Add files that I missed when importing NaCl changes earlier
[gcc/nacl-gcc.git] / gcc / lambda-code.c
bloba36a694bdf01ca4c3d614b82576ef87dd4e07dc6
1 /* Loop transformation code generation
2 Copyright (C) 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dberlin@dberlin.org>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "tree.h"
27 #include "target.h"
28 #include "rtl.h"
29 #include "basic-block.h"
30 #include "diagnostic.h"
31 #include "tree-flow.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "cfgloop.h"
35 #include "expr.h"
36 #include "optabs.h"
37 #include "tree-chrec.h"
38 #include "tree-data-ref.h"
39 #include "tree-pass.h"
40 #include "tree-scalar-evolution.h"
41 #include "vec.h"
42 #include "lambda.h"
43 #include "vecprim.h"
45 /* This loop nest code generation is based on non-singular matrix
46 math.
48 A little terminology and a general sketch of the algorithm. See "A singular
49 loop transformation framework based on non-singular matrices" by Wei Li and
50 Keshav Pingali for formal proofs that the various statements below are
51 correct.
53 A loop iteration space represents the points traversed by the loop. A point in the
54 iteration space can be represented by a vector of size <loop depth>. You can
55 therefore represent the iteration space as an integral combinations of a set
56 of basis vectors.
58 A loop iteration space is dense if every integer point between the loop
59 bounds is a point in the iteration space. Every loop with a step of 1
60 therefore has a dense iteration space.
62 for i = 1 to 3, step 1 is a dense iteration space.
64 A loop iteration space is sparse if it is not dense. That is, the iteration
65 space skips integer points that are within the loop bounds.
67 for i = 1 to 3, step 2 is a sparse iteration space, because the integer point
68 2 is skipped.
70 Dense source spaces are easy to transform, because they don't skip any
71 points to begin with. Thus we can compute the exact bounds of the target
72 space using min/max and floor/ceil.
74 For a dense source space, we take the transformation matrix, decompose it
75 into a lower triangular part (H) and a unimodular part (U).
76 We then compute the auxiliary space from the unimodular part (source loop
77 nest . U = auxiliary space) , which has two important properties:
78 1. It traverses the iterations in the same lexicographic order as the source
79 space.
80 2. It is a dense space when the source is a dense space (even if the target
81 space is going to be sparse).
83 Given the auxiliary space, we use the lower triangular part to compute the
84 bounds in the target space by simple matrix multiplication.
85 The gaps in the target space (IE the new loop step sizes) will be the
86 diagonals of the H matrix.
88 Sparse source spaces require another step, because you can't directly compute
89 the exact bounds of the auxiliary and target space from the sparse space.
90 Rather than try to come up with a separate algorithm to handle sparse source
91 spaces directly, we just find a legal transformation matrix that gives you
92 the sparse source space, from a dense space, and then transform the dense
93 space.
95 For a regular sparse space, you can represent the source space as an integer
96 lattice, and the base space of that lattice will always be dense. Thus, we
97 effectively use the lattice to figure out the transformation from the lattice
98 base space, to the sparse iteration space (IE what transform was applied to
99 the dense space to make it sparse). We then compose this transform with the
100 transformation matrix specified by the user (since our matrix transformations
101 are closed under composition, this is okay). We can then use the base space
102 (which is dense) plus the composed transformation matrix, to compute the rest
103 of the transform using the dense space algorithm above.
105 In other words, our sparse source space (B) is decomposed into a dense base
106 space (A), and a matrix (L) that transforms A into B, such that A.L = B.
107 We then compute the composition of L and the user transformation matrix (T),
108 so that T is now a transform from A to the result, instead of from B to the
109 result.
110 IE A.(LT) = result instead of B.T = result
111 Since A is now a dense source space, we can use the dense source space
112 algorithm above to compute the result of applying transform (LT) to A.
114 Fourier-Motzkin elimination is used to compute the bounds of the base space
115 of the lattice. */
117 static bool perfect_nestify (struct loops *,
118 struct loop *, VEC(tree,heap) *,
119 VEC(tree,heap) *, VEC(int,heap) *,
120 VEC(tree,heap) *);
121 /* Lattice stuff that is internal to the code generation algorithm. */
123 typedef struct
125 /* Lattice base matrix. */
126 lambda_matrix base;
127 /* Lattice dimension. */
128 int dimension;
129 /* Origin vector for the coefficients. */
130 lambda_vector origin;
131 /* Origin matrix for the invariants. */
132 lambda_matrix origin_invariants;
133 /* Number of invariants. */
134 int invariants;
135 } *lambda_lattice;
137 #define LATTICE_BASE(T) ((T)->base)
138 #define LATTICE_DIMENSION(T) ((T)->dimension)
139 #define LATTICE_ORIGIN(T) ((T)->origin)
140 #define LATTICE_ORIGIN_INVARIANTS(T) ((T)->origin_invariants)
141 #define LATTICE_INVARIANTS(T) ((T)->invariants)
143 static bool lle_equal (lambda_linear_expression, lambda_linear_expression,
144 int, int);
145 static lambda_lattice lambda_lattice_new (int, int);
146 static lambda_lattice lambda_lattice_compute_base (lambda_loopnest);
148 static tree find_induction_var_from_exit_cond (struct loop *);
149 static bool can_convert_to_perfect_nest (struct loop *);
151 /* Create a new lambda body vector. */
153 lambda_body_vector
154 lambda_body_vector_new (int size)
156 lambda_body_vector ret;
158 ret = ggc_alloc (sizeof (*ret));
159 LBV_COEFFICIENTS (ret) = lambda_vector_new (size);
160 LBV_SIZE (ret) = size;
161 LBV_DENOMINATOR (ret) = 1;
162 return ret;
165 /* Compute the new coefficients for the vector based on the
166 *inverse* of the transformation matrix. */
168 lambda_body_vector
169 lambda_body_vector_compute_new (lambda_trans_matrix transform,
170 lambda_body_vector vect)
172 lambda_body_vector temp;
173 int depth;
175 /* Make sure the matrix is square. */
176 gcc_assert (LTM_ROWSIZE (transform) == LTM_COLSIZE (transform));
178 depth = LTM_ROWSIZE (transform);
180 temp = lambda_body_vector_new (depth);
181 LBV_DENOMINATOR (temp) =
182 LBV_DENOMINATOR (vect) * LTM_DENOMINATOR (transform);
183 lambda_vector_matrix_mult (LBV_COEFFICIENTS (vect), depth,
184 LTM_MATRIX (transform), depth,
185 LBV_COEFFICIENTS (temp));
186 LBV_SIZE (temp) = LBV_SIZE (vect);
187 return temp;
190 /* Print out a lambda body vector. */
192 void
193 print_lambda_body_vector (FILE * outfile, lambda_body_vector body)
195 print_lambda_vector (outfile, LBV_COEFFICIENTS (body), LBV_SIZE (body));
198 /* Return TRUE if two linear expressions are equal. */
200 static bool
201 lle_equal (lambda_linear_expression lle1, lambda_linear_expression lle2,
202 int depth, int invariants)
204 int i;
206 if (lle1 == NULL || lle2 == NULL)
207 return false;
208 if (LLE_CONSTANT (lle1) != LLE_CONSTANT (lle2))
209 return false;
210 if (LLE_DENOMINATOR (lle1) != LLE_DENOMINATOR (lle2))
211 return false;
212 for (i = 0; i < depth; i++)
213 if (LLE_COEFFICIENTS (lle1)[i] != LLE_COEFFICIENTS (lle2)[i])
214 return false;
215 for (i = 0; i < invariants; i++)
216 if (LLE_INVARIANT_COEFFICIENTS (lle1)[i] !=
217 LLE_INVARIANT_COEFFICIENTS (lle2)[i])
218 return false;
219 return true;
222 /* Create a new linear expression with dimension DIM, and total number
223 of invariants INVARIANTS. */
225 lambda_linear_expression
226 lambda_linear_expression_new (int dim, int invariants)
228 lambda_linear_expression ret;
230 ret = ggc_alloc_cleared (sizeof (*ret));
232 LLE_COEFFICIENTS (ret) = lambda_vector_new (dim);
233 LLE_CONSTANT (ret) = 0;
234 LLE_INVARIANT_COEFFICIENTS (ret) = lambda_vector_new (invariants);
235 LLE_DENOMINATOR (ret) = 1;
236 LLE_NEXT (ret) = NULL;
238 return ret;
241 /* Print out a linear expression EXPR, with SIZE coefficients, to OUTFILE.
242 The starting letter used for variable names is START. */
244 static void
245 print_linear_expression (FILE * outfile, lambda_vector expr, int size,
246 char start)
248 int i;
249 bool first = true;
250 for (i = 0; i < size; i++)
252 if (expr[i] != 0)
254 if (first)
256 if (expr[i] < 0)
257 fprintf (outfile, "-");
258 first = false;
260 else if (expr[i] > 0)
261 fprintf (outfile, " + ");
262 else
263 fprintf (outfile, " - ");
264 if (abs (expr[i]) == 1)
265 fprintf (outfile, "%c", start + i);
266 else
267 fprintf (outfile, "%d%c", abs (expr[i]), start + i);
272 /* Print out a lambda linear expression structure, EXPR, to OUTFILE. The
273 depth/number of coefficients is given by DEPTH, the number of invariants is
274 given by INVARIANTS, and the character to start variable names with is given
275 by START. */
277 void
278 print_lambda_linear_expression (FILE * outfile,
279 lambda_linear_expression expr,
280 int depth, int invariants, char start)
282 fprintf (outfile, "\tLinear expression: ");
283 print_linear_expression (outfile, LLE_COEFFICIENTS (expr), depth, start);
284 fprintf (outfile, " constant: %d ", LLE_CONSTANT (expr));
285 fprintf (outfile, " invariants: ");
286 print_linear_expression (outfile, LLE_INVARIANT_COEFFICIENTS (expr),
287 invariants, 'A');
288 fprintf (outfile, " denominator: %d\n", LLE_DENOMINATOR (expr));
291 /* Print a lambda loop structure LOOP to OUTFILE. The depth/number of
292 coefficients is given by DEPTH, the number of invariants is
293 given by INVARIANTS, and the character to start variable names with is given
294 by START. */
296 void
297 print_lambda_loop (FILE * outfile, lambda_loop loop, int depth,
298 int invariants, char start)
300 int step;
301 lambda_linear_expression expr;
303 gcc_assert (loop);
305 expr = LL_LINEAR_OFFSET (loop);
306 step = LL_STEP (loop);
307 fprintf (outfile, " step size = %d \n", step);
309 if (expr)
311 fprintf (outfile, " linear offset: \n");
312 print_lambda_linear_expression (outfile, expr, depth, invariants,
313 start);
316 fprintf (outfile, " lower bound: \n");
317 for (expr = LL_LOWER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
318 print_lambda_linear_expression (outfile, expr, depth, invariants, start);
319 fprintf (outfile, " upper bound: \n");
320 for (expr = LL_UPPER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
321 print_lambda_linear_expression (outfile, expr, depth, invariants, start);
324 /* Create a new loop nest structure with DEPTH loops, and INVARIANTS as the
325 number of invariants. */
327 lambda_loopnest
328 lambda_loopnest_new (int depth, int invariants)
330 lambda_loopnest ret;
331 ret = ggc_alloc (sizeof (*ret));
333 LN_LOOPS (ret) = ggc_alloc_cleared (depth * sizeof (lambda_loop));
334 LN_DEPTH (ret) = depth;
335 LN_INVARIANTS (ret) = invariants;
337 return ret;
340 /* Print a lambda loopnest structure, NEST, to OUTFILE. The starting
341 character to use for loop names is given by START. */
343 void
344 print_lambda_loopnest (FILE * outfile, lambda_loopnest nest, char start)
346 int i;
347 for (i = 0; i < LN_DEPTH (nest); i++)
349 fprintf (outfile, "Loop %c\n", start + i);
350 print_lambda_loop (outfile, LN_LOOPS (nest)[i], LN_DEPTH (nest),
351 LN_INVARIANTS (nest), 'i');
352 fprintf (outfile, "\n");
356 /* Allocate a new lattice structure of DEPTH x DEPTH, with INVARIANTS number
357 of invariants. */
359 static lambda_lattice
360 lambda_lattice_new (int depth, int invariants)
362 lambda_lattice ret;
363 ret = ggc_alloc (sizeof (*ret));
364 LATTICE_BASE (ret) = lambda_matrix_new (depth, depth);
365 LATTICE_ORIGIN (ret) = lambda_vector_new (depth);
366 LATTICE_ORIGIN_INVARIANTS (ret) = lambda_matrix_new (depth, invariants);
367 LATTICE_DIMENSION (ret) = depth;
368 LATTICE_INVARIANTS (ret) = invariants;
369 return ret;
372 /* Compute the lattice base for NEST. The lattice base is essentially a
373 non-singular transform from a dense base space to a sparse iteration space.
