Add files that I missed when importing NaCl changes earlier
[gcc/nacl-gcc.git] / gcc / tree-ssa-dse.c
blob3ed5f0b4fcaa4907dae1096381c7440ca74830f7
1 /* Dead store elimination
2 Copyright (C) 2004, 2005, 2007 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "ggc.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "timevar.h"
30 #include "diagnostic.h"
31 #include "tree-flow.h"
32 #include "tree-pass.h"
33 #include "tree-dump.h"
34 #include "domwalk.h"
35 #include "flags.h"
37 /* This file implements dead store elimination.
39 A dead store is a store into a memory location which will later be
40 overwritten by another store without any intervening loads. In this
41 case the earlier store can be deleted.
43 In our SSA + virtual operand world we use immediate uses of virtual
44 operands to detect dead stores. If a store's virtual definition
45 is used precisely once by a later store to the same location which
46 post dominates the first store, then the first store is dead.
48 The single use of the store's virtual definition ensures that
49 there are no intervening aliased loads and the requirement that
50 the second load post dominate the first ensures that if the earlier
51 store executes, then the later stores will execute before the function
52 exits.
54 It may help to think of this as first moving the earlier store to
55 the point immediately before the later store. Again, the single
56 use of the virtual definition and the post-dominance relationship
57 ensure that such movement would be safe. Clearly if there are
58 back to back stores, then the second is redundant.
60 Reviewing section 10.7.2 in Morgan's "Building an Optimizing Compiler"
61 may also help in understanding this code since it discusses the
62 relationship between dead store and redundant load elimination. In
63 fact, they are the same transformation applied to different views of
64 the CFG. */
67 struct dse_global_data
69 /* This is the global bitmap for store statements.
71 Each statement has a unique ID. When we encounter a store statement
72 that we want to record, set the bit corresponding to the statement's
73 unique ID in this bitmap. */
74 bitmap stores;
77 /* We allocate a bitmap-per-block for stores which are encountered
78 during the scan of that block. This allows us to restore the
79 global bitmap of stores when we finish processing a block. */
80 struct dse_block_local_data
82 bitmap stores;
85 /* Basic blocks of the potentially dead store and the following
86 store, for memory_address_same. */
87 struct address_walk_data
89 basic_block store1_bb, store2_bb;
92 static bool gate_dse (void);
93 static unsigned int tree_ssa_dse (void);
94 static void dse_initialize_block_local_data (struct dom_walk_data *,
95 basic_block,
96 bool);
97 static void dse_optimize_stmt (struct dom_walk_data *,
98 basic_block,
99 block_stmt_iterator);
100 static void dse_record_phis (struct dom_walk_data *, basic_block);
101 static void dse_finalize_block (struct dom_walk_data *, basic_block);
102 static void record_voperand_set (bitmap, bitmap *, unsigned int);
104 static unsigned max_stmt_uid; /* Maximal uid of a statement. Uids to phi
105 nodes are assigned using the versions of
106 ssa names they define. */
108 /* Returns uid of statement STMT. */
110 static unsigned
111 get_stmt_uid (tree stmt)
113 if (TREE_CODE (stmt) == PHI_NODE)
114 return SSA_NAME_VERSION (PHI_RESULT (stmt)) + max_stmt_uid;
116 return stmt_ann (stmt)->uid;
119 /* Set bit UID in bitmaps GLOBAL and *LOCAL, creating *LOCAL as needed. */
121 static void
122 record_voperand_set (bitmap global, bitmap *local, unsigned int uid)
124 /* Lazily allocate the bitmap. Note that we do not get a notification
125 when the block local data structures die, so we allocate the local
