Add files that I missed when importing NaCl changes earlier
[gcc/nacl-gcc.git] / gcc / reg-stack.c
blobfc733498eee76bdfa4788267ac4d0954ccd2a2cf
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* This pass converts stack-like registers from the "flat register
22 file" model that gcc uses, to a stack convention that the 387 uses.
24 * The form of the input:
26 On input, the function consists of insn that have had their
27 registers fully allocated to a set of "virtual" registers. Note that
28 the word "virtual" is used differently here than elsewhere in gcc: for
29 each virtual stack reg, there is a hard reg, but the mapping between
30 them is not known until this pass is run. On output, hard register
31 numbers have been substituted, and various pop and exchange insns have
32 been emitted. The hard register numbers and the virtual register
33 numbers completely overlap - before this pass, all stack register
34 numbers are virtual, and afterward they are all hard.
36 The virtual registers can be manipulated normally by gcc, and their
37 semantics are the same as for normal registers. After the hard
38 register numbers are substituted, the semantics of an insn containing
39 stack-like regs are not the same as for an insn with normal regs: for
40 instance, it is not safe to delete an insn that appears to be a no-op
41 move. In general, no insn containing hard regs should be changed
42 after this pass is done.
44 * The form of the output:
46 After this pass, hard register numbers represent the distance from
47 the current top of stack to the desired register. A reference to
48 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
49 represents the register just below that, and so forth. Also, REG_DEAD
50 notes indicate whether or not a stack register should be popped.
52 A "swap" insn looks like a parallel of two patterns, where each
53 pattern is a SET: one sets A to B, the other B to A.
55 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
56 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
57 will replace the existing stack top, not push a new value.
59 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
60 SET_SRC is REG or MEM.
62 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
63 appears ambiguous. As a special case, the presence of a REG_DEAD note
64 for FIRST_STACK_REG differentiates between a load insn and a pop.
66 If a REG_DEAD is present, the insn represents a "pop" that discards
67 the top of the register stack. If there is no REG_DEAD note, then the
68 insn represents a "dup" or a push of the current top of stack onto the
69 stack.
71 * Methodology:
73 Existing REG_DEAD and REG_UNUSED notes for stack registers are
74 deleted and recreated from scratch. REG_DEAD is never created for a
75 SET_DEST, only REG_UNUSED.
77 * asm_operands:
79 There are several rules on the usage of stack-like regs in
80 asm_operands insns. These rules apply only to the operands that are
81 stack-like regs:
83 1. Given a set of input regs that die in an asm_operands, it is
84 necessary to know which are implicitly popped by the asm, and
85 which must be explicitly popped by gcc.
87 An input reg that is implicitly popped by the asm must be
88 explicitly clobbered, unless it is constrained to match an
89 output operand.
91 2. For any input reg that is implicitly popped by an asm, it is
92 necessary to know how to adjust the stack to compensate for the pop.
93 If any non-popped input is closer to the top of the reg-stack than
94 the implicitly popped reg, it would not be possible to know what the
95 stack looked like - it's not clear how the rest of the stack "slides
96 up".
98 All implicitly popped input regs must be closer to the top of
99 the reg-stack than any input that is not implicitly popped.
101 3. It is possible that if an input dies in an insn, reload might
102 use the input reg for an output reload. Consider this example:
104 asm ("foo" : "=t" (a) : "f" (b));
106 This asm says that input B is not popped by the asm, and that
107 the asm pushes a result onto the reg-stack, i.e., the stack is one
108 deeper after the asm than it was before. But, it is possible that
109 reload will think that it can use the same reg for both the input and
110 the output, if input B dies in this insn.
112 If any input operand uses the "f" constraint, all output reg
113 constraints must use the "&" earlyclobber.
115 The asm above would be written as
117 asm ("foo" : "=&t" (a) : "f" (b));
119 4. Some operands need to be in particular places on the stack. All
120 output operands fall in this category - there is no other way to
121 know which regs the outputs appear in unless the user indicates
122 this in the constraints.
124 Output operands must specifically indicate which reg an output
125 appears in after an asm. "=f" is not allowed: the operand
126 constraints must select a class with a single reg.
128 5. Output operands may not be "inserted" between existing stack regs.
129 Since no 387 opcode uses a read/write operand, all output operands
130 are dead before the asm_operands, and are pushed by the asm_operands.
131 It makes no sense to push anywhere but the top of the reg-stack.
133 Output operands must start at the top of the reg-stack: output
134 operands may not "skip" a reg.
136 6. Some asm statements may need extra stack space for internal
137 calculations. This can be guaranteed by clobbering stack registers
138 unrelated to the inputs and outputs.
140 Here are a couple of reasonable asms to want to write. This asm
141 takes one input, which is internally popped, and produces two outputs.
143 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
145 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
146 and replaces them with one output. The user must code the "st(1)"
147 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
149 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
153 #include "config.h"
154 #include "system.h"
155 #include "coretypes.h"
156 #include "tm.h"
157 #include "tree.h"
158 #include "rtl.h"
159 #include "tm_p.h"
160 #include "function.h"
161 #include "insn-config.h"
162 #include "regs.h"
163 #include "hard-reg-set.h"
164 #include "flags.h"
165 #include "toplev.h"
166 #include "recog.h"
167 #include "output.h"
168 #include "basic-block.h"
169 #include "varray.h"
170 #include "reload.h"
171 #include "ggc.h"
172 #include "timevar.h"
173 #include "tree-pass.h"
174 #include "target.h"
175 #include "vecprim.h"
177 #ifdef STACK_REGS
179 /* We use this array to cache info about insns, because otherwise we
180 spend too much time in stack_regs_mentioned_p.
182 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
183 the insn uses stack registers, two indicates the insn does not use
184 stack registers. */
185 static VEC(char,heap) *stack_regs_mentioned_data;
187 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
189 int regstack_completed = 0;
191 /* This is the basic stack record. TOP is an index into REG[] such
192 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
194 If TOP is -2, REG[] is not yet initialized. Stack initialization
195 consists of placing each live reg in array `reg' and setting `top'
196 appropriately.
198 REG_SET indicates which registers are live. */
200 typedef struct stack_def
202 int top; /* index to top stack element */
203 HARD_REG_SET reg_set; /* set of live registers */
204 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
205 } *stack;
207 /* This is used to carry information about basic blocks. It is
208 attached to the AUX field of the standard CFG block. */
210 typedef struct block_info_def
212 struct stack_def stack_in; /* Input stack configuration. */
213 struct stack_def stack_out; /* Output stack configuration. */
214 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
215 int done; /* True if block already converted. */
216 int predecessors; /* Number of predecessors that need
217 to be visited. */
218 } *block_info;
220 #define BLOCK_INFO(B) ((block_info) (B)->aux)
222 /* Passed to change_stack to indicate where to emit insns. */
223 enum emit_where
225 EMIT_AFTER,
226 EMIT_BEFORE
229 /* The block we're currently working on. */
230 static basic_block current_block;
232 /* In the current_block, whether we're processing the first register
233 stack or call instruction, i.e. the regstack is currently the
234 same as BLOCK_INFO(current_block)->stack_in. */
235 static bool starting_stack_p;
237 /* This is the register file for all register after conversion. */
238 static rtx
239 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
241 #define FP_MODE_REG(regno,mode) \
242 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
244 /* Used to initialize uninitialized registers. */
245 static rtx not_a_num;
247 /* Forward declarations */
249 static int stack_regs_mentioned_p (rtx pat);
250 static void pop_stack (stack, int);
251 static rtx *get_true_reg (rtx *);
253 static int check_asm_stack_operands (rtx);
254 static int get_asm_operand_n_inputs (rtx);
255 static rtx stack_result (tree);
256 static void replace_reg (rtx *, int);
257 static void remove_regno_note (rtx, enum reg_note, unsigned int);
258 static int get_hard_regnum (stack, rtx);
259 static rtx emit_pop_insn (rtx, stack, rtx, enum emit_where);
260 static void swap_to_top(rtx, stack, rtx, rtx);
261 static bool move_for_stack_reg (rtx, stack, rtx);
262 static bool move_nan_for_stack_reg (rtx, stack, rtx);
263 static int swap_rtx_condition_1 (rtx);
264 static int swap_rtx_condition (rtx);
265 static void compare_for_stack_reg (rtx, stack, rtx);
266 static bool subst_stack_regs_pat (rtx, stack, rtx);
267 static void subst_asm_stack_regs (rtx, stack);
268 static bool subst_stack_regs (rtx, stack);
269 static void change_stack (rtx, stack, stack, enum emit_where);
270 static void print_stack (FILE *, stack);
271 static rtx next_flags_user (rtx);
273 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
275 static int
276 stack_regs_mentioned_p (rtx pat)
278 const char *fmt;
279 int i;
281 if (STACK_REG_P (pat))
282 return 1;
284 fmt = GET_RTX_FORMAT (GET_CODE (pat));
285 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
287 if (fmt[i] == 'E')
289 int j;
291 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
292 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
293 return 1;
295 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
296 return 1;
299 return 0;
302 /* Return nonzero if INSN mentions stacked registers, else return zero. */
305 stack_regs_mentioned (rtx insn)
307 unsigned int uid, max;
308 int test;
310 if (! INSN_P (insn) || !stack_regs_mentioned_data)
311 return 0;
313 uid = INSN_UID (insn);
314 max = VEC_length (char, stack_regs_mentioned_data);
315 if (uid >= max)
317 char *p;
318 unsigned int old_max = max;
320 /* Allocate some extra size to avoid too many reallocs, but
321 do not grow too quickly. */
322 max = uid + uid / 20 + 1;
323 VEC_safe_grow (char, heap, stack_regs_mentioned_data, max);
324 p = VEC_address (char, stack_regs_mentioned_data);
325 memset (&p[old_max], 0,
326 sizeof (char) * (max - old_max));
329 test = VEC_index (char, stack_regs_mentioned_data, uid);
330 if (test == 0)
332 /* This insn has yet to be examined. Do so now. */
333 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
334 VEC_replace (char, stack_regs_mentioned_data, uid, test);
337 return test == 1;
340 static rtx ix86_flags_rtx;
342 static rtx
343 next_flags_user (rtx insn)
345 /* Search forward looking for the first use of this value.
346 Stop at block boundaries. */
348 while (insn != BB_END (current_block))
350 insn = NEXT_INSN (insn);
352 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
353 return insn;
355 if (CALL_P (insn))
356 return NULL_RTX;
358 return NULL_RTX;
361 /* Reorganize the stack into ascending numbers, before this insn. */
363 static void
364 straighten_stack (rtx insn, stack regstack)
366 struct stack_def temp_stack;
367 int top;
369 /* If there is only a single register on the stack, then the stack is
370 already in increasing order and no reorganization is needed.