374 We use it so that we don't have to specially handle the case of a sparse
375 iteration space in other parts of the algorithm. As a result, this routine
376 only does something interesting (IE produce a matrix that isn't the
377 identity matrix) if NEST is a sparse space. */
379 static lambda_lattice
380 lambda_lattice_compute_base (lambda_loopnest nest)
382 lambda_lattice ret;
383 int depth, invariants;
384 lambda_matrix base;
386 int i, j, step;
387 lambda_loop loop;
388 lambda_linear_expression expression;
390 depth = LN_DEPTH (nest);
391 invariants = LN_INVARIANTS (nest);
393 ret = lambda_lattice_new (depth, invariants);
394 base = LATTICE_BASE (ret);
395 for (i = 0; i < depth; i++)
397 loop = LN_LOOPS (nest)[i];
398 gcc_assert (loop);
399 step = LL_STEP (loop);
400 /* If we have a step of 1, then the base is one, and the
401 origin and invariant coefficients are 0. */
402 if (step == 1)
404 for (j = 0; j < depth; j++)
405 base[i][j] = 0;
406 base[i][i] = 1;
407 LATTICE_ORIGIN (ret)[i] = 0;
408 for (j = 0; j < invariants; j++)
409 LATTICE_ORIGIN_INVARIANTS (ret)[i][j] = 0;
411 else
413 /* Otherwise, we need the lower bound expression (which must
414 be an affine function) to determine the base. */
415 expression = LL_LOWER_BOUND (loop);
416 gcc_assert (expression && !LLE_NEXT (expression)
417 && LLE_DENOMINATOR (expression) == 1);
419 /* The lower triangular portion of the base is going to be the
420 coefficient times the step */
421 for (j = 0; j < i; j++)
422 base[i][j] = LLE_COEFFICIENTS (expression)[j]
423 * LL_STEP (LN_LOOPS (nest)[j]);
424 base[i][i] = step;
425 for (j = i + 1; j < depth; j++)
426 base[i][j] = 0;
428 /* Origin for this loop is the constant of the lower bound
429 expression. */
430 LATTICE_ORIGIN (ret)[i] = LLE_CONSTANT (expression);
432 /* Coefficient for the invariants are equal to the invariant
433 coefficients in the expression. */
434 for (j = 0; j < invariants; j++)
435 LATTICE_ORIGIN_INVARIANTS (ret)[i][j] =
436 LLE_INVARIANT_COEFFICIENTS (expression)[j];
439 return ret;
442 /* Compute the least common multiple of two numbers A and B . */
444 static int
445 lcm (int a, int b)
447 return (abs (a) * abs (b) / gcd (a, b));
450 /* Perform Fourier-Motzkin elimination to calculate the bounds of the
451 auxiliary nest.
452 Fourier-Motzkin is a way of reducing systems of linear inequalities so that
453 it is easy to calculate the answer and bounds.
454 A sketch of how it works:
455 Given a system of linear inequalities, ai * xj >= bk, you can always
456 rewrite the constraints so they are all of the form
457 a <= x, or x <= b, or x >= constant for some x in x1 ... xj (and some b
458 in b1 ... bk, and some a in a1...ai)
459 You can then eliminate this x from the non-constant inequalities by
460 rewriting these as a <= b, x >= constant, and delete the x variable.
461 You can then repeat this for any remaining x variables, and then we have
462 an easy to use variable <= constant (or no variables at all) form that we
463 can construct our bounds from.
465 In our case, each time we eliminate, we construct part of the bound from
466 the ith variable, then delete the ith variable.
468 Remember the constant are in our vector a, our coefficient matrix is A,
469 and our invariant coefficient matrix is B.
471 SIZE is the size of the matrices being passed.
472 DEPTH is the loop nest depth.
473 INVARIANTS is the number of loop invariants.
474 A, B, and a are the coefficient matrix, invariant coefficient, and a
475 vector of constants, respectively. */
477 static lambda_loopnest
478 compute_nest_using_fourier_motzkin (int size,
479 int depth,
480 int invariants,
481 lambda_matrix A,
482 lambda_matrix B,
483 lambda_vector a)
486 int multiple, f1, f2;
487 int i, j, k;
488 lambda_linear_expression expression;
489 lambda_loop loop;
490 lambda_loopnest auxillary_nest;
491 lambda_matrix swapmatrix, A1, B1;
492 lambda_vector swapvector, a1;
493 int newsize;
495 A1 = lambda_matrix_new (128, depth);
496 B1 = lambda_matrix_new (128, invariants);
497 a1 = lambda_vector_new (128);
499 auxillary_nest = lambda_loopnest_new (depth, invariants);
501 for (i = depth - 1; i >= 0; i--)
503 loop = lambda_loop_new ();
504 LN_LOOPS (auxillary_nest)[i] = loop;
505 LL_STEP (loop) = 1;
507 for (j = 0; j < size; j++)
509 if (A[j][i] < 0)
511 /* Any linear expression in the matrix with a coefficient less
512 than 0 becomes part of the new lower bound. */
513 expression = lambda_linear_expression_new (depth, invariants);
515 for (k = 0; k < i; k++)
516 LLE_COEFFICIENTS (expression)[k] = A[j][k];
518 for (k = 0; k < invariants; k++)
519 LLE_INVARIANT_COEFFICIENTS (expression)[k] = -1 * B[j][k];
521 LLE_DENOMINATOR (expression) = -1 * A[j][i];
522 LLE_CONSTANT (expression) = -1 * a[j];
524 /* Ignore if identical to the existing lower bound. */
525 if (!lle_equal (LL_LOWER_BOUND (loop),
526 expression, depth, invariants))
528 LLE_NEXT (expression) = LL_LOWER_BOUND (loop);
529 LL_LOWER_BOUND (loop) = expression;
533 else if (A[j][i] > 0)
535 /* Any linear expression with a coefficient greater than 0
536 becomes part of the new upper bound. */
537 expression = lambda_linear_expression_new (depth, invariants);
538 for (k = 0; k < i; k++)
539 LLE_COEFFICIENTS (expression)[k] = -1 * A[j][k];
541 for (k = 0; k < invariants; k++)
542 LLE_INVARIANT_COEFFICIENTS (expression)[k] = B[j][k];
544 LLE_DENOMINATOR (expression) = A[j][i];
545 LLE_CONSTANT (expression) = a[j];
547 /* Ignore if identical to the existing upper bound. */
548 if (!lle_equal (LL_UPPER_BOUND (loop),
549 expression, depth, invariants))
551 LLE_NEXT (expression) = LL_UPPER_BOUND (loop);
552 LL_UPPER_BOUND (loop) = expression;
558 /* This portion creates a new system of linear inequalities by deleting
559 the i'th variable, reducing the system by one variable. */
560 newsize = 0;
561 for (j = 0; j < size; j++)
563 /* If the coefficient for the i'th variable is 0, then we can just
564 eliminate the variable straightaway. Otherwise, we have to
565 multiply through by the coefficients we are eliminating. */
566 if (A[j][i] == 0)
568 lambda_vector_copy (A[j], A1[newsize], depth);
569 lambda_vector_copy (B[j], B1[newsize], invariants);
570 a1[newsize] = a[j];
571 newsize++;
573 else if (A[j][i] > 0)
575 for (k = 0; k < size; k++)
577 if (A[k][i] < 0)
579 multiple = lcm (A[j][i], A[k][i]);
580 f1 = multiple / A[j][i];
581 f2 = -1 * multiple / A[k][i];
583 lambda_vector_add_mc (A[j], f1, A[k], f2,
584 A1[newsize], depth);
585 lambda_vector_add_mc (B[j], f1, B[k], f2,
586 B1[newsize], invariants);
587 a1[newsize] = f1 * a[j] + f2 * a[k];
588 newsize++;
594 swapmatrix = A;
595 A = A1;
596 A1 = swapmatrix;
598 swapmatrix = B;
599 B = B1;
600 B1 = swapmatrix;
602 swapvector = a;
603 a = a1;
604 a1 = swapvector;
606 size = newsize;
609 return auxillary_nest;
612 /* Compute the loop bounds for the auxiliary space NEST.
613 Input system used is Ax <= b. TRANS is the unimodular transformation.
614 Given the original nest, this function will
615 1. Convert the nest into matrix form, which consists of a matrix for the
616 coefficients, a matrix for the
617 invariant coefficients, and a vector for the constants.
618 2. Use the matrix form to calculate the lattice base for the nest (which is
619 a dense space)
620 3. Compose the dense space transform with the user specified transform, to
621 get a transform we can easily calculate transformed bounds for.
622 4. Multiply the composed transformation matrix times the matrix form of the
623 loop.
624 5. Transform the newly created matrix (from step 4) back into a loop nest
625 using Fourier-Motzkin elimination to figure out the bounds. */
627 static lambda_loopnest
628 lambda_compute_auxillary_space (lambda_loopnest nest,
629 lambda_trans_matrix trans)
631 lambda_matrix A, B, A1, B1;
632 lambda_vector a, a1;
633 lambda_matrix invertedtrans;
634 int depth, invariants, size;
635 int i, j;
636 lambda_loop loop;
637 lambda_linear_expression expression;
638 lambda_lattice lattice;
640 depth = LN_DEPTH (nest);
641 invariants = LN_INVARIANTS (nest);
643 /* Unfortunately, we can't know the number of constraints we'll have
644 ahead of time, but this should be enough even in ridiculous loop nest
645 cases. We must not go over this limit. */
646 A = lambda_matrix_new (128, depth);
647 B = lambda_matrix_new (128, invariants);
648 a = lambda_vector_new (128);
650 A1 = lambda_matrix_new (128, depth);
651 B1 = lambda_matrix_new (128, invariants);
652 a1 = lambda_vector_new (128);
654 /* Store the bounds in the equation matrix A, constant vector a, and
655 invariant matrix B, so that we have Ax <= a + B.