126 bitmap backed by the GC system. */
127 if (*local == NULL)
128 *local = BITMAP_GGC_ALLOC ();
130 /* Set the bit in the local and global bitmaps. */
131 bitmap_set_bit (*local, uid);
132 bitmap_set_bit (global, uid);
135 /* Initialize block local data structures. */
137 static void
138 dse_initialize_block_local_data (struct dom_walk_data *walk_data,
139 basic_block bb ATTRIBUTE_UNUSED,
140 bool recycled)
142 struct dse_block_local_data *bd
143 = VEC_last (void_p, walk_data->block_data_stack);
145 /* If we are given a recycled block local data structure, ensure any
146 bitmap associated with the block is cleared. */
147 if (recycled)
149 if (bd->stores)
150 bitmap_clear (bd->stores);
154 /* Helper function for memory_address_same via walk_tree. Returns
155 non-NULL if it finds an SSA_NAME which is part of the address,
156 such that the definition of the SSA_NAME post-dominates the store
157 we want to delete but not the store that we believe makes it
158 redundant. This indicates that the address may change between
159 the two stores. */
161 static tree
162 memory_ssa_name_same (tree *expr_p, int *walk_subtrees ATTRIBUTE_UNUSED,
163 void *data)
165 struct address_walk_data *walk_data = data;
166 tree expr = *expr_p;
167 tree def_stmt;
168 basic_block def_bb;
170 if (TREE_CODE (expr) != SSA_NAME)
171 return NULL_TREE;
173 /* If we've found a default definition, then there's no problem. Both
174 stores will post-dominate it. And def_bb will be NULL. */
175 if (expr == default_def (SSA_NAME_VAR (expr)))
176 return NULL_TREE;
178 def_stmt = SSA_NAME_DEF_STMT (expr);
179 def_bb = bb_for_stmt (def_stmt);
181 /* DEF_STMT must dominate both stores. So if it is in the same
182 basic block as one, it does not post-dominate that store. */
183 if (walk_data->store1_bb != def_bb
184 && dominated_by_p (CDI_POST_DOMINATORS, walk_data->store1_bb, def_bb))
186 if (walk_data->store2_bb == def_bb
187 || !dominated_by_p (CDI_POST_DOMINATORS, walk_data->store2_bb,
188 def_bb))
189 /* Return non-NULL to stop the walk. */
190 return def_stmt;
193 return NULL_TREE;
196 /* Return TRUE if the destination memory address in STORE1 and STORE2
197 might be modified after STORE1, before control reaches STORE2. */
199 static bool
200 memory_address_same (tree store1, tree store2)
202 struct address_walk_data walk_data;
204 walk_data.store1_bb = bb_for_stmt (store1);
205 walk_data.store2_bb = bb_for_stmt (store2);
207 return (walk_tree (&TREE_OPERAND (store1, 0), memory_ssa_name_same,
208 &walk_data, NULL)
209 == NULL);
212 /* Attempt to eliminate dead stores in the statement referenced by BSI.
214 A dead store is a store into a memory location which will later be
215 overwritten by another store without any intervening loads. In this
216 case the earlier store can be deleted.
218 In our SSA + virtual operand world we use immediate uses of virtual
219 operands to detect dead stores. If a store's virtual definition
220 is used precisely once by a later store to the same location which
221 post dominates the first store, then the first store is dead. */
223 static void
224 dse_optimize_stmt (struct dom_walk_data *walk_data,
225 basic_block bb ATTRIBUTE_UNUSED,
226 block_stmt_iterator bsi)
228 struct dse_block_local_data *bd
229 = VEC_last (void_p, walk_data->block_data_stack);
230 struct dse_global_data *dse_gd = walk_data->global_data;
231 tree stmt = bsi_stmt (bsi);
232 stmt_ann_t ann = stmt_ann (stmt);
234 /* If this statement has no virtual defs, then there is nothing
235 to do. */
236 if (ZERO_SSA_OPERANDS (stmt, (SSA_OP_VMAYDEF|SSA_OP_VMUSTDEF)))
237 return;
239 /* We know we have virtual definitions. If this is a MODIFY_EXPR that's
240 not also a function call, then record it into our table. */