372 Similarly if the stack is empty. */
373 if (regstack->top <= 0)
374 return;
376 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
378 for (top = temp_stack.top = regstack->top; top >= 0; top--)
379 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
381 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
384 /* Pop a register from the stack. */
386 static void
387 pop_stack (stack regstack, int regno)
389 int top = regstack->top;
391 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
392 regstack->top--;
393 /* If regno was not at the top of stack then adjust stack. */
394 if (regstack->reg [top] != regno)
396 int i;
397 for (i = regstack->top; i >= 0; i--)
398 if (regstack->reg [i] == regno)
400 int j;
401 for (j = i; j < top; j++)
402 regstack->reg [j] = regstack->reg [j + 1];
403 break;
408 /* Return a pointer to the REG expression within PAT. If PAT is not a
409 REG, possible enclosed by a conversion rtx, return the inner part of
410 PAT that stopped the search. */
412 static rtx *
413 get_true_reg (rtx *pat)
415 for (;;)
416 switch (GET_CODE (*pat))
418 case SUBREG:
419 /* Eliminate FP subregister accesses in favor of the
420 actual FP register in use. */
422 rtx subreg;
423 if (FP_REG_P (subreg = SUBREG_REG (*pat)))
425 int regno_off = subreg_regno_offset (REGNO (subreg),
426 GET_MODE (subreg),
427 SUBREG_BYTE (*pat),
428 GET_MODE (*pat));
429 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
430 GET_MODE (subreg));
431 default:
432 return pat;
435 case FLOAT:
436 case FIX:
437 case FLOAT_EXTEND:
438 pat = & XEXP (*pat, 0);
439 break;
441 case FLOAT_TRUNCATE:
442 if (!flag_unsafe_math_optimizations)
443 return pat;
444 pat = & XEXP (*pat, 0);
445 break;
449 /* Set if we find any malformed asms in a block. */
450 static bool any_malformed_asm;
452 /* There are many rules that an asm statement for stack-like regs must
453 follow. Those rules are explained at the top of this file: the rule
454 numbers below refer to that explanation. */
456 static int
457 check_asm_stack_operands (rtx insn)
459 int i;
460 int n_clobbers;
461 int malformed_asm = 0;
462 rtx body = PATTERN (insn);
464 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
465 char implicitly_dies[FIRST_PSEUDO_REGISTER];
466 int alt;
468 rtx *clobber_reg = 0;
469 int n_inputs, n_outputs;
471 /* Find out what the constraints require. If no constraint
472 alternative matches, this asm is malformed. */
473 extract_insn (insn);
474 constrain_operands (1);
475 alt = which_alternative;
477 preprocess_constraints ();
479 n_inputs = get_asm_operand_n_inputs (body);
480 n_outputs = recog_data.n_operands - n_inputs;
482 if (alt < 0)
484 malformed_asm = 1;
485 /* Avoid further trouble with this insn. */
486 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
487 return 0;
490 /* Strip SUBREGs here to make the following code simpler. */
491 for (i = 0; i < recog_data.n_operands; i++)
492 if (GET_CODE (recog_data.operand[i]) == SUBREG
493 && REG_P (SUBREG_REG (recog_data.operand[i])))
494 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
496 /* Set up CLOBBER_REG. */
498 n_clobbers = 0;
500 if (GET_CODE (body) == PARALLEL)
502 clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
504 for (i = 0; i < XVECLEN (body, 0); i++)
505 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
507 rtx clobber = XVECEXP (body, 0, i);
508 rtx reg = XEXP (clobber, 0);
510 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
511 reg = SUBREG_REG (reg);
513 if (STACK_REG_P (reg))
515 clobber_reg[n_clobbers] = reg;
516 n_clobbers++;
521 /* Enforce rule #4: Output operands must specifically indicate which
522 reg an output appears in after an asm. "=f" is not allowed: the
523 operand constraints must select a class with a single reg.
525 Also enforce rule #5: Output operands must start at the top of
526 the reg-stack: output operands may not "skip" a reg. */
528 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
529 for (i = 0; i < n_outputs; i++)
530 if (STACK_REG_P (recog_data.operand[i]))
532 if (reg_class_size[(int) recog_op_alt[i][alt].cl] != 1)
534 error_for_asm (insn, "output constraint %d must specify a single register", i);
535 malformed_asm = 1;
537 else
539 int j;
541 for (j = 0; j < n_clobbers; j++)
542 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
544 error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
545 i, reg_names [REGNO (clobber_reg[j])]);
546 malformed_asm = 1;
547 break;
549 if (j == n_clobbers)
550 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
555 /* Search for first non-popped reg. */
556 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
557 if (! reg_used_as_output[i])
558 break;
560 /* If there are any other popped regs, that's an error. */
561 for (; i < LAST_STACK_REG + 1; i++)
562 if (reg_used_as_output[i])
563 break;
565 if (i != LAST_STACK_REG + 1)
567 error_for_asm (insn, "output regs must be grouped at top of stack");
568 malformed_asm = 1;
571 /* Enforce rule #2: All implicitly popped input regs must be closer
572 to the top of the reg-stack than any input that is not implicitly
573 popped. */
575 memset (implicitly_dies, 0, sizeof (implicitly_dies));
576 for (i = n_outputs; i < n_outputs + n_inputs; i++)
577 if (STACK_REG_P (recog_data.operand[i]))
579 /* An input reg is implicitly popped if it is tied to an
580 output, or if there is a CLOBBER for it. */
581 int j;
583 for (j = 0; j < n_clobbers; j++)
584 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
585 break;
587 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
588 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
591 /* Search for first non-popped reg. */
592 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
593 if (! implicitly_dies[i])
594 break;
596 /* If there are any other popped regs, that's an error. */
597 for (; i < LAST_STACK_REG + 1; i++)
598 if (implicitly_dies[i])
599 break;
601 if (i != LAST_STACK_REG + 1)
603 error_for_asm (insn,
604 "implicitly popped regs must be grouped at top of stack");
605 malformed_asm = 1;
608 /* Enforce rule #3: If any input operand uses the "f" constraint, all
609 output constraints must use the "&" earlyclobber.
611 ??? Detect this more deterministically by having constrain_asm_operands
612 record any earlyclobber. */
614 for (i = n_outputs; i < n_outputs + n_inputs; i++)
615 if (recog_op_alt[i][alt].matches == -1)
617 int j;
619 for (j = 0; j < n_outputs; j++)
620 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
622 error_for_asm (insn,
623 "output operand %d must use %<&%> constraint", j);
624 malformed_asm = 1;
628 if (malformed_asm)
630 /* Avoid further trouble with this insn. */
631 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
632 any_malformed_asm = true;
633 return 0;
636 return 1;
639 /* Calculate the number of inputs and outputs in BODY, an
640 asm_operands. N_OPERANDS is the total number of operands, and
641 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
642 placed. */
644 static int
645 get_asm_operand_n_inputs (rtx body)
647 switch (GET_CODE (body))
649 case SET:
650 gcc_assert (GET_CODE (SET_SRC (body)) == ASM_OPERANDS);
651 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body));
653 case ASM_OPERANDS:
654 return ASM_OPERANDS_INPUT_LENGTH (body);
656 case PARALLEL:
657 return get_asm_operand_n_inputs (XVECEXP (body, 0, 0));
659 default:
660 gcc_unreachable ();
664 /* If current function returns its result in an fp stack register,
665 return the REG. Otherwise, return 0. */
667 static rtx
668 stack_result (tree decl)
670 rtx result;
672 /* If the value is supposed to be returned in memory, then clearly
673 it is not returned in a stack register. */
674 if (aggregate_value_p (DECL_RESULT (decl), decl))
675 return 0;
677 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
678 if (result != 0)
679 result = targetm.calls.function_value (TREE_TYPE (DECL_RESULT (decl)),
680 decl, true);
682 return result != 0 && STACK_REG_P (result) ? result : 0;
687 * This section deals with stack register substitution, and forms the second
688 * pass over the RTL.
691 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
692 the desired hard REGNO. */
694 static void
695 replace_reg (rtx *reg, int regno)
697 gcc_assert (regno >= FIRST_STACK_REG);
698 gcc_assert (regno <= LAST_STACK_REG);
699 gcc_assert (STACK_REG_P (*reg));
701 gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (*reg))
702 || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
704 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
707 /* Remove a note of type NOTE, which must be found, for register
708 number REGNO from INSN. Remove only one such note. */
710 static void
711 remove_regno_note (rtx insn, enum reg_note note, unsigned int regno)
713 rtx *note_link, this;
715 note_link = &REG_NOTES (insn);
716 for (this = *note_link; this; this = XEXP (this, 1))
717 if (REG_NOTE_KIND (this) == note
718 && REG_P (XEXP (this, 0)) && REGNO (XEXP (this, 0)) == regno)
720 *note_link = XEXP (this, 1);
721 return;
723 else
724 note_link = &XEXP (this, 1);
726 gcc_unreachable ();
729 /* Find the hard register number of virtual register REG in REGSTACK.
730 The hard register number is relative to the top of the stack. -1 is
731 returned if the register is not found. */
733 static int
734 get_hard_regnum (stack regstack, rtx reg)
736 int i;
738 gcc_assert (STACK_REG_P (reg));
740 for (i = regstack->top; i >= 0; i--)
741 if (regstack->reg[i] == REGNO (reg))
742 break;
744 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
747 /* Emit an insn to pop virtual register REG before or after INSN.
748 REGSTACK is the stack state after INSN and is updated to reflect this
749 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
750 is represented as a SET whose destination is the register to be popped
751 and source is the top of stack. A death note for the top of stack
752 cases the movdf pattern to pop. */
754 static rtx
755 emit_pop_insn (rtx insn, stack regstack, rtx reg, enum emit_where where)
757 rtx pop_insn, pop_rtx;
758 int hard_regno;
760 /* For complex types take care to pop both halves. These may survive in
761 CLOBBER and USE expressions. */
762 if (COMPLEX_MODE_P (GET_MODE (reg)))
764 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
765 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
767 pop_insn = NULL_RTX;
768 if (get_hard_regnum (regstack, reg1) >= 0)
769 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
770 if (get_hard_regnum (regstack, reg2) >= 0)
771 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
772 gcc_assert (pop_insn);
773 return pop_insn;
776 hard_regno = get_hard_regnum (regstack, reg);
778 gcc_assert (hard_regno >= FIRST_STACK_REG);
780 pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
781 FP_MODE_REG (FIRST_STACK_REG, DFmode));
783 if (where == EMIT_AFTER)
784 pop_insn = emit_insn_after (pop_rtx, insn);
785 else
786 pop_insn = emit_insn_before (pop_rtx, insn);
788 REG_NOTES (pop_insn)
789 = gen_rtx_EXPR_LIST (REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode),
790 REG_NOTES (pop_insn));
792 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
793 = regstack->reg[regstack->top];
794 regstack->top -= 1;
795 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
797 return pop_insn;