656 This requires a little equation rearranging so that everything is on the
657 correct side of the inequality. */
658 size = 0;
659 for (i = 0; i < depth; i++)
661 loop = LN_LOOPS (nest)[i];
663 /* First we do the lower bound. */
664 if (LL_STEP (loop) > 0)
665 expression = LL_LOWER_BOUND (loop);
666 else
667 expression = LL_UPPER_BOUND (loop);
669 for (; expression != NULL; expression = LLE_NEXT (expression))
671 /* Fill in the coefficient. */
672 for (j = 0; j < i; j++)
673 A[size][j] = LLE_COEFFICIENTS (expression)[j];
675 /* And the invariant coefficient. */
676 for (j = 0; j < invariants; j++)
677 B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];
679 /* And the constant. */
680 a[size] = LLE_CONSTANT (expression);
682 /* Convert (2x+3y+2+b)/4 <= z to 2x+3y-4z <= -2-b. IE put all
683 constants and single variables on */
684 A[size][i] = -1 * LLE_DENOMINATOR (expression);
685 a[size] *= -1;
686 for (j = 0; j < invariants; j++)
687 B[size][j] *= -1;
689 size++;
690 /* Need to increase matrix sizes above. */
691 gcc_assert (size <= 127);
695 /* Then do the exact same thing for the upper bounds. */
696 if (LL_STEP (loop) > 0)
697 expression = LL_UPPER_BOUND (loop);
698 else
699 expression = LL_LOWER_BOUND (loop);
701 for (; expression != NULL; expression = LLE_NEXT (expression))
703 /* Fill in the coefficient. */
704 for (j = 0; j < i; j++)
705 A[size][j] = LLE_COEFFICIENTS (expression)[j];
707 /* And the invariant coefficient. */
708 for (j = 0; j < invariants; j++)
709 B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];
711 /* And the constant. */
712 a[size] = LLE_CONSTANT (expression);
714 /* Convert z <= (2x+3y+2+b)/4 to -2x-3y+4z <= 2+b. */
715 for (j = 0; j < i; j++)
716 A[size][j] *= -1;
717 A[size][i] = LLE_DENOMINATOR (expression);
718 size++;
719 /* Need to increase matrix sizes above. */
720 gcc_assert (size <= 127);
725 /* Compute the lattice base x = base * y + origin, where y is the
726 base space. */
727 lattice = lambda_lattice_compute_base (nest);
729 /* Ax <= a + B then becomes ALy <= a+B - A*origin. L is the lattice base */
731 /* A1 = A * L */
732 lambda_matrix_mult (A, LATTICE_BASE (lattice), A1, size, depth, depth);
734 /* a1 = a - A * origin constant. */
735 lambda_matrix_vector_mult (A, size, depth, LATTICE_ORIGIN (lattice), a1);
736 lambda_vector_add_mc (a, 1, a1, -1, a1, size);
738 /* B1 = B - A * origin invariant. */
739 lambda_matrix_mult (A, LATTICE_ORIGIN_INVARIANTS (lattice), B1, size, depth,
740 invariants);
741 lambda_matrix_add_mc (B, 1, B1, -1, B1, size, invariants);
743 /* Now compute the auxiliary space bounds by first inverting U, multiplying
744 it by A1, then performing Fourier-Motzkin. */
746 invertedtrans = lambda_matrix_new (depth, depth);
748 /* Compute the inverse of U. */
749 lambda_matrix_inverse (LTM_MATRIX (trans),
750 invertedtrans, depth);
752 /* A = A1 inv(U). */
753 lambda_matrix_mult (A1, invertedtrans, A, size, depth, depth);
755 return compute_nest_using_fourier_motzkin (size, depth, invariants,
756 A, B1, a1);
759 /* Compute the loop bounds for the target space, using the bounds of
760 the auxiliary nest AUXILLARY_NEST, and the triangular matrix H.
761 The target space loop bounds are computed by multiplying the triangular
762 matrix H by the auxiliary nest, to get the new loop bounds. The sign of
763 the loop steps (positive or negative) is then used to swap the bounds if
764 the loop counts downwards.
765 Return the target loopnest. */
767 static lambda_loopnest
768 lambda_compute_target_space (lambda_loopnest auxillary_nest,
769 lambda_trans_matrix H, lambda_vector stepsigns)
771 lambda_matrix inverse, H1;
772 int determinant, i, j;
773 int gcd1, gcd2;
774 int factor;
776 lambda_loopnest target_nest;
777 int depth, invariants;
778 lambda_matrix target;
780 lambda_loop auxillary_loop, target_loop;
781 lambda_linear_expression expression, auxillary_expr, target_expr, tmp_expr;
783 depth = LN_DEPTH (auxillary_nest);
784 invariants = LN_INVARIANTS (auxillary_nest);
786 inverse = lambda_matrix_new (depth, depth);
787 determinant = lambda_matrix_inverse (LTM_MATRIX (H), inverse, depth);
789 /* H1 is H excluding its diagonal. */
790 H1 = lambda_matrix_new (depth, depth);
791 lambda_matrix_copy (LTM_MATRIX (H), H1, depth, depth);
793 for (i = 0; i < depth; i++)
794 H1[i][i] = 0;
796 /* Computes the linear offsets of the loop bounds. */
797 target = lambda_matrix_new (depth, depth);
798 lambda_matrix_mult (H1, inverse, target, depth, depth, depth);
800 target_nest = lambda_loopnest_new (depth, invariants);
802 for (i = 0; i < depth; i++)
805 /* Get a new loop structure. */
806 target_loop = lambda_loop_new ();
807 LN_LOOPS (target_nest)[i] = target_loop;
809 /* Computes the gcd of the coefficients of the linear part. */
810 gcd1 = lambda_vector_gcd (target[i], i);
812 /* Include the denominator in the GCD. */
813 gcd1 = gcd (gcd1, determinant);
815 /* Now divide through by the gcd. */
816 for (j = 0; j < i; j++)
817 target[i][j] = target[i][j] / gcd1;
819 expression = lambda_linear_expression_new (depth, invariants);
820 lambda_vector_copy (target[i], LLE_COEFFICIENTS (expression), depth);
821 LLE_DENOMINATOR (expression) = determinant / gcd1;
822 LLE_CONSTANT (expression) = 0;
823 lambda_vector_clear (LLE_INVARIANT_COEFFICIENTS (expression),
824 invariants);
825 LL_LINEAR_OFFSET (target_loop) = expression;
828 /* For each loop, compute the new bounds from H. */
829 for (i = 0; i < depth; i++)
831 auxillary_loop = LN_LOOPS (auxillary_nest)[i];
832 target_loop = LN_LOOPS (target_nest)[i];
833 LL_STEP (target_loop) = LTM_MATRIX (H)[i][i];
834 factor = LTM_MATRIX (H)[i][i];
836 /* First we do the lower bound. */
837 auxillary_expr = LL_LOWER_BOUND (auxillary_loop);
839 for (; auxillary_expr != NULL;
840 auxillary_expr = LLE_NEXT (auxillary_expr))
842 target_expr = lambda_linear_expression_new (depth, invariants);
843 lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
844 depth, inverse, depth,
845 LLE_COEFFICIENTS (target_expr));
846 lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
847 LLE_COEFFICIENTS (target_expr), depth,
848 factor);
850 LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
851 lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
852 LLE_INVARIANT_COEFFICIENTS (target_expr),
853 invariants);
854 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
855 LLE_INVARIANT_COEFFICIENTS (target_expr),
856 invariants, factor);
857 LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);
859 if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
861 LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
862 * determinant;
863 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
864 (target_expr),
865 LLE_INVARIANT_COEFFICIENTS
866 (target_expr), invariants,
867 determinant);
868 LLE_DENOMINATOR (target_expr) =
869 LLE_DENOMINATOR (target_expr) * determinant;
871 /* Find the gcd and divide by it here, rather than doing it
872 at the tree level. */
873 gcd1 = lambda_vector_gcd (LLE_COEFFICIENTS (target_expr), depth);
874 gcd2 = lambda_vector_gcd (LLE_INVARIANT_COEFFICIENTS (target_expr),
875 invariants);
876 gcd1 = gcd (gcd1, gcd2);
877 gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
878 gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
879 for (j = 0; j < depth; j++)
880 LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
881 for (j = 0; j < invariants; j++)
882 LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
883 LLE_CONSTANT (target_expr) /= gcd1;
884 LLE_DENOMINATOR (target_expr) /= gcd1;
885 /* Ignore if identical to existing bound. */
886 if (!lle_equal (LL_LOWER_BOUND (target_loop), target_expr, depth,
887 invariants))
889 LLE_NEXT (target_expr) = LL_LOWER_BOUND (target_loop);
890 LL_LOWER_BOUND (target_loop) = target_expr;
893 /* Now do the upper bound. */
894 auxillary_expr = LL_UPPER_BOUND (auxillary_loop);
896 for (; auxillary_expr != NULL;
897 auxillary_expr = LLE_NEXT (auxillary_expr))
899 target_expr = lambda_linear_expression_new (depth, invariants);
900 lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
901 depth, inverse, depth,
902 LLE_COEFFICIENTS (target_expr));
903 lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
904 LLE_COEFFICIENTS (target_expr), depth,
905 factor);
906 LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
907 lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
908 LLE_INVARIANT_COEFFICIENTS (target_expr),
909 invariants);
910 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
911 LLE_INVARIANT_COEFFICIENTS (target_expr),
912 invariants, factor);
913 LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);
915 if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
917 LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
918 * determinant;
919 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
920 (target_expr),
921 LLE_INVARIANT_COEFFICIENTS
922 (target_expr), invariants,
923 determinant);
924 LLE_DENOMINATOR (target_expr) =
925 LLE_DENOMINATOR (target_expr) * determinant;
927 /* Find the gcd and divide by it here, instead of at the
928 tree level. */
929 gcd1 = lambda_vector_gcd (LLE_COEFFICIENTS (target_expr), depth);
930 gcd2 = lambda_vector_gcd (LLE_INVARIANT_COEFFICIENTS (target_expr),
931 invariants);
932 gcd1 = gcd (gcd1, gcd2);
933 gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
934 gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
935 for (j = 0; j < depth; j++)
936 LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
937 for (j = 0; j < invariants; j++)
938 LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
939 LLE_CONSTANT (target_expr) /= gcd1;
940 LLE_DENOMINATOR (target_expr) /= gcd1;
941 /* Ignore if equal to existing bound. */
942 if (!lle_equal (LL_UPPER_BOUND (target_loop), target_expr, depth,
943 invariants))
945 LLE_NEXT (target_expr) = LL_UPPER_BOUND (target_loop);
946 LL_UPPER_BOUND (target_loop) = target_expr;
950 for (i = 0; i < depth; i++)
952 target_loop = LN_LOOPS (target_nest)[i];
953 /* If necessary, exchange the upper and lower bounds and negate
954 the step size. */
955 if (stepsigns[i] < 0)
957 LL_STEP (target_loop) *= -1;
958 tmp_expr = LL_LOWER_BOUND (target_loop);
959 LL_LOWER_BOUND (target_loop) = LL_UPPER_BOUND (target_loop);
960 LL_UPPER_BOUND (target_loop) = tmp_expr;
963 return target_nest;
966 /* Compute the step signs of TRANS, using TRANS and stepsigns. Return the new
967 result. */
969 static lambda_vector
970 lambda_compute_step_signs (lambda_trans_matrix trans, lambda_vector stepsigns)
972 lambda_matrix matrix, H;
973 int size;
974 lambda_vector newsteps;
975 int i, j, factor, minimum_column;
976 int temp;
978 matrix = LTM_MATRIX (trans);
979 size = LTM_ROWSIZE (trans);
980 H = lambda_matrix_new (size, size);
982 newsteps = lambda_vector_new (size);
983 lambda_vector_copy (stepsigns, newsteps, size);
985 lambda_matrix_copy (matrix, H, size, size);
987 for (j = 0; j < size; j++)
989 lambda_vector row;
990 row = H[j];
991 for (i = j; i < size; i++)
992 if (row[i] < 0)
993 lambda_matrix_col_negate (H, size, i);
994 while (lambda_vector_first_nz (row, size, j + 1) < size)
996 minimum_column = lambda_vector_min_nz (row, size, j);
997 lambda_matrix_col_exchange (H, size, j, minimum_column);
999 temp = newsteps[j];
1000 newsteps[j] = newsteps[minimum_column];
1001 newsteps[minimum_column] = temp;
1003 for (i = j + 1; i < size; i++)
1005 factor = row[i] / row[j];
1006 lambda_matrix_col_add (H, size, j, i, -1 * factor);
1010 return newsteps;
1013 /* Transform NEST according to TRANS, and return the new loopnest.
1014 This involves
1015 1. Computing a lattice base for the transformation
1016 2. Composing the dense base with the specified transformation (TRANS)
1017 3. Decomposing the combined transformation into a lower triangular portion,
1018 and a unimodular portion.
1019 4. Computing the auxiliary nest using the unimodular portion.
