexptr;
961 tokstart = lexptr;
963 /* First of all, let us make sure we are not dealing with the
964 special tokens .true. and .false. which evaluate to 1 and 0. */
966 if (*lexptr == '.')
968 for (i = 0; boolean_values[i].name != NULL; i++)
970 if (strncmp (tokstart, boolean_values[i].name,
971 strlen (boolean_values[i].name)) == 0)
973 lexptr += strlen (boolean_values[i].name);
974 yylval.lval = boolean_values[i].value;
975 return BOOLEAN_LITERAL;
980 /* See if it is a special .foo. operator. */
982 for (i = 0; dot_ops[i].operator != NULL; i++)
983 if (strncmp (tokstart, dot_ops[i].operator, strlen (dot_ops[i].operator)) == 0)
985 lexptr += strlen (dot_ops[i].operator);
986 yylval.opcode = dot_ops[i].opcode;
987 return dot_ops[i].token;
990 /* See if it is an exponentiation operator. */
992 if (strncmp (tokstart, "**", 2) == 0)
994 lexptr += 2;
995 yylval.opcode = BINOP_EXP;
996 return STARSTAR;
999 switch (c = *tokstart)
1001 case 0:
1002 return 0;
1004 case ' ':
1005 case '\t':
1006 case '\n':
1007 lexptr++;
1008 goto retry;
1010 case '\'':
1011 token = match_string_literal ();
1012 if (token != 0)
1013 return (token);
1014 break;
1016 case '(':
1017 paren_depth++;
1018 lexptr++;
1019 return c;
1021 case ')':
1022 if (paren_depth == 0)
1023 return 0;
1024 paren_depth--;
1025 lexptr++;
1026 return c;
1028 case ',':
1029 if (comma_terminates && paren_depth == 0)
1030 return 0;
1031 lexptr++;
1032 return c;
1034 case '.':
1035 /* Might be a floating point number. */
1036 if (lexptr[1] < '0' || lexptr[1] > '9')
1037 goto symbol; /* Nope, must be a symbol. */
1038 /* FALL THRU into number case. */
1040 case '0':
1041 case '1':
1042 case '2':
1043 case '3':
1044 case '4':
1045 case '5':
1046 case '6':
1047 case '7':
1048 case '8':
1049 case '9':
1051 /* It's a number. */
1052 int got_dot = 0, got_e = 0, got_d = 0, toktype;
1053 char *p = tokstart;
1054 int hex = input_radix > 10;
1056 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1058 p += 2;
1059 hex = 1;
1061 else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
1063 p += 2;
1064 hex = 0;
1067 for (;; ++p)
1069 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
1070 got_dot = got_e = 1;
1071 else if (!hex && !got_d && (*p == 'd' || *p == 'D'))
1072 got_dot = got_d = 1;
1073 else if (!hex && !got_dot && *p == '.')
1074 got_dot = 1;
1075 else if (((got_e && (p[-1] == 'e' || p[-1] == 'E'))
1076 || (got_d && (p[-1] == 'd' || p[-1] == 'D')))
1077 && (*p == '-' || *p == '+'))
1078 /* This is the sign of the exponent, not the end of the
1079 number. */
1080 continue;
1081 /* We will take any letters or digits. parse_number will
1082 complain if past the radix, or if L or U are not final. */
1083 else if ((*p < '0' || *p > '9')
1084 && ((*p < 'a' || *p > 'z')
1085 && (*p < 'A' || *p > 'Z')))
1086 break;
1088 toktype = parse_number (tokstart, p - tokstart, got_dot|got_e|got_d,
1089 &yylval);
1090 if (toktype == ERROR)
1092 char *err_copy = (char *) alloca (p - tokstart + 1);
1094 memcpy (err_copy, tokstart, p - tokstart);
1095 err_copy[p - tokstart] = 0;
1096 error ("Invalid number \"%s\".", err_copy);
1098 lexptr = p;
1099 return toktype;
1102 case '+':
1103 case '-':
1104 case '*':
1105 case '/':
1106 case '%':
1107 case '|':
1108 case '&':
1109 case '^':
1110 case '~':
1111 case '!':
1112 case '@':
1113 case '<':
1114 case '>':
1115 case '[':
1116 case ']':
1117 case '?':
1118 case ':':
1119 case '=':
1120 case '{':
1121 case '}':
1122 symbol:
1123 lexptr++;
1124 return c;
1127 if (!(c == '_' || c == '$'
1128 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1129 /* We must have come across a bad character (e.g. ';'). */
1130 error ("Invalid character '%c' in expression.", c);
1132 namelen = 0;
1133 for (c = tokstart[namelen];
1134 (c == '_' || c == '$' || (c >= '0' && c <= '9')
1135 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'));
1136 c = tokstart[++namelen]);
1138 /* The token "if" terminates the expression and is NOT
1139 removed from the input stream. */
1141 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1142 return 0;
1144 lexptr += namelen;
1146 /* Catch specific keywords. */
1148 for (i = 0; f77_keywords[i].operator != NULL; i++)
1149 if (strncmp (tokstart, f77_keywords[i].operator,
1150 strlen(f77_keywords[i].operator)) == 0)
1152 /* lexptr += strlen(f77_keywords[i].operator); */
1153 yylval.opcode = f77_keywords[i].opcode;
1154 return f77_keywords[i].token;
1157 yylval.sval.ptr = tokstart;
1158 yylval.sval.length = namelen;
1160 if (*tokstart == '$')
1162 write_dollar_variable (yylval.sval);
1163 return VARIABLE;
1166 /* Use token-type TYPENAME for symbols that happen to be defined
1167 currently as names of types; NAME for other symbols.
1168 The caller is not constrained to care about the distinction. */
1170 char *tmp = copy_name (yylval.sval);
1171 struct symbol *sym;
1172 int is_a_field_of_this = 0;
1173 int hextype;
1175 sym = lookup_symbol (tmp, expression_context_block,
1176 VAR_DOMAIN,
1177 current_language->la_language == language_cplus
1178 ? &is_a_field_of_this : NULL,
1179 NULL);
1180 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1182 yylval.tsym.type = SYMBOL_TYPE (sym);
1183 return TYPENAME;
1185 yylval.tsym.type
1186 = language_lookup_primitive_type_by_name (current_language,
1187 current_gdbarch, tmp);
1188 if (yylval.tsym.type != NULL)
1189 return TYPENAME;
1191 /* Input names that aren't symbols but ARE valid hex numbers,
1192 when the input radix permits them, can be names or numbers
1193 depending on the parse. Note we support radixes > 16 here. */
1194 if (!sym
1195 && ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10)
1196 || (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1198 YYSTYPE newlval; /* Its value is ignored. */
1199 hextype = parse_number (tokstart, namelen, 0, &newlval);
1200 if (hextype == INT)
1202 yylval.ssym.sym = sym;
1203 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1204 return NAME_OR_INT;
1208 /* Any other kind of symbol */
1209 yylval.ssym.sym = sym;
1210 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1211 return NAME;
1215 void
1216 yyerror (msg)
1217 char *msg;
1219 if (prev_lexptr)
1220 lexptr = prev_lexptr;
1222 error ("A %s in expression, near `%s'.", (msg ? msg : "error"), lexptr);