800 /* Emit an insn before or after INSN to swap virtual register REG with
801 the top of stack. REGSTACK is the stack state before the swap, and
802 is updated to reflect the swap. A swap insn is represented as a
803 PARALLEL of two patterns: each pattern moves one reg to the other.
805 If REG is already at the top of the stack, no insn is emitted. */
807 static void
808 emit_swap_insn (rtx insn, stack regstack, rtx reg)
810 int hard_regno;
811 rtx swap_rtx;
812 int tmp, other_reg; /* swap regno temps */
813 rtx i1; /* the stack-reg insn prior to INSN */
814 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
816 hard_regno = get_hard_regnum (regstack, reg);
818 if (hard_regno == FIRST_STACK_REG)
819 return;
820 if (hard_regno == -1)
822 /* Something failed if the register wasn't on the stack. If we had
823 malformed asms, we zapped the instruction itself, but that didn't
824 produce the same pattern of register sets as before. To prevent
825 further failure, adjust REGSTACK to include REG at TOP. */
826 gcc_assert (any_malformed_asm);
827 regstack->reg[++regstack->top] = REGNO (reg);
828 return;
830 gcc_assert (hard_regno >= FIRST_STACK_REG);
832 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
834 tmp = regstack->reg[other_reg];
835 regstack->reg[other_reg] = regstack->reg[regstack->top];
836 regstack->reg[regstack->top] = tmp;
838 /* Find the previous insn involving stack regs, but don't pass a
839 block boundary. */
840 i1 = NULL;
841 if (current_block && insn != BB_HEAD (current_block))
843 rtx tmp = PREV_INSN (insn);
844 rtx limit = PREV_INSN (BB_HEAD (current_block));
845 while (tmp != limit)
847 if (LABEL_P (tmp)
848 || CALL_P (tmp)
849 || NOTE_INSN_BASIC_BLOCK_P (tmp)
850 || (NONJUMP_INSN_P (tmp)
851 && stack_regs_mentioned (tmp)))
853 i1 = tmp;
854 break;
856 tmp = PREV_INSN (tmp);
860 if (i1 != NULL_RTX
861 && (i1set = single_set (i1)) != NULL_RTX)
863 rtx i1src = *get_true_reg (&SET_SRC (i1set));
864 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
866 /* If the previous register stack push was from the reg we are to
867 swap with, omit the swap. */
869 if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
870 && REG_P (i1src)
871 && REGNO (i1src) == (unsigned) hard_regno - 1
872 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
873 return;
875 /* If the previous insn wrote to the reg we are to swap with,
876 omit the swap. */
878 if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
879 && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
880 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
881 return;
884 /* Avoid emitting the swap if this is the first register stack insn
885 of the current_block. Instead update the current_block's stack_in
886 and let compensate edges take care of this for us. */
887 if (current_block && starting_stack_p)
889 BLOCK_INFO (current_block)->stack_in = *regstack;
890 starting_stack_p = false;
891 return;
894 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
895 FP_MODE_REG (FIRST_STACK_REG, XFmode));
897 if (i1)
898 emit_insn_after (swap_rtx, i1);
899 else if (current_block)
900 emit_insn_before (swap_rtx, BB_HEAD (current_block));
901 else
902 emit_insn_before (swap_rtx, insn);
905 /* Emit an insns before INSN to swap virtual register SRC1 with
906 the top of stack and virtual register SRC2 with second stack
907 slot. REGSTACK is the stack state before the swaps, and
908 is updated to reflect the swaps. A swap insn is represented as a
909 PARALLEL of two patterns: each pattern moves one reg to the other.
911 If SRC1 and/or SRC2 are already at the right place, no swap insn
912 is emitted. */
914 static void
915 swap_to_top (rtx insn, stack regstack, rtx src1, rtx src2)
917 struct stack_def temp_stack;
918 int regno, j, k, temp;
920 temp_stack = *regstack;
922 /* Place operand 1 at the top of stack. */
923 regno = get_hard_regnum (&temp_stack, src1);
924 gcc_assert (regno >= 0);
925 if (regno != FIRST_STACK_REG)
927 k = temp_stack.top - (regno - FIRST_STACK_REG);
928 j = temp_stack.top;
930 temp = temp_stack.reg[k];
931 temp_stack.reg[k] = temp_stack.reg[j];
932 temp_stack.reg[j] = temp;
935 /* Place operand 2 next on the stack. */
936 regno = get_hard_regnum (&temp_stack, src2);
937 gcc_assert (regno >= 0);
938 if (regno != FIRST_STACK_REG + 1)
940 k = temp_stack.top - (regno - FIRST_STACK_REG);
941 j = temp_stack.top - 1;
943 temp = temp_stack.reg[k];
944 temp_stack.reg[k] = temp_stack.reg[j];
945 temp_stack.reg[j] = temp;
948 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
951 /* Handle a move to or from a stack register in PAT, which is in INSN.
952 REGSTACK is the current stack. Return whether a control flow insn
953 was deleted in the process. */
955 static bool
956 move_for_stack_reg (rtx insn, stack regstack, rtx pat)
958 rtx *psrc = get_true_reg (&SET_SRC (pat));
959 rtx *pdest = get_true_reg (&SET_DEST (pat));
960 rtx src, dest;
961 rtx note;
962 bool control_flow_insn_deleted = false;
964 src = *psrc; dest = *pdest;
966 if (STACK_REG_P (src) && STACK_REG_P (dest))
968 /* Write from one stack reg to another. If SRC dies here, then
969 just change the register mapping and delete the insn. */
971 note = find_regno_note (insn, REG_DEAD, REGNO (src));
972 if (note)
974 int i;
976 /* If this is a no-op move, there must not be a REG_DEAD note. */
977 gcc_assert (REGNO (src) != REGNO (dest));
979 for (i = regstack->top; i >= 0; i--)
980 if (regstack->reg[i] == REGNO (src))
981 break;
983 /* The destination must be dead, or life analysis is borked. */
984 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
986 /* If the source is not live, this is yet another case of
987 uninitialized variables. Load up a NaN instead. */
988 if (i < 0)
989 return move_nan_for_stack_reg (insn, regstack, dest);
991 /* It is possible that the dest is unused after this insn.
992 If so, just pop the src. */
994 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
995 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
996 else
998 regstack->reg[i] = REGNO (dest);
999 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1000 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1003 control_flow_insn_deleted |= control_flow_insn_p (insn);
1004 delete_insn (insn);
1005 return control_flow_insn_deleted;
1008 /* The source reg does not die. */
1010 /* If this appears to be a no-op move, delete it, or else it
1011 will confuse the machine description output patterns. But if
1012 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1013 for REG_UNUSED will not work for deleted insns. */
1015 if (REGNO (src) == REGNO (dest))
1017 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1018 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1020 control_flow_insn_deleted |= control_flow_insn_p (insn);
1021 delete_insn (insn);
1022 return control_flow_insn_deleted;
1025 /* The destination ought to be dead. */
1026 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1028 replace_reg (psrc, get_hard_regnum (regstack, src));
1030 regstack->reg[++regstack->top] = REGNO (dest);
1031 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1032 replace_reg (pdest, FIRST_STACK_REG);
1034 else if (STACK_REG_P (src))
1036 /* Save from a stack reg to MEM, or possibly integer reg. Since
1037 only top of stack may be saved, emit an exchange first if
1038 needs be. */
1040 emit_swap_insn (insn, regstack, src);
1042 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1043 if (note)
1045 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1046 regstack->top--;
1047 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1049 else if ((GET_MODE (src) == XFmode)
1050 && regstack->top < REG_STACK_SIZE - 1)
1052 /* A 387 cannot write an XFmode value to a MEM without
1053 clobbering the source reg. The output code can handle
1054 this by reading back the value from the MEM.
1055 But it is more efficient to use a temp register if one is
1056 available. Push the source value here if the register
1057 stack is not full, and then write the value to memory via
1058 a pop. */
1059 rtx push_rtx;
1060 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1062 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1063 emit_insn_before (push_rtx, insn);
1064 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, top_stack_reg,
1065 REG_NOTES (insn));
1068 replace_reg (psrc, FIRST_STACK_REG);
1070 else
1072 gcc_assert (STACK_REG_P (dest));
1074 /* Load from MEM, or possibly integer REG or constant, into the
1075 stack regs. The actual target is always the top of the
1076 stack. The stack mapping is changed to reflect that DEST is
1077 now at top of stack. */
1079 /* The destination ought to be dead. */
1080 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1082 gcc_assert (regstack->top < REG_STACK_SIZE);
1084 regstack->reg[++regstack->top] = REGNO (dest);
1085 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1086 replace_reg (pdest, FIRST_STACK_REG);
1089 return control_flow_insn_deleted;
1092 /* A helper function which replaces INSN with a pattern that loads up
1093 a NaN into DEST, then invokes move_for_stack_reg. */
1095 static bool
1096 move_nan_for_stack_reg (rtx insn, stack regstack, rtx dest)
1098 rtx pat;
1100 dest = FP_MODE_REG (REGNO (dest), SFmode);
1101 pat = gen_rtx_SET (VOIDmode, dest, not_a_num);
1102 PATTERN (insn) = pat;
1103 INSN_CODE (insn) = -1;
1105 return move_for_stack_reg (insn, regstack, pat);
1108 /* Swap the condition on a branch, if there is one. Return true if we
1109 found a condition to swap. False if the condition was not used as
1110 such. */
1112 static int
1113 swap_rtx_condition_1 (rtx pat)
1115 const char *fmt;
1116 int i, r = 0;
1118 if (COMPARISON_P (pat))
1120 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1121 r = 1;
1123 else
1125 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1126 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1128 if (fmt[i] == 'E')
1130 int j;
1132 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1133 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1135 else if (fmt[i] == 'e')
1136 r |= swap_rtx_condition_1 (XEXP (pat, i));
1140 return r;
1143 static int
1144 swap_rtx_condition (rtx insn)
1146 rtx pat = PATTERN (insn);
1148 /* We're looking for a single set to cc0 or an HImode temporary. */
1150 if (GET_CODE (pat) == SET
1151 && REG_P (SET_DEST (pat))
1152 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1154 insn = next_flags_user (insn);
1155 if (insn == NULL_RTX)
1156 return 0;
1157 pat = PATTERN (insn);
1160 /* See if this is, or ends in, a fnstsw. If so, we're not doing anything
1161 with the cc value right now. We may be able to search for one
1162 though. */
1164 if (GET_CODE (pat) == SET
1165 && GET_CODE (SET_SRC (pat)) == UNSPEC
1166 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1168 rtx dest = SET_DEST (pat);
1170 /* Search forward looking for the first use of this value.
1171 Stop at block boundaries. */
1172 while (insn != BB_END (current_block))
1174 insn = NEXT_INSN (insn);
1175 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1176 break;
1177 if (CALL_P (insn))
1178 return 0;
1181 /* We haven't found it. */
1182 if (insn == BB_END (current_block))
1183 return 0;
1185 /* So we've found the insn using this value. If it is anything
1186 other than sahf or the value does not die (meaning we'd have
1187 to search further), then we must give up. */
1188 pat = PATTERN (insn);
1189 if (GET_CODE (pat) != SET
1190 || GET_CODE (SET_SRC (pat)) != UNSPEC
1191 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1192 || ! dead_or_set_p (insn, dest))
1193 return 0;
1195 /* Now we are prepared to handle this as a normal cc0 setter. */
1196 insn = next_flags_user (insn);
1197 if (insn == NULL_RTX)
1198 return 0;
1199 pat = PATTERN (insn);
1202 if (swap_rtx_condition_1 (pat))
1204 int fail = 0;
1205 INSN_CODE (insn) = -1;
1206 if (recog_memoized (insn) == -1)
1207 fail = 1;
1208 /* In case the flags don't die here, recurse to try fix
1209 following user too. */
1210 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1212 insn = next_flags_user (insn);
1213 if (!insn || !swap_rtx_condition (insn))
1214 fail = 1;
1216 if (fail)
1218 swap_rtx_condition_1 (pat);
1219 return 0;
1221 return 1;
1223 return 0;
1226 /* Handle a comparison. Special care needs to be taken to avoid
1227 causing comparisons that a 387 cannot do correctly, such as EQ.