1020 5. Computing the target nest using the auxiliary nest and the lower
1021 triangular portion. */
1023 lambda_loopnest
1024 lambda_loopnest_transform (lambda_loopnest nest, lambda_trans_matrix trans)
1026 lambda_loopnest auxillary_nest, target_nest;
1028 int depth, invariants;
1029 int i, j;
1030 lambda_lattice lattice;
1031 lambda_trans_matrix trans1, H, U;
1032 lambda_loop loop;
1033 lambda_linear_expression expression;
1034 lambda_vector origin;
1035 lambda_matrix origin_invariants;
1036 lambda_vector stepsigns;
1037 int f;
1039 depth = LN_DEPTH (nest);
1040 invariants = LN_INVARIANTS (nest);
1042 /* Keep track of the signs of the loop steps. */
1043 stepsigns = lambda_vector_new (depth);
1044 for (i = 0; i < depth; i++)
1046 if (LL_STEP (LN_LOOPS (nest)[i]) > 0)
1047 stepsigns[i] = 1;
1048 else
1049 stepsigns[i] = -1;
1052 /* Compute the lattice base. */
1053 lattice = lambda_lattice_compute_base (nest);
1054 trans1 = lambda_trans_matrix_new (depth, depth);
1056 /* Multiply the transformation matrix by the lattice base. */
1058 lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_BASE (lattice),
1059 LTM_MATRIX (trans1), depth, depth, depth);
1061 /* Compute the Hermite normal form for the new transformation matrix. */
1062 H = lambda_trans_matrix_new (depth, depth);
1063 U = lambda_trans_matrix_new (depth, depth);
1064 lambda_matrix_hermite (LTM_MATRIX (trans1), depth, LTM_MATRIX (H),
1065 LTM_MATRIX (U));
1067 /* Compute the auxiliary loop nest's space from the unimodular
1068 portion. */
1069 auxillary_nest = lambda_compute_auxillary_space (nest, U);
1071 /* Compute the loop step signs from the old step signs and the
1072 transformation matrix. */
1073 stepsigns = lambda_compute_step_signs (trans1, stepsigns);
1075 /* Compute the target loop nest space from the auxiliary nest and
1076 the lower triangular matrix H. */
1077 target_nest = lambda_compute_target_space (auxillary_nest, H, stepsigns);
1078 origin = lambda_vector_new (depth);
1079 origin_invariants = lambda_matrix_new (depth, invariants);
1080 lambda_matrix_vector_mult (LTM_MATRIX (trans), depth, depth,
1081 LATTICE_ORIGIN (lattice), origin);
1082 lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_ORIGIN_INVARIANTS (lattice),
1083 origin_invariants, depth, depth, invariants);
1085 for (i = 0; i < depth; i++)
1087 loop = LN_LOOPS (target_nest)[i];
1088 expression = LL_LINEAR_OFFSET (loop);
1089 if (lambda_vector_zerop (LLE_COEFFICIENTS (expression), depth))
1090 f = 1;
1091 else
1092 f = LLE_DENOMINATOR (expression);
1094 LLE_CONSTANT (expression) += f * origin[i];
1096 for (j = 0; j < invariants; j++)
1097 LLE_INVARIANT_COEFFICIENTS (expression)[j] +=
1098 f * origin_invariants[i][j];
1101 return target_nest;
1105 /* Convert a gcc tree expression EXPR to a lambda linear expression, and
1106 return the new expression. DEPTH is the depth of the loopnest.
1107 OUTERINDUCTIONVARS is an array of the induction variables for outer loops
1108 in this nest. INVARIANTS is the array of invariants for the loop. EXTRA
1109 is the amount we have to add/subtract from the expression because of the
1110 type of comparison it is used in. */
1112 static lambda_linear_expression
1113 gcc_tree_to_linear_expression (int depth, tree expr,
1114 VEC(tree,heap) *outerinductionvars,
1115 VEC(tree,heap) *invariants, int extra)
1117 lambda_linear_expression lle = NULL;
1118 switch (TREE_CODE (expr))
1120 case INTEGER_CST:
1122 lle = lambda_linear_expression_new (depth, 2 * depth);
1123 LLE_CONSTANT (lle) = TREE_INT_CST_LOW (expr);
1124 if (extra != 0)
1125 LLE_CONSTANT (lle) += extra;
1127 LLE_DENOMINATOR (lle) = 1;
1129 break;
1130 case SSA_NAME:
1132 tree iv, invar;
1133 size_t i;
1134 for (i = 0; VEC_iterate (tree, outerinductionvars, i, iv); i++)
1135 if (iv != NULL)
1137 if (SSA_NAME_VAR (iv) == SSA_NAME_VAR (expr))
1139 lle = lambda_linear_expression_new (depth, 2 * depth);
1140 LLE_COEFFICIENTS (lle)[i] = 1;
1141 if (extra != 0)
1142 LLE_CONSTANT (lle) = extra;
1144 LLE_DENOMINATOR (lle) = 1;
1147 for (i = 0; VEC_iterate (tree, invariants, i, invar); i++)
1148 if (invar != NULL)
1150 if (SSA_NAME_VAR (invar) == SSA_NAME_VAR (expr))
1152 lle = lambda_linear_expression_new (depth, 2 * depth);
1153 LLE_INVARIANT_COEFFICIENTS (lle)[i] = 1;
1154 if (extra != 0)
1155 LLE_CONSTANT (lle) = extra;
1156 LLE_DENOMINATOR (lle) = 1;
1160 break;
1161 default:
1162 return NULL;
1165 return lle;
1168 /* Return the depth of the loopnest NEST */
1170 static int
1171 depth_of_nest (struct loop *nest)
1173 size_t depth = 0;
1174 while (nest)
1176 depth++;
1177 nest = nest->inner;
1179 return depth;
1183 /* Return true if OP is invariant in LOOP and all outer loops. */
1185 static bool
1186 invariant_in_loop_and_outer_loops (struct loop *loop, tree op)
1188 if (is_gimple_min_invariant (op))
1189 return true;
1190 if (loop->depth == 0)
1191 return true;
1192 if (!expr_invariant_in_loop_p (loop, op))
1193 return false;
1194 if (loop->outer
1195 && !invariant_in_loop_and_outer_loops (loop->outer, op))
1196 return false;
1197 return true;
1200 /* Generate a lambda loop from a gcc loop LOOP. Return the new lambda loop,
1201 or NULL if it could not be converted.
1202 DEPTH is the depth of the loop.
1203 INVARIANTS is a pointer to the array of loop invariants.
1204 The induction variable for this loop should be stored in the parameter
1205 OURINDUCTIONVAR.
1206 OUTERINDUCTIONVARS is an array of induction variables for outer loops. */
1208 static lambda_loop
1209 gcc_loop_to_lambda_loop (struct loop *loop, int depth,
1210 VEC(tree,heap) ** invariants,
1211 tree * ourinductionvar,
1212 VEC(tree,heap) * outerinductionvars,
1213 VEC(tree,heap) ** lboundvars,
1214 VEC(tree,heap) ** uboundvars,
1215 VEC(int,heap) ** steps)
1217 tree phi;
1218 tree exit_cond;
1219 tree access_fn, inductionvar;
1220 tree step;
1221 lambda_loop lloop = NULL;
1222 lambda_linear_expression lbound, ubound;
1223 tree test;
1224 int stepint;
1225 int extra = 0;
1226 tree lboundvar, uboundvar, uboundresult;
1228 /* Find out induction var and exit condition. */
1229 inductionvar = find_induction_var_from_exit_cond (loop);
1230 exit_cond = get_loop_exit_condition (loop);
1232 if (inductionvar == NULL || exit_cond == NULL)
1234 if (dump_file && (dump_flags & TDF_DETAILS))
1235 fprintf (dump_file,
1236 "Unable to convert loop: Cannot determine exit condition or induction variable for loop.\n");
1237 return NULL;
1240 test = TREE_OPERAND (exit_cond, 0);
1242 if (SSA_NAME_DEF_STMT (inductionvar) == NULL_TREE)
1245 if (dump_file && (dump_flags & TDF_DETAILS))
1246 fprintf (dump_file,
1247 "Unable to convert loop: Cannot find PHI node for induction variable\n");
1249 return NULL;
1252 phi = SSA_NAME_DEF_STMT (inductionvar);
1253 if (TREE_CODE (phi) != PHI_NODE)
1255 phi = SINGLE_SSA_TREE_OPERAND (phi, SSA_OP_USE);
1256 if (!phi)
1259 if (dump_file && (dump_flags & TDF_DETAILS))
1260 fprintf (dump_file,
1261 "Unable to convert loop: Cannot find PHI node for induction variable\n");
1263 return NULL;
1266 phi = SSA_NAME_DEF_STMT (phi);
1267 if (TREE_CODE (phi) != PHI_NODE)
1270 if (dump_file && (dump_flags & TDF_DETAILS))
1271 fprintf (dump_file,
1272 "Unable to convert loop: Cannot find PHI node for induction variable\n");
1273 return NULL;
1278 /* The induction variable name/version we want to put in the array is the
1279 result of the induction variable phi node. */
1280 *ourinductionvar = PHI_RESULT (phi);
1281 access_fn = instantiate_parameters
1282 (loop, analyze_scalar_evolution (loop, PHI_RESULT (phi)));
1283 if (access_fn == chrec_dont_know)
1285 if (dump_file && (dump_flags & TDF_DETAILS))
1286 fprintf (dump_file,
1287 "Unable to convert loop: Access function for induction variable phi is unknown\n");
1289 return NULL;
1292 step = evolution_part_in_loop_num (access_fn, loop->num);
1293 if (!step || step == chrec_dont_know)
1295 if (dump_file && (dump_flags & TDF_DETAILS))
1296 fprintf (dump_file,
1297 "Unable to convert loop: Cannot determine step of loop.\n");
1299 return NULL;
1301 if (TREE_CODE (step) != INTEGER_CST)
1304 if (dump_file && (dump_flags & TDF_DETAILS))
1305 fprintf (dump_file,
1306 "Unable to convert loop: Step of loop is not integer.\n");
1307 return NULL;
1310 stepint = TREE_INT_CST_LOW (step);
1312 /* Only want phis for induction vars, which will have two
1313 arguments. */
1314 if (PHI_NUM_ARGS (phi) != 2)
1316 if (dump_file && (dump_flags & TDF_DETAILS))
1317 fprintf (dump_file,
1318 "Unable to convert loop: PHI node for induction variable has >2 arguments\n");
1319 return NULL;
1322 /* Another induction variable check. One argument's source should be
1323 in the loop, one outside the loop. */
1324 if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 0)->src)
1325 && flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 1)->src))
1328 if (dump_file && (dump_flags & TDF_DETAILS))
1329 fprintf (dump_file,
1330 "Unable to convert loop: PHI edges both inside loop, or both outside loop.\n");
1332 return NULL;
1335 if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 0)->src))
1337 lboundvar = PHI_ARG_DEF (phi, 1);
1338 lbound = gcc_tree_to_linear_expression (depth, lboundvar,
1339 outerinductionvars, *invariants,
1342 else
1344 lboundvar = PHI_ARG_DEF (phi, 0);
1345 lbound = gcc_tree_to_linear_expression (depth, lboundvar,
1346 outerinductionvars, *invariants,
1350 if (!lbound)
1353 if (dump_file && (dump_flags & TDF_DETAILS))
1354 fprintf (dump_file,
1355 "Unable to convert loop: Cannot convert lower bound to linear expression\n");
1357 return NULL;
1359 /* One part of the test may be a loop invariant tree. */
1360 VEC_reserve (tree, heap, *invariants, 1);
1361 if (TREE_CODE (TREE_OPERAND (test, 1)) == SSA_NAME
1362 && invariant_in_loop_and_outer_loops (loop, TREE_OPERAND (test, 1)))
1363 VEC_quick_push (tree, *invariants, TREE_OPERAND (test, 1));
1364 else if (TREE_CODE (TREE_OPERAND (test, 0)) == SSA_NAME
1365 && invariant_in_loop_and_outer_loops (loop, TREE_OPERAND (test, 0)))
1366 VEC_quick_push (tree, *invariants, TREE_OPERAND (test, 0));
1368 /* The non-induction variable part of the test is the upper bound variable.
1370 if (TREE_OPERAND (test, 0) == inductionvar)
1371 uboundvar = TREE_OPERAND (test, 1);
1372 else
1373 uboundvar = TREE_OPERAND (test, 0);
1376 /* We only size the vectors assuming we have, at max, 2 times as many
1377 invariants as we do loops (one for each bound).