241 if (get_call_expr_in (stmt))
242 return;
244 if (ann->has_volatile_ops)
245 return;
247 if (TREE_CODE (stmt) == MODIFY_EXPR)
249 use_operand_p first_use_p = NULL_USE_OPERAND_P;
250 use_operand_p use_p = NULL;
251 tree use_stmt, temp;
252 tree defvar = NULL_TREE, usevar = NULL_TREE;
253 bool fail = false;
254 use_operand_p var2;
255 def_operand_p var1;
256 ssa_op_iter op_iter;
258 /* We want to verify that each virtual definition in STMT has
259 precisely one use and that all the virtual definitions are
260 used by the same single statement. When complete, we
261 want USE_STMT to refer to the one statement which uses
262 all of the virtual definitions from STMT. */
263 use_stmt = NULL;
264 FOR_EACH_SSA_MUST_AND_MAY_DEF_OPERAND (var1, var2, stmt, op_iter)
266 defvar = DEF_FROM_PTR (var1);
267 usevar = USE_FROM_PTR (var2);
269 /* If this virtual def does not have precisely one use, then
270 we will not be able to eliminate STMT. */
271 if (! has_single_use (defvar))
273 fail = true;
274 break;
277 /* Get the one and only immediate use of DEFVAR. */
278 single_imm_use (defvar, &use_p, &temp);
279 gcc_assert (use_p != NULL_USE_OPERAND_P);
280 first_use_p = use_p;
282 /* If the immediate use of DEF_VAR is not the same as the
283 previously find immediate uses, then we will not be able
284 to eliminate STMT. */
285 if (use_stmt == NULL)
286 use_stmt = temp;
287 else if (temp != use_stmt)
289 fail = true;
290 break;
294 if (fail)
296 record_voperand_set (dse_gd->stores, &bd->stores, ann->uid);
297 return;
300 /* Skip through any PHI nodes we have already seen if the PHI
301 represents the only use of this store.
303 Note this does not handle the case where the store has
304 multiple V_{MAY,MUST}_DEFs which all reach a set of PHI nodes in the
305 same block. */
306 while (use_p != NULL_USE_OPERAND_P
307 && TREE_CODE (use_stmt) == PHI_NODE
308 && bitmap_bit_p (dse_gd->stores, get_stmt_uid (use_stmt)))
310 /* A PHI node can both define and use the same SSA_NAME if
311 the PHI is at the top of a loop and the PHI_RESULT is
312 a loop invariant and copies have not been fully propagated.
314 The safe thing to do is exit assuming no optimization is
315 possible. */
316 if (SSA_NAME_DEF_STMT (PHI_RESULT (use_stmt)) == use_stmt)
317 return;
319 /* Skip past this PHI and loop again in case we had a PHI
320 chain. */
321 single_imm_use (PHI_RESULT (use_stmt), &use_p, &use_stmt);
324 /* If we have precisely one immediate use at this point, then we may
325 have found redundant store. Make sure that the stores are to
326 the same memory location. This includes checking that any
327 SSA-form variables in the address will have the same values. */
328 if (use_p != NULL_USE_OPERAND_P
329 && bitmap_bit_p (dse_gd->stores, get_stmt_uid (use_stmt))
330 && operand_equal_p (TREE_OPERAND (stmt, 0),
331 TREE_OPERAND (use_stmt, 0), 0)
332 && memory_address_same (stmt, use_stmt))
334 /* Make sure we propagate the ABNORMAL bit setting. */
335 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (first_use_p)))
336 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (usevar) = 1;
338 if (dump_file && (dump_flags & TDF_DETAILS))
340 fprintf (dump_file, " Deleted dead store '");
341 print_generic_expr (dump_file, bsi_stmt (bsi), dump_flags);
342 fprintf (dump_file, "'\n");
344 /* Then we need to fix the operand of the consuming stmt. */
345 FOR_EACH_SSA_MUST_AND_MAY_DEF_OPERAND (var1, var2, stmt, op_iter)
347 single_imm_use (DEF_FROM_PTR (var1), &use_p, &temp);
348 SET_USE (use_p, USE_FROM_PTR (var2));
350 /* Remove the dead store. */
351 bsi_remove (&bsi, true);
353 /* And release any SSA_NAMEs set in this statement back to the
354 SSA_NAME manager. */
355 release_defs (stmt);
358 record_voperand_set (dse_gd->stores, &bd->stores, ann->uid);