1229 Also, a pop insn may need to be emitted. The 387 does have an
1230 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1231 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1232 set up. */
1234 static void
1235 compare_for_stack_reg (rtx insn, stack regstack, rtx pat_src)
1237 rtx *src1, *src2;
1238 rtx src1_note, src2_note;
1240 src1 = get_true_reg (&XEXP (pat_src, 0));
1241 src2 = get_true_reg (&XEXP (pat_src, 1));
1243 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1244 registers that die in this insn - move those to stack top first. */
1245 if ((! STACK_REG_P (*src1)
1246 || (STACK_REG_P (*src2)
1247 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1248 && swap_rtx_condition (insn))
1250 rtx temp;
1251 temp = XEXP (pat_src, 0);
1252 XEXP (pat_src, 0) = XEXP (pat_src, 1);
1253 XEXP (pat_src, 1) = temp;
1255 src1 = get_true_reg (&XEXP (pat_src, 0));
1256 src2 = get_true_reg (&XEXP (pat_src, 1));
1258 INSN_CODE (insn) = -1;
1261 /* We will fix any death note later. */
1263 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1265 if (STACK_REG_P (*src2))
1266 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1267 else
1268 src2_note = NULL_RTX;
1270 emit_swap_insn (insn, regstack, *src1);
1272 replace_reg (src1, FIRST_STACK_REG);
1274 if (STACK_REG_P (*src2))
1275 replace_reg (src2, get_hard_regnum (regstack, *src2));
1277 if (src1_note)
1279 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1280 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1283 /* If the second operand dies, handle that. But if the operands are
1284 the same stack register, don't bother, because only one death is
1285 needed, and it was just handled. */
1287 if (src2_note
1288 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1289 && REGNO (*src1) == REGNO (*src2)))
1291 /* As a special case, two regs may die in this insn if src2 is
1292 next to top of stack and the top of stack also dies. Since
1293 we have already popped src1, "next to top of stack" is really
1294 at top (FIRST_STACK_REG) now. */
1296 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1297 && src1_note)
1299 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1300 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1302 else
1304 /* The 386 can only represent death of the first operand in
1305 the case handled above. In all other cases, emit a separate
1306 pop and remove the death note from here. */
1308 /* link_cc0_insns (insn); */
1310 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1312 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1313 EMIT_AFTER);
1318 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1319 is the current register layout. Return whether a control flow insn
1320 was deleted in the process. */
1322 static bool
1323 subst_stack_regs_pat (rtx insn, stack regstack, rtx pat)
1325 rtx *dest, *src;
1326 bool control_flow_insn_deleted = false;
1328 switch (GET_CODE (pat))
1330 case USE:
1331 /* Deaths in USE insns can happen in non optimizing compilation.
1332 Handle them by popping the dying register. */
1333 src = get_true_reg (&XEXP (pat, 0));
1334 if (STACK_REG_P (*src)
1335 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1337 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1338 return control_flow_insn_deleted;
1340 /* ??? Uninitialized USE should not happen. */
1341 else
1342 gcc_assert (get_hard_regnum (regstack, *src) != -1);
1343 break;
1345 case CLOBBER:
1347 rtx note;
1349 dest = get_true_reg (&XEXP (pat, 0));
1350 if (STACK_REG_P (*dest))
1352 note = find_reg_note (insn, REG_DEAD, *dest);
1354 if (pat != PATTERN (insn))
1356 /* The fix_truncdi_1 pattern wants to be able to allocate
1357 its own scratch register. It does this by clobbering
1358 an fp reg so that it is assured of an empty reg-stack
1359 register. If the register is live, kill it now.
1360 Remove the DEAD/UNUSED note so we don't try to kill it
1361 later too. */
1363 if (note)
1364 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1365 else
1367 note = find_reg_note (insn, REG_UNUSED, *dest);
1368 gcc_assert (note);
1370 remove_note (insn, note);
1371 replace_reg (dest, FIRST_STACK_REG + 1);
1373 else
1375 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1376 indicates an uninitialized value. Because reload removed
1377 all other clobbers, this must be due to a function
1378 returning without a value. Load up a NaN. */
1380 if (!note)
1382 rtx t = *dest;
1383 if (COMPLEX_MODE_P (GET_MODE (t)))
1385 rtx u = FP_MODE_REG (REGNO (t) + 1, SFmode);
1386 if (get_hard_regnum (regstack, u) == -1)
1388 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, u);
1389 rtx insn2 = emit_insn_before (pat2, insn);
1390 control_flow_insn_deleted
1391 |= move_nan_for_stack_reg (insn2, regstack, u);
1394 if (get_hard_regnum (regstack, t) == -1)
1395 control_flow_insn_deleted
1396 |= move_nan_for_stack_reg (insn, regstack, t);
1400 break;
1403 case SET:
1405 rtx *src1 = (rtx *) 0, *src2;
1406 rtx src1_note, src2_note;
1407 rtx pat_src;
1409 dest = get_true_reg (&SET_DEST (pat));
1410 src = get_true_reg (&SET_SRC (pat));
1411 pat_src = SET_SRC (pat);
1413 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1414 if (STACK_REG_P (*src)
1415 || (STACK_REG_P (*dest)
1416 && (REG_P (*src) || MEM_P (*src)
1417 || GET_CODE (*src) == CONST_DOUBLE)))
1419 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1420 break;
1423 switch (GET_CODE (pat_src))
1425 case COMPARE:
1426 compare_for_stack_reg (insn, regstack, pat_src);
1427 break;
1429 case CALL:
1431 int count;
1432 for (count = hard_regno_nregs[REGNO (*dest)][GET_MODE (*dest)];
1433 --count >= 0;)
1435 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1436 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1439 replace_reg (dest, FIRST_STACK_REG);
1440 break;
1442 case REG:
1443 /* This is a `tstM2' case. */
1444 gcc_assert (*dest == cc0_rtx);
1445 src1 = src;
1447 /* Fall through. */
1449 case FLOAT_TRUNCATE:
1450 case SQRT:
1451 case ABS:
1452 case NEG:
1453 /* These insns only operate on the top of the stack. DEST might
1454 be cc0_rtx if we're processing a tstM pattern. Also, it's
1455 possible that the tstM case results in a REG_DEAD note on the
1456 source. */
1458 if (src1 == 0)
1459 src1 = get_true_reg (&XEXP (pat_src, 0));
1461 emit_swap_insn (insn, regstack, *src1);
1463 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1465 if (STACK_REG_P (*dest))
1466 replace_reg (dest, FIRST_STACK_REG);
1468 if (src1_note)
1470 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1471 regstack->top--;
1472 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1475 replace_reg (src1, FIRST_STACK_REG);
1476 break;
1478 case MINUS:
1479 case DIV:
1480 /* On i386, reversed forms of subM3 and divM3 exist for
1481 MODE_FLOAT, so the same code that works for addM3 and mulM3
1482 can be used. */
1483 case MULT:
1484 case PLUS:
1485 /* These insns can accept the top of stack as a destination
1486 from a stack reg or mem, or can use the top of stack as a
1487 source and some other stack register (possibly top of stack)
1488 as a destination. */
1490 src1 = get_true_reg (&XEXP (pat_src, 0));
1491 src2 = get_true_reg (&XEXP (pat_src, 1));
1493 /* We will fix any death note later. */
1495 if (STACK_REG_P (*src1))
1496 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1497 else
1498 src1_note = NULL_RTX;
1499 if (STACK_REG_P (*src2))
1500 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1501 else
1502 src2_note = NULL_RTX;
1504 /* If either operand is not a stack register, then the dest
1505 must be top of stack. */
1507 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1508 emit_swap_insn (insn, regstack, *dest);
1509 else
1511 /* Both operands are REG. If neither operand is already
1512 at the top of stack, choose to make the one that is the dest
1513 the new top of stack. */
1515 int src1_hard_regnum, src2_hard_regnum;
1517 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1518 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1519 gcc_assert (src1_hard_regnum != -1);
1520 gcc_assert (src2_hard_regnum != -1);
1522 if (src1_hard_regnum != FIRST_STACK_REG
1523 && src2_hard_regnum != FIRST_STACK_REG)
1524 emit_swap_insn (insn, regstack, *dest);
1527 if (STACK_REG_P (*src1))
1528 replace_reg (src1, get_hard_regnum (regstack, *src1));
1529 if (STACK_REG_P (*src2))
1530 replace_reg (src2, get_hard_regnum (regstack, *src2));
1532 if (src1_note)
1534 rtx src1_reg = XEXP (src1_note, 0);
1536 /* If the register that dies is at the top of stack, then
1537 the destination is somewhere else - merely substitute it.
1538 But if the reg that dies is not at top of stack, then
1539 move the top of stack to the dead reg, as though we had
1540 done the insn and then a store-with-pop. */
1542 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1544 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1545 replace_reg (dest, get_hard_regnum (regstack, *dest));
1547 else
1549 int regno = get_hard_regnum (regstack, src1_reg);
1551 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1552 replace_reg (dest, regno);
1554 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1555 = regstack->reg[regstack->top];
1558 CLEAR_HARD_REG_BIT (regstack->reg_set,
1559 REGNO (XEXP (src1_note, 0)));
1560 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1561 regstack->top--;
1563 else if (src2_note)
1565 rtx src2_reg = XEXP (src2_note, 0);
1566 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1568 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1569 replace_reg (dest, get_hard_regnum (regstack, *dest));
1571 else
1573 int regno = get_hard_regnum (regstack, src2_reg);
1575 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1576 replace_reg (dest, regno);
1578 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1579 = regstack->reg[regstack->top];
1582 CLEAR_HARD_REG_BIT (regstack->reg_set,
1583 REGNO (XEXP (src2_note, 0)));
1584 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1585 regstack->top--;
1587 else
1589 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1590 replace_reg (dest, get_hard_regnum (regstack, *dest));
1593 /* Keep operand 1 matching with destination. */
1594 if (COMMUTATIVE_ARITH_P (pat_src)
1595 && REG_P (*src1) && REG_P (*src2)
1596 && REGNO (*src1) != REGNO (*dest))
1598 int tmp = REGNO (*src1);
1599 replace_reg (src1, REGNO (*src2));
1600 replace_reg (src2, tmp);
1602 break;
1604 case UNSPEC:
1605 switch (XINT (pat_src, 1))
1607 case UNSPEC_FIST:
1609 case UNSPEC_FIST_FLOOR:
1610 case UNSPEC_FIST_CEIL:
1612 /* These insns only operate on the top of the stack. */
1614 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1615 emit_swap_insn (insn, regstack, *src1);
1617 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1619 if (STACK_REG_P (*dest))
1620 replace_reg (dest, FIRST_STACK_REG);
1622 if (src1_note)
1624 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1625 regstack->top--;
1626 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1629 replace_reg (src1, FIRST_STACK_REG);
1630 break;
1632 case UNSPEC_SIN:
1633 case UNSPEC_COS:
1634 case UNSPEC_FRNDINT:
1635 case UNSPEC_F2XM1:
1637 case UNSPEC_FRNDINT_FLOOR:
1638 case UNSPEC_FRNDINT_CEIL:
1639 case UNSPEC_FRNDINT_TRUNC:
1640 case UNSPEC_FRNDINT_MASK_PM:
1642 /* These insns only operate on the top of the stack. */
1644 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1646 emit_swap_insn (insn, regstack, *src1);
1648 /* Input should never die, it is
1649 replaced with output. */
1650 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1651 gcc_assert (!src1_note);
1653 if (STACK_REG_P (*dest))
1654 replace_reg (dest, FIRST_STACK_REG);
1656 replace_reg (src1, FIRST_STACK_REG);
1657 break;
1659 case UNSPEC_FPATAN:
1660 case UNSPEC_FYL2X:
1661 case UNSPEC_FYL2XP1:
1662 /* These insns operate on the top two stack slots. */
1664 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1665 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1667 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1668 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1670 swap_to_top (insn, regstack, *src1, *src2);
1672 replace_reg (src1, FIRST_STACK_REG);
1673 replace_reg (src2, FIRST_STACK_REG + 1);
1675 if (src1_note)
1676 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1677 if (src2_note)
1678 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1680 /* Pop both input operands from the stack. */
1681 CLEAR_HARD_REG_BIT (regstack->reg_set,
1682 regstack->reg[regstack->top]);
1683 CLEAR_HARD_REG_BIT (regstack->reg_set,
1684 regstack->reg[regstack->top - 1]);
1685 regstack->top -= 2;
1687 /* Push the result back onto the stack. */
1688 regstack->reg[++regstack->top] = REGNO (*dest);
1689 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1690 replace_reg (dest, FIRST_STACK_REG);
1691 break;
1693 case UNSPEC_FSCALE_FRACT:
1694 case UNSPEC_FPREM_F:
1695 case UNSPEC_FPREM1_F:
1696 /* These insns operate on the top two stack slots.