1378 This is just an arbitrary number, but it has to be matched against the
1379 code below. */
1380 gcc_assert (VEC_length (tree, *invariants) <= (unsigned int) (2 * depth));
1383 /* We might have some leftover. */
1384 if (TREE_CODE (test) == LT_EXPR)
1385 extra = -1 * stepint;
1386 else if (TREE_CODE (test) == NE_EXPR)
1387 extra = -1 * stepint;
1388 else if (TREE_CODE (test) == GT_EXPR)
1389 extra = -1 * stepint;
1390 else if (TREE_CODE (test) == EQ_EXPR)
1391 extra = 1 * stepint;
1393 ubound = gcc_tree_to_linear_expression (depth, uboundvar,
1394 outerinductionvars,
1395 *invariants, extra);
1396 uboundresult = build2 (PLUS_EXPR, TREE_TYPE (uboundvar), uboundvar,
1397 build_int_cst (TREE_TYPE (uboundvar), extra));
1398 VEC_safe_push (tree, heap, *uboundvars, uboundresult);
1399 VEC_safe_push (tree, heap, *lboundvars, lboundvar);
1400 VEC_safe_push (int, heap, *steps, stepint);
1401 if (!ubound)
1403 if (dump_file && (dump_flags & TDF_DETAILS))
1404 fprintf (dump_file,
1405 "Unable to convert loop: Cannot convert upper bound to linear expression\n");
1406 return NULL;
1409 lloop = lambda_loop_new ();
1410 LL_STEP (lloop) = stepint;
1411 LL_LOWER_BOUND (lloop) = lbound;
1412 LL_UPPER_BOUND (lloop) = ubound;
1413 return lloop;
1416 /* Given a LOOP, find the induction variable it is testing against in the exit
1417 condition. Return the induction variable if found, NULL otherwise. */
1419 static tree
1420 find_induction_var_from_exit_cond (struct loop *loop)
1422 tree expr = get_loop_exit_condition (loop);
1423 tree ivarop;
1424 tree test;
1425 if (expr == NULL_TREE)
1426 return NULL_TREE;
1427 if (TREE_CODE (expr) != COND_EXPR)
1428 return NULL_TREE;
1429 test = TREE_OPERAND (expr, 0);
1430 if (!COMPARISON_CLASS_P (test))
1431 return NULL_TREE;
1433 /* Find the side that is invariant in this loop. The ivar must be the other
1434 side. */
1436 if (expr_invariant_in_loop_p (loop, TREE_OPERAND (test, 0)))
1437 ivarop = TREE_OPERAND (test, 1);
1438 else if (expr_invariant_in_loop_p (loop, TREE_OPERAND (test, 1)))
1439 ivarop = TREE_OPERAND (test, 0);
1440 else
1441 return NULL_TREE;
1443 if (TREE_CODE (ivarop) != SSA_NAME)
1444 return NULL_TREE;
1445 return ivarop;
1448 DEF_VEC_P(lambda_loop);
1449 DEF_VEC_ALLOC_P(lambda_loop,heap);
1451 /* Generate a lambda loopnest from a gcc loopnest LOOP_NEST.
1452 Return the new loop nest.
1453 INDUCTIONVARS is a pointer to an array of induction variables for the
1454 loopnest that will be filled in during this process.
1455 INVARIANTS is a pointer to an array of invariants that will be filled in
1456 during this process. */
1458 lambda_loopnest
1459 gcc_loopnest_to_lambda_loopnest (struct loops *currloops,
1460 struct loop *loop_nest,
1461 VEC(tree,heap) **inductionvars,
1462 VEC(tree,heap) **invariants)
1464 lambda_loopnest ret = NULL;
1465 struct loop *temp = loop_nest;
1466 int depth = depth_of_nest (loop_nest);
1467 size_t i;
1468 VEC(lambda_loop,heap) *loops = NULL;
1469 VEC(tree,heap) *uboundvars = NULL;
1470 VEC(tree,heap) *lboundvars = NULL;
1471 VEC(int,heap) *steps = NULL;
1472 lambda_loop newloop;
1473 tree inductionvar = NULL;
1474 bool perfect_nest = perfect_nest_p (loop_nest);
1476 if (!perfect_nest && !can_convert_to_perfect_nest (loop_nest))
1477 goto fail;
1479 while (temp)
1481 newloop = gcc_loop_to_lambda_loop (temp, depth, invariants,
1482 &inductionvar, *inductionvars,
1483 &lboundvars, &uboundvars,
1484 &steps);
1485 if (!newloop)
1486 goto fail;
1488 VEC_safe_push (tree, heap, *inductionvars, inductionvar);
1489 VEC_safe_push (lambda_loop, heap, loops, newloop);
1490 temp = temp->inner;
1493 if (!perfect_nest)
1495 if (!perfect_nestify (currloops, loop_nest,
1496 lboundvars, uboundvars, steps, *inductionvars))
1498 if (dump_file)
1499 fprintf (dump_file,
1500 "Not a perfect loop nest and couldn't convert to one.\n");
1501 goto fail;
1503 else if (dump_file)
1504 fprintf (dump_file,
1505 "Successfully converted loop nest to perfect loop nest.\n");
1508 ret = lambda_loopnest_new (depth, 2 * depth);
1510 for (i = 0; VEC_iterate (lambda_loop, loops, i, newloop); i++)
1511 LN_LOOPS (ret)[i] = newloop;
1513 fail:
1514 VEC_free (lambda_loop, heap, loops);
1515 VEC_free (tree, heap, uboundvars);
1516 VEC_free (tree, heap, lboundvars);
1517 VEC_free (int, heap, steps);
1519 return ret;
1522 /* Convert a lambda body vector LBV to a gcc tree, and return the new tree.
1523 STMTS_TO_INSERT is a pointer to a tree where the statements we need to be
1524 inserted for us are stored. INDUCTION_VARS is the array of induction
1525 variables for the loop this LBV is from. TYPE is the tree type to use for
1526 the variables and trees involved. */
1528 static tree
1529 lbv_to_gcc_expression (lambda_body_vector lbv,
1530 tree type, VEC(tree,heap) *induction_vars,
1531 tree *stmts_to_insert)
1533 tree stmts, stmt, resvar, name;
1534 tree iv;
1535 size_t i;
1536 tree_stmt_iterator tsi;
1538 /* Create a statement list and a linear expression temporary. */
1539 stmts = alloc_stmt_list ();
1540 resvar = create_tmp_var (type, "lbvtmp");
1541 add_referenced_var (resvar);
1543 /* Start at 0. */
1544 stmt = build2 (MODIFY_EXPR, void_type_node, resvar, integer_zero_node);
1545 name = make_ssa_name (resvar, stmt);
1546 TREE_OPERAND (stmt, 0) = name;
1547 tsi = tsi_last (stmts);
1548 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1550 for (i = 0; VEC_iterate (tree, induction_vars, i, iv); i++)
1552 if (LBV_COEFFICIENTS (lbv)[i] != 0)
1554 tree newname;
1555 tree coeffmult;
1557 /* newname = coefficient * induction_variable */
1558 coeffmult = build_int_cst (type, LBV_COEFFICIENTS (lbv)[i]);
1559 stmt = build2 (MODIFY_EXPR, void_type_node, resvar,
1560 fold_build2 (MULT_EXPR, type, iv, coeffmult));
1562 newname = make_ssa_name (resvar, stmt);
1563 TREE_OPERAND (stmt, 0) = newname;
1564 fold_stmt (&stmt);
1565 tsi = tsi_last (stmts);
1566 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1568 /* name = name + newname */
1569 stmt = build2 (MODIFY_EXPR, void_type_node, resvar,
1570 build2 (PLUS_EXPR, type, name, newname));
1571 name = make_ssa_name (resvar, stmt);
1572 TREE_OPERAND (stmt, 0) = name;
1573 fold_stmt (&stmt);
1574 tsi = tsi_last (stmts);
1575 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1580 /* Handle any denominator that occurs. */
1581 if (LBV_DENOMINATOR (lbv) != 1)
1583 tree denominator = build_int_cst (type, LBV_DENOMINATOR (lbv));
1584 stmt = build2 (MODIFY_EXPR, void_type_node, resvar,
1585 build2 (CEIL_DIV_EXPR, type, name, denominator));
1586 name = make_ssa_name (resvar, stmt);
1587 TREE_OPERAND (stmt, 0) = name;
1588 fold_stmt (&stmt);
1589 tsi = tsi_last (stmts);
1590 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1592 *stmts_to_insert = stmts;
1593 return name;
1596 /* Convert a linear expression from coefficient and constant form to a
1597 gcc tree.
1598 Return the tree that represents the final value of the expression.
1599 LLE is the linear expression to convert.
1600 OFFSET is the linear offset to apply to the expression.
1601 TYPE is the tree type to use for the variables and math.
1602 INDUCTION_VARS is a vector of induction variables for the loops.
1603 INVARIANTS is a vector of the loop nest invariants.
1604 WRAP specifies what tree code to wrap the results in, if there is more than
1605 one (it is either MAX_EXPR, or MIN_EXPR).
1606 STMTS_TO_INSERT Is a pointer to the statement list we fill in with
1607 statements that need to be inserted for the linear expression. */
1609 static tree
1610 lle_to_gcc_expression (lambda_linear_expression lle,
1611 lambda_linear_expression offset,
1612 tree type,
1613 VEC(tree,heap) *induction_vars,
1614 VEC(tree,heap) *invariants,
1615 enum tree_code wrap, tree *stmts_to_insert)
1617 tree stmts, stmt, resvar, name;
1618 size_t i;
1619 tree_stmt_iterator tsi;
1620 tree iv, invar;
1621 VEC(tree,heap) *results = NULL;
1623 gcc_assert (wrap == MAX_EXPR || wrap == MIN_EXPR);
1624 name = NULL_TREE;
1625 /* Create a statement list and a linear expression temporary. */
1626 stmts = alloc_stmt_list ();
1627 resvar = create_tmp_var (type, "lletmp");
1628 add_referenced_var (resvar);
1630 /* Build up the linear expressions, and put the variable representing the
1631 result in the results array. */
1632 for (; lle != NULL; lle = LLE_NEXT (lle))
1634 /* Start at name = 0. */
1635 stmt = build2 (MODIFY_EXPR, void_type_node, resvar, integer_zero_node);
1636 name = make_ssa_name (resvar, stmt);
1637 TREE_OPERAND (stmt, 0) = name;
1638 fold_stmt (&stmt);
1639 tsi = tsi_last (stmts);
1640 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1642 /* First do the induction variables.
1643 at the end, name = name + all the induction variables added
1644 together. */
1645 for (i = 0; VEC_iterate (tree, induction_vars, i, iv); i++)
1647 if (LLE_COEFFICIENTS (lle)[i] != 0)
1649 tree newname;
1650 tree mult;
1651 tree coeff;
1653 /* mult = induction variable * coefficient. */
1654 if (LLE_COEFFICIENTS (lle)[i] == 1)
1656 mult = VEC_index (tree, induction_vars, i);
1658 else
1660 coeff = build_int_cst (type,
1661 LLE_COEFFICIENTS (lle)[i]);
1662 mult = fold_build2 (MULT_EXPR, type, iv, coeff);
1665 /* newname = mult */
1666 stmt = build2 (MODIFY_EXPR, void_type_node, resvar, mult);
1667 newname = make_ssa_name (resvar, stmt);
1668 TREE_OPERAND (stmt, 0) = newname;
1669 fold_stmt (&stmt);
1670 tsi = tsi_last (stmts);
1671 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1673 /* name = name + newname */
1674 stmt = build2 (MODIFY_EXPR, void_type_node, resvar,
1675 build2 (PLUS_EXPR, type, name, newname));
1676 name = make_ssa_name (resvar, stmt);
1677 TREE_OPERAND (stmt, 0) = name;
1678 fold_stmt (&stmt);
1679 tsi = tsi_last (stmts);
1680 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1684 /* Handle our invariants.