362 /* Record that we have seen the PHIs at the start of BB which correspond
363 to virtual operands. */
364 static void
365 dse_record_phis (struct dom_walk_data *walk_data, basic_block bb)
367 struct dse_block_local_data *bd
368 = VEC_last (void_p, walk_data->block_data_stack);
369 struct dse_global_data *dse_gd = walk_data->global_data;
370 tree phi;
372 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
373 if (!is_gimple_reg (PHI_RESULT (phi)))
374 record_voperand_set (dse_gd->stores,
375 &bd->stores,
376 get_stmt_uid (phi));
379 static void
380 dse_finalize_block (struct dom_walk_data *walk_data,
381 basic_block bb ATTRIBUTE_UNUSED)
383 struct dse_block_local_data *bd
384 = VEC_last (void_p, walk_data->block_data_stack);
385 struct dse_global_data *dse_gd = walk_data->global_data;
386 bitmap stores = dse_gd->stores;
387 unsigned int i;
388 bitmap_iterator bi;
390 /* Unwind the stores noted in this basic block. */
391 if (bd->stores)
392 EXECUTE_IF_SET_IN_BITMAP (bd->stores, 0, i, bi)
394 bitmap_clear_bit (stores, i);
398 static unsigned int
399 tree_ssa_dse (void)
401 struct dom_walk_data walk_data;
402 struct dse_global_data dse_gd;
403 basic_block bb;
405 /* Create a UID for each statement in the function. Ordering of the
406 UIDs is not important for this pass. */
407 max_stmt_uid = 0;
408 FOR_EACH_BB (bb)
410 block_stmt_iterator bsi;
412 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
413 stmt_ann (bsi_stmt (bsi))->uid = max_stmt_uid++;
416 /* We might consider making this a property of each pass so that it
417 can be [re]computed on an as-needed basis. Particularly since
418 this pass could be seen as an extension of DCE which needs post
419 dominators. */
420 calculate_dominance_info (CDI_POST_DOMINATORS);
422 /* Dead store elimination is fundamentally a walk of the post-dominator
423 tree and a backwards walk of statements within each block. */
424 walk_data.walk_stmts_backward = true;
425 walk_data.dom_direction = CDI_POST_DOMINATORS;
426 walk_data.initialize_block_local_data = dse_initialize_block_local_data;
427 walk_data.before_dom_children_before_stmts = NULL;
428 walk_data.before_dom_children_walk_stmts = dse_optimize_stmt;
429 walk_data.before_dom_children_after_stmts = dse_record_phis;
430 walk_data.after_dom_children_before_stmts = NULL;
431 walk_data.after_dom_children_walk_stmts = NULL;
432 walk_data.after_dom_children_after_stmts = dse_finalize_block;
433 walk_data.interesting_blocks = NULL;
435 walk_data.block_local_data_size = sizeof (struct dse_block_local_data);
437 /* This is the main hash table for the dead store elimination pass. */
438 dse_gd.stores = BITMAP_ALLOC (NULL);
439 walk_data.global_data = &dse_gd;
441 /* Initialize the dominator walker. */
442 init_walk_dominator_tree (&walk_data);
444 /* Recursively walk the dominator tree. */
445 walk_dominator_tree (&walk_data, EXIT_BLOCK_PTR);
447 /* Finalize the dominator walker. */
448 fini_walk_dominator_tree (&walk_data);
450 /* Release the main bitmap. */
451 BITMAP_FREE (dse_gd.stores);
453 /* For now, just wipe the post-dominator information. */
454 free_dominance_info (CDI_POST_DOMINATORS);
455 return 0;
458 static bool
459 gate_dse (void)
461 return flag_tree_dse != 0;
464 struct tree_opt_pass pass_dse = {
465 "dse", /* name */
466 gate_dse, /* gate */
467 tree_ssa_dse, /* execute */
468 NULL, /* sub */
469 NULL, /* next */
470 0, /* static_pass_number */
471 TV_TREE_DSE, /* tv_id */
472 PROP_cfg
473 | PROP_ssa
474 | PROP_alias, /* properties_required */
475 0, /* properties_provided */
476 0, /* properties_destroyed */
477 0, /* todo_flags_start */
478 TODO_dump_func
479 | TODO_ggc_collect
480 | TODO_verify_ssa, /* todo_flags_finish */
481 0 /* letter */