1697 first part of double input, double output insn. */
1699 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1700 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1702 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1703 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1705 /* Inputs should never die, they are
1706 replaced with outputs. */
1707 gcc_assert (!src1_note);
1708 gcc_assert (!src2_note);
1710 swap_to_top (insn, regstack, *src1, *src2);
1712 /* Push the result back onto stack. Empty stack slot
1713 will be filled in second part of insn. */
1714 if (STACK_REG_P (*dest)) {
1715 regstack->reg[regstack->top] = REGNO (*dest);
1716 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1717 replace_reg (dest, FIRST_STACK_REG);
1720 replace_reg (src1, FIRST_STACK_REG);
1721 replace_reg (src2, FIRST_STACK_REG + 1);
1722 break;
1724 case UNSPEC_FSCALE_EXP:
1725 case UNSPEC_FPREM_U:
1726 case UNSPEC_FPREM1_U:
1727 /* These insns operate on the top two stack slots./
1728 second part of double input, double output insn. */
1730 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1731 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1733 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1734 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1736 /* Inputs should never die, they are
1737 replaced with outputs. */
1738 gcc_assert (!src1_note);
1739 gcc_assert (!src2_note);
1741 swap_to_top (insn, regstack, *src1, *src2);
1743 /* Push the result back onto stack. Fill empty slot from
1744 first part of insn and fix top of stack pointer. */
1745 if (STACK_REG_P (*dest)) {
1746 regstack->reg[regstack->top - 1] = REGNO (*dest);
1747 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1748 replace_reg (dest, FIRST_STACK_REG + 1);
1751 replace_reg (src1, FIRST_STACK_REG);
1752 replace_reg (src2, FIRST_STACK_REG + 1);
1753 break;
1755 case UNSPEC_SINCOS_COS:
1756 case UNSPEC_TAN_ONE:
1757 case UNSPEC_XTRACT_FRACT:
1758 /* These insns operate on the top two stack slots,
1759 first part of one input, double output insn. */
1761 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1763 emit_swap_insn (insn, regstack, *src1);
1765 /* Input should never die, it is
1766 replaced with output. */
1767 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1768 gcc_assert (!src1_note);
1770 /* Push the result back onto stack. Empty stack slot
1771 will be filled in second part of insn. */
1772 if (STACK_REG_P (*dest)) {
1773 regstack->reg[regstack->top + 1] = REGNO (*dest);
1774 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1775 replace_reg (dest, FIRST_STACK_REG);
1778 replace_reg (src1, FIRST_STACK_REG);
1779 break;
1781 case UNSPEC_SINCOS_SIN:
1782 case UNSPEC_TAN_TAN:
1783 case UNSPEC_XTRACT_EXP:
1784 /* These insns operate on the top two stack slots,
1785 second part of one input, double output insn. */
1787 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1789 emit_swap_insn (insn, regstack, *src1);
1791 /* Input should never die, it is
1792 replaced with output. */
1793 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1794 gcc_assert (!src1_note);
1796 /* Push the result back onto stack. Fill empty slot from
1797 first part of insn and fix top of stack pointer. */
1798 if (STACK_REG_P (*dest)) {
1799 regstack->reg[regstack->top] = REGNO (*dest);
1800 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1801 replace_reg (dest, FIRST_STACK_REG + 1);
1803 regstack->top++;
1806 replace_reg (src1, FIRST_STACK_REG);
1807 break;
1809 case UNSPEC_SAHF:
1810 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1811 The combination matches the PPRO fcomi instruction. */
1813 pat_src = XVECEXP (pat_src, 0, 0);
1814 gcc_assert (GET_CODE (pat_src) == UNSPEC);
1815 gcc_assert (XINT (pat_src, 1) == UNSPEC_FNSTSW);
1816 /* Fall through. */
1818 case UNSPEC_FNSTSW:
1819 /* Combined fcomp+fnstsw generated for doing well with
1820 CSE. When optimizing this would have been broken
1821 up before now. */
1823 pat_src = XVECEXP (pat_src, 0, 0);
1824 gcc_assert (GET_CODE (pat_src) == COMPARE);
1826 compare_for_stack_reg (insn, regstack, pat_src);
1827 break;
1829 case UNSPEC_NACLCALL:
1831 int count = hard_regno_nregs[REGNO (*dest)][GET_MODE (*dest)];
1832 while (--count >= 0)
1834 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1835 SET_HARD_REG_BIT (regstack->reg_set,
1836 REGNO (*dest) + count);
1839 replace_reg (dest, FIRST_STACK_REG);
1840 break;
1842 case UNSPEC_NACLJMP:
1843 break;
1845 case UNSPEC_NACLRET:
1846 break;
1848 default:
1849 print_rtl_single (stdout, insn);
1850 gcc_unreachable ();
1852 break;
1854 case IF_THEN_ELSE:
1855 /* This insn requires the top of stack to be the destination. */
1857 src1 = get_true_reg (&XEXP (pat_src, 1));
1858 src2 = get_true_reg (&XEXP (pat_src, 2));
1860 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1861 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1863 /* If the comparison operator is an FP comparison operator,
1864 it is handled correctly by compare_for_stack_reg () who
1865 will move the destination to the top of stack. But if the
1866 comparison operator is not an FP comparison operator, we
1867 have to handle it here. */
1868 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1869 && REGNO (*dest) != regstack->reg[regstack->top])
1871 /* In case one of operands is the top of stack and the operands
1872 dies, it is safe to make it the destination operand by
1873 reversing the direction of cmove and avoid fxch. */
1874 if ((REGNO (*src1) == regstack->reg[regstack->top]
1875 && src1_note)
1876 || (REGNO (*src2) == regstack->reg[regstack->top]
1877 && src2_note))
1879 int idx1 = (get_hard_regnum (regstack, *src1)
1880 - FIRST_STACK_REG);
1881 int idx2 = (get_hard_regnum (regstack, *src2)
1882 - FIRST_STACK_REG);
1884 /* Make reg-stack believe that the operands are already
1885 swapped on the stack */
1886 regstack->reg[regstack->top - idx1] = REGNO (*src2);
1887 regstack->reg[regstack->top - idx2] = REGNO (*src1);
1889 /* Reverse condition to compensate the operand swap.
1890 i386 do have comparison always reversible. */
1891 PUT_CODE (XEXP (pat_src, 0),
1892 reversed_comparison_code (XEXP (pat_src, 0), insn));
1894 else
1895 emit_swap_insn (insn, regstack, *dest);
1899 rtx src_note [3];
1900 int i;
1902 src_note[0] = 0;
1903 src_note[1] = src1_note;
1904 src_note[2] = src2_note;
1906 if (STACK_REG_P (*src1))
1907 replace_reg (src1, get_hard_regnum (regstack, *src1));
1908 if (STACK_REG_P (*src2))
1909 replace_reg (src2, get_hard_regnum (regstack, *src2));
1911 for (i = 1; i <= 2; i++)
1912 if (src_note [i])
1914 int regno = REGNO (XEXP (src_note[i], 0));
1916 /* If the register that dies is not at the top of
1917 stack, then move the top of stack to the dead reg.
1918 Top of stack should never die, as it is the
1919 destination. */
1920 gcc_assert (regno != regstack->reg[regstack->top]);
1921 remove_regno_note (insn, REG_DEAD, regno);
1922 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1923 EMIT_AFTER);
1927 /* Make dest the top of stack. Add dest to regstack if
1928 not present. */
1929 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1930 regstack->reg[++regstack->top] = REGNO (*dest);
1931 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1932 replace_reg (dest, FIRST_STACK_REG);
1933 break;
1935 default:
1936 gcc_unreachable ();
1938 break;
1941 default:
1942 break;
1945 return control_flow_insn_deleted;
1948 /* Substitute hard regnums for any stack regs in INSN, which has
1949 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
1950 before the insn, and is updated with changes made here.
1952 There are several requirements and assumptions about the use of
1953 stack-like regs in asm statements. These rules are enforced by
1954 record_asm_stack_regs; see comments there for details. Any
1955 asm_operands left in the RTL at this point may be assume to meet the
1956 requirements, since record_asm_stack_regs removes any problem asm. */
1958 static void
1959 subst_asm_stack_regs (rtx insn, stack regstack)
1961 rtx body = PATTERN (insn);
1962 int alt;
1964 rtx *note_reg; /* Array of note contents */
1965 rtx **note_loc; /* Address of REG field of each note */
1966 enum reg_note *note_kind; /* The type of each note */
1968 rtx *clobber_reg = 0;
1969 rtx **clobber_loc = 0;
1971 struct stack_def temp_stack;
1972 int n_notes;
1973 int n_clobbers;
1974 rtx note;
1975 int i;
1976 int n_inputs, n_outputs;
1978 if (! check_asm_stack_operands (insn))
1979 return;
1981 /* Find out what the constraints required. If no constraint
1982 alternative matches, that is a compiler bug: we should have caught
1983 such an insn in check_asm_stack_operands. */
1984 extract_insn (insn);
1985 constrain_operands (1);
1986 alt = which_alternative;
1988 preprocess_constraints ();
1990 n_inputs = get_asm_operand_n_inputs (body);
1991 n_outputs = recog_data.n_operands - n_inputs;
1993 gcc_assert (alt >= 0);
1995 /* Strip SUBREGs here to make the following code simpler. */
1996 for (i = 0; i < recog_data.n_operands; i++)
1997 if (GET_CODE (recog_data.operand[i]) == SUBREG
1998 && REG_P (SUBREG_REG (recog_data.operand[i])))
2000 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
2001 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
2004 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
2006 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2007 i++;
2009 note_reg = alloca (i * sizeof (rtx));
2010 note_loc = alloca (i * sizeof (rtx *));
2011 note_kind = alloca (i * sizeof (enum reg_note));
2013 n_notes = 0;
2014 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2016 rtx reg = XEXP (note, 0);
2017 rtx *loc = & XEXP (note, 0);
2019 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2021 loc = & SUBREG_REG (reg);
2022 reg = SUBREG_REG (reg);
2025 if (STACK_REG_P (reg)
2026 && (REG_NOTE_KIND (note) == REG_DEAD
2027 || REG_NOTE_KIND (note) == REG_UNUSED))
2029 note_reg[n_notes] = reg;
2030 note_loc[n_notes] = loc;
2031 note_kind[n_notes] = REG_NOTE_KIND (note);
2032 n_notes++;
2036 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2038 n_clobbers = 0;
2040 if (GET_CODE (body) == PARALLEL)
2042 clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
2043 clobber_loc = alloca (XVECLEN (body, 0) * sizeof (rtx *));
2045 for (i = 0; i < XVECLEN (body, 0); i++)
2046 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2048 rtx clobber = XVECEXP (body, 0, i);
2049 rtx reg = XEXP (clobber, 0);
2050 rtx *loc = & XEXP (clobber, 0);
2052 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2054 loc = & SUBREG_REG (reg);
2055 reg = SUBREG_REG (reg);
2058 if (STACK_REG_P (reg))
2060 clobber_reg[n_clobbers] = reg;
2061 clobber_loc[n_clobbers] = loc;
2062 n_clobbers++;
2067 temp_stack = *regstack;
2069 /* Put the input regs into the desired place in TEMP_STACK. */
2071 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2072 if (STACK_REG_P (recog_data.operand[i])
2073 && reg_class_subset_p (recog_op_alt[i][alt].cl,
2074 FLOAT_REGS)
2075 && recog_op_alt[i][alt].cl != FLOAT_REGS)
2077 /* If an operand needs to be in a particular reg in
2078 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2079 these constraints are for single register classes, and
2080 reload guaranteed that operand[i] is already in that class,
2081 we can just use REGNO (recog_data.operand[i]) to know which
2082 actual reg this operand needs to be in. */
2084 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2086 gcc_assert (regno >= 0);
2088 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2090 /* recog_data.operand[i] is not in the right place. Find
2091 it and swap it with whatever is already in I's place.