1685 At the end, we have name = name + result of adding all multiplied
1686 invariants. */
1687 for (i = 0; VEC_iterate (tree, invariants, i, invar); i++)
1689 if (LLE_INVARIANT_COEFFICIENTS (lle)[i] != 0)
1691 tree newname;
1692 tree mult;
1693 tree coeff;
1694 int invcoeff = LLE_INVARIANT_COEFFICIENTS (lle)[i];
1695 /* mult = invariant * coefficient */
1696 if (invcoeff == 1)
1698 mult = invar;
1700 else
1702 coeff = build_int_cst (type, invcoeff);
1703 mult = fold_build2 (MULT_EXPR, type, invar, coeff);
1706 /* newname = mult */
1707 stmt = build2 (MODIFY_EXPR, void_type_node, resvar, mult);
1708 newname = make_ssa_name (resvar, stmt);
1709 TREE_OPERAND (stmt, 0) = newname;
1710 fold_stmt (&stmt);
1711 tsi = tsi_last (stmts);
1712 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1714 /* name = name + newname */
1715 stmt = build2 (MODIFY_EXPR, void_type_node, resvar,
1716 build2 (PLUS_EXPR, type, name, newname));
1717 name = make_ssa_name (resvar, stmt);
1718 TREE_OPERAND (stmt, 0) = name;
1719 fold_stmt (&stmt);
1720 tsi = tsi_last (stmts);
1721 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1725 /* Now handle the constant.
1726 name = name + constant. */
1727 if (LLE_CONSTANT (lle) != 0)
1729 stmt = build2 (MODIFY_EXPR, void_type_node, resvar,
1730 build2 (PLUS_EXPR, type, name,
1731 build_int_cst (type, LLE_CONSTANT (lle))));
1732 name = make_ssa_name (resvar, stmt);
1733 TREE_OPERAND (stmt, 0) = name;
1734 fold_stmt (&stmt);
1735 tsi = tsi_last (stmts);
1736 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1739 /* Now handle the offset.
1740 name = name + linear offset. */
1741 if (LLE_CONSTANT (offset) != 0)
1743 stmt = build2 (MODIFY_EXPR, void_type_node, resvar,
1744 build2 (PLUS_EXPR, type, name,
1745 build_int_cst (type, LLE_CONSTANT (offset))));
1746 name = make_ssa_name (resvar, stmt);
1747 TREE_OPERAND (stmt, 0) = name;
1748 fold_stmt (&stmt);
1749 tsi = tsi_last (stmts);
1750 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1753 /* Handle any denominator that occurs. */
1754 if (LLE_DENOMINATOR (lle) != 1)
1756 stmt = build_int_cst (type, LLE_DENOMINATOR (lle));
1757 stmt = build2 (wrap == MAX_EXPR ? CEIL_DIV_EXPR : FLOOR_DIV_EXPR,
1758 type, name, stmt);
1759 stmt = build2 (MODIFY_EXPR, void_type_node, resvar, stmt);
1761 /* name = {ceil, floor}(name/denominator) */
1762 name = make_ssa_name (resvar, stmt);
1763 TREE_OPERAND (stmt, 0) = name;
1764 tsi = tsi_last (stmts);
1765 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1767 VEC_safe_push (tree, heap, results, name);
1770 /* Again, out of laziness, we don't handle this case yet. It's not
1771 hard, it just hasn't occurred. */
1772 gcc_assert (VEC_length (tree, results) <= 2);
1774 /* We may need to wrap the results in a MAX_EXPR or MIN_EXPR. */
1775 if (VEC_length (tree, results) > 1)
1777 tree op1 = VEC_index (tree, results, 0);
1778 tree op2 = VEC_index (tree, results, 1);
1779 stmt = build2 (MODIFY_EXPR, void_type_node, resvar,
1780 build2 (wrap, type, op1, op2));
1781 name = make_ssa_name (resvar, stmt);
1782 TREE_OPERAND (stmt, 0) = name;
1783 tsi = tsi_last (stmts);
1784 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1787 VEC_free (tree, heap, results);
1789 *stmts_to_insert = stmts;
1790 return name;
1793 /* Transform a lambda loopnest NEW_LOOPNEST, which had TRANSFORM applied to
1794 it, back into gcc code. This changes the
1795 loops, their induction variables, and their bodies, so that they
1796 match the transformed loopnest.
1797 OLD_LOOPNEST is the loopnest before we've replaced it with the new
1798 loopnest.
1799 OLD_IVS is a vector of induction variables from the old loopnest.
1800 INVARIANTS is a vector of loop invariants from the old loopnest.
1801 NEW_LOOPNEST is the new lambda loopnest to replace OLD_LOOPNEST with.
1802 TRANSFORM is the matrix transform that was applied to OLD_LOOPNEST to get
1803 NEW_LOOPNEST. */
1805 void
1806 lambda_loopnest_to_gcc_loopnest (struct loop *old_loopnest,
1807 VEC(tree,heap) *old_ivs,
1808 VEC(tree,heap) *invariants,
1809 lambda_loopnest new_loopnest,
1810 lambda_trans_matrix transform)
1812 struct loop *temp;
1813 size_t i = 0;
1814 size_t depth = 0;
1815 VEC(tree,heap) *new_ivs = NULL;
1816 tree oldiv;
1818 block_stmt_iterator bsi;
1820 if (dump_file)
1822 transform = lambda_trans_matrix_inverse (transform);
1823 fprintf (dump_file, "Inverse of transformation matrix:\n");
1824 print_lambda_trans_matrix (dump_file, transform);
1826 depth = depth_of_nest (old_loopnest);
1827 temp = old_loopnest;
1829 while (temp)
1831 lambda_loop newloop;
1832 basic_block bb;
1833 edge exit;
1834 tree ivvar, ivvarinced, exitcond, stmts;
1835 enum tree_code testtype;
1836 tree newupperbound, newlowerbound;
1837 lambda_linear_expression offset;
1838 tree type;
1839 bool insert_after;
1840 tree inc_stmt;
1842 oldiv = VEC_index (tree, old_ivs, i);
1843 type = TREE_TYPE (oldiv);
1845 /* First, build the new induction variable temporary */
1847 ivvar = create_tmp_var (type, "lnivtmp");
1848 add_referenced_var (ivvar);
1850 VEC_safe_push (tree, heap, new_ivs, ivvar);
1852 newloop = LN_LOOPS (new_loopnest)[i];
1854 /* Linear offset is a bit tricky to handle. Punt on the unhandled
1855 cases for now. */
1856 offset = LL_LINEAR_OFFSET (newloop);
1858 gcc_assert (LLE_DENOMINATOR (offset) == 1 &&
1859 lambda_vector_zerop (LLE_COEFFICIENTS (offset), depth));
1861 /* Now build the new lower bounds, and insert the statements
1862 necessary to generate it on the loop preheader. */
1863 newlowerbound = lle_to_gcc_expression (LL_LOWER_BOUND (newloop),
1864 LL_LINEAR_OFFSET (newloop),
1865 type,
1866 new_ivs,
1867 invariants, MAX_EXPR, &stmts);
1868 bsi_insert_on_edge (loop_preheader_edge (temp), stmts);
1869 bsi_commit_edge_inserts ();
1870 /* Build the new upper bound and insert its statements in the
1871 basic block of the exit condition */
1872 newupperbound = lle_to_gcc_expression (LL_UPPER_BOUND (newloop),
1873 LL_LINEAR_OFFSET (newloop),
1874 type,
1875 new_ivs,
1876 invariants, MIN_EXPR, &stmts);
1877 exit = temp->single_exit;
1878 exitcond = get_loop_exit_condition (temp);
1879 bb = bb_for_stmt (exitcond);
1880 bsi = bsi_start (bb);
1881 bsi_insert_after (&bsi, stmts, BSI_NEW_STMT);
1883 /* Create the new iv. */
1885 standard_iv_increment_position (temp, &bsi, &insert_after);
1886 create_iv (newlowerbound,
1887 build_int_cst (type, LL_STEP (newloop)),
1888 ivvar, temp, &bsi, insert_after, &ivvar,
1889 NULL);
1891 /* Unfortunately, the incremented ivvar that create_iv inserted may not
1892 dominate the block containing the exit condition.
1893 So we simply create our own incremented iv to use in the new exit
1894 test, and let redundancy elimination sort it out. */
1895 inc_stmt = build2 (PLUS_EXPR, type,
1896 ivvar, build_int_cst (type, LL_STEP (newloop)));
1897 inc_stmt = build2 (MODIFY_EXPR, void_type_node, SSA_NAME_VAR (ivvar),
1898 inc_stmt);
1899 ivvarinced = make_ssa_name (SSA_NAME_VAR (ivvar), inc_stmt);
1900 TREE_OPERAND (inc_stmt, 0) = ivvarinced;
1901 bsi = bsi_for_stmt (exitcond);
1902 bsi_insert_before (&bsi, inc_stmt, BSI_SAME_STMT);
1904 /* Replace the exit condition with the new upper bound
1905 comparison. */
1907 testtype = LL_STEP (newloop) >= 0 ? LE_EXPR : GE_EXPR;
1909 /* We want to build a conditional where true means exit the loop, and
1910 false means continue the loop.
1911 So swap the testtype if this isn't the way things are.*/
1913 if (exit->flags & EDGE_FALSE_VALUE)
1914 testtype = swap_tree_comparison (testtype);
1916 COND_EXPR_COND (exitcond) = build2 (testtype,
1917 boolean_type_node,
1918 newupperbound, ivvarinced);
1919 update_stmt (exitcond);
1920 VEC_replace (tree, new_ivs, i, ivvar);
1922 i++;
1923 temp = temp->inner;
1926 /* Rewrite uses of the old ivs so that they are now specified in terms of
1927 the new ivs. */
1929 for (i = 0; VEC_iterate (tree, old_ivs, i, oldiv); i++)
1931 imm_use_iterator imm_iter;
1932 use_operand_p use_p;
1933 tree oldiv_def;
1934 tree oldiv_stmt = SSA_NAME_DEF_STMT (oldiv);
1935 tree stmt;
1937 if (TREE_CODE (oldiv_stmt) == PHI_NODE)
1938 oldiv_def = PHI_RESULT (oldiv_stmt);
1939 else
1940 oldiv_def = SINGLE_SSA_TREE_OPERAND (oldiv_stmt, SSA_OP_DEF);
1941 gcc_assert (oldiv_def != NULL_TREE);
1943 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, oldiv_def)
1945 tree newiv, stmts;
1946 lambda_body_vector lbv, newlbv;
1948 gcc_assert (TREE_CODE (stmt) != PHI_NODE);
1950 /* Compute the new expression for the induction
1951 variable. */
1952 depth = VEC_length (tree, new_ivs);
1953 lbv = lambda_body_vector_new (depth);
1954 LBV_COEFFICIENTS (lbv)[i] = 1;
1956 newlbv = lambda_body_vector_compute_new (transform, lbv);
1958 newiv = lbv_to_gcc_expression (newlbv, TREE_TYPE (oldiv),
1959 new_ivs, &stmts);
1960 bsi = bsi_for_stmt (stmt);
1961 /* Insert the statements to build that
1962 expression. */
1963 bsi_insert_before (&bsi, stmts, BSI_SAME_STMT);
1965 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1966 propagate_value (use_p, newiv);
1967 update_stmt (stmt);
1970 VEC_free (tree, heap, new_ivs);
1973 /* Return TRUE if this is not interesting statement from the perspective of
1974 determining if we have a perfect loop nest. */
1976 static bool
1977 not_interesting_stmt (tree stmt)
1979 /* Note that COND_EXPR's aren't interesting because if they were exiting the
1980 loop, we would have already failed the number of exits tests. */
1981 if (TREE_CODE (stmt) == LABEL_EXPR
1982 || TREE_CODE (stmt) == GOTO_EXPR
1983 || TREE_CODE (stmt) == COND_EXPR)
1984 return true;
1985 return false;
1988 /* Return TRUE if PHI uses DEF for it's in-the-loop edge for LOOP. */
1990 static bool
1991 phi_loop_edge_uses_def (struct loop *loop, tree phi, tree def)
1993 int i;
1994 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
1995 if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, i)->src))
1996 if (PHI_ARG_DEF (phi, i) == def)
1997 return true;
1998 return false;
2001 /* Return TRUE if STMT is a use of PHI_RESULT. */
2003 static bool
2004 stmt_uses_phi_result (tree stmt, tree phi_result)
2006 tree use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
2008 /* This is conservatively true, because we only want SIMPLE bumpers
2009 of the form x +- constant for our pass. */
2010 return (use == phi_result);
2013 /* STMT is a bumper stmt for LOOP if the version it defines is used in the
2014 in-loop-edge in a phi node, and the operand it uses is the result of that
2015 phi node.