2092 K is where recog_data.operand[i] is now. J is where it
2093 should be. */
2094 int j, k, temp;
2096 k = temp_stack.top - (regno - FIRST_STACK_REG);
2097 j = (temp_stack.top
2098 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2100 temp = temp_stack.reg[k];
2101 temp_stack.reg[k] = temp_stack.reg[j];
2102 temp_stack.reg[j] = temp;
2106 /* Emit insns before INSN to make sure the reg-stack is in the right
2107 order. */
2109 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2111 /* Make the needed input register substitutions. Do death notes and
2112 clobbers too, because these are for inputs, not outputs. */
2114 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2115 if (STACK_REG_P (recog_data.operand[i]))
2117 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2119 gcc_assert (regnum >= 0);
2121 replace_reg (recog_data.operand_loc[i], regnum);
2124 for (i = 0; i < n_notes; i++)
2125 if (note_kind[i] == REG_DEAD)
2127 int regnum = get_hard_regnum (regstack, note_reg[i]);
2129 gcc_assert (regnum >= 0);
2131 replace_reg (note_loc[i], regnum);
2134 for (i = 0; i < n_clobbers; i++)
2136 /* It's OK for a CLOBBER to reference a reg that is not live.
2137 Don't try to replace it in that case. */
2138 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2140 if (regnum >= 0)
2142 /* Sigh - clobbers always have QImode. But replace_reg knows
2143 that these regs can't be MODE_INT and will assert. Just put
2144 the right reg there without calling replace_reg. */
2146 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2150 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2152 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2153 if (STACK_REG_P (recog_data.operand[i]))
2155 /* An input reg is implicitly popped if it is tied to an
2156 output, or if there is a CLOBBER for it. */
2157 int j;
2159 for (j = 0; j < n_clobbers; j++)
2160 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2161 break;
2163 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
2165 /* recog_data.operand[i] might not be at the top of stack.
2166 But that's OK, because all we need to do is pop the
2167 right number of regs off of the top of the reg-stack.
2168 record_asm_stack_regs guaranteed that all implicitly
2169 popped regs were grouped at the top of the reg-stack. */
2171 CLEAR_HARD_REG_BIT (regstack->reg_set,
2172 regstack->reg[regstack->top]);
2173 regstack->top--;
2177 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2178 Note that there isn't any need to substitute register numbers.
2179 ??? Explain why this is true. */
2181 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2183 /* See if there is an output for this hard reg. */
2184 int j;
2186 for (j = 0; j < n_outputs; j++)
2187 if (STACK_REG_P (recog_data.operand[j])
2188 && REGNO (recog_data.operand[j]) == (unsigned) i)
2190 regstack->reg[++regstack->top] = i;
2191 SET_HARD_REG_BIT (regstack->reg_set, i);
2192 break;
2196 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2197 input that the asm didn't implicitly pop. If the asm didn't
2198 implicitly pop an input reg, that reg will still be live.
2200 Note that we can't use find_regno_note here: the register numbers
2201 in the death notes have already been substituted. */
2203 for (i = 0; i < n_outputs; i++)
2204 if (STACK_REG_P (recog_data.operand[i]))
2206 int j;
2208 for (j = 0; j < n_notes; j++)
2209 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2210 && note_kind[j] == REG_UNUSED)
2212 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2213 EMIT_AFTER);
2214 break;
2218 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2219 if (STACK_REG_P (recog_data.operand[i]))
2221 int j;
2223 for (j = 0; j < n_notes; j++)
2224 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2225 && note_kind[j] == REG_DEAD
2226 && TEST_HARD_REG_BIT (regstack->reg_set,
2227 REGNO (recog_data.operand[i])))
2229 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2230 EMIT_AFTER);
2231 break;
2236 /* Substitute stack hard reg numbers for stack virtual registers in
2237 INSN. Non-stack register numbers are not changed. REGSTACK is the
2238 current stack content. Insns may be emitted as needed to arrange the
2239 stack for the 387 based on the contents of the insn. Return whether
2240 a control flow insn was deleted in the process. */
2242 static bool
2243 subst_stack_regs (rtx insn, stack regstack)
2245 rtx *note_link, note;
2246 bool control_flow_insn_deleted = false;
2247 int i;
2249 if (CALL_P (insn))
2251 int top = regstack->top;
2253 /* If there are any floating point parameters to be passed in
2254 registers for this call, make sure they are in the right
2255 order. */
2257 if (top >= 0)
2259 straighten_stack (insn, regstack);
2261 /* Now mark the arguments as dead after the call. */
2263 while (regstack->top >= 0)
2265 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2266 regstack->top--;
2271 /* Do the actual substitution if any stack regs are mentioned.
2272 Since we only record whether entire insn mentions stack regs, and
2273 subst_stack_regs_pat only works for patterns that contain stack regs,
2274 we must check each pattern in a parallel here. A call_value_pop could
2275 fail otherwise. */
2277 if (stack_regs_mentioned (insn))
2279 int n_operands = asm_noperands (PATTERN (insn));
2280 if (n_operands >= 0)
2282 /* This insn is an `asm' with operands. Decode the operands,
2283 decide how many are inputs, and do register substitution.
2284 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2286 subst_asm_stack_regs (insn, regstack);
2287 return control_flow_insn_deleted;
2290 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2291 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2293 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2295 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2296 XVECEXP (PATTERN (insn), 0, i)
2297 = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2298 control_flow_insn_deleted
2299 |= subst_stack_regs_pat (insn, regstack,
2300 XVECEXP (PATTERN (insn), 0, i));
2303 else
2304 control_flow_insn_deleted
2305 |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2308 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2309 REG_UNUSED will already have been dealt with, so just return. */
2311 if (NOTE_P (insn) || INSN_DELETED_P (insn))
2312 return control_flow_insn_deleted;
2314 /* If this a noreturn call, we can't insert pop insns after it.
2315 Instead, reset the stack state to empty. */
2316 if (CALL_P (insn)
2317 && find_reg_note (insn, REG_NORETURN, NULL))
2319 regstack->top = -1;
2320 CLEAR_HARD_REG_SET (regstack->reg_set);
2321 return control_flow_insn_deleted;
2324 /* If there is a REG_UNUSED note on a stack register on this insn,
2325 the indicated reg must be popped. The REG_UNUSED note is removed,
2326 since the form of the newly emitted pop insn references the reg,
2327 making it no longer `unset'. */
2329 note_link = &REG_NOTES (insn);
2330 for (note = *note_link; note; note = XEXP (note, 1))
2331 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2333 *note_link = XEXP (note, 1);
2334 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2336 else
2337 note_link = &XEXP (note, 1);
2339 return control_flow_insn_deleted;
2342 /* Change the organization of the stack so that it fits a new basic
2343 block. Some registers might have to be popped, but there can never be
2344 a register live in the new block that is not now live.
2346 Insert any needed insns before or after INSN, as indicated by
2347 WHERE. OLD is the original stack layout, and NEW is the desired
2348 form. OLD is updated to reflect the code emitted, i.e., it will be
2349 the same as NEW upon return.
2351 This function will not preserve block_end[]. But that information
2352 is no longer needed once this has executed. */
2354 static void
2355 change_stack (rtx insn, stack old, stack new, enum emit_where where)
2357 int reg;
2358 int update_end = 0;
2360 /* Stack adjustments for the first insn in a block update the
2361 current_block's stack_in instead of inserting insns directly.
2362 compensate_edges will add the necessary code later. */
2363 if (current_block
2364 && starting_stack_p
2365 && where == EMIT_BEFORE)
2367 BLOCK_INFO (current_block)->stack_in = *new;
2368 starting_stack_p = false;
2369 *old = *new;
2370 return;
2373 /* We will be inserting new insns "backwards". If we are to insert
2374 after INSN, find the next insn, and insert before it. */
2376 if (where == EMIT_AFTER)
2378 if (current_block && BB_END (current_block) == insn)
2379 update_end = 1;
2380 insn = NEXT_INSN (insn);
2383 /* Pop any registers that are not needed in the new block. */
2385 /* If the destination block's stack already has a specified layout
2386 and contains two or more registers, use a more intelligent algorithm
2387 to pop registers that minimizes the number number of fxchs below. */
2388 if (new->top > 0)
2390 bool slots[REG_STACK_SIZE];
2391 int pops[REG_STACK_SIZE];
2392 int next, dest, topsrc;
2394 /* First pass to determine the free slots. */
2395 for (reg = 0; reg <= new->top; reg++)
2396 slots[reg] = TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]);
2398 /* Second pass to allocate preferred slots. */
2399 topsrc = -1;
2400 for (reg = old->top; reg > new->top; reg--)
2401 if (TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
2403 dest = -1;
2404 for (next = 0; next <= new->top; next++)
2405 if (!slots[next] && new->reg[next] == old->reg[reg])
2407 /* If this is a preference for the new top of stack, record
2408 the fact by remembering it's old->reg in topsrc. */
2409 if (next == new->top)
2410 topsrc = reg;
2411 slots[next] = true;
2412 dest = next;
2413 break;
2415 pops[reg] = dest;
2417 else
2418 pops[reg] = reg;
2420 /* Intentionally, avoid placing the top of stack in it's correct
2421 location, if we still need to permute the stack below and we
2422 can usefully place it somewhere else. This is the case if any
2423 slot is still unallocated, in which case we should place the
2424 top of stack there. */
2425 if (topsrc != -1)
2426 for (reg = 0; reg < new->top; reg++)
2427 if (!slots[reg])
2429 pops[topsrc] = reg;
2430 slots[new->top] = false;
2431 slots[reg] = true;
2432 break;
2435 /* Third pass allocates remaining slots and emits pop insns. */
2436 next = new->top;
2437 for (reg = old->top; reg > new->top; reg--)
2439 dest = pops[reg];
2440 if (dest == -1)
2442 /* Find next free slot. */
2443 while (slots[next])
2444 next--;
2445 dest = next--;
2447 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], DFmode),
2448 EMIT_BEFORE);
2451 else
2453 /* The following loop attempts to maximize the number of times we
2454 pop the top of the stack, as this permits the use of the faster
2455 ffreep instruction on platforms that support it. */
2456 int live, next;
2458 live = 0;
2459 for (reg = 0; reg <= old->top; reg++)
2460 if (TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
2461 live++;
2463 next = live;
2464 while (old->top >= live)
2465 if (TEST_HARD_REG_BIT (new->reg_set, old->reg[old->top]))
2467 while (TEST_HARD_REG_BIT (new->reg_set, old->reg[next]))
2468 next--;
2469 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], DFmode),
2470 EMIT_BEFORE);
2472 else
2473 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], DFmode),
2474 EMIT_BEFORE);
2477 if (new->top == -2)
2479 /* If the new block has never been processed, then it can inherit
2480 the old stack order. */
2482 new->top = old->top;
2483 memcpy (new->reg, old->reg, sizeof (new->reg));
2485 else
2487 /* This block has been entered before, and we must match the
2488 previously selected stack order. */
2490 /* By now, the only difference should be the order of the stack,
2491 not their depth or liveliness. */
2493 GO_IF_HARD_REG_EQUAL (old->reg_set, new->reg_set, win);
2494 gcc_unreachable ();
2495 win:
2496 gcc_assert (old->top == new->top);
2498 /* If the stack is not empty (new->top != -1), loop here emitting
2499 swaps until the stack is correct.
2501 The worst case number of swaps emitted is N + 2, where N is the
2502 depth of the stack. In some cases, the reg at the top of
2503 stack may be correct, but swapped anyway in order to fix
2504 other regs. But since we never swap any other reg away from
2505 its correct slot, this algorithm will converge. */
2507 if (new->top != -1)
2510 /* Swap the reg at top of stack into the position it is
2511 supposed to be in, until the correct top of stack appears. */
2513 while (old->reg[old->top] != new->reg[new->top])
2515 for (reg = new->top; reg >= 0; reg--)
2516 if (new->reg[reg] == old->reg[old->top])
2517 break;
2519 gcc_assert (reg != -1);
2521 emit_swap_insn (insn, old,
2522 FP_MODE_REG (old->reg[reg], DFmode));
2525 /* See if any regs remain incorrect. If so, bring an
2526 incorrect reg to the top of stack, and let the while loop
2527 above fix it. */
2529 for (reg = new->top; reg >= 0; reg--)
2530 if (new->reg[reg] != old->reg[reg])
2532 emit_swap_insn (insn, old,
2533 FP_MODE_REG (old->reg[reg], DFmode));
2534 break;
2536 } while (reg >= 0);
2538 /* At this point there must be no differences. */
2540 for (reg = old->top; reg >= 0; reg--)
2541 gcc_assert (old->reg[reg] == new->reg[reg]);
2544 if (update_end)
2545 BB_END (current_block) = PREV_INSN (insn);
2548 /* Print stack configuration. */
2550 static void
2551 print_stack (FILE *file, stack s)
2553 if (! file)
2554 return;
2556 if (s->top == -2)
2557 fprintf (file, "uninitialized\n");
2558 else if (s->top == -1)
2559 fprintf (file, "empty\n");
2560 else
2562 int i;
2563 fputs ("[ ", file);
2564 for (i = 0; i <= s->top; ++i)
2565 fprintf (file, "%d ", s->reg[i]);
2566 fputs ("]\n", file);
2570 /* This function was doing life analysis. We now let the regular live
2571 code do it's job, so we only need to check some extra invariants
2572 that reg-stack expects. Primary among these being that all registers
2573 are initialized before use.
2575 The function returns true when code was emitted to CFG edges and
2576 commit_edge_insertions needs to be called. */
2578 static int
2579 convert_regs_entry (void)
2581 int inserted = 0;
2582 edge e;
2583 edge_iterator ei;
2585 /* Load something into each stack register live at function entry.
2586 Such live registers can be caused by uninitialized variables or
2587 functions not returning values on all paths. In order to keep
2588 the push/pop code happy, and to not scrog the register stack, we
2589 must put something in these registers. Use a QNaN.
2591 Note that we are inserting converted code here. This code is
2592 never seen by the convert_regs pass. */
2594 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2596 basic_block block = e->dest;
2597 block_info bi = BLOCK_INFO (block);
2598 int reg, top = -1;
2600 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2601 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2603 rtx init;
2605 bi->stack_in.reg[++top] = reg;
2607 init = gen_rtx_SET (VOIDmode,
2608 FP_MODE_REG (FIRST_STACK_REG, SFmode),
2609 not_a_num);
2610 insert_insn_on_edge (init, e);
2611 inserted = 1;
2614 bi->stack_in.top = top;
2617 return inserted;
2620 /* Construct the desired stack for function exit. This will either
2621 be `empty', or the function return value at top-of-stack. */
2623 static void
2624 convert_regs_exit (void)
2626 int value_reg_low, value_reg_high;
2627 stack output_stack;
2628 rtx retvalue;
2630 retvalue = stack_result (current_function_decl);
2631 value_reg_low = value_reg_high = -1;
2632 if (retvalue)
2634 value_reg_low = REGNO (retvalue);
2635 value_reg_high = value_reg_low
2636 + hard_regno_nregs[value_reg_low][GET_MODE (retvalue)] - 1;
2639 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
2640 if (value_reg_low == -1)
2641 output_stack->top = -1;
2642 else
2644 int reg;
2646 output_stack->top = value_reg_high - value_reg_low;
2647 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2649 output_stack->reg[value_reg_high - reg] = reg;
2650 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2655 /* Copy the stack info from the end of edge E's source block to the
2656 start of E's destination block. */
2658 static void
2659 propagate_stack (edge e)
2661 stack src_stack = &BLOCK_INFO (e->src)->stack_out;
2662 stack dest_stack = &BLOCK_INFO (e->dest)->stack_in;
2663 int reg;
2665 /* Preserve the order of the original stack, but check whether
2666 any pops are needed. */
2667 dest_stack->top = -1;
2668 for (reg = 0; reg <= src_stack->top; ++reg)
2669 if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
2670 dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
2674 /* Adjust the stack of edge E's source block on exit to match the stack
2675 of it's target block upon input. The stack layouts of both blocks
2676 should have been defined by now. */
2678 static bool
2679 compensate_edge (edge e)
2681 basic_block source = e->src, target = e->dest;
2682 stack target_stack = &BLOCK_INFO (target)->stack_in;
2683 stack source_stack = &BLOCK_INFO (source)->stack_out;
2684 struct stack_def regstack;
2685 int reg;
2687 if (dump_file)
2688 fprintf (dump_file, "Edge %d->%d: ", source->index, target->index);
2690 gcc_assert (target_stack->top != -2);
2692 /* Check whether stacks are identical. */
2693 if (target_stack->top == source_stack->top)
2695 for (reg = target_stack->top; reg >= 0; --reg)
2696 if (target_stack->reg[reg] != source_stack->reg[reg])
2697 break;
2699 if (reg == -1)
2701 if (dump_file)
2702 fprintf (dump_file, "no changes needed\n");
2703 return false;
2707 if (dump_file)
2709 fprintf (dump_file, "correcting stack to ");
2710 print_stack (dump_file, target_stack);
2713 /* Abnormal calls may appear to have values live in st(0), but the
2714 abnormal return path will not have actually loaded the values. */
2715 if (e->flags & EDGE_ABNORMAL_CALL)
2717 /* Assert that the lifetimes are as we expect -- one value
2718 live at st(0) on the end of the source block, and no
2719 values live at the beginning of the destination block.
2720 For complex return values, we may have st(1) live as well. */
2721 gcc_assert (source_stack->top == 0 || source_stack->top == 1);
2722 gcc_assert (target_stack->top == -1);
2723 return false;
2726 /* Handle non-call EH edges specially. The normal return path have
2727 values in registers. These will be popped en masse by the unwind
2728 library. */
2729 if (e->flags & EDGE_EH)
2731 gcc_assert (target_stack->top == -1);
2732 return false;
2735 /* We don't support abnormal edges. Global takes care to
2736 avoid any live register across them, so we should never
2737 have to insert instructions on such edges. */
2738 gcc_assert (! (e->flags & EDGE_ABNORMAL));
2740 /* Make a copy of source_stack as change_stack is destructive. */
2741 regstack = *source_stack;
2743 /* It is better to output directly to the end of the block
2744 instead of to the edge, because emit_swap can do minimal
2745 insn scheduling. We can do this when there is only one
2746 edge out, and it is not abnormal. */
2747 if (EDGE_COUNT (source->succs) == 1)
2749 current_block = source;
2750 change_stack (BB_END (source), &regstack, target_stack,
2751 (JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
2753 else
2755 rtx seq, after;
2757 current_block = NULL;
2758 start_sequence ();
2760 /* ??? change_stack needs some point to emit insns after. */
2761 after = emit_note (NOTE_INSN_DELETED);
2763 change_stack (after, &regstack, target_stack, EMIT_BEFORE);
2765 seq = get_insns ();
2766 end_sequence ();
2768 insert_insn_on_edge (seq, e);
2769 return true;
2771 return false;
2774 /* Traverse all non-entry edges in the CFG, and emit the necessary
2775 edge compensation code to change the stack from stack_out of the
2776 source block to the stack_in of the destination block. */
2778 static bool
2779 compensate_edges (void)
2781 bool inserted = false;
2782 basic_block bb;
2784 starting_stack_p = false;
2786 FOR_EACH_BB (bb)
2787 if (bb != ENTRY_BLOCK_PTR)
2789 edge e;
2790 edge_iterator ei;
2792 FOR_EACH_EDGE (e, ei, bb->succs)
2793 inserted |= compensate_edge (e);
2795 return inserted;
2798 /* Select the better of two edges E1 and E2 to use to determine the
2799 stack layout for their shared destination basic block. This is
2800 typically the more frequently executed. The edge E1 may be NULL
2801 (in which case E2 is returned), but E2 is always non-NULL. */
2803 static edge
2804 better_edge (edge e1, edge e2)
2806 if (!e1)
2807 return e2;
2809 if (EDGE_FREQUENCY (e1) > EDGE_FREQUENCY (e2))
2810 return e1;
2811 if (EDGE_FREQUENCY (e1) < EDGE_FREQUENCY (e2))
2812 return e2;
2814 if (e1->count > e2->count)
2815 return e1;
2816 if (e1->count < e2->count)
2817 return e2;
2819 /* Prefer critical edges to minimize inserting compensation code on
2820 critical edges. */
2822 if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
2823 return EDGE_CRITICAL_P (e1) ? e1 : e2;
2825 /* Avoid non-deterministic behavior. */
2826 return (e1->src->index < e2->src->index) ? e1 : e2;
2829 /* Convert stack register references in one block. */
2831 static void
2832 convert_regs_1 (basic_block block)
2834 struct stack_def regstack;
2835 block_info bi = BLOCK_INFO (block);
2836 int reg;
2837 rtx insn, next;
2838 bool control_flow_insn_deleted = false;
2840 any_malformed_asm = false;
2842 /* Choose an initial stack layout, if one hasn't already been chosen. */
2843 if (bi->stack_in.top == -2)
2845 edge e, beste = NULL;
2846 edge_iterator ei;
2848 /* Select the best incoming edge (typically the most frequent) to
2849 use as a template for this basic block. */
2850 FOR_EACH_EDGE (e, ei, block->preds)
2851 if (BLOCK_INFO (e->src)->done)
2852 beste = better_edge (beste, e);
2854 if (beste)
2855 propagate_stack (beste);
2856 else
2858 /* No predecessors. Create an arbitrary input stack. */
2859 bi->stack_in.top = -1;
2860 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2861 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2862 bi->stack_in.reg[++bi->stack_in.top] = reg;
2866 if (dump_file)
2868 fprintf (dump_file, "\nBasic block %d\nInput stack: ", block->index);
2869 print_stack (dump_file, &bi->stack_in);
2872 /* Process all insns in this block. Keep track of NEXT so that we
2873 don't process insns emitted while substituting in INSN. */
2874 current_block = block;
2875 next = BB_HEAD (block);
2876 regstack = bi->stack_in;
2877 starting_stack_p = true;
2881 insn = next;
2882 next = NEXT_INSN (insn);
2884 /* Ensure we have not missed a block boundary. */
2885 gcc_assert (next);
2886 if (insn == BB_END (block))
2887 next = NULL;
2889 /* Don't bother processing unless there is a stack reg
2890 mentioned or if it's a CALL_INSN. */
2891 if (stack_regs_mentioned (insn)
2892 || CALL_P (insn))
2894 if (dump_file)
2896 fprintf (dump_file, " insn %d input stack: ",
2897 INSN_UID (insn));
2898 print_stack (dump_file, &regstack);
2900 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2901 starting_stack_p = false;
2904 while (next);
2906 if (dump_file)
2908 fprintf (dump_file, "Expected live registers [");
2909 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2910 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
2911 fprintf (dump_file, " %d", reg);
2912 fprintf (dump_file, " ]\nOutput stack: ");
2913 print_stack (dump_file, &regstack);
2916 insn = BB_END (block);
2917 if (JUMP_P (insn))
2918 insn = PREV_INSN (insn);
2920 /* If the function is declared to return a value, but it returns one
2921 in only some cases, some registers might come live here. Emit
2922 necessary moves for them. */
2924 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2926 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
2927 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
2929 rtx set;
2931 if (dump_file)
2932 fprintf (dump_file, "Emitting insn initializing reg %d\n", reg);
2934 set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode), not_a_num);
2935 insn = emit_insn_after (set, insn);
2936 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2940 /* Amongst the insns possibly deleted during the substitution process above,
2941 might have been the only trapping insn in the block. We purge the now
2942 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
2943 called at the end of convert_regs. The order in which we process the
2944 blocks ensures that we never delete an already processed edge.