2016 I.E. i_29 = i_3 + 1
2017 i_3 = PHI (0, i_29); */
2019 static bool
2020 stmt_is_bumper_for_loop (struct loop *loop, tree stmt)
2022 tree use;
2023 tree def;
2024 imm_use_iterator iter;
2025 use_operand_p use_p;
2027 def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF);
2028 if (!def)
2029 return false;
2031 FOR_EACH_IMM_USE_FAST (use_p, iter, def)
2033 use = USE_STMT (use_p);
2034 if (TREE_CODE (use) == PHI_NODE)
2036 if (phi_loop_edge_uses_def (loop, use, def))
2037 if (stmt_uses_phi_result (stmt, PHI_RESULT (use)))
2038 return true;
2041 return false;
2045 /* Return true if LOOP is a perfect loop nest.
2046 Perfect loop nests are those loop nests where all code occurs in the
2047 innermost loop body.
2048 If S is a program statement, then
2050 i.e.
2051 DO I = 1, 20
2053 DO J = 1, 20
2055 END DO
2056 END DO
2057 is not a perfect loop nest because of S1.
2059 DO I = 1, 20
2060 DO J = 1, 20
2063 END DO
2064 END DO
2065 is a perfect loop nest.
2067 Since we don't have high level loops anymore, we basically have to walk our
2068 statements and ignore those that are there because the loop needs them (IE
2069 the induction variable increment, and jump back to the top of the loop). */
2071 bool
2072 perfect_nest_p (struct loop *loop)
2074 basic_block *bbs;
2075 size_t i;
2076 tree exit_cond;
2078 if (!loop->inner)
2079 return true;
2080 bbs = get_loop_body (loop);
2081 exit_cond = get_loop_exit_condition (loop);
2082 for (i = 0; i < loop->num_nodes; i++)
2084 if (bbs[i]->loop_father == loop)
2086 block_stmt_iterator bsi;
2087 for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi); bsi_next (&bsi))
2089 tree stmt = bsi_stmt (bsi);
2090 if (stmt == exit_cond
2091 || not_interesting_stmt (stmt)
2092 || stmt_is_bumper_for_loop (loop, stmt))
2093 continue;
2094 free (bbs);
2095 return false;
2099 free (bbs);
2100 /* See if the inner loops are perfectly nested as well. */
2101 if (loop->inner)
2102 return perfect_nest_p (loop->inner);
2103 return true;
2106 /* Replace the USES of X in STMT, or uses with the same step as X with Y.
2107 YINIT is the initial value of Y, REPLACEMENTS is a hash table to
2108 avoid creating duplicate temporaries and FIRSTBSI is statement
2109 iterator where new temporaries should be inserted at the beginning
2110 of body basic block. */
2112 static void
2113 replace_uses_equiv_to_x_with_y (struct loop *loop, tree stmt, tree x,
2114 int xstep, tree y, tree yinit,
2115 htab_t replacements,
2116 block_stmt_iterator *firstbsi)
2118 ssa_op_iter iter;
2119 use_operand_p use_p;
2121 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
2123 tree use = USE_FROM_PTR (use_p);
2124 tree step = NULL_TREE;
2125 tree scev, init, val, var, setstmt;
2126 struct tree_map *h, in;
2127 void **loc;
2129 /* Replace uses of X with Y right away. */
2130 if (use == x)
2132 SET_USE (use_p, y);
2133 continue;
2136 scev = instantiate_parameters (loop,
2137 analyze_scalar_evolution (loop, use));
2139 if (scev == NULL || scev == chrec_dont_know)
2140 continue;
2142 step = evolution_part_in_loop_num (scev, loop->num);
2143 if (step == NULL
2144 || step == chrec_dont_know
2145 || TREE_CODE (step) != INTEGER_CST
2146 || int_cst_value (step) != xstep)
2147 continue;
2149 /* Use REPLACEMENTS hash table to cache already created
2150 temporaries. */
2151 in.hash = htab_hash_pointer (use);
2152 in.from = use;
2153 h = htab_find_with_hash (replacements, &in, in.hash);
2154 if (h != NULL)
2156 SET_USE (use_p, h->to);
2157 continue;
2160 /* USE which has the same step as X should be replaced
2161 with a temporary set to Y + YINIT - INIT. */
2162 init = initial_condition_in_loop_num (scev, loop->num);
2163 gcc_assert (init != NULL && init != chrec_dont_know);
2164 if (TREE_TYPE (use) == TREE_TYPE (y))
2166 val = fold_build2 (MINUS_EXPR, TREE_TYPE (y), init, yinit);
2167 val = fold_build2 (PLUS_EXPR, TREE_TYPE (y), y, val);
2168 if (val == y)
2170 /* If X has the same type as USE, the same step
2171 and same initial value, it can be replaced by Y. */
2172 SET_USE (use_p, y);
2173 continue;
2176 else
2178 val = fold_build2 (MINUS_EXPR, TREE_TYPE (y), y, yinit);
2179 val = fold_convert (TREE_TYPE (use), val);
2180 val = fold_build2 (PLUS_EXPR, TREE_TYPE (use), val, init);
2183 /* Create a temporary variable and insert it at the beginning
2184 of the loop body basic block, right after the PHI node
2185 which sets Y. */
2186 var = create_tmp_var (TREE_TYPE (use), "perfecttmp");
2187 add_referenced_var (var);
2188 val = force_gimple_operand_bsi (firstbsi, val, false, NULL);
2189 setstmt = build2 (MODIFY_EXPR, void_type_node, var, val);
2190 var = make_ssa_name (var, setstmt);
2191 TREE_OPERAND (setstmt, 0) = var;
2192 bsi_insert_before (firstbsi, setstmt, BSI_SAME_STMT);
2193 update_stmt (setstmt);
2194 SET_USE (use_p, var);
2195 h = ggc_alloc (sizeof (struct tree_map));
2196 h->hash = in.hash;
2197 h->from = use;
2198 h->to = var;
2199 loc = htab_find_slot_with_hash (replacements, h, in.hash, INSERT);
2200 gcc_assert ((*(struct tree_map **)loc) == NULL);
2201 *(struct tree_map **) loc = h;
2205 /* Return true if STMT is an exit PHI for LOOP */
2207 static bool
2208 exit_phi_for_loop_p (struct loop *loop, tree stmt)
2211 if (TREE_CODE (stmt) != PHI_NODE
2212 || PHI_NUM_ARGS (stmt) != 1
2213 || bb_for_stmt (stmt) != loop->single_exit->dest)
2214 return false;
2216 return true;
2219 /* Return true if STMT can be put back into the loop INNER, by
2220 copying it to the beginning of that loop and changing the uses. */
2222 static bool
2223 can_put_in_inner_loop (struct loop *inner, tree stmt)
2225 imm_use_iterator imm_iter;
2226 use_operand_p use_p;
2228 gcc_assert (TREE_CODE (stmt) == MODIFY_EXPR);
2229 if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)
2230 || !expr_invariant_in_loop_p (inner, TREE_OPERAND (stmt, 1)))
2231 return false;
2233 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, TREE_OPERAND (stmt, 0))
2235 if (!exit_phi_for_loop_p (inner, USE_STMT (use_p)))
2237 basic_block immbb = bb_for_stmt (USE_STMT (use_p));
2239 if (!flow_bb_inside_loop_p (inner, immbb))
2240 return false;
2243 return true;
2246 /* Return true if STMT can be put *after* the inner loop of LOOP. */
2247 static bool
2248 can_put_after_inner_loop (struct loop *loop, tree stmt)
2250 imm_use_iterator imm_iter;
2251 use_operand_p use_p;
2253 if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
2254 return false;
2256 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, TREE_OPERAND (stmt, 0))
2258 if (!exit_phi_for_loop_p (loop, USE_STMT (use_p)))
2260 basic_block immbb = bb_for_stmt (USE_STMT (use_p));
2262 if (!dominated_by_p (CDI_DOMINATORS,
2263 immbb,
2264 loop->inner->header)
2265 && !can_put_in_inner_loop (loop->inner, stmt))
2266 return false;
2269 return true;
2274 /* Return TRUE if LOOP is an imperfect nest that we can convert to a
2275 perfect one. At the moment, we only handle imperfect nests of
2276 depth 2, where all of the statements occur after the inner loop. */
2278 static bool
2279 can_convert_to_perfect_nest (struct loop *loop)
2281 basic_block *bbs;
2282 tree exit_condition, phi;
2283 size_t i;
2284 block_stmt_iterator bsi;
2285 basic_block exitdest;
2287 /* Can't handle triply nested+ loops yet. */
2288 if (!loop->inner || loop->inner->inner)
2289 return false;
2291 bbs = get_loop_body (loop);
2292 exit_condition = get_loop_exit_condition (loop);
2293 for (i = 0; i < loop->num_nodes; i++)
2295 if (bbs[i]->loop_father == loop)
2297 for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi); bsi_next (&bsi))
2299 tree stmt = bsi_stmt (bsi);
2301 if (stmt == exit_condition
2302 || not_interesting_stmt (stmt)
2303 || stmt_is_bumper_for_loop (loop, stmt))
2304 continue;
2306 /* If this is a scalar operation that can be put back
2307 into the inner loop, or after the inner loop, through
2308 copying, then do so. This works on the theory that
2309 any amount of scalar code we have to reduplicate
2310 into or after the loops is less expensive that the
2311 win we get from rearranging the memory walk
2312 the loop is doing so that it has better
2313 cache behavior. */
2314 if (TREE_CODE (stmt) == MODIFY_EXPR)
2316 use_operand_p use_a, use_b;
2317 imm_use_iterator imm_iter;
2318 ssa_op_iter op_iter, op_iter1;
2319 tree op0 = TREE_OPERAND (stmt, 0);
2320 tree scev = instantiate_parameters
2321 (loop, analyze_scalar_evolution (loop, op0));
2323 /* If the IV is simple, it can be duplicated. */
2324 if (!automatically_generated_chrec_p (scev))
2326 tree step = evolution_part_in_loop_num (scev, loop->num);
2327 if (step && step != chrec_dont_know
2328 && TREE_CODE (step) == INTEGER_CST)
2329 continue;
2332 /* The statement should not define a variable used
2333 in the inner loop. */
2334 if (TREE_CODE (op0) == SSA_NAME)
2335 FOR_EACH_IMM_USE_FAST (use_a, imm_iter, op0)
2336 if (bb_for_stmt (USE_STMT (use_a))->loop_father
2337 == loop->inner)
2338 goto fail;
2340 FOR_EACH_SSA_USE_OPERAND (use_a, stmt, op_iter, SSA_OP_USE)
2342 tree node, op = USE_FROM_PTR (use_a);
2344 /* The variables should not be used in both loops. */
2345 FOR_EACH_IMM_USE_FAST (use_b, imm_iter, op)
2346 if (bb_for_stmt (USE_STMT (use_b))->loop_father
2347 == loop->inner)
2348 goto fail;
2350 /* The statement should not use the value of a
2351 scalar that was modified in the loop. */
2352 node = SSA_NAME_DEF_STMT (op);
2353 if (TREE_CODE (node) == PHI_NODE)
2354 FOR_EACH_PHI_ARG (use_b, node, op_iter1, SSA_OP_USE)
2356 tree arg = USE_FROM_PTR (use_b);
2358 if (TREE_CODE (arg) == SSA_NAME)
2360 tree arg_stmt = SSA_NAME_DEF_STMT (arg);
2362 if (bb_for_stmt (arg_stmt)->loop_father
2363 == loop->inner)
2364 goto fail;
2369 if (can_put_in_inner_loop (loop->inner, stmt)
2370 || can_put_after_inner_loop (loop, stmt))
2371 continue;
2374 /* Otherwise, if the bb of a statement we care about isn't
2375 dominated by the header of the inner loop, then we can't
2376 handle this case right now. This test ensures that the
2377 statement comes completely *after* the inner loop. */
2378 if (!dominated_by_p (CDI_DOMINATORS,
2379 bb_for_stmt (stmt),
2380 loop->inner->header))
2381 goto fail;
2386 /* We also need to make sure the loop exit only has simple copy phis in it,
2387 otherwise we don't know how to transform it into a perfect nest right
2388 now. */
2389 exitdest = loop->single_exit->dest;
2391 for (phi = phi_nodes (exitdest); phi; phi = PHI_CHAIN (phi))
2392 if (PHI_NUM_ARGS (phi) != 1)
2393 goto fail;
2395 free (bbs);
2396 return true;
2398 fail:
2399 free (bbs);
2400 return false;
2403 /* Transform the loop nest into a perfect nest, if possible.