2946 Note that, at this point, the CFG may have been damaged by the emission
2947 of instructions after an abnormal call, which moves the basic block end
2948 (and is the reason why we call fixup_abnormal_edges later). So we must
2949 be sure that the trapping insn has been deleted before trying to purge
2950 dead edges, otherwise we risk purging valid edges.
2952 ??? We are normally supposed not to delete trapping insns, so we pretend
2953 that the insns deleted above don't actually trap. It would have been
2954 better to detect this earlier and avoid creating the EH edge in the first
2955 place, still, but we don't have enough information at that time. */
2957 if (control_flow_insn_deleted)
2958 purge_dead_edges (block);
2960 /* Something failed if the stack lives don't match. If we had malformed
2961 asms, we zapped the instruction itself, but that didn't produce the
2962 same pattern of register kills as before. */
2963 GO_IF_HARD_REG_EQUAL (regstack.reg_set, bi->out_reg_set, win);
2964 gcc_assert (any_malformed_asm);
2965 win:
2966 bi->stack_out = regstack;
2967 bi->done = true;
2970 /* Convert registers in all blocks reachable from BLOCK. */
2972 static void
2973 convert_regs_2 (basic_block block)
2975 basic_block *stack, *sp;
2977 /* We process the blocks in a top-down manner, in a way such that one block
2978 is only processed after all its predecessors. The number of predecessors
2979 of every block has already been computed. */
2981 stack = XNEWVEC (basic_block, n_basic_blocks);
2982 sp = stack;
2984 *sp++ = block;
2988 edge e;
2989 edge_iterator ei;
2991 block = *--sp;
2993 /* Processing BLOCK is achieved by convert_regs_1, which may purge
2994 some dead EH outgoing edge after the deletion of the trapping
2995 insn inside the block. Since the number of predecessors of
2996 BLOCK's successors was computed based on the initial edge set,
2997 we check the necessity to process some of these successors
2998 before such an edge deletion may happen. However, there is
2999 a pitfall: if BLOCK is the only predecessor of a successor and
3000 the edge between them happens to be deleted, the successor
3001 becomes unreachable and should not be processed. The problem
3002 is that there is no way to preventively detect this case so we
3003 stack the successor in all cases and hand over the task of
3004 fixing up the discrepancy to convert_regs_1. */
3006 FOR_EACH_EDGE (e, ei, block->succs)
3007 if (! (e->flags & EDGE_DFS_BACK))
3009 BLOCK_INFO (e->dest)->predecessors--;
3010 if (!BLOCK_INFO (e->dest)->predecessors)
3011 *sp++ = e->dest;
3014 convert_regs_1 (block);
3016 while (sp != stack);
3018 free (stack);
3021 /* Traverse all basic blocks in a function, converting the register
3022 references in each insn from the "flat" register file that gcc uses,
3023 to the stack-like registers the 387 uses. */
3025 static void
3026 convert_regs (void)
3028 int inserted;
3029 basic_block b;
3030 edge e;
3031 edge_iterator ei;
3033 /* Initialize uninitialized registers on function entry. */
3034 inserted = convert_regs_entry ();
3036 /* Construct the desired stack for function exit. */
3037 convert_regs_exit ();
3038 BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
3040 /* ??? Future: process inner loops first, and give them arbitrary
3041 initial stacks which emit_swap_insn can modify. This ought to
3042 prevent double fxch that often appears at the head of a loop. */
3044 /* Process all blocks reachable from all entry points. */
3045 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3046 convert_regs_2 (e->dest);
3048 /* ??? Process all unreachable blocks. Though there's no excuse
3049 for keeping these even when not optimizing. */
3050 FOR_EACH_BB (b)
3052 block_info bi = BLOCK_INFO (b);
3054 if (! bi->done)
3055 convert_regs_2 (b);
3058 inserted |= compensate_edges ();
3060 clear_aux_for_blocks ();
3062 fixup_abnormal_edges ();
3063 if (inserted)
3064 commit_edge_insertions ();
3066 if (dump_file)
3067 fputc ('\n', dump_file);
3070 /* Convert register usage from "flat" register file usage to a "stack
3071 register file. FILE is the dump file, if used.
3073 Construct a CFG and run life analysis. Then convert each insn one
3074 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
3075 code duplication created when the converter inserts pop insns on
3076 the edges. */
3078 static bool
3079 reg_to_stack (void)
3081 basic_block bb;
3082 int i;
3083 int max_uid;
3085 /* Clean up previous run. */
3086 if (stack_regs_mentioned_data != NULL)
3087 VEC_free (char, heap, stack_regs_mentioned_data);
3089 /* See if there is something to do. Flow analysis is quite
3090 expensive so we might save some compilation time. */
3091 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3092 if (regs_ever_live[i])
3093 break;
3094 if (i > LAST_STACK_REG)
3095 return false;
3097 /* Ok, floating point instructions exist. If not optimizing,
3098 build the CFG and run life analysis.
3099 Also need to rebuild life when superblock scheduling is done
3100 as it don't update liveness yet. */
3101 if (!optimize
3102 || ((flag_sched2_use_superblocks || flag_sched2_use_traces)
3103 && flag_schedule_insns_after_reload))
3105 count_or_remove_death_notes (NULL, 1);
3106 life_analysis (PROP_DEATH_NOTES);
3108 mark_dfs_back_edges ();
3110 /* Set up block info for each basic block. */
3111 alloc_aux_for_blocks (sizeof (struct block_info_def));
3112 FOR_EACH_BB (bb)
3114 block_info bi = BLOCK_INFO (bb);
3115 edge_iterator ei;
3116 edge e;
3117 int reg;
3119 FOR_EACH_EDGE (e, ei, bb->preds)
3120 if (!(e->flags & EDGE_DFS_BACK)
3121 && e->src != ENTRY_BLOCK_PTR)
3122 bi->predecessors++;
3124 /* Set current register status at last instruction `uninitialized'. */
3125 bi->stack_in.top = -2;
3127 /* Copy live_at_end and live_at_start into temporaries. */
3128 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
3130 if (REGNO_REG_SET_P (bb->il.rtl->global_live_at_end, reg))
3131 SET_HARD_REG_BIT (bi->out_reg_set, reg);
3132 if (REGNO_REG_SET_P (bb->il.rtl->global_live_at_start, reg))
3133 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
3137 /* Create the replacement registers up front. */
3138 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3140 enum machine_mode mode;
3141 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3142 mode != VOIDmode;
3143 mode = GET_MODE_WIDER_MODE (mode))
3144 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3145 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
3146 mode != VOIDmode;
3147 mode = GET_MODE_WIDER_MODE (mode))
3148 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3151 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
3153 /* A QNaN for initializing uninitialized variables.
3155 ??? We can't load from constant memory in PIC mode, because
3156 we're inserting these instructions before the prologue and
3157 the PIC register hasn't been set up. In that case, fall back
3158 on zero, which we can get from `ldz'. */
3160 if (flag_pic)
3161 not_a_num = CONST0_RTX (SFmode);
3162 else
3164 not_a_num = gen_lowpart (SFmode, GEN_INT (0x7fc00000));
3165 not_a_num = force_const_mem (SFmode, not_a_num);
3168 /* Allocate a cache for stack_regs_mentioned. */
3169 max_uid = get_max_uid ();
3170 stack_regs_mentioned_data = VEC_alloc (char, heap, max_uid + 1);
3171 memset (VEC_address (char, stack_regs_mentioned_data),
3172 0, sizeof (char) * max_uid + 1);
3174 convert_regs ();
3176 free_aux_for_blocks ();
3177 return true;
3179 #endif /* STACK_REGS */
3181 static bool
3182 gate_handle_stack_regs (void)
3184 #ifdef STACK_REGS
3185 return 1;
3186 #else
3187 return 0;
3188 #endif
3191 /* Convert register usage from flat register file usage to a stack
3192 register file. */
3193 static unsigned int
3194 rest_of_handle_stack_regs (void)
3196 #ifdef STACK_REGS
3197 if (reg_to_stack () && optimize)
3199 regstack_completed = 1;
3200 if (cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_POST_REGSTACK
3201 | (flag_crossjumping ? CLEANUP_CROSSJUMP : 0))
3202 && (flag_reorder_blocks || flag_reorder_blocks_and_partition))
3204 reorder_basic_blocks (0);
3205 cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_POST_REGSTACK);
3208 else
3209 regstack_completed = 1;
3210 #endif
3211 return 0;
3214 struct tree_opt_pass pass_stack_regs =
3216 "stack", /* name */
3217 gate_handle_stack_regs, /* gate */
3218 rest_of_handle_stack_regs, /* execute */
3219 NULL, /* sub */
3220 NULL, /* next */
3221 0, /* static_pass_number */
3222 TV_REG_STACK, /* tv_id */
3223 0, /* properties_required */
3224 0, /* properties_provided */
3225 0, /* properties_destroyed */
3226 0, /* todo_flags_start */
3227 TODO_dump_func |
3228 TODO_ggc_collect, /* todo_flags_finish */
3229 'k' /* letter */