2404 LOOPS is the current struct loops *
2405 LOOP is the loop nest to transform into a perfect nest
2406 LBOUNDS are the lower bounds for the loops to transform
2407 UBOUNDS are the upper bounds for the loops to transform
2408 STEPS is the STEPS for the loops to transform.
2409 LOOPIVS is the induction variables for the loops to transform.
2411 Basically, for the case of
2413 FOR (i = 0; i < 50; i++)
2415 FOR (j =0; j < 50; j++)
2417 <whatever>
2419 <some code>
2422 This function will transform it into a perfect loop nest by splitting the
2423 outer loop into two loops, like so:
2425 FOR (i = 0; i < 50; i++)
2427 FOR (j = 0; j < 50; j++)
2429 <whatever>
2433 FOR (i = 0; i < 50; i ++)
2435 <some code>
2438 Return FALSE if we can't make this loop into a perfect nest. */
2440 static bool
2441 perfect_nestify (struct loops *loops,
2442 struct loop *loop,
2443 VEC(tree,heap) *lbounds,
2444 VEC(tree,heap) *ubounds,
2445 VEC(int,heap) *steps,
2446 VEC(tree,heap) *loopivs)
2448 basic_block *bbs;
2449 tree exit_condition;
2450 tree then_label, else_label, cond_stmt;
2451 basic_block preheaderbb, headerbb, bodybb, latchbb, olddest;
2452 int i;
2453 block_stmt_iterator bsi, firstbsi;
2454 bool insert_after;
2455 edge e;
2456 struct loop *newloop;
2457 tree phi;
2458 tree uboundvar;
2459 tree stmt;
2460 tree oldivvar, ivvar, ivvarinced;
2461 VEC(tree,heap) *phis = NULL;
2462 htab_t replacements = NULL;
2464 /* Create the new loop. */
2465 olddest = loop->single_exit->dest;
2466 preheaderbb = loop_split_edge_with (loop->single_exit, NULL);
2467 headerbb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
2469 /* Push the exit phi nodes that we are moving. */
2470 for (phi = phi_nodes (olddest); phi; phi = PHI_CHAIN (phi))
2472 VEC_reserve (tree, heap, phis, 2);
2473 VEC_quick_push (tree, phis, PHI_RESULT (phi));
2474 VEC_quick_push (tree, phis, PHI_ARG_DEF (phi, 0));
2476 e = redirect_edge_and_branch (single_succ_edge (preheaderbb), headerbb);
2478 /* Remove the exit phis from the old basic block. Make sure to set
2479 PHI_RESULT to null so it doesn't get released. */
2480 while (phi_nodes (olddest) != NULL)
2482 SET_PHI_RESULT (phi_nodes (olddest), NULL);
2483 remove_phi_node (phi_nodes (olddest), NULL);
2486 /* and add them back to the new basic block. */
2487 while (VEC_length (tree, phis) != 0)
2489 tree def;
2490 tree phiname;
2491 def = VEC_pop (tree, phis);
2492 phiname = VEC_pop (tree, phis);
2493 phi = create_phi_node (phiname, preheaderbb);
2494 add_phi_arg (phi, def, single_pred_edge (preheaderbb));
2496 flush_pending_stmts (e);
2497 VEC_free (tree, heap, phis);
2499 bodybb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
2500 latchbb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
2501 make_edge (headerbb, bodybb, EDGE_FALLTHRU);
2502 then_label = build1 (GOTO_EXPR, void_type_node, tree_block_label (latchbb));
2503 else_label = build1 (GOTO_EXPR, void_type_node, tree_block_label (olddest));
2504 cond_stmt = build3 (COND_EXPR, void_type_node,
2505 build2 (NE_EXPR, boolean_type_node,
2506 integer_one_node,
2507 integer_zero_node),
2508 then_label, else_label);
2509 bsi = bsi_start (bodybb);
2510 bsi_insert_after (&bsi, cond_stmt, BSI_NEW_STMT);
2511 e = make_edge (bodybb, olddest, EDGE_FALSE_VALUE);
2512 make_edge (bodybb, latchbb, EDGE_TRUE_VALUE);
2513 make_edge (latchbb, headerbb, EDGE_FALLTHRU);
2515 /* Update the loop structures. */
2516 newloop = duplicate_loop (loops, loop, olddest->loop_father);
2517 newloop->header = headerbb;
2518 newloop->latch = latchbb;
2519 newloop->single_exit = e;
2520 add_bb_to_loop (latchbb, newloop);
2521 add_bb_to_loop (bodybb, newloop);
2522 add_bb_to_loop (headerbb, newloop);
2523 set_immediate_dominator (CDI_DOMINATORS, bodybb, headerbb);
2524 set_immediate_dominator (CDI_DOMINATORS, headerbb, preheaderbb);
2525 set_immediate_dominator (CDI_DOMINATORS, preheaderbb,
2526 loop->single_exit->src);
2527 set_immediate_dominator (CDI_DOMINATORS, latchbb, bodybb);
2528 set_immediate_dominator (CDI_DOMINATORS, olddest, bodybb);
2529 /* Create the new iv. */
2530 oldivvar = VEC_index (tree, loopivs, 0);
2531 ivvar = create_tmp_var (TREE_TYPE (oldivvar), "perfectiv");
2532 add_referenced_var (ivvar);
2533 standard_iv_increment_position (newloop, &bsi, &insert_after);
2534 create_iv (VEC_index (tree, lbounds, 0),
2535 build_int_cst (TREE_TYPE (oldivvar), VEC_index (int, steps, 0)),
2536 ivvar, newloop, &bsi, insert_after, &ivvar, &ivvarinced);
2538 /* Create the new upper bound. This may be not just a variable, so we copy
2539 it to one just in case. */
2541 exit_condition = get_loop_exit_condition (newloop);
2542 uboundvar = create_tmp_var (integer_type_node, "uboundvar");
2543 add_referenced_var (uboundvar);
2544 stmt = build2 (MODIFY_EXPR, void_type_node, uboundvar,
2545 VEC_index (tree, ubounds, 0));
2546 uboundvar = make_ssa_name (uboundvar, stmt);
2547 TREE_OPERAND (stmt, 0) = uboundvar;
2549 if (insert_after)
2550 bsi_insert_after (&bsi, stmt, BSI_SAME_STMT);
2551 else
2552 bsi_insert_before (&bsi, stmt, BSI_SAME_STMT);
2553 update_stmt (stmt);
2554 COND_EXPR_COND (exit_condition) = build2 (GE_EXPR,
2555 boolean_type_node,
2556 uboundvar,
2557 ivvarinced);
2558 update_stmt (exit_condition);
2559 replacements = htab_create_ggc (20, tree_map_hash,
2560 tree_map_eq, NULL);
2561 bbs = get_loop_body_in_dom_order (loop);
2562 /* Now move the statements, and replace the induction variable in the moved
2563 statements with the correct loop induction variable. */
2564 oldivvar = VEC_index (tree, loopivs, 0);
2565 firstbsi = bsi_start (bodybb);
2566 for (i = loop->num_nodes - 1; i >= 0 ; i--)
2568 block_stmt_iterator tobsi = bsi_last (bodybb);
2569 if (bbs[i]->loop_father == loop)
2571 /* If this is true, we are *before* the inner loop.
2572 If this isn't true, we are *after* it.
2574 The only time can_convert_to_perfect_nest returns true when we
2575 have statements before the inner loop is if they can be moved
2576 into the inner loop.
2578 The only time can_convert_to_perfect_nest returns true when we
2579 have statements after the inner loop is if they can be moved into
2580 the new split loop. */
2582 if (dominated_by_p (CDI_DOMINATORS, loop->inner->header, bbs[i]))
2584 block_stmt_iterator header_bsi
2585 = bsi_after_labels (loop->inner->header);
2587 for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi);)
2589 tree stmt = bsi_stmt (bsi);
2591 if (stmt == exit_condition
2592 || not_interesting_stmt (stmt)
2593 || stmt_is_bumper_for_loop (loop, stmt))
2595 bsi_next (&bsi);
2596 continue;
2599 bsi_move_before (&bsi, &header_bsi);
2602 else
2604 /* Note that the bsi only needs to be explicitly incremented
2605 when we don't move something, since it is automatically
2606 incremented when we do. */
2607 for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi);)
2609 ssa_op_iter i;
2610 tree n, stmt = bsi_stmt (bsi);
2612 if (stmt == exit_condition
2613 || not_interesting_stmt (stmt)
2614 || stmt_is_bumper_for_loop (loop, stmt))
2616 bsi_next (&bsi);
2617 continue;
2620 replace_uses_equiv_to_x_with_y
2621 (loop, stmt, oldivvar, VEC_index (int, steps, 0), ivvar,
2622 VEC_index (tree, lbounds, 0), replacements, &firstbsi);
2624 bsi_move_before (&bsi, &tobsi);
2626 /* If the statement has any virtual operands, they may
2627 need to be rewired because the original loop may
2628 still reference them. */
2629 FOR_EACH_SSA_TREE_OPERAND (n, stmt, i, SSA_OP_ALL_VIRTUALS)
2630 mark_sym_for_renaming (SSA_NAME_VAR (n));
2637 free (bbs);
2638 htab_delete (replacements);
2639 return perfect_nest_p (loop);
2642 /* Return true if TRANS is a legal transformation matrix that respects
2643 the dependence vectors in DISTS and DIRS. The conservative answer
2644 is false.
2646 "Wolfe proves that a unimodular transformation represented by the
2647 matrix T is legal when applied to a loop nest with a set of
2648 lexicographically non-negative distance vectors RDG if and only if
2649 for each vector d in RDG, (T.d >= 0) is lexicographically positive.
2650 i.e.: if and only if it transforms the lexicographically positive
2651 distance vectors to lexicographically positive vectors. Note that
2652 a unimodular matrix must transform the zero vector (and only it) to
2653 the zero vector." S.Muchnick. */
2655 bool
2656 lambda_transform_legal_p (lambda_trans_matrix trans,
2657 int nb_loops,
2658 VEC (ddr_p, heap) *dependence_relations)
2660 unsigned int i, j;
2661 lambda_vector distres;
2662 struct data_dependence_relation *ddr;
2664 gcc_assert (LTM_COLSIZE (trans) == nb_loops
2665 && LTM_ROWSIZE (trans) == nb_loops);
2667 /* When there is an unknown relation in the dependence_relations, we
2668 know that it is no worth looking at this loop nest: give up. */
2669 ddr = VEC_index (ddr_p, dependence_relations, 0);
2670 if (ddr == NULL)
2671 return true;
2672 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
2673 return false;
2675 distres = lambda_vector_new (nb_loops);
2677 /* For each distance vector in the dependence graph. */
2678 for (i = 0; VEC_iterate (ddr_p, dependence_relations, i, ddr); i++)
2680 /* Don't care about relations for which we know that there is no
2681 dependence, nor about read-read (aka. output-dependences):
2682 these data accesses can happen in any order. */
2683 if (DDR_ARE_DEPENDENT (ddr) == chrec_known
2684 || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
2685 continue;
2687 /* Conservatively answer: "this transformation is not valid". */
2688 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
2689 return false;
2691 /* If the dependence could not be captured by a distance vector,
2692 conservatively answer that the transform is not valid. */
2693 if (DDR_NUM_DIST_VECTS (ddr) == 0)
2694 return false;
2696 /* Compute trans.dist_vect */
2697 for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++)
2699 lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
2700 DDR_DIST_VECT (ddr, j), distres);
2702 if (!lambda_vector_lexico_pos (distres, nb_loops))
2703 return false;
2706 